Restoration of metabolic functional metrics from label-free, two-photon human tissue images using multiscale deep-learning-based denoising algorithms
Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful info...
Saved in:
| Published in | Journal of biomedical optics Vol. 28; no. 12; p. 126006 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
SPIE
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-3668 1560-2281 1560-2281 |
| DOI | 10.1117/1.JBO.28.12.126006 |
Cover
| Abstract | Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information.
We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images.
TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images.
Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics.
Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging. |
|---|---|
| AbstractList | Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information.SignificanceLabel-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information.We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images.AimWe aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images.TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images.ApproachTPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images.Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics.ResultsOptimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics.Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.ConclusionsDenoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging. Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information. We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images. TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images. Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics. Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging. |
| Audience | Academic |
| Author | Polleys, Christopher M. Georgalis, Georgios Sakellariou, Filippos Patra, Abani Miller, Eric Jahanseir, Narges Vora, Nilay Thieu, Hong-Thao Georgakoudi, Irene Genega, Elizabeth M. |
| Author_xml | – sequence: 1 givenname: Nilay surname: Vora fullname: Vora, Nilay organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States – sequence: 2 givenname: Christopher M. surname: Polleys fullname: Polleys, Christopher M. organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States – sequence: 3 givenname: Filippos surname: Sakellariou fullname: Sakellariou, Filippos organization: Anatolia College, Thessaloniki, Greece – sequence: 4 givenname: Georgios surname: Georgalis fullname: Georgalis, Georgios organization: Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States – sequence: 5 givenname: Hong-Thao surname: Thieu fullname: Thieu, Hong-Thao organization: Tufts University School of Medicine, Tufts Medical Center, Department of Obstetrics and Gynecology, Boston, Massachusetts, United States – sequence: 6 givenname: Elizabeth M. surname: Genega fullname: Genega, Elizabeth M. organization: Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States – sequence: 7 givenname: Narges surname: Jahanseir fullname: Jahanseir, Narges organization: Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States – sequence: 8 givenname: Abani surname: Patra fullname: Patra, Abani organization: Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States – sequence: 9 givenname: Eric surname: Miller fullname: Miller, Eric organization: Tufts University, Department of Electrical and Computer Engineering, Medford, Massachusetts, United States – sequence: 10 givenname: Irene surname: Georgakoudi fullname: Georgakoudi, Irene organization: Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38144697$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUttuFSEUnZgae9Ef8MGQ-OJDZwSGw8Bj21gvadLE6DNhmM05NAyMMJOmH-L_yulUo62BBLJYa2evtTmuDkIMUFWvCW4IId170nw5v26oaAgtm2PMn1VHZMNxTakgB-WORVu3nIvD6jjnG4yx4JK_qA5bQRjjsjuqfn6FPMekZxcDihaNMOs-emeQXYLZo9rvweRMRjbFEXndg69tAjhF822sp12ci3a3jDqg2eW8AHKj3kJGS3Zhi8bFF9hoD2gAmGoPOoXyUPc6w1CwEN09UfttTG7ejfll9dxqn-HVw3lSfb_88O3iU311_fHzxdlVbRhhc20JmMFSI7uB9tISTiUVLRtsRwUzuGfSGmlBtpoC5a1sB2xlL_BgmaCtYe1J1a51lzDpu1vtvZpSaT7dKYLVPmRF1E0fFRWKULWGXFTvVtWU4o-l5KfG4g-81wHikhWVeNMJUjop1LcrdVvsKxdsnJM2e7o6E2xDJeOYFlbzH1ZZA4zOlKFbV_B_BG8eOlj6EYY_Tf-eayGIlWBSzDmBVcbN90MulZ3_y135Qo_d0UfSp5E8Ef0CGRHJqg |
| CitedBy_id | crossref_primary_10_1126_sciadv_adp2438 |
| Cites_doi | 10.1038/srep03432 10.1364/OL.32.003305 10.1089/ars.2017.7451 10.1016/j.xcrm.2020.100017 10.1109/TCI.2016.2644865 10.1109/TIP.2003.819861 10.1038/nmeth818 10.1109/TIP.2007.891064 10.1021/bi800307y 10.1007/s11307-021-01665-2 10.1172/jci.insight.154585 10.1158/0008-5472.CAN-13-2713 10.1007/978-3-030-01234-2_18 10.1002/jbio.200810050 10.1016/j.tem.2015.12.001 10.1038/s41377-022-00768-x 10.1126/scitranslmed.aag2202 10.1053/j.semnuclmed.2015.09.004 10.2217/bmm.10.1 10.1016/j.cell.2012.02.032 10.1002/jemt.20959 10.1109/MMSP53017.2021.9733576 10.1364/OE.20.023442 10.1007/s12551-022-00949-3 10.1109/ICPR.2010.579 10.1146/annurev.bioeng.2.1.399 10.1016/j.bspc.2020.102036 10.5772/36434 10.1016/S0021-9258(17)30079-0 10.1109/ACPR.2015.7486599 10.1186/s42492-019-0016-7 10.1002/ijc.28992 10.1109/CVPR52688.2022.01576 10.1016/j.cmet.2019.08.013 10.1038/s41592-021-01155-x 10.1042/EBC20170104 10.1001/jamadermatol.2015.0453 10.1146/annurev-bioeng-071811-150108 10.1016/j.bpj.2023.02.014 10.1117/12.2650856 10.1016/j.mito.2007.05.001 10.1016/j.jchromb.2007.10.022 10.1016/j.jid.2023.10.006 10.1109/TNS.2008.918736 10.1038/465562a 10.1038/s41377-021-00648-w 10.2307/2331838 10.1038/s41556-018-0124-1 10.1109/IFITA.2009.47 10.1146/annurev-bioeng-071516-044730 10.1038/s41592-018-0216-7 10.1109/ICCV48922.2021.01366 10.1562/0031-8655(2003)0770550MABOON2.0.CO2 10.1158/0008-5472.CAN-20-3124 10.1109/TKDE.2021.3130191 10.1109/CVPR.2017.19 10.1016/j.biomaterials.2012.04.024 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. COPYRIGHT 2023 SPIE |
| Copyright_xml | – notice: 2023 The Authors. – notice: COPYRIGHT 2023 SPIE |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1117/1.JBO.28.12.126006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology Physics |
| EISSN | 1560-2281 |
| ExternalDocumentID | 10.1117/1.jbo.28.12.126006 A845294602 38144697 10_1117_1_JBO_28_12_126006 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 29J 4.4 53G 5GY AAFWJ AAYXX ACBEA ACGFO ACGFS ADBBV AENEX AEUYN AFKRA AFPKN AKROS ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS F5P FQ0 GROUPED_DOAJ HCIFZ HYE HZ~ IAO M4X M7P O9- OK1 P2P PBYJJ PHGZM PHGZT PIMPY PQGLB PUEGO RNS RPM SPBNH UPT W2D YQT CGR CUY CVF ECM EIF EJD EMOBN M4W NPM NU. 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c414t-f1ecdf2c97d2b9f16292834df7284c0b49fc9fe93a2e26393d0f9b80df4823c43 |
| IEDL.DBID | UNPAY |
| ISSN | 1083-3668 1560-2281 |
| IngestDate | Sun Oct 26 04:15:17 EDT 2025 Sat Sep 27 21:43:15 EDT 2025 Mon Oct 20 22:41:25 EDT 2025 Mon Oct 20 16:53:09 EDT 2025 Mon Jul 21 05:47:35 EDT 2025 Wed Oct 01 03:56:51 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | deep learning label-free multiscale denosing two-photon excited fluorescence biomedical optics metabolic imaging |
| Language | English |
| License | 2023 The Authors. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-f1ecdf2c97d2b9f16292834df7284c0b49fc9fe93a2e26393d0f9b80df4823c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2265-5580 0000-0002-3571-5212 0000-0003-2628-7436 0000-0002-3156-6002 0000-0002-0049-6697 0009-0006-0263-9395 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-28/issue-12/126006/Restoration-of-metabolic-functional-metrics-from-label-free-two-photon/10.1117/1.JBO.28.12.126006.pdf |
| PMID | 38144697 |
| PQID | 2905781834 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1117_1_jbo_28_12_126006 proquest_miscellaneous_2905781834 gale_infotracmisc_A845294602 gale_infotracacademiconefile_A845294602 pubmed_primary_38144697 crossref_citationtrail_10_1117_1_JBO_28_12_126006 crossref_primary_10_1117_1_JBO_28_12_126006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical optics |
| PublicationTitleAlternate | J Biomed Opt |
| PublicationYear | 2023 |
| Publisher | SPIE |
| Publisher_xml | – name: SPIE |
| References | r2 r3 r4 r5 Ferenczy (r39) 1986 r6 r7 r8 r9 Kingma (r50) 2014 r52 r51 r10 r53 r12 Ronneberger (r64) 2015 r11 r55 r14 r58 r13 r57 r16 r15 r59 r18 r17 r19 Chollet (r47) 2015 Ergen (r56) 2012 r63 r62 r21 r65 r20 r23 r22 r66 r25 r24 r27 r26 r29 r28 Goodfellow (r61) 2016 (r48) 2020 Abadi (r46) 2015 r30 r32 r31 r34 r33 r36 r35 r38 r37 (r67) 2022 Shiu (r41) 2023 Han (r60) 2017 r40 r43 r42 r45 r44 r49 Fisher (r54) 1921 r1 |
| References_xml | – ident: r23 doi: 10.1038/srep03432 – year: 2015 ident: r46 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – start-page: 1 year: 2014 ident: r50 article-title: Adam: a method for stochastic optimization – ident: r17 doi: 10.1364/OL.32.003305 – ident: r14 doi: 10.1089/ars.2017.7451 – ident: r25 doi: 10.1016/j.xcrm.2020.100017 – ident: r52 doi: 10.1109/TCI.2016.2644865 – ident: r63 doi: 10.1109/TIP.2003.819861 – ident: r7 doi: 10.1038/nmeth818 – ident: r58 doi: 10.1109/TIP.2007.891064 – ident: r19 doi: 10.1021/bi800307y – ident: r30 doi: 10.1007/s11307-021-01665-2 – ident: r29 doi: 10.1172/jci.insight.154585 – ident: r24 doi: 10.1158/0008-5472.CAN-13-2713 – ident: r38 doi: 10.1007/978-3-030-01234-2_18 – ident: r42 doi: 10.1002/jbio.200810050 – ident: r20 doi: 10.1016/j.tem.2015.12.001 – ident: r37 doi: 10.1038/s41377-022-00768-x – ident: r22 doi: 10.1126/scitranslmed.aag2202 – ident: r4 doi: 10.1053/j.semnuclmed.2015.09.004 – ident: r9 doi: 10.2217/bmm.10.1 – year: 2016 ident: r61 – ident: r2 doi: 10.1016/j.cell.2012.02.032 – ident: r44 doi: 10.1002/jemt.20959 – ident: r59 doi: 10.1109/MMSP53017.2021.9733576 – ident: r18 doi: 10.1364/OE.20.023442 – start-page: 67 year: 2017 ident: r60 article-title: Wavelet filter banks – start-page: 234 year: 2015 ident: r64 article-title: U-Net: convolutional networks for biomedical image segmentation – ident: r62 doi: 10.1007/s12551-022-00949-3 – ident: r55 doi: 10.1109/ICPR.2010.579 – start-page: 239 year: 1986 ident: r39 article-title: Ultrastructure of the uterine cervix – ident: r6 doi: 10.1146/annurev.bioeng.2.1.399 – ident: r32 doi: 10.1016/j.bspc.2020.102036 – year: 2015 ident: r47 article-title: Keras – year: 2012 ident: r56 article-title: Signal and image denoising using wavelet transform doi: 10.5772/36434 – ident: r12 doi: 10.1016/S0021-9258(17)30079-0 – ident: r66 doi: 10.1109/ACPR.2015.7486599 – ident: r31 doi: 10.1186/s42492-019-0016-7 – ident: r21 doi: 10.1002/ijc.28992 – ident: r33 doi: 10.1109/CVPR52688.2022.01576 – year: 2020 ident: r48 article-title: Anaconda software distribution – ident: r3 doi: 10.1016/j.cmet.2019.08.013 – ident: r36 doi: 10.1038/s41592-021-01155-x – ident: r16 doi: 10.1042/EBC20170104 – year: 2022 ident: r67 article-title: High Performance Cluster – ident: r26 doi: 10.1001/jamadermatol.2015.0453 – ident: r8 doi: 10.1146/annurev-bioeng-071811-150108 – ident: r11 doi: 10.1016/j.bpj.2023.02.014 – ident: r49 doi: 10.1117/12.2650856 – ident: r13 doi: 10.1016/j.mito.2007.05.001 – ident: r5 doi: 10.1016/j.jchromb.2007.10.022 – year: 2023 ident: r41 article-title: Non-invasive imaging techniques for monitoring cellular response to treatment in stable vitiligo doi: 10.1016/j.jid.2023.10.006 – start-page: 205 year: 1921 ident: r54 article-title: On the “probable error” of a coefficient of correlation as deduce from a small sample – ident: r43 doi: 10.1109/TNS.2008.918736 – ident: r1 doi: 10.1038/465562a – ident: r28 doi: 10.1038/s41377-021-00648-w – ident: r53 doi: 10.2307/2331838 – ident: r10 doi: 10.1038/s41556-018-0124-1 – ident: r57 doi: 10.1109/IFITA.2009.47 – ident: r15 doi: 10.1146/annurev-bioeng-071516-044730 – ident: r34 doi: 10.1038/s41592-018-0216-7 – ident: r51 doi: 10.1109/ICCV48922.2021.01366 – ident: r40 doi: 10.1562/0031-8655(2003)0770550MABOON2.0.CO2 – ident: r27 doi: 10.1158/0008-5472.CAN-20-3124 – ident: r65 doi: 10.1109/TKDE.2021.3130191 – ident: r35 doi: 10.1109/CVPR.2017.19 – ident: r45 doi: 10.1016/j.biomaterials.2012.04.024 |
| SSID | ssj0008696 |
| Score | 2.4237037 |
| Snippet | Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of... |
| SourceID | unpaywall proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 126006 |
| SubjectTerms | Algorithms Deep Learning Diagnostic Imaging Humans Image Processing, Computer-Assisted - methods Physiological aspects Signal-To-Noise Ratio Wavelet Analysis |
| Title | Restoration of metabolic functional metrics from label-free, two-photon human tissue images using multiscale deep-learning-based denoising algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38144697 https://www.proquest.com/docview/2905781834 https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-28/issue-12/126006/Restoration-of-metabolic-functional-metrics-from-label-free-two-photon/10.1117/1.JBO.28.12.126006.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals customDbUrl: eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3dbtMwFLZGKwRc8DMGFEZlJCQumJvacVPnskObpkmUaWLSuLISx-4KbRI1qabxHrwTr8JbcBwn_ZkQErfcRJHjOJ_tHJ_P1vlB6O1ABxp4tyBKRDHhkdJERIOYDODqMwF7ucqP--M4OLngp5eDyx30s_GFsWaVRQ7sazqxSTNWcR8WE68e3KK5IZkhzkfddodkuY1r7DmhJkx4FXBCmUdtEPbAO69StVT9ta_OdQnDPJsqYjWIO3izhbD8FMT6dhCYBj2DW61JeZ2R_CoDOlYvM0OP9k4PP_WYsKeJ7gu9PDF3UDsYwK6ghdoX47PRF2ff7xM_cF55QDAIY4I2_jtVQ1_jbKuhLR15W1NsqMp7yzSPbq5hmDZ04vEj9KsZTWcK8623LOOe-n4r0OT_MNyP0cOauOORk7QnaEenu-iuS-V5s4sebAR2hPLKsFYVT9GPDYA4M3gFEK8B4hogtgDxGuABXiPEVTJFXFb9x9M5qIECW6eFCa5sQgsYLY0TrXNSJwKZEMtQEihLs2lVMZpNssW0vJoXe-ji-OjzhxNSp8IgilNeEkO1SgxT4TBhcWhowELghTwxQ5Al1Y95aFRodOhHTDMgnX7SN2Es-onhgvmK-89QK81S_QJhJRRs0TXXNhAT1A4ZqJgkooaFUQBf6yDa_HxS1XHibbqSmXT7xaGkEqZCMiEpk24qOuj96p3cRUn5a-139p-WdgmFllVUe4IAPhuMTI6EtQbgQZ910P5WTVj61NbjN41USPvI2gumOlsWkoWwDwEu6vMOeu7EZQUMOCrnQTjsoIOV_PwBNQjlFuqX_1b9FbrPgA87y6d91CoXS_0a-GsZd1H78Gh8dt6tzn-69ULxGzSPoJI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3dbtMwFLZGJwRc8DNgFAYyEhIXzE3tuKl9WRDTNImBEJXGlZU4dlfWJlGTahrvwTvxKrwFx3HSnwkhcctNFDlO8vk4x-dzdH4QejUwkQHeLYgWcUJ4rA0R8SAhAziGTMBero7j_nAaHY_5ydngbAf9bGNhnFtlWQD7mk5c0YxV3ofFJGiEW7YnJLfEx6i74ZC8cHmNA6_UhImgBk4oC6hLwh4Fn-tSLfV43a1zU4GYZ1NNnAXxP95cIyw_JXGxHQSmwczg1BhSXeakOM-BjjXLzDCgvZO3H3tMuL-J_g29IrU30G40gF1BB-2OTz-Nvnr__pCEkY_KA4JBGBO0jd-pH_QtybcetGUjr1uKDVN5a5kV8dUliGnDJh7dQ79aaXpXmIveskp6-vu1RJP_g7jvo7sNcccjr2kP0I7J9tBNX8rzag_d2UjsCO21Y60uH6IfGwBxbvEKIF4DxA1A7ADiNcBDvEaI62KKuKrHj6dzMAMldkELE1z7hJYgLYNTYwrSFAKZEMdQUmjL8mndMZ5N8sW0Op-Xj9D46P2Xd8ekKYVBNKe8IpYanVqm5TBlibQ0YhJ4IU_tEHRJ9xMurZbWyDBmhgHpDNO-lYnop5YLFmoePkadLM_ME4S10LBFN9y4REzQWzIwMWlMLZNxBG_rItp-fEo3eeJduZKZ8vvFoaIKpkIxoShTfiq66M3qnsJnSflr79fum1ZuCYUn67iJBAF8LhmZGgnnDcCjPuuig62esPTprcsvW61Q7pLzF8xMviwVk7APAS4a8i7a9-qyAgYclfNIDrvocKU_f0ANSrmF-um_dX-GbjPgw97z6QB1qsXSPAf-WiUvmqXhN4G3ngM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoration+of+metabolic+functional+metrics+from+label-free%2C+two-photon+human+tissue+images+using+multiscale+deep-learning-based+denoising+algorithms&rft.jtitle=Journal+of+biomedical+optics&rft.au=Vora%2C+Nilay&rft.au=Polleys%2C+Christopher+M&rft.au=Sakellariou%2C+Filippos&rft.au=Georgalis%2C+Georgios&rft.date=2023-12-01&rft.pub=SPIE&rft.issn=1083-3668&rft.volume=28&rft.issue=12&rft_id=info:doi/10.1117%2F1.JBO.28.12.126006&rft.externalDocID=A845294602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon |