A quantum computing view on unitary coupled cluster theory
We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory...
Saved in:
| Published in | Chemical Society reviews Vol. 51; no. 5; pp. 1659 - 1684 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Royal Society of Chemistry
07.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-0012 1460-4744 1460-4744 |
| DOI | 10.1039/D1CS00932J |
Cover
| Abstract | We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field. |
|---|---|
| AbstractList | We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field. We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field. |
| Author | Díaz-Tinoco, Manuel Jensen, Phillip W. K. Izmaylov, Artur F. Sim, Sukin Anand, Abhinav Kottmann, Jakob S. Alperin-Lea, Sumner Aspuru-Guzik, Alán Schleich, Philipp Degroote, Matthias |
| Author_xml | – sequence: 1 givenname: Abhinav orcidid: 0000-0002-8081-2310 surname: Anand fullname: Anand, Abhinav organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada – sequence: 2 givenname: Philipp orcidid: 0000-0002-4336-4555 surname: Schleich fullname: Schleich, Philipp organization: Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada, Applied and Computational Mathematics, Department of Mathematics, RWTH Aachen University, Aachen, Germany, Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada – sequence: 3 givenname: Sumner surname: Alperin-Lea fullname: Alperin-Lea, Sumner organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada – sequence: 4 givenname: Phillip W. K. orcidid: 0000-0002-6143-6380 surname: Jensen fullname: Jensen, Phillip W. K. organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada – sequence: 5 givenname: Sukin surname: Sim fullname: Sim, Sukin organization: Department of Chemistry and Chemical Biology, Harvard University, USA – sequence: 6 givenname: Manuel surname: Díaz-Tinoco fullname: Díaz-Tinoco, Manuel organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada – sequence: 7 givenname: Jakob S. orcidid: 0000-0002-4156-2048 surname: Kottmann fullname: Kottmann, Jakob S. organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada – sequence: 8 givenname: Matthias orcidid: 0000-0002-8850-7708 surname: Degroote fullname: Degroote, Matthias organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada – sequence: 9 givenname: Artur F. orcidid: 0000-0001-8035-6020 surname: Izmaylov fullname: Izmaylov, Artur F. organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada – sequence: 10 givenname: Alán surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alán organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada, Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada, Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Ave., Toronto, ON M5G 1M1, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35166276$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0UtLxDAQB_AgivvQix9ACl5EqObVtPW2rG8WPKjnkrZT7dImu3ko--2N7KqwePCUhPxmYP4zQrtKK0DoiOBzgll-cUWmTxjnjD7soCHhAsc85XwXDTHDIsaY0AEaWTsPN5IKuo8GLCFC0FQM0eUkWnqpnO-jSvcL71r1Gr238BFpFXnVOmlW4ccvOqijqvPWgYncG2izOkB7jewsHG7OMXq5uX6e3sWzx9v76WQWV5xwF0OdSVbyDBhuGqjritG8KWVdJrROIM0p5AyAiJQxATxtGixleHEJIqOkztkYna77LoxeerCu6FtbQddJBdrbggoRYhA0-Q-lOU5ySnigJ1t0rr1RYZCgmMiSJKQV1PFG-bKHuliYtg-JFN8BBnC2BpXR1hpofgjBxdd2it_tBIy3cBUCdq1Wzsi2-6vkExFWjzw |
| CitedBy_id | crossref_primary_10_1021_acs_jctc_2c00577 crossref_primary_10_1088_2058_9565_ad1f3a crossref_primary_10_22331_q_2022_08_23_782 crossref_primary_10_1088_2516_1075_ad018f crossref_primary_10_1021_acs_jpclett_4c01445 crossref_primary_10_1021_acs_jctc_3c01113 crossref_primary_10_1039_D4FD00064A crossref_primary_10_1002_wcms_1664 crossref_primary_10_1039_D3SC01984E crossref_primary_10_1103_PhysRevA_108_052422 crossref_primary_10_1039_D3SC02516K crossref_primary_10_22331_q_2023_11_08_1176 crossref_primary_10_1038_s41534_024_00900_2 crossref_primary_10_1103_PhysRevResearch_7_L012074 crossref_primary_10_1103_PhysRevResearch_5_043175 crossref_primary_10_1103_PhysRevA_111_012437 crossref_primary_10_1103_PhysRevResearch_5_043216 crossref_primary_10_1021_acs_jctc_3c00376 crossref_primary_10_1103_PhysRevA_106_052805 crossref_primary_10_1038_s41534_023_00744_2 crossref_primary_10_1088_2058_9565_ad37d4 crossref_primary_10_3390_sym15071429 crossref_primary_10_1007_s12039_023_02161_6 crossref_primary_10_1021_acs_jpca_3c00525 crossref_primary_10_1103_PhysRevE_107_024113 crossref_primary_10_1007_s44196_023_00398_0 crossref_primary_10_1021_acs_jctc_3c00527 crossref_primary_10_1021_acs_jpclett_4c01301 crossref_primary_10_1021_acs_jctc_3c00886 crossref_primary_10_1021_acs_jctc_4c00298 crossref_primary_10_1088_2058_9565_adb3c5 crossref_primary_10_1103_PRXQuantum_4_020323 crossref_primary_10_23919_CHAIN_2024_000007 crossref_primary_10_1016_j_drudis_2023_103675 crossref_primary_10_1021_acs_jctc_2c01176 crossref_primary_10_1039_D4CP00436A crossref_primary_10_1021_acs_jpca_3c00993 crossref_primary_10_1038_s41567_024_02530_z crossref_primary_10_22331_q_2023_08_03_1073 crossref_primary_10_1088_2058_9565_ad17d8 crossref_primary_10_1103_PhysRevResearch_4_043172 crossref_primary_10_1103_PhysRevA_110_022618 crossref_primary_10_1021_acs_jctc_2c01057 crossref_primary_10_1021_acs_jctc_3c00912 crossref_primary_10_1088_2058_9565_ad9fa5 crossref_primary_10_1021_acs_jctc_4c00070 crossref_primary_10_1103_PhysRevResearch_6_023300 crossref_primary_10_1038_s41598_024_67897_8 crossref_primary_10_1016_j_xcrp_2024_102105 crossref_primary_10_1039_D2DD00093H crossref_primary_10_1103_PhysRevResearch_6_033069 crossref_primary_10_1021_acs_jctc_4c00069 crossref_primary_10_3390_e24070899 crossref_primary_10_1021_acs_jpca_3c02781 crossref_primary_10_1021_acs_jpca_3c01753 crossref_primary_10_1021_acs_jctc_3c00228 crossref_primary_10_1021_acs_jpclett_3c00985 crossref_primary_10_1039_D4SC04987J crossref_primary_10_1021_acs_jctc_4c00155 crossref_primary_10_1140_epja_s10050_022_00911_7 crossref_primary_10_1103_PhysRevD_107_074012 crossref_primary_10_1103_PhysRevLett_129_066401 crossref_primary_10_1140_epja_s10050_023_01141_1 crossref_primary_10_1021_acs_jctc_4c00837 crossref_primary_10_1103_PhysRevA_108_022416 crossref_primary_10_1021_acs_jpca_3c00550 crossref_primary_10_1038_s41598_023_39263_7 crossref_primary_10_1021_acs_jctc_3c00218 crossref_primary_10_1103_PhysRevC_110_064320 crossref_primary_10_1021_acs_jctc_3c00335 crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1039_D4FD00039K crossref_primary_10_1103_PhysRevA_105_032449 crossref_primary_10_1021_acs_jpca_4c07045 crossref_primary_10_1103_PhysRevA_108_022422 crossref_primary_10_22331_q_2024_06_20_1383 crossref_primary_10_1088_1742_6596_2701_1_012032 crossref_primary_10_1103_PhysRevResearch_6_013254 crossref_primary_10_1021_acs_jctc_3c00565 crossref_primary_10_1039_D4CP00391H crossref_primary_10_1103_PhysRevA_106_032434 crossref_primary_10_1073_pnas_2304294120 crossref_primary_10_1039_D1CP04318H crossref_primary_10_1109_TC_2024_3416619 crossref_primary_10_1093_bib_bbac437 crossref_primary_10_1103_PhysRevResearch_4_033173 crossref_primary_10_1016_j_jii_2023_100511 crossref_primary_10_1103_PhysRevA_110_062414 crossref_primary_10_1021_acs_jctc_3c00319 crossref_primary_10_1021_acs_jpca_4c02847 crossref_primary_10_1021_acs_jpca_4c03935 crossref_primary_10_1021_acs_jctc_2c01016 crossref_primary_10_1007_s11128_023_04096_w crossref_primary_10_22331_q_2023_01_03_889 crossref_primary_10_1063_5_0249447 crossref_primary_10_1051_e3sconf_202459002003 crossref_primary_10_1103_PhysRevResearch_5_023200 crossref_primary_10_1002_qua_27021 crossref_primary_10_1021_acs_jpca_3c07590 crossref_primary_10_1140_epjqt_s40507_022_00155_w crossref_primary_10_22331_q_2022_05_02_703 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_1039_D3CP03523A crossref_primary_10_1016_j_future_2024_04_060 crossref_primary_10_1039_D2CP00247G crossref_primary_10_1002_jcc_27438 |
| Cites_doi | 10.1039/D0CP01707H 10.1038/nature23879 10.1021/acs.chemrev.8b00803 10.1021/acs.jctc.0c01052 10.1103/PhysRevA.1.644 10.1016/0301-0104(80)80045-0 10.1088/1367-2630/ab867b 10.1021/acs.chemrev.9b00829 10.1021/acs.jctc.8b00943 10.1063/1.430637 10.1103/PhysRevA.103.032605 10.1016/S0009-2614(00)01137-4 10.1021/acs.jctc.1c00220 10.1021/acs.jctc.0c00463 10.1103/RevModPhys.73.33 10.1039/D0SC01908A 10.1063/1.3598471 10.1039/D0SC06627C 10.1021/acs.jctc.9b01083 10.1103/PhysRevA.102.062612 10.1016/j.chemphys.2011.09.012 10.1063/1.457437 10.1063/1.5133059 10.1007/BF01119617 10.1063/1.434526 10.1021/acs.jctc.9b00963 10.1007/BF01119666 10.1142/S0217984920400497 10.1088/2058-9565/abf602 10.1063/1.5011033 10.1103/PRXQuantum.1.020319 10.1016/0301-0104(95)00321-5 10.1070/RM1997v052n06ABEH002155 10.1007/BF02650179 10.1063/1.5141880 10.1103/PhysRevA.90.022501 10.1103/PhysRevResearch.2.033421 10.1021/acs.jctc.9b00236 10.1021/cr200204r 10.1063/1.1727484 10.1063/1.1637579 10.1063/1.5094643 10.1038/s41467-019-10988-2 10.1002/qua.560340607 10.1103/PhysRevLett.126.070504 10.1021/acs.jctc.9b01084 10.1021/acs.jctc.0c00421 10.1038/s41534-019-0240-1 10.1063/1.1669809 10.1063/1.1732596 10.1063/1.1390516 10.1016/0003-4916(83)90284-1 10.1063/1.5141835 10.1021/acs.jpclett.0c03410 10.1016/S0009-2614(99)01186-0 10.1063/1.1679283 10.1103/PhysRevA.36.2519 10.3390/i3060676 10.1021/acs.jctc.8b00932 10.22331/q-2021-07-26-509 10.1017/CBO9780511596834 10.1063/1.460295 10.1002/qua.26352 10.1063/1.5010693 10.1103/PhysRevA.92.042303 10.1002/qua.560140503 10.1007/BF01119664 10.1016/0009-2614(88)80392-0 10.1017/CBO9780511976667 10.1063/1.4829536 10.22331/q-2020-09-12-322 10.1063/1.460620 10.1063/1.3520564 10.1063/1.4768241 10.1063/1.443164 10.1088/2058-9565/abe107 10.1063/1.444231 10.1135/cccc20050837 10.1088/0031-8949/21/3-4/007 10.1016/0009-2614(89)80030-2 10.1088/2058-9565/abe567 10.1088/2058-9565/ab3951 10.1103/PhysRevA.24.1668 10.1063/1.1288912 10.1002/cpa.3160100201 10.1021/acs.jctc.0c00170 10.1088/1367-2630/18/2/023023 10.1103/RevModPhys.79.291 10.1007/BF01609348 10.1080/00268977500103351 10.1103/PhysRevLett.79.2586 10.1063/1.5019371 10.1103/PRXQuantum.2.020310 10.1103/PhysRevA.104.032804 10.1016/S0009-2614(89)87372-5 10.1007/s00214-010-0764-0 10.22331/q-2021-06-10-473 10.1088/2058-9565/ab8ebc 10.1007/BF01117418 10.1063/5.0026141 10.1103/PhysRevA.99.032331 10.1088/2058-9565/abbc74 10.1063/1.456153 10.1103/RevModPhys.92.015003 10.1016/0029-5582(60)90140-1 10.1103/PhysRevResearch.3.023092 10.1063/1.447591 10.1126/science.1113479 10.1002/qua.560260826 10.1103/PhysRevLett.83.5162 10.1038/s41534-021-00416-z 10.1021/acs.jctc.8b01004 10.1103/PhysRevA.98.022322 10.1088/2058-9565/abd334 10.1103/PhysRevA.95.020501 10.3390/e21121218 10.1002/qua.560050839 10.1038/ncomms5213 10.1103/PhysRevResearch.3.013039 10.1103/PhysRevA.17.805 10.1021/acs.jctc.6b00156 10.1002/qua.560140504 10.1021/acs.jctc.9b01125 10.1103/PhysRevA.5.50 10.1063/1.454125 10.1080/00268976.2011.552441 10.1063/1.455919 10.1088/2058-9565/ab6bf6 10.1021/acs.jpclett.0c02621 10.1006/aphy.2002.6254 10.1088/2058-9565/aad3e4 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2022 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
| DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
| DOI | 10.1039/D1CS00932J |
| DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1460-4744 |
| EndPage | 1684 |
| ExternalDocumentID | 35166276 10_1039_D1CS00932J |
| Genre | Journal Article Review |
| GroupedDBID | --- -DZ -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R56 R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c414t-ed8a3b48e30ffeddc329fbadb52d5e792e93ee167336e47ff0aa1674ae6821d93 |
| ISSN | 0306-0012 1460-4744 |
| IngestDate | Fri Jul 11 16:03:30 EDT 2025 Thu Jul 10 18:24:01 EDT 2025 Mon Jun 30 02:45:53 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Tue Jul 01 04:18:47 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-ed8a3b48e30ffeddc329fbadb52d5e792e93ee167336e47ff0aa1674ae6821d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6143-6380 0000-0002-4156-2048 0000-0002-8081-2310 0000-0002-4336-4555 0000-0001-8035-6020 0000-0002-8850-7708 |
| PMID | 35166276 |
| PQID | 2636855011 |
| PQPubID | 2047503 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_2661036259 proquest_miscellaneous_2629059214 proquest_journals_2636855011 pubmed_primary_35166276 crossref_primary_10_1039_D1CS00932J crossref_citationtrail_10_1039_D1CS00932J |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-07 |
| PublicationDateYYYYMMDD | 2022-03-07 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Chemical Society reviews |
| PublicationTitleAlternate | Chem Soc Rev |
| PublicationYear | 2022 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Mukherjee (D1CS00932J/cit36/1) 1975; 30 Van Voorhis (D1CS00932J/cit51/1) 2000; 330 Cerezo (D1CS00932J/cit7/1) 2021 Kühn (D1CS00932J/cit86/1) 2019; 15 Smart (D1CS00932J/cit83/1) 2021; 126 Bauer (D1CS00932J/cit5/1) 2020; 120 Ryabinkin (D1CS00932J/cit110/1) 2020; 16 Xia (D1CS00932J/cit113/1) 2020; 6 Barkoutsos (D1CS00932J/cit68/1) 2018; 98 Kato (D1CS00932J/cit139/1) 1957; 10 Kottmann (D1CS00932J/cit69/1) 2021; 12 Sim (D1CS00932J/cit155/1) 2021; 6 Barr (D1CS00932J/cit124/1) 1970; 1 Kutzelnigg (D1CS00932J/cit37/1) 1982; 77 Lang (D1CS00932J/cit112/1) 2020; 17 Izmaylov (D1CS00932J/cit84/1) 2020; 22 Meissner (D1CS00932J/cit44/1) 2012; 401 Bartlett (D1CS00932J/cit47/1) 1989; 155 Grimsley (D1CS00932J/cit100/1) 2019; 10 Chan (D1CS00932J/cit102/1) Paldus (D1CS00932J/cit14/1) 1978; 17 Bartlett (D1CS00932J/cit15/1) 1978; 14 Childs (D1CS00932J/cit67/1) 2021; 11 Bishop (D1CS00932J/cit26/1) 1991; 80 Grimsley (D1CS00932J/cit82/1) 2020; 16 Kong (D1CS00932J/cit140/1) 2012; 112 Abrams (D1CS00932J/cit64/1) 1997; 79 Surján (D1CS00932J/cit29/1) 2012 Barison (D1CS00932J/cit161/1) Zhang (D1CS00932J/cit90/1) 2021; 3 Taube (D1CS00932J/cit125/1) 2005; 70 Paldus (D1CS00932J/cit12/1) 1972; 5 Gard (D1CS00932J/cit114/1) 2020; 6 Kowalski (D1CS00932J/cit57/1) 2018; 148 Ryabinkin (D1CS00932J/cit108/1) 2018; 14 McCaskey (D1CS00932J/cit99/1) 2020; 5 Helgaker (D1CS00932J/cit31/1) 2014 Stanton (D1CS00932J/cit145/1) 1991; 94 Paldus (D1CS00932J/cit13/1) 1977; 67 McClean (D1CS00932J/cit107/1) 2016; 18 Kottmann (D1CS00932J/cit104/1) 2021; 12 Kutzelnigg (D1CS00932J/cit48/1) 1991; 80 Kitaev (D1CS00932J/cit63/1) 1997; 52 Delgado (D1CS00932J/cit101/1) Kowalski (D1CS00932J/cit58/1) 2021; 104 Hempel (D1CS00932J/cit159/1) 2018; 8 Jordan (D1CS00932J/cit77/1) 1928; 47 Piecuch (D1CS00932J/cit35/1) 2002; 3 Kottmann (D1CS00932J/cit93/1) 2021; 6 Shen (D1CS00932J/cit158/1) 2017; 95 Roos (D1CS00932J/cit132/1) 1980; 48 Chen (D1CS00932J/cit73/1) 2021; 17 Bravyi (D1CS00932J/cit111/1) Tinkham (D1CS00932J/cit147/1) 1964 Van Voorhis (D1CS00932J/cit53/1) 2001; 115 Bravyi (D1CS00932J/cit78/1) 2002; 298 Lee (D1CS00932J/cit116/1) 2019; 15 Stein (D1CS00932J/cit133/1) 2016; 12 Wierichs (D1CS00932J/cit76/1) Gonthier (D1CS00932J/cit123/1) Purvis (D1CS00932J/cit18/1) 1982; 76 Dunning (D1CS00932J/cit148/1) 1989; 90 Ahlrichs (D1CS00932J/cit122/1) 1975; 62 McArdle (D1CS00932J/cit4/1) 2020; 92 Bartlett (D1CS00932J/cit45/1) 1988; 150 Szabo (D1CS00932J/cit32/1) 1996 Mukhopadhyay (D1CS00932J/cit38/1) 1989; 163 Arponen (D1CS00932J/cit50/1) 1987; 36 Motta (D1CS00932J/cit92/1) 2021; 7 Bharti (D1CS00932J/cit6/1) Larsson (D1CS00932J/cit127/1) 2020; 16 Stair (D1CS00932J/cit106/1) 2020; 16 Tranter (D1CS00932J/cit81/1) 2019; 21 Bauman (D1CS00932J/cit131/1) 2021; 6 Pavošević (D1CS00932J/cit137/1) 2021; 17 Huggins (D1CS00932J/cit117/1) 2020; 22 Eriksen (D1CS00932J/cit59/1) 2020; 11 Romero (D1CS00932J/cit8/1) 2019; 4 Meyer (D1CS00932J/cit120/1) 1971; 5 Ollitrault (D1CS00932J/cit160/1) 2020; 11 OMalley (D1CS00932J/cit157/1) 2016; 6 Kottmann (D1CS00932J/cit105/1) Wiersema (D1CS00932J/cit153/1) 2020; 1 Jørgensen (D1CS00932J/cit28/1) 1981 Cowtan (D1CS00932J/cit88/1) McClean (D1CS00932J/cit94/1) 2020; 5 Sekino (D1CS00932J/cit22/1) 1984; 26 Filip (D1CS00932J/cit164/1) 2020; 153 Bartlett (D1CS00932J/cit27/1) 2007; 79 Meyer (D1CS00932J/cit121/1) 1973; 58 Pople (D1CS00932J/cit16/1) 1978; 14 Anselmetti (D1CS00932J/cit74/1) Stair (D1CS00932J/cit103/1) Sinanoğlu (D1CS00932J/cit10/1) 1962; 36 Bartlett (D1CS00932J/cit17/1) 1980; 21 Izmaylov (D1CS00932J/cit75/1) Xu (D1CS00932J/cit72/1) 2020; 34 Kandala (D1CS00932J/cit151/1) 2017; 549 Metcalf (D1CS00932J/cit130/1) 2020; 16 Wecker (D1CS00932J/cit152/1) 2015; 92 Kaldor (D1CS00932J/cit43/1) 1991; 80 Christiansen (D1CS00932J/cit23/1) 2004; 120 Evangelista (D1CS00932J/cit56/1) 2011; 134 Hastings (D1CS00932J/cit85/1) Nielsen (D1CS00932J/cit33/1) 2010 Pavošević (D1CS00932J/cit138/1) Edmiston (D1CS00932J/cit119/1) 1968; 49 Mizukami (D1CS00932J/cit135/1) 2020; 2 Yalouz (D1CS00932J/cit136/1) 2021; 6 Choquette (D1CS00932J/cit156/1) 2021; 3 Elfving (D1CS00932J/cit128/1) 2021; 103 Shavitt (D1CS00932J/cit30/1) 2009 Yordanov (D1CS00932J/cit80/1) 2020; 102 Chen (D1CS00932J/cit163/1) 2021; 17 Peng (D1CS00932J/cit150/1) 2021; 5 Nooijen (D1CS00932J/cit52/1) 2000; 113 Matsuzawa (D1CS00932J/cit143/1) 2020; 16 Harsha (D1CS00932J/cit54/1) 2018; 148 Sokolov (D1CS00932J/cit134/1) 2020; 152 Kottmann (D1CS00932J/cit126/1) 2020; 152 Jeziorski (D1CS00932J/cit39/1) 1989; 90 Cullen (D1CS00932J/cit25/1) 1996; 202 Whitfield (D1CS00932J/cit61/1) 2011; 109 Meissner (D1CS00932J/cit41/1) 1991; 94 Ryabinkin (D1CS00932J/cit109/1) 2019; 15 Bauman (D1CS00932J/cit129/1) 2019; 151 Meissner (D1CS00932J/cit20/1) 1988; 34 Cooper (D1CS00932J/cit55/1) 2010; 133 Dresselhaus (D1CS00932J/cit146/1) 2008 Arponen (D1CS00932J/cit49/1) 1983; 151 Stair (D1CS00932J/cit97/1) Aspuru-Guzik (D1CS00932J/cit60/1) 2005; 309 Setia (D1CS00932J/cit79/1) 2018; 148 Prascher (D1CS00932J/cit149/1) 2011; 128 Rittby (D1CS00932J/cit42/1) 1991; 80 Hoffmann (D1CS00932J/cit46/1) 1988; 88 Rubin (D1CS00932J/cit162/1) Jeziorski (D1CS00932J/cit34/1) 1981; 24 Anis (D1CS00932J/cit98/1) 2021 van de Wetering (D1CS00932J/cit89/1) Hohenstein (D1CS00932J/cit144/1) 2012; 137 Dallaire-Demers (D1CS00932J/cit154/1) 2019; 4 Perera (D1CS00932J/cit24/1) 1999; 314 Arrazola (D1CS00932J/cit96/1) Wang (D1CS00932J/cit91/1) 2021; 5 Meissner (D1CS00932J/cit40/1) 1989; 91 Cao (D1CS00932J/cit3/1) 2019; 119 Suzuki (D1CS00932J/cit62/1) 1976; 51 Greene-Diniz (D1CS00932J/cit118/1) 2021; 121 Foulkes (D1CS00932J/cit141/1) 2001; 73 Tang (D1CS00932J/cit115/1) 2021; 2 Abe (D1CS00932J/cit21/1) 2014; 90 Schuld (D1CS00932J/cit70/1) 2019; 99 Lee (D1CS00932J/cit19/1) 1984; 81 Čížek (D1CS00932J/cit11/1) 1966; 45 Manin (D1CS00932J/cit1/1) 1980 Peruzzo (D1CS00932J/cit66/1) 2014; 5 Coester (D1CS00932J/cit9/1) 1960; 17 Evangelista (D1CS00932J/cit71/1) 2019; 151 Abrams (D1CS00932J/cit65/1) 1999; 83 Feynman (D1CS00932J/cit2/1) 1982; 21 Neuscamman (D1CS00932J/cit142/1) 2013; 139 Bergholm (D1CS00932J/cit95/1) van den Berg (D1CS00932J/cit87/1) 2020; 4 |
| References_xml | – volume: 22 start-page: 12980 year: 2020 ident: D1CS00932J/cit84/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01707H – volume: 549 start-page: 242 year: 2017 ident: D1CS00932J/cit151/1 publication-title: Nature doi: 10.1038/nature23879 – volume: 11 start-page: 011020 year: 2021 ident: D1CS00932J/cit67/1 publication-title: Phys. Rev. X – volume: 119 start-page: 10856 year: 2019 ident: D1CS00932J/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00803 – volume: 17 start-page: 841 year: 2021 ident: D1CS00932J/cit73/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01052 – volume-title: Molecular Electronic-Structure Theory year: 2014 ident: D1CS00932J/cit31/1 – volume: 1 start-page: 644 year: 1970 ident: D1CS00932J/cit124/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.1.644 – volume: 48 start-page: 157 year: 1980 ident: D1CS00932J/cit132/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)80045-0 – volume-title: Qiskit: An Open-source Framework for Quantum Computing year: 2021 ident: D1CS00932J/cit98/1 – volume: 22 start-page: 073009 year: 2020 ident: D1CS00932J/cit117/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab867b – volume: 120 start-page: 12685 year: 2020 ident: D1CS00932J/cit5/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00829 – volume: 15 start-page: 249 year: 2019 ident: D1CS00932J/cit109/1 publication-title: J. Chem. Theor. Comput. doi: 10.1021/acs.jctc.8b00943 – volume: 62 start-page: 1225 year: 1975 ident: D1CS00932J/cit122/1 publication-title: J. Chem. Phys. doi: 10.1063/1.430637 – volume: 103 start-page: 032605 year: 2021 ident: D1CS00932J/cit128/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.032605 – ident: D1CS00932J/cit95/1 – volume: 330 start-page: 585 year: 2000 ident: D1CS00932J/cit51/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01137-4 – ident: D1CS00932J/cit111/1 – volume: 17 start-page: 3252 year: 2021 ident: D1CS00932J/cit137/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c00220 – volume: 16 start-page: 5057 year: 2020 ident: D1CS00932J/cit127/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00463 – volume: 73 start-page: 33 year: 2001 ident: D1CS00932J/cit141/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.33 – ident: D1CS00932J/cit138/1 – volume: 11 start-page: 6842 year: 2020 ident: D1CS00932J/cit160/1 publication-title: Chem. Sci. doi: 10.1039/D0SC01908A – volume: 134 start-page: 224102 year: 2011 ident: D1CS00932J/cit56/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3598471 – volume: 12 start-page: 3497 year: 2021 ident: D1CS00932J/cit69/1 publication-title: Chem. Sci. doi: 10.1039/D0SC06627C – volume: 16 start-page: 1 year: 2020 ident: D1CS00932J/cit82/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b01083 – volume: 102 start-page: 062612 year: 2020 ident: D1CS00932J/cit80/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.062612 – volume: 401 start-page: 136 year: 2012 ident: D1CS00932J/cit44/1 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2011.09.012 – volume: 91 start-page: 6187 year: 1989 ident: D1CS00932J/cit40/1 publication-title: J. Chem. Phys. doi: 10.1063/1.457437 – volume: 151 start-page: 244112 year: 2019 ident: D1CS00932J/cit71/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5133059 – volume: 80 start-page: 95 year: 1991 ident: D1CS00932J/cit26/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF01119617 – volume: 67 start-page: 303 year: 1977 ident: D1CS00932J/cit13/1 publication-title: J. Chem. Phys. doi: 10.1063/1.434526 – volume: 16 start-page: 944 year: 2020 ident: D1CS00932J/cit143/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00963 – ident: D1CS00932J/cit162/1 – ident: D1CS00932J/cit101/1 – volume: 80 start-page: 469 year: 1991 ident: D1CS00932J/cit42/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF01119666 – volume: 34 start-page: 2040049 year: 2020 ident: D1CS00932J/cit72/1 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920400497 – volume: 6 start-page: 034008 year: 2021 ident: D1CS00932J/cit131/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/abf602 – volume: 148 start-page: 044107 year: 2018 ident: D1CS00932J/cit54/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5011033 – volume: 1 start-page: 020319 year: 2020 ident: D1CS00932J/cit153/1 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.1.020319 – volume: 202 start-page: 217 year: 1996 ident: D1CS00932J/cit25/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(95)00321-5 – volume: 52 start-page: 1191 year: 1997 ident: D1CS00932J/cit63/1 publication-title: Russian Mathematical Surveys doi: 10.1070/RM1997v052n06ABEH002155 – volume: 21 start-page: 467 year: 1982 ident: D1CS00932J/cit2/1 publication-title: Int. J. Theor. Phys. doi: 10.1007/BF02650179 – volume: 152 start-page: 074105 year: 2020 ident: D1CS00932J/cit126/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5141880 – volume: 90 start-page: 022501 year: 2014 ident: D1CS00932J/cit21/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.90.022501 – volume: 2 start-page: 033421 year: 2020 ident: D1CS00932J/cit135/1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033421 – volume: 15 start-page: 4764 year: 2019 ident: D1CS00932J/cit86/1 publication-title: J. Chem. Theor. Comput. doi: 10.1021/acs.jctc.9b00236 – volume: 112 start-page: 75 year: 2012 ident: D1CS00932J/cit140/1 publication-title: Chem. Rev. doi: 10.1021/cr200204r – volume: 45 start-page: 4256 year: 1966 ident: D1CS00932J/cit11/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1727484 – volume: 120 start-page: 2149 year: 2004 ident: D1CS00932J/cit23/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1637579 – volume-title: Second quantized approach to quantum chemistry: an elementary introduction year: 2012 ident: D1CS00932J/cit29/1 – volume: 151 start-page: 014107 year: 2019 ident: D1CS00932J/cit129/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5094643 – volume: 10 start-page: 1 year: 2019 ident: D1CS00932J/cit100/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10988-2 – volume: 34 start-page: 535 year: 1988 ident: D1CS00932J/cit20/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560340607 – volume-title: Group Theory - Application to the Physics of Condensed Matter year: 2008 ident: D1CS00932J/cit146/1 – volume: 126 start-page: 070504 year: 2021 ident: D1CS00932J/cit83/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.070504 – volume: 16 start-page: 1055 year: 2020 ident: D1CS00932J/cit110/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b01084 – volume: 16 start-page: 6165 year: 2020 ident: D1CS00932J/cit130/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00421 – volume: 6 start-page: 1 year: 2020 ident: D1CS00932J/cit114/1 publication-title: npj Quantum Inf. doi: 10.1038/s41534-019-0240-1 – volume: 49 start-page: 192 year: 1968 ident: D1CS00932J/cit119/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1669809 – volume: 36 start-page: 706 year: 1962 ident: D1CS00932J/cit10/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1732596 – volume: 115 start-page: 5033 year: 2001 ident: D1CS00932J/cit53/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1390516 – volume: 151 start-page: 311 year: 1983 ident: D1CS00932J/cit49/1 publication-title: Ann. Phys. doi: 10.1016/0003-4916(83)90284-1 – ident: D1CS00932J/cit97/1 – volume: 152 start-page: 124107 year: 2020 ident: D1CS00932J/cit134/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5141835 – volume: 8 start-page: 031022 year: 2018 ident: D1CS00932J/cit159/1 publication-title: Phys. Rev. X – volume: 12 start-page: 663 year: 2021 ident: D1CS00932J/cit104/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03410 – volume: 314 start-page: 381 year: 1999 ident: D1CS00932J/cit24/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01186-0 – volume: 58 start-page: 1017 year: 1973 ident: D1CS00932J/cit121/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1679283 – volume: 36 start-page: 2519 year: 1987 ident: D1CS00932J/cit50/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.36.2519 – volume: 3 start-page: 676 year: 2002 ident: D1CS00932J/cit35/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/i3060676 – volume: 14 start-page: 6317 year: 2018 ident: D1CS00932J/cit108/1 publication-title: J. Chem. Theor. Comput. doi: 10.1021/acs.jctc.8b00932 – volume: 5 start-page: 509 year: 2021 ident: D1CS00932J/cit91/1 publication-title: Quantum doi: 10.22331/q-2021-07-26-509 – volume-title: Many-body methods in chemistry and physics: MBPT and coupled-cluster theory year: 2009 ident: D1CS00932J/cit30/1 doi: 10.1017/CBO9780511596834 – volume: 94 start-page: 6670 year: 1991 ident: D1CS00932J/cit41/1 publication-title: J. Chem. Phys. doi: 10.1063/1.460295 – volume: 121 start-page: e26352 year: 2021 ident: D1CS00932J/cit118/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.26352 – volume: 148 start-page: 094104 year: 2018 ident: D1CS00932J/cit57/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5010693 – volume: 92 start-page: 042303 year: 2015 ident: D1CS00932J/cit152/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.92.042303 – volume: 14 start-page: 545 year: 1978 ident: D1CS00932J/cit16/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560140503 – volume: 80 start-page: 427 year: 1991 ident: D1CS00932J/cit43/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF01119664 – volume: 150 start-page: 29 year: 1988 ident: D1CS00932J/cit45/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(88)80392-0 – volume-title: Sovetskoye Radio year: 1980 ident: D1CS00932J/cit1/1 – volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition year: 2010 ident: D1CS00932J/cit33/1 doi: 10.1017/CBO9780511976667 – ident: D1CS00932J/cit76/1 – volume: 139 start-page: 181101 year: 2013 ident: D1CS00932J/cit142/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4829536 – volume: 4 start-page: 322 year: 2020 ident: D1CS00932J/cit87/1 publication-title: Quantum doi: 10.22331/q-2020-09-12-322 – volume: 94 start-page: 4334 year: 1991 ident: D1CS00932J/cit145/1 publication-title: J. Chem. Phys. doi: 10.1063/1.460620 – volume: 133 start-page: 234102 year: 2010 ident: D1CS00932J/cit55/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3520564 – volume: 137 start-page: 221101 year: 2012 ident: D1CS00932J/cit144/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4768241 – start-page: 1 year: 2021 ident: D1CS00932J/cit7/1 publication-title: Nat. Rev. Phys. – ident: D1CS00932J/cit88/1 – volume: 76 start-page: 1910 year: 1982 ident: D1CS00932J/cit18/1 publication-title: J. Chem. Phys. doi: 10.1063/1.443164 – volume: 6 start-page: 025019 year: 2021 ident: D1CS00932J/cit155/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/abe107 – volume: 77 start-page: 3081 year: 1982 ident: D1CS00932J/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/1.444231 – ident: D1CS00932J/cit96/1 – ident: D1CS00932J/cit161/1 – volume: 70 start-page: 837 year: 2005 ident: D1CS00932J/cit125/1 publication-title: Collect. Czech. Chem. Commun. doi: 10.1135/cccc20050837 – volume: 21 start-page: 255 year: 1980 ident: D1CS00932J/cit17/1 publication-title: Phys. Scr. doi: 10.1088/0031-8949/21/3-4/007 – volume: 163 start-page: 171 year: 1989 ident: D1CS00932J/cit38/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)80030-2 – volume: 6 start-page: 024009 year: 2021 ident: D1CS00932J/cit93/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/abe567 – volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory year: 1996 ident: D1CS00932J/cit32/1 – volume: 4 start-page: 045005 year: 2019 ident: D1CS00932J/cit154/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/ab3951 – ident: D1CS00932J/cit74/1 – ident: D1CS00932J/cit85/1 – volume: 17 start-page: 841 year: 2021 ident: D1CS00932J/cit163/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01052 – volume: 24 start-page: 1668 year: 1981 ident: D1CS00932J/cit34/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.24.1668 – ident: D1CS00932J/cit105/1 – volume-title: Group theory and quantum mechanics year: 1964 ident: D1CS00932J/cit147/1 – volume: 113 start-page: 4549 year: 2000 ident: D1CS00932J/cit52/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1288912 – volume: 10 start-page: 151 year: 1957 ident: D1CS00932J/cit139/1 publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.3160100201 – ident: D1CS00932J/cit6/1 – volume: 17 start-page: 66 year: 2020 ident: D1CS00932J/cit112/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00170 – volume: 18 start-page: 023023 year: 2016 ident: D1CS00932J/cit107/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/023023 – volume: 79 start-page: 291 year: 2007 ident: D1CS00932J/cit27/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.291 – ident: D1CS00932J/cit89/1 – volume: 51 start-page: 183 year: 1976 ident: D1CS00932J/cit62/1 publication-title: Commun. Math. Phys. doi: 10.1007/BF01609348 – volume: 30 start-page: 1861 year: 1975 ident: D1CS00932J/cit36/1 publication-title: Mol. Phys. doi: 10.1080/00268977500103351 – ident: D1CS00932J/cit102/1 – volume: 79 start-page: 2586 year: 1997 ident: D1CS00932J/cit64/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.2586 – volume: 148 start-page: 164104 year: 2018 ident: D1CS00932J/cit79/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5019371 – volume: 2 start-page: 020310 year: 2021 ident: D1CS00932J/cit115/1 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020310 – ident: D1CS00932J/cit123/1 – volume: 104 start-page: 032804 year: 2021 ident: D1CS00932J/cit58/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.032804 – volume: 155 start-page: 133 year: 1989 ident: D1CS00932J/cit47/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(89)87372-5 – ident: D1CS00932J/cit103/1 – volume: 128 start-page: 69 year: 2011 ident: D1CS00932J/cit149/1 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-010-0764-0 – volume: 5 start-page: 473 year: 2021 ident: D1CS00932J/cit150/1 publication-title: Quantum doi: 10.22331/q-2021-06-10-473 – volume: 5 start-page: 034014 year: 2020 ident: D1CS00932J/cit94/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/ab8ebc – volume: 80 start-page: 349 year: 1991 ident: D1CS00932J/cit48/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF01117418 – volume: 47 start-page: 14 year: 1928 ident: D1CS00932J/cit77/1 publication-title: Z. Phys. – volume: 153 start-page: 214106 year: 2020 ident: D1CS00932J/cit164/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0026141 – volume: 99 start-page: 032331 year: 2019 ident: D1CS00932J/cit70/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.032331 – volume: 6 start-page: 015001 year: 2020 ident: D1CS00932J/cit113/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/abbc74 – volume: 90 start-page: 1007 year: 1989 ident: D1CS00932J/cit148/1 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 92 start-page: 015003 year: 2020 ident: D1CS00932J/cit4/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.015003 – volume: 17 start-page: 477 year: 1960 ident: D1CS00932J/cit9/1 publication-title: Nuclear Physics doi: 10.1016/0029-5582(60)90140-1 – volume: 3 start-page: 023092 year: 2021 ident: D1CS00932J/cit156/1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023092 – ident: D1CS00932J/cit75/1 – volume: 81 start-page: 5906 year: 1984 ident: D1CS00932J/cit19/1 publication-title: J. Chem. Phys. doi: 10.1063/1.447591 – volume: 309 start-page: 1704 year: 2005 ident: D1CS00932J/cit60/1 publication-title: Science doi: 10.1126/science.1113479 – volume: 26 start-page: 255 year: 1984 ident: D1CS00932J/cit22/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560260826 – volume: 83 start-page: 5162 year: 1999 ident: D1CS00932J/cit65/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.5162 – volume: 7 start-page: 1 year: 2021 ident: D1CS00932J/cit92/1 publication-title: npj Quantum Information doi: 10.1038/s41534-021-00416-z – volume: 15 start-page: 311 year: 2019 ident: D1CS00932J/cit116/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01004 – volume: 98 start-page: 022322 year: 2018 ident: D1CS00932J/cit68/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.022322 – volume: 6 start-page: 024004 year: 2021 ident: D1CS00932J/cit136/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/abd334 – volume: 95 start-page: 020501 year: 2017 ident: D1CS00932J/cit158/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.020501 – volume: 6 start-page: 031007 year: 2016 ident: D1CS00932J/cit157/1 publication-title: Phys. Rev. X – volume-title: Second Quantization-Based Methods in Quantum Chemistry year: 1981 ident: D1CS00932J/cit28/1 – volume: 21 start-page: 1218 year: 2019 ident: D1CS00932J/cit81/1 publication-title: Entropy doi: 10.3390/e21121218 – volume: 5 start-page: 341 year: 1971 ident: D1CS00932J/cit120/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560050839 – volume: 5 start-page: 4213 year: 2014 ident: D1CS00932J/cit66/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – volume: 3 start-page: 013039 year: 2021 ident: D1CS00932J/cit90/1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013039 – volume: 17 start-page: 805 year: 1978 ident: D1CS00932J/cit14/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.17.805 – volume: 12 start-page: 1760 year: 2016 ident: D1CS00932J/cit133/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00156 – volume: 14 start-page: 561 year: 1978 ident: D1CS00932J/cit15/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560140504 – volume: 16 start-page: 2236 year: 2020 ident: D1CS00932J/cit106/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b01125 – volume: 5 start-page: 50 year: 1972 ident: D1CS00932J/cit12/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.5.50 – volume: 88 start-page: 993 year: 1988 ident: D1CS00932J/cit46/1 publication-title: J. Chem. Phys. doi: 10.1063/1.454125 – volume: 109 start-page: 735 year: 2011 ident: D1CS00932J/cit61/1 publication-title: Mol. Phys. doi: 10.1080/00268976.2011.552441 – volume: 90 start-page: 2714 year: 1989 ident: D1CS00932J/cit39/1 publication-title: J. Chem. Phys. doi: 10.1063/1.455919 – volume: 5 start-page: 024002 year: 2020 ident: D1CS00932J/cit99/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/ab6bf6 – volume: 11 start-page: 8922 year: 2020 ident: D1CS00932J/cit59/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02621 – volume: 298 start-page: 210 year: 2002 ident: D1CS00932J/cit78/1 publication-title: Ann. Phys. doi: 10.1006/aphy.2002.6254 – volume: 4 start-page: 014008 year: 2019 ident: D1CS00932J/cit8/1 publication-title: Quant. Sci. Technol. doi: 10.1088/2058-9565/aad3e4 |
| SSID | ssj0011762 |
| Score | 2.7184405 |
| SecondaryResourceType | review_article |
| Snippet | We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 1659 |
| SubjectTerms | Clusters computer techniques computers Electronic structure fields methodology Microprocessors problem solving Quantum computers Quantum computing |
| Title | A quantum computing view on unitary coupled cluster theory |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35166276 https://www.proquest.com/docview/2636855011 https://www.proquest.com/docview/2629059214 https://www.proquest.com/docview/2661036259 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry P&R customDbUrl: https://pubs.rsc.org eissn: 1460-4744 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011762 issn: 0306-0012 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxJuUgoxASKgy9T7iB7eopCpRKAcSkZtlr2dFUeqkNObAD-B3M-Nd26koFXCxEnuz3uzMvma--YaxlyHXUa4U-HGeKF-ZgOZB0H4kAh0ZzYMYKMD5w0l4PFeTxXDR6_3cQi1Vm_yN_nFlXMn_SBXvoVwpSvYfJNtWijfwM8oXryhhvP6VjEcUE4mLxlmNDK9qBLONRCn3KxyrhIjTq2q9xF2lXlbEiWAjFy_5clvOgAbB6RhKOwtBA37MKdn2985382UJp3rLLrNuf7IkAuXSn0JmoT9nZYcCnkDpzD7OFbH_2RlbnfUBD64Ev4pafbE2jqZ5NYDEpanbmsckGS0Ch5YGO8-qMPBVZKkfm4nYMc-ebru661mVh441HNxXm1Xut9k_kESeWnB9QYYa8bVb4xq__snH9Gg-naaz8WL2an3uU_Yx8tK7VCw32I7A1SHos53RePZ-2vqjeBQ6f5T9Kw3RrUwOutdd3tr84bxS71tmd9htd-DwRlZ77rIelPfYzbYD77O3I89pkddqkUcK4K1Kz2mR57TIc1rkWS16wOZH49nhse8yavhacbXxoYgzmasYZGAMFIWWIjF5VuRDUQwhSgQkEoCHxJEJKjImyDIKU8kgjAUvEvmQ9ctVCY-Zl5uCF7iZNzE-T0SeYVUJVqmiGKLYmAF73XRGqh3dPGU9WaY17EEm6Tt--KnuuMmAvWjLri3JypWl9po-Td0gvEhFSBkUhiihAXvePsYeJL9XVsKqojIiwVOE4Oq6MniOkGQMGLBHVl5tU-SQU5qEcPf6Bjxht7oRssf6m28VPMUd6yZ_5tTpF-wImxs |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum+computing+view+on+unitary+coupled+cluster+theory&rft.jtitle=Chemical+Society+reviews&rft.au=Anand%2C+Abhinav&rft.au=Schleich%2C+Philipp&rft.au=Alperin-Lea%2C+Sumner&rft.au=Jensen%2C+Phillip+W+K&rft.date=2022-03-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=5&rft.spage=1659&rft.epage=1684&rft_id=info:doi/10.1039%2Fd1cs00932j&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |