Restoration of metabolic functional metrics from label-free, two-photon human tissue images using multiscale deep-learning-based denoising algorithms

Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful info...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical optics Vol. 28; no. 12; p. 126006
Main Authors Vora, Nilay, Polleys, Christopher M., Sakellariou, Filippos, Georgalis, Georgios, Thieu, Hong-Thao, Genega, Elizabeth M., Jahanseir, Narges, Patra, Abani, Miller, Eric, Georgakoudi, Irene
Format Journal Article
LanguageEnglish
Published United States SPIE 01.12.2023
Subjects
Online AccessGet full text
ISSN1083-3668
1560-2281
1560-2281
DOI10.1117/1.JBO.28.12.126006

Cover

Abstract Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information. We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images. TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images. Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics. Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.
AbstractList Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information.SignificanceLabel-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information.We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images.AimWe aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images.TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images.ApproachTPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images.Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics.ResultsOptimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics.Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.ConclusionsDenoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.
Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information. We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images. TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images. Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics. Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.
Audience Academic
Author Polleys, Christopher M.
Georgalis, Georgios
Sakellariou, Filippos
Patra, Abani
Miller, Eric
Jahanseir, Narges
Vora, Nilay
Thieu, Hong-Thao
Georgakoudi, Irene
Genega, Elizabeth M.
Author_xml – sequence: 1
  givenname: Nilay
  surname: Vora
  fullname: Vora, Nilay
  organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
– sequence: 2
  givenname: Christopher M.
  surname: Polleys
  fullname: Polleys, Christopher M.
  organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
– sequence: 3
  givenname: Filippos
  surname: Sakellariou
  fullname: Sakellariou, Filippos
  organization: Anatolia College, Thessaloniki, Greece
– sequence: 4
  givenname: Georgios
  surname: Georgalis
  fullname: Georgalis, Georgios
  organization: Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States
– sequence: 5
  givenname: Hong-Thao
  surname: Thieu
  fullname: Thieu, Hong-Thao
  organization: Tufts University School of Medicine, Tufts Medical Center, Department of Obstetrics and Gynecology, Boston, Massachusetts, United States
– sequence: 6
  givenname: Elizabeth M.
  surname: Genega
  fullname: Genega, Elizabeth M.
  organization: Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States
– sequence: 7
  givenname: Narges
  surname: Jahanseir
  fullname: Jahanseir, Narges
  organization: Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States
– sequence: 8
  givenname: Abani
  surname: Patra
  fullname: Patra, Abani
  organization: Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States
– sequence: 9
  givenname: Eric
  surname: Miller
  fullname: Miller, Eric
  organization: Tufts University, Department of Electrical and Computer Engineering, Medford, Massachusetts, United States
– sequence: 10
  givenname: Irene
  surname: Georgakoudi
  fullname: Georgakoudi, Irene
  organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38144697$$D View this record in MEDLINE/PubMed
BookMark eNptUttuFSEUnZgae9Ef8MGQ-OJDZwSGw8Bj21gvadLE6DNhmM05NAyMMJOmH-L_yulUo62BBLJYa2evtTmuDkIMUFWvCW4IId170nw5v26oaAgtm2PMn1VHZMNxTakgB-WORVu3nIvD6jjnG4yx4JK_qA5bQRjjsjuqfn6FPMekZxcDihaNMOs-emeQXYLZo9rvweRMRjbFEXndg69tAjhF822sp12ci3a3jDqg2eW8AHKj3kJGS3Zhi8bFF9hoD2gAmGoPOoXyUPc6w1CwEN09UfttTG7ejfll9dxqn-HVw3lSfb_88O3iU311_fHzxdlVbRhhc20JmMFSI7uB9tISTiUVLRtsRwUzuGfSGmlBtpoC5a1sB2xlL_BgmaCtYe1J1a51lzDpu1vtvZpSaT7dKYLVPmRF1E0fFRWKULWGXFTvVtWU4o-l5KfG4g-81wHikhWVeNMJUjop1LcrdVvsKxdsnJM2e7o6E2xDJeOYFlbzH1ZZA4zOlKFbV_B_BG8eOlj6EYY_Tf-eayGIlWBSzDmBVcbN90MulZ3_y135Qo_d0UfSp5E8Ef0CGRHJqg
CitedBy_id crossref_primary_10_1126_sciadv_adp2438
Cites_doi 10.1038/srep03432
10.1364/OL.32.003305
10.1089/ars.2017.7451
10.1016/j.xcrm.2020.100017
10.1109/TCI.2016.2644865
10.1109/TIP.2003.819861
10.1038/nmeth818
10.1109/TIP.2007.891064
10.1021/bi800307y
10.1007/s11307-021-01665-2
10.1172/jci.insight.154585
10.1158/0008-5472.CAN-13-2713
10.1007/978-3-030-01234-2_18
10.1002/jbio.200810050
10.1016/j.tem.2015.12.001
10.1038/s41377-022-00768-x
10.1126/scitranslmed.aag2202
10.1053/j.semnuclmed.2015.09.004
10.2217/bmm.10.1
10.1016/j.cell.2012.02.032
10.1002/jemt.20959
10.1109/MMSP53017.2021.9733576
10.1364/OE.20.023442
10.1007/s12551-022-00949-3
10.1109/ICPR.2010.579
10.1146/annurev.bioeng.2.1.399
10.1016/j.bspc.2020.102036
10.5772/36434
10.1016/S0021-9258(17)30079-0
10.1109/ACPR.2015.7486599
10.1186/s42492-019-0016-7
10.1002/ijc.28992
10.1109/CVPR52688.2022.01576
10.1016/j.cmet.2019.08.013
10.1038/s41592-021-01155-x
10.1042/EBC20170104
10.1001/jamadermatol.2015.0453
10.1146/annurev-bioeng-071811-150108
10.1016/j.bpj.2023.02.014
10.1117/12.2650856
10.1016/j.mito.2007.05.001
10.1016/j.jchromb.2007.10.022
10.1016/j.jid.2023.10.006
10.1109/TNS.2008.918736
10.1038/465562a
10.1038/s41377-021-00648-w
10.2307/2331838
10.1038/s41556-018-0124-1
10.1109/IFITA.2009.47
10.1146/annurev-bioeng-071516-044730
10.1038/s41592-018-0216-7
10.1109/ICCV48922.2021.01366
10.1562/0031-8655(2003)0770550MABOON2.0.CO2
10.1158/0008-5472.CAN-20-3124
10.1109/TKDE.2021.3130191
10.1109/CVPR.2017.19
10.1016/j.biomaterials.2012.04.024
ContentType Journal Article
Copyright 2023 The Authors.
COPYRIGHT 2023 SPIE
Copyright_xml – notice: 2023 The Authors.
– notice: COPYRIGHT 2023 SPIE
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1117/1.JBO.28.12.126006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
Physics
EISSN 1560-2281
ExternalDocumentID 10.1117/1.jbo.28.12.126006
A845294602
38144697
10_1117_1_JBO_28_12_126006
Genre Journal Article
GroupedDBID ---
0R~
29J
4.4
53G
5GY
AAFWJ
AAYXX
ACBEA
ACGFO
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AKROS
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
F5P
FQ0
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IAO
M4X
M7P
O9-
OK1
P2P
PBYJJ
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
RPM
SPBNH
UPT
W2D
YQT
CGR
CUY
CVF
ECM
EIF
EJD
EMOBN
M4W
NPM
NU.
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c414t-f1ecdf2c97d2b9f16292834df7284c0b49fc9fe93a2e26393d0f9b80df4823c43
IEDL.DBID UNPAY
ISSN 1083-3668
1560-2281
IngestDate Sun Oct 26 04:15:17 EDT 2025
Sat Sep 27 21:43:15 EDT 2025
Mon Oct 20 22:41:25 EDT 2025
Mon Oct 20 16:53:09 EDT 2025
Mon Jul 21 05:47:35 EDT 2025
Wed Oct 01 03:56:51 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep learning
label-free
multiscale denosing
two-photon excited fluorescence
biomedical optics
metabolic imaging
Language English
License 2023 The Authors.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-f1ecdf2c97d2b9f16292834df7284c0b49fc9fe93a2e26393d0f9b80df4823c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2265-5580
0000-0002-3571-5212
0000-0003-2628-7436
0000-0002-3156-6002
0000-0002-0049-6697
0009-0006-0263-9395
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-28/issue-12/126006/Restoration-of-metabolic-functional-metrics-from-label-free-two-photon/10.1117/1.JBO.28.12.126006.pdf
PMID 38144697
PQID 2905781834
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1117_1_jbo_28_12_126006
proquest_miscellaneous_2905781834
gale_infotracmisc_A845294602
gale_infotracacademiconefile_A845294602
pubmed_primary_38144697
crossref_citationtrail_10_1117_1_JBO_28_12_126006
crossref_primary_10_1117_1_JBO_28_12_126006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical optics
PublicationTitleAlternate J Biomed Opt
PublicationYear 2023
Publisher SPIE
Publisher_xml – name: SPIE
References r2
r3
r4
r5
Ferenczy (r39) 1986
r6
r7
r8
r9
Kingma (r50) 2014
r52
r51
r10
r53
r12
Ronneberger (r64) 2015
r11
r55
r14
r58
r13
r57
r16
r15
r59
r18
r17
r19
Chollet (r47) 2015
Ergen (r56) 2012
r63
r62
r21
r65
r20
r23
r22
r66
r25
r24
r27
r26
r29
r28
Goodfellow (r61) 2016
(r48) 2020
Abadi (r46) 2015
r30
r32
r31
r34
r33
r36
r35
r38
r37
(r67) 2022
Shiu (r41) 2023
Han (r60) 2017
r40
r43
r42
r45
r44
r49
Fisher (r54) 1921
r1
References_xml – ident: r23
  doi: 10.1038/srep03432
– year: 2015
  ident: r46
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– start-page: 1
  year: 2014
  ident: r50
  article-title: Adam: a method for stochastic optimization
– ident: r17
  doi: 10.1364/OL.32.003305
– ident: r14
  doi: 10.1089/ars.2017.7451
– ident: r25
  doi: 10.1016/j.xcrm.2020.100017
– ident: r52
  doi: 10.1109/TCI.2016.2644865
– ident: r63
  doi: 10.1109/TIP.2003.819861
– ident: r7
  doi: 10.1038/nmeth818
– ident: r58
  doi: 10.1109/TIP.2007.891064
– ident: r19
  doi: 10.1021/bi800307y
– ident: r30
  doi: 10.1007/s11307-021-01665-2
– ident: r29
  doi: 10.1172/jci.insight.154585
– ident: r24
  doi: 10.1158/0008-5472.CAN-13-2713
– ident: r38
  doi: 10.1007/978-3-030-01234-2_18
– ident: r42
  doi: 10.1002/jbio.200810050
– ident: r20
  doi: 10.1016/j.tem.2015.12.001
– ident: r37
  doi: 10.1038/s41377-022-00768-x
– ident: r22
  doi: 10.1126/scitranslmed.aag2202
– ident: r4
  doi: 10.1053/j.semnuclmed.2015.09.004
– ident: r9
  doi: 10.2217/bmm.10.1
– year: 2016
  ident: r61
– ident: r2
  doi: 10.1016/j.cell.2012.02.032
– ident: r44
  doi: 10.1002/jemt.20959
– ident: r59
  doi: 10.1109/MMSP53017.2021.9733576
– ident: r18
  doi: 10.1364/OE.20.023442
– start-page: 67
  year: 2017
  ident: r60
  article-title: Wavelet filter banks
– start-page: 234
  year: 2015
  ident: r64
  article-title: U-Net: convolutional networks for biomedical image segmentation
– ident: r62
  doi: 10.1007/s12551-022-00949-3
– ident: r55
  doi: 10.1109/ICPR.2010.579
– start-page: 239
  year: 1986
  ident: r39
  article-title: Ultrastructure of the uterine cervix
– ident: r6
  doi: 10.1146/annurev.bioeng.2.1.399
– ident: r32
  doi: 10.1016/j.bspc.2020.102036
– year: 2015
  ident: r47
  article-title: Keras
– year: 2012
  ident: r56
  article-title: Signal and image denoising using wavelet transform
  doi: 10.5772/36434
– ident: r12
  doi: 10.1016/S0021-9258(17)30079-0
– ident: r66
  doi: 10.1109/ACPR.2015.7486599
– ident: r31
  doi: 10.1186/s42492-019-0016-7
– ident: r21
  doi: 10.1002/ijc.28992
– ident: r33
  doi: 10.1109/CVPR52688.2022.01576
– year: 2020
  ident: r48
  article-title: Anaconda software distribution
– ident: r3
  doi: 10.1016/j.cmet.2019.08.013
– ident: r36
  doi: 10.1038/s41592-021-01155-x
– ident: r16
  doi: 10.1042/EBC20170104
– year: 2022
  ident: r67
  article-title: High Performance Cluster
– ident: r26
  doi: 10.1001/jamadermatol.2015.0453
– ident: r8
  doi: 10.1146/annurev-bioeng-071811-150108
– ident: r11
  doi: 10.1016/j.bpj.2023.02.014
– ident: r49
  doi: 10.1117/12.2650856
– ident: r13
  doi: 10.1016/j.mito.2007.05.001
– ident: r5
  doi: 10.1016/j.jchromb.2007.10.022
– year: 2023
  ident: r41
  article-title: Non-invasive imaging techniques for monitoring cellular response to treatment in stable vitiligo
  doi: 10.1016/j.jid.2023.10.006
– start-page: 205
  year: 1921
  ident: r54
  article-title: On the “probable error” of a coefficient of correlation as deduce from a small sample
– ident: r43
  doi: 10.1109/TNS.2008.918736
– ident: r1
  doi: 10.1038/465562a
– ident: r28
  doi: 10.1038/s41377-021-00648-w
– ident: r53
  doi: 10.2307/2331838
– ident: r10
  doi: 10.1038/s41556-018-0124-1
– ident: r57
  doi: 10.1109/IFITA.2009.47
– ident: r15
  doi: 10.1146/annurev-bioeng-071516-044730
– ident: r34
  doi: 10.1038/s41592-018-0216-7
– ident: r51
  doi: 10.1109/ICCV48922.2021.01366
– ident: r40
  doi: 10.1562/0031-8655(2003)0770550MABOON2.0.CO2
– ident: r27
  doi: 10.1158/0008-5472.CAN-20-3124
– ident: r65
  doi: 10.1109/TKDE.2021.3130191
– ident: r35
  doi: 10.1109/CVPR.2017.19
– ident: r45
  doi: 10.1016/j.biomaterials.2012.04.024
SSID ssj0008696
Score 2.4237037
Snippet Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of...
SourceID unpaywall
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 126006
SubjectTerms Algorithms
Deep Learning
Diagnostic Imaging
Humans
Image Processing, Computer-Assisted - methods
Physiological aspects
Signal-To-Noise Ratio
Wavelet Analysis
Title Restoration of metabolic functional metrics from label-free, two-photon human tissue images using multiscale deep-learning-based denoising algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/38144697
https://www.proquest.com/docview/2905781834
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-28/issue-12/126006/Restoration-of-metabolic-functional-metrics-from-label-free-two-photon/10.1117/1.JBO.28.12.126006.pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3dbtMwFLZGKwRc8DMGFEZlJCQumJvacVPnskObpkmUaWLSuLISx-4KbRI1qabxHrwTr8JbcBwn_ZkQErfcRJHjOJ_tHJ_P1vlB6O1ABxp4tyBKRDHhkdJERIOYDODqMwF7ucqP--M4OLngp5eDyx30s_GFsWaVRQ7sazqxSTNWcR8WE68e3KK5IZkhzkfddodkuY1r7DmhJkx4FXBCmUdtEPbAO69StVT9ta_OdQnDPJsqYjWIO3izhbD8FMT6dhCYBj2DW61JeZ2R_CoDOlYvM0OP9k4PP_WYsKeJ7gu9PDF3UDsYwK6ghdoX47PRF2ff7xM_cF55QDAIY4I2_jtVQ1_jbKuhLR15W1NsqMp7yzSPbq5hmDZ04vEj9KsZTWcK8623LOOe-n4r0OT_MNyP0cOauOORk7QnaEenu-iuS-V5s4sebAR2hPLKsFYVT9GPDYA4M3gFEK8B4hogtgDxGuABXiPEVTJFXFb9x9M5qIECW6eFCa5sQgsYLY0TrXNSJwKZEMtQEihLs2lVMZpNssW0vJoXe-ji-OjzhxNSp8IgilNeEkO1SgxT4TBhcWhowELghTwxQ5Al1Y95aFRodOhHTDMgnX7SN2Es-onhgvmK-89QK81S_QJhJRRs0TXXNhAT1A4ZqJgkooaFUQBf6yDa_HxS1XHibbqSmXT7xaGkEqZCMiEpk24qOuj96p3cRUn5a-139p-WdgmFllVUe4IAPhuMTI6EtQbgQZ910P5WTVj61NbjN41USPvI2gumOlsWkoWwDwEu6vMOeu7EZQUMOCrnQTjsoIOV_PwBNQjlFuqX_1b9FbrPgA87y6d91CoXS_0a-GsZd1H78Gh8dt6tzn-69ULxGzSPoJI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3dbtMwFLZGJwRc8DNgFAYyEhIXzE3tuKl9WRDTNImBEJXGlZU4dlfWJlGTahrvwTvxKrwFx3HSnwkhcctNFDlO8vk4x-dzdH4QejUwkQHeLYgWcUJ4rA0R8SAhAziGTMBero7j_nAaHY_5ydngbAf9bGNhnFtlWQD7mk5c0YxV3ofFJGiEW7YnJLfEx6i74ZC8cHmNA6_UhImgBk4oC6hLwh4Fn-tSLfV43a1zU4GYZ1NNnAXxP95cIyw_JXGxHQSmwczg1BhSXeakOM-BjjXLzDCgvZO3H3tMuL-J_g29IrU30G40gF1BB-2OTz-Nvnr__pCEkY_KA4JBGBO0jd-pH_QtybcetGUjr1uKDVN5a5kV8dUliGnDJh7dQ79aaXpXmIveskp6-vu1RJP_g7jvo7sNcccjr2kP0I7J9tBNX8rzag_d2UjsCO21Y60uH6IfGwBxbvEKIF4DxA1A7ADiNcBDvEaI62KKuKrHj6dzMAMldkELE1z7hJYgLYNTYwrSFAKZEMdQUmjL8mndMZ5N8sW0Op-Xj9D46P2Xd8ekKYVBNKe8IpYanVqm5TBlibQ0YhJ4IU_tEHRJ9xMurZbWyDBmhgHpDNO-lYnop5YLFmoePkadLM_ME4S10LBFN9y4REzQWzIwMWlMLZNxBG_rItp-fEo3eeJduZKZ8vvFoaIKpkIxoShTfiq66M3qnsJnSflr79fum1ZuCYUn67iJBAF8LhmZGgnnDcCjPuuig62esPTprcsvW61Q7pLzF8xMviwVk7APAS4a8i7a9-qyAgYclfNIDrvocKU_f0ANSrmF-um_dX-GbjPgw97z6QB1qsXSPAf-WiUvmqXhN4G3ngM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoration+of+metabolic+functional+metrics+from+label-free%2C+two-photon+human+tissue+images+using+multiscale+deep-learning-based+denoising+algorithms&rft.jtitle=Journal+of+biomedical+optics&rft.au=Vora%2C+Nilay&rft.au=Polleys%2C+Christopher+M&rft.au=Sakellariou%2C+Filippos&rft.au=Georgalis%2C+Georgios&rft.date=2023-12-01&rft.pub=SPIE&rft.issn=1083-3668&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1117%2F1.JBO.28.12.126006&rft.externalDocID=A845294602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon