A quantum computing view on unitary coupled cluster theory

We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 5; pp. 1659 - 1684
Main Authors Anand, Abhinav, Schleich, Philipp, Alperin-Lea, Sumner, Jensen, Phillip W. K., Sim, Sukin, Díaz-Tinoco, Manuel, Kottmann, Jakob S., Degroote, Matthias, Izmaylov, Artur F., Aspuru-Guzik, Alán
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.03.2022
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/D1CS00932J

Cover

Abstract We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.
AbstractList We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.
We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers. In the core of the text, the UCC ansatz and its implementation on a quantum computer are discussed at length, in addition to a discussion on several derived and related ansätze specific to quantum computing. The review concludes with a unified perspective on the discussed ansätze, attempting to bring them under a common framework, as well as with a reflection upon open problems within the field.
Author Díaz-Tinoco, Manuel
Jensen, Phillip W. K.
Izmaylov, Artur F.
Sim, Sukin
Anand, Abhinav
Kottmann, Jakob S.
Alperin-Lea, Sumner
Aspuru-Guzik, Alán
Schleich, Philipp
Degroote, Matthias
Author_xml – sequence: 1
  givenname: Abhinav
  orcidid: 0000-0002-8081-2310
  surname: Anand
  fullname: Anand, Abhinav
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0002-4336-4555
  surname: Schleich
  fullname: Schleich, Philipp
  organization: Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada, Applied and Computational Mathematics, Department of Mathematics, RWTH Aachen University, Aachen, Germany, Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada
– sequence: 3
  givenname: Sumner
  surname: Alperin-Lea
  fullname: Alperin-Lea, Sumner
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
– sequence: 4
  givenname: Phillip W. K.
  orcidid: 0000-0002-6143-6380
  surname: Jensen
  fullname: Jensen, Phillip W. K.
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
– sequence: 5
  givenname: Sukin
  surname: Sim
  fullname: Sim, Sukin
  organization: Department of Chemistry and Chemical Biology, Harvard University, USA
– sequence: 6
  givenname: Manuel
  surname: Díaz-Tinoco
  fullname: Díaz-Tinoco, Manuel
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
– sequence: 7
  givenname: Jakob S.
  orcidid: 0000-0002-4156-2048
  surname: Kottmann
  fullname: Kottmann, Jakob S.
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada
– sequence: 8
  givenname: Matthias
  orcidid: 0000-0002-8850-7708
  surname: Degroote
  fullname: Degroote, Matthias
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada
– sequence: 9
  givenname: Artur F.
  orcidid: 0000-0001-8035-6020
  surname: Izmaylov
  fullname: Izmaylov, Artur F.
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
– sequence: 10
  givenname: Alán
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alán
  organization: Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, Department of Computer Science, University of Toronto, 214 College St, Toronto, ONM5T 3A1, Canada, Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada, Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Ave., Toronto, ON M5G 1M1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35166276$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLxDAQB_AgivvQix9ACl5EqObVtPW2rG8WPKjnkrZT7dImu3ko--2N7KqwePCUhPxmYP4zQrtKK0DoiOBzgll-cUWmTxjnjD7soCHhAsc85XwXDTHDIsaY0AEaWTsPN5IKuo8GLCFC0FQM0eUkWnqpnO-jSvcL71r1Gr238BFpFXnVOmlW4ccvOqijqvPWgYncG2izOkB7jewsHG7OMXq5uX6e3sWzx9v76WQWV5xwF0OdSVbyDBhuGqjritG8KWVdJrROIM0p5AyAiJQxATxtGixleHEJIqOkztkYna77LoxeerCu6FtbQddJBdrbggoRYhA0-Q-lOU5ySnigJ1t0rr1RYZCgmMiSJKQV1PFG-bKHuliYtg-JFN8BBnC2BpXR1hpofgjBxdd2it_tBIy3cBUCdq1Wzsi2-6vkExFWjzw
CitedBy_id crossref_primary_10_1021_acs_jctc_2c00577
crossref_primary_10_1088_2058_9565_ad1f3a
crossref_primary_10_22331_q_2022_08_23_782
crossref_primary_10_1088_2516_1075_ad018f
crossref_primary_10_1021_acs_jpclett_4c01445
crossref_primary_10_1021_acs_jctc_3c01113
crossref_primary_10_1039_D4FD00064A
crossref_primary_10_1002_wcms_1664
crossref_primary_10_1039_D3SC01984E
crossref_primary_10_1103_PhysRevA_108_052422
crossref_primary_10_1039_D3SC02516K
crossref_primary_10_22331_q_2023_11_08_1176
crossref_primary_10_1038_s41534_024_00900_2
crossref_primary_10_1103_PhysRevResearch_7_L012074
crossref_primary_10_1103_PhysRevResearch_5_043175
crossref_primary_10_1103_PhysRevA_111_012437
crossref_primary_10_1103_PhysRevResearch_5_043216
crossref_primary_10_1021_acs_jctc_3c00376
crossref_primary_10_1103_PhysRevA_106_052805
crossref_primary_10_1038_s41534_023_00744_2
crossref_primary_10_1088_2058_9565_ad37d4
crossref_primary_10_3390_sym15071429
crossref_primary_10_1007_s12039_023_02161_6
crossref_primary_10_1021_acs_jpca_3c00525
crossref_primary_10_1103_PhysRevE_107_024113
crossref_primary_10_1007_s44196_023_00398_0
crossref_primary_10_1021_acs_jctc_3c00527
crossref_primary_10_1021_acs_jpclett_4c01301
crossref_primary_10_1021_acs_jctc_3c00886
crossref_primary_10_1021_acs_jctc_4c00298
crossref_primary_10_1088_2058_9565_adb3c5
crossref_primary_10_1103_PRXQuantum_4_020323
crossref_primary_10_23919_CHAIN_2024_000007
crossref_primary_10_1016_j_drudis_2023_103675
crossref_primary_10_1021_acs_jctc_2c01176
crossref_primary_10_1039_D4CP00436A
crossref_primary_10_1021_acs_jpca_3c00993
crossref_primary_10_1038_s41567_024_02530_z
crossref_primary_10_22331_q_2023_08_03_1073
crossref_primary_10_1088_2058_9565_ad17d8
crossref_primary_10_1103_PhysRevResearch_4_043172
crossref_primary_10_1103_PhysRevA_110_022618
crossref_primary_10_1021_acs_jctc_2c01057
crossref_primary_10_1021_acs_jctc_3c00912
crossref_primary_10_1088_2058_9565_ad9fa5
crossref_primary_10_1021_acs_jctc_4c00070
crossref_primary_10_1103_PhysRevResearch_6_023300
crossref_primary_10_1038_s41598_024_67897_8
crossref_primary_10_1016_j_xcrp_2024_102105
crossref_primary_10_1039_D2DD00093H
crossref_primary_10_1103_PhysRevResearch_6_033069
crossref_primary_10_1021_acs_jctc_4c00069
crossref_primary_10_3390_e24070899
crossref_primary_10_1021_acs_jpca_3c02781
crossref_primary_10_1021_acs_jpca_3c01753
crossref_primary_10_1021_acs_jctc_3c00228
crossref_primary_10_1021_acs_jpclett_3c00985
crossref_primary_10_1039_D4SC04987J
crossref_primary_10_1021_acs_jctc_4c00155
crossref_primary_10_1140_epja_s10050_022_00911_7
crossref_primary_10_1103_PhysRevD_107_074012
crossref_primary_10_1103_PhysRevLett_129_066401
crossref_primary_10_1140_epja_s10050_023_01141_1
crossref_primary_10_1021_acs_jctc_4c00837
crossref_primary_10_1103_PhysRevA_108_022416
crossref_primary_10_1021_acs_jpca_3c00550
crossref_primary_10_1038_s41598_023_39263_7
crossref_primary_10_1021_acs_jctc_3c00218
crossref_primary_10_1103_PhysRevC_110_064320
crossref_primary_10_1021_acs_jctc_3c00335
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1039_D4FD00039K
crossref_primary_10_1103_PhysRevA_105_032449
crossref_primary_10_1021_acs_jpca_4c07045
crossref_primary_10_1103_PhysRevA_108_022422
crossref_primary_10_22331_q_2024_06_20_1383
crossref_primary_10_1088_1742_6596_2701_1_012032
crossref_primary_10_1103_PhysRevResearch_6_013254
crossref_primary_10_1021_acs_jctc_3c00565
crossref_primary_10_1039_D4CP00391H
crossref_primary_10_1103_PhysRevA_106_032434
crossref_primary_10_1073_pnas_2304294120
crossref_primary_10_1039_D1CP04318H
crossref_primary_10_1109_TC_2024_3416619
crossref_primary_10_1093_bib_bbac437
crossref_primary_10_1103_PhysRevResearch_4_033173
crossref_primary_10_1016_j_jii_2023_100511
crossref_primary_10_1103_PhysRevA_110_062414
crossref_primary_10_1021_acs_jctc_3c00319
crossref_primary_10_1021_acs_jpca_4c02847
crossref_primary_10_1021_acs_jpca_4c03935
crossref_primary_10_1021_acs_jctc_2c01016
crossref_primary_10_1007_s11128_023_04096_w
crossref_primary_10_22331_q_2023_01_03_889
crossref_primary_10_1063_5_0249447
crossref_primary_10_1051_e3sconf_202459002003
crossref_primary_10_1103_PhysRevResearch_5_023200
crossref_primary_10_1002_qua_27021
crossref_primary_10_1021_acs_jpca_3c07590
crossref_primary_10_1140_epjqt_s40507_022_00155_w
crossref_primary_10_22331_q_2022_05_02_703
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_1039_D3CP03523A
crossref_primary_10_1016_j_future_2024_04_060
crossref_primary_10_1039_D2CP00247G
crossref_primary_10_1002_jcc_27438
Cites_doi 10.1039/D0CP01707H
10.1038/nature23879
10.1021/acs.chemrev.8b00803
10.1021/acs.jctc.0c01052
10.1103/PhysRevA.1.644
10.1016/0301-0104(80)80045-0
10.1088/1367-2630/ab867b
10.1021/acs.chemrev.9b00829
10.1021/acs.jctc.8b00943
10.1063/1.430637
10.1103/PhysRevA.103.032605
10.1016/S0009-2614(00)01137-4
10.1021/acs.jctc.1c00220
10.1021/acs.jctc.0c00463
10.1103/RevModPhys.73.33
10.1039/D0SC01908A
10.1063/1.3598471
10.1039/D0SC06627C
10.1021/acs.jctc.9b01083
10.1103/PhysRevA.102.062612
10.1016/j.chemphys.2011.09.012
10.1063/1.457437
10.1063/1.5133059
10.1007/BF01119617
10.1063/1.434526
10.1021/acs.jctc.9b00963
10.1007/BF01119666
10.1142/S0217984920400497
10.1088/2058-9565/abf602
10.1063/1.5011033
10.1103/PRXQuantum.1.020319
10.1016/0301-0104(95)00321-5
10.1070/RM1997v052n06ABEH002155
10.1007/BF02650179
10.1063/1.5141880
10.1103/PhysRevA.90.022501
10.1103/PhysRevResearch.2.033421
10.1021/acs.jctc.9b00236
10.1021/cr200204r
10.1063/1.1727484
10.1063/1.1637579
10.1063/1.5094643
10.1038/s41467-019-10988-2
10.1002/qua.560340607
10.1103/PhysRevLett.126.070504
10.1021/acs.jctc.9b01084
10.1021/acs.jctc.0c00421
10.1038/s41534-019-0240-1
10.1063/1.1669809
10.1063/1.1732596
10.1063/1.1390516
10.1016/0003-4916(83)90284-1
10.1063/1.5141835
10.1021/acs.jpclett.0c03410
10.1016/S0009-2614(99)01186-0
10.1063/1.1679283
10.1103/PhysRevA.36.2519
10.3390/i3060676
10.1021/acs.jctc.8b00932
10.22331/q-2021-07-26-509
10.1017/CBO9780511596834
10.1063/1.460295
10.1002/qua.26352
10.1063/1.5010693
10.1103/PhysRevA.92.042303
10.1002/qua.560140503
10.1007/BF01119664
10.1016/0009-2614(88)80392-0
10.1017/CBO9780511976667
10.1063/1.4829536
10.22331/q-2020-09-12-322
10.1063/1.460620
10.1063/1.3520564
10.1063/1.4768241
10.1063/1.443164
10.1088/2058-9565/abe107
10.1063/1.444231
10.1135/cccc20050837
10.1088/0031-8949/21/3-4/007
10.1016/0009-2614(89)80030-2
10.1088/2058-9565/abe567
10.1088/2058-9565/ab3951
10.1103/PhysRevA.24.1668
10.1063/1.1288912
10.1002/cpa.3160100201
10.1021/acs.jctc.0c00170
10.1088/1367-2630/18/2/023023
10.1103/RevModPhys.79.291
10.1007/BF01609348
10.1080/00268977500103351
10.1103/PhysRevLett.79.2586
10.1063/1.5019371
10.1103/PRXQuantum.2.020310
10.1103/PhysRevA.104.032804
10.1016/S0009-2614(89)87372-5
10.1007/s00214-010-0764-0
10.22331/q-2021-06-10-473
10.1088/2058-9565/ab8ebc
10.1007/BF01117418
10.1063/5.0026141
10.1103/PhysRevA.99.032331
10.1088/2058-9565/abbc74
10.1063/1.456153
10.1103/RevModPhys.92.015003
10.1016/0029-5582(60)90140-1
10.1103/PhysRevResearch.3.023092
10.1063/1.447591
10.1126/science.1113479
10.1002/qua.560260826
10.1103/PhysRevLett.83.5162
10.1038/s41534-021-00416-z
10.1021/acs.jctc.8b01004
10.1103/PhysRevA.98.022322
10.1088/2058-9565/abd334
10.1103/PhysRevA.95.020501
10.3390/e21121218
10.1002/qua.560050839
10.1038/ncomms5213
10.1103/PhysRevResearch.3.013039
10.1103/PhysRevA.17.805
10.1021/acs.jctc.6b00156
10.1002/qua.560140504
10.1021/acs.jctc.9b01125
10.1103/PhysRevA.5.50
10.1063/1.454125
10.1080/00268976.2011.552441
10.1063/1.455919
10.1088/2058-9565/ab6bf6
10.1021/acs.jpclett.0c02621
10.1006/aphy.2002.6254
10.1088/2058-9565/aad3e4
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/D1CS00932J
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 1684
ExternalDocumentID 35166276
10_1039_D1CS00932J
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R56
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c414t-ed8a3b48e30ffeddc329fbadb52d5e792e93ee167336e47ff0aa1674ae6821d93
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 16:03:30 EDT 2025
Thu Jul 10 18:24:01 EDT 2025
Mon Jun 30 02:45:53 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Tue Jul 01 04:18:47 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-ed8a3b48e30ffeddc329fbadb52d5e792e93ee167336e47ff0aa1674ae6821d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6143-6380
0000-0002-4156-2048
0000-0002-8081-2310
0000-0002-4336-4555
0000-0001-8035-6020
0000-0002-8850-7708
PMID 35166276
PQID 2636855011
PQPubID 2047503
PageCount 26
ParticipantIDs proquest_miscellaneous_2661036259
proquest_miscellaneous_2629059214
proquest_journals_2636855011
pubmed_primary_35166276
crossref_primary_10_1039_D1CS00932J
crossref_citationtrail_10_1039_D1CS00932J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-07
PublicationDateYYYYMMDD 2022-03-07
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mukherjee (D1CS00932J/cit36/1) 1975; 30
Van Voorhis (D1CS00932J/cit51/1) 2000; 330
Cerezo (D1CS00932J/cit7/1) 2021
Kühn (D1CS00932J/cit86/1) 2019; 15
Smart (D1CS00932J/cit83/1) 2021; 126
Bauer (D1CS00932J/cit5/1) 2020; 120
Ryabinkin (D1CS00932J/cit110/1) 2020; 16
Xia (D1CS00932J/cit113/1) 2020; 6
Barkoutsos (D1CS00932J/cit68/1) 2018; 98
Kato (D1CS00932J/cit139/1) 1957; 10
Kottmann (D1CS00932J/cit69/1) 2021; 12
Sim (D1CS00932J/cit155/1) 2021; 6
Barr (D1CS00932J/cit124/1) 1970; 1
Kutzelnigg (D1CS00932J/cit37/1) 1982; 77
Lang (D1CS00932J/cit112/1) 2020; 17
Izmaylov (D1CS00932J/cit84/1) 2020; 22
Meissner (D1CS00932J/cit44/1) 2012; 401
Bartlett (D1CS00932J/cit47/1) 1989; 155
Grimsley (D1CS00932J/cit100/1) 2019; 10
Chan (D1CS00932J/cit102/1)
Paldus (D1CS00932J/cit14/1) 1978; 17
Bartlett (D1CS00932J/cit15/1) 1978; 14
Childs (D1CS00932J/cit67/1) 2021; 11
Bishop (D1CS00932J/cit26/1) 1991; 80
Grimsley (D1CS00932J/cit82/1) 2020; 16
Kong (D1CS00932J/cit140/1) 2012; 112
Abrams (D1CS00932J/cit64/1) 1997; 79
Surján (D1CS00932J/cit29/1) 2012
Barison (D1CS00932J/cit161/1)
Zhang (D1CS00932J/cit90/1) 2021; 3
Taube (D1CS00932J/cit125/1) 2005; 70
Paldus (D1CS00932J/cit12/1) 1972; 5
Gard (D1CS00932J/cit114/1) 2020; 6
Kowalski (D1CS00932J/cit57/1) 2018; 148
Ryabinkin (D1CS00932J/cit108/1) 2018; 14
McCaskey (D1CS00932J/cit99/1) 2020; 5
Helgaker (D1CS00932J/cit31/1) 2014
Stanton (D1CS00932J/cit145/1) 1991; 94
Paldus (D1CS00932J/cit13/1) 1977; 67
McClean (D1CS00932J/cit107/1) 2016; 18
Kottmann (D1CS00932J/cit104/1) 2021; 12
Kutzelnigg (D1CS00932J/cit48/1) 1991; 80
Kitaev (D1CS00932J/cit63/1) 1997; 52
Delgado (D1CS00932J/cit101/1)
Kowalski (D1CS00932J/cit58/1) 2021; 104
Hempel (D1CS00932J/cit159/1) 2018; 8
Jordan (D1CS00932J/cit77/1) 1928; 47
Piecuch (D1CS00932J/cit35/1) 2002; 3
Kottmann (D1CS00932J/cit93/1) 2021; 6
Shen (D1CS00932J/cit158/1) 2017; 95
Roos (D1CS00932J/cit132/1) 1980; 48
Chen (D1CS00932J/cit73/1) 2021; 17
Bravyi (D1CS00932J/cit111/1)
Tinkham (D1CS00932J/cit147/1) 1964
Van Voorhis (D1CS00932J/cit53/1) 2001; 115
Bravyi (D1CS00932J/cit78/1) 2002; 298
Lee (D1CS00932J/cit116/1) 2019; 15
Stein (D1CS00932J/cit133/1) 2016; 12
Wierichs (D1CS00932J/cit76/1)
Gonthier (D1CS00932J/cit123/1)
Purvis (D1CS00932J/cit18/1) 1982; 76
Dunning (D1CS00932J/cit148/1) 1989; 90
Ahlrichs (D1CS00932J/cit122/1) 1975; 62
McArdle (D1CS00932J/cit4/1) 2020; 92
Bartlett (D1CS00932J/cit45/1) 1988; 150
Szabo (D1CS00932J/cit32/1) 1996
Mukhopadhyay (D1CS00932J/cit38/1) 1989; 163
Arponen (D1CS00932J/cit50/1) 1987; 36
Motta (D1CS00932J/cit92/1) 2021; 7
Bharti (D1CS00932J/cit6/1)
Larsson (D1CS00932J/cit127/1) 2020; 16
Stair (D1CS00932J/cit106/1) 2020; 16
Tranter (D1CS00932J/cit81/1) 2019; 21
Bauman (D1CS00932J/cit131/1) 2021; 6
Pavošević (D1CS00932J/cit137/1) 2021; 17
Huggins (D1CS00932J/cit117/1) 2020; 22
Eriksen (D1CS00932J/cit59/1) 2020; 11
Romero (D1CS00932J/cit8/1) 2019; 4
Meyer (D1CS00932J/cit120/1) 1971; 5
Ollitrault (D1CS00932J/cit160/1) 2020; 11
OMalley (D1CS00932J/cit157/1) 2016; 6
Kottmann (D1CS00932J/cit105/1)
Wiersema (D1CS00932J/cit153/1) 2020; 1
Jørgensen (D1CS00932J/cit28/1) 1981
Cowtan (D1CS00932J/cit88/1)
McClean (D1CS00932J/cit94/1) 2020; 5
Sekino (D1CS00932J/cit22/1) 1984; 26
Filip (D1CS00932J/cit164/1) 2020; 153
Bartlett (D1CS00932J/cit27/1) 2007; 79
Meyer (D1CS00932J/cit121/1) 1973; 58
Pople (D1CS00932J/cit16/1) 1978; 14
Anselmetti (D1CS00932J/cit74/1)
Stair (D1CS00932J/cit103/1)
Sinanoğlu (D1CS00932J/cit10/1) 1962; 36
Bartlett (D1CS00932J/cit17/1) 1980; 21
Izmaylov (D1CS00932J/cit75/1)
Xu (D1CS00932J/cit72/1) 2020; 34
Kandala (D1CS00932J/cit151/1) 2017; 549
Metcalf (D1CS00932J/cit130/1) 2020; 16
Wecker (D1CS00932J/cit152/1) 2015; 92
Kaldor (D1CS00932J/cit43/1) 1991; 80
Christiansen (D1CS00932J/cit23/1) 2004; 120
Evangelista (D1CS00932J/cit56/1) 2011; 134
Hastings (D1CS00932J/cit85/1)
Nielsen (D1CS00932J/cit33/1) 2010
Pavošević (D1CS00932J/cit138/1)
Edmiston (D1CS00932J/cit119/1) 1968; 49
Mizukami (D1CS00932J/cit135/1) 2020; 2
Yalouz (D1CS00932J/cit136/1) 2021; 6
Choquette (D1CS00932J/cit156/1) 2021; 3
Elfving (D1CS00932J/cit128/1) 2021; 103
Shavitt (D1CS00932J/cit30/1) 2009
Yordanov (D1CS00932J/cit80/1) 2020; 102
Chen (D1CS00932J/cit163/1) 2021; 17
Peng (D1CS00932J/cit150/1) 2021; 5
Nooijen (D1CS00932J/cit52/1) 2000; 113
Matsuzawa (D1CS00932J/cit143/1) 2020; 16
Harsha (D1CS00932J/cit54/1) 2018; 148
Sokolov (D1CS00932J/cit134/1) 2020; 152
Kottmann (D1CS00932J/cit126/1) 2020; 152
Jeziorski (D1CS00932J/cit39/1) 1989; 90
Cullen (D1CS00932J/cit25/1) 1996; 202
Whitfield (D1CS00932J/cit61/1) 2011; 109
Meissner (D1CS00932J/cit41/1) 1991; 94
Ryabinkin (D1CS00932J/cit109/1) 2019; 15
Bauman (D1CS00932J/cit129/1) 2019; 151
Meissner (D1CS00932J/cit20/1) 1988; 34
Cooper (D1CS00932J/cit55/1) 2010; 133
Dresselhaus (D1CS00932J/cit146/1) 2008
Arponen (D1CS00932J/cit49/1) 1983; 151
Stair (D1CS00932J/cit97/1)
Aspuru-Guzik (D1CS00932J/cit60/1) 2005; 309
Setia (D1CS00932J/cit79/1) 2018; 148
Prascher (D1CS00932J/cit149/1) 2011; 128
Rittby (D1CS00932J/cit42/1) 1991; 80
Hoffmann (D1CS00932J/cit46/1) 1988; 88
Rubin (D1CS00932J/cit162/1)
Jeziorski (D1CS00932J/cit34/1) 1981; 24
Anis (D1CS00932J/cit98/1) 2021
van de Wetering (D1CS00932J/cit89/1)
Hohenstein (D1CS00932J/cit144/1) 2012; 137
Dallaire-Demers (D1CS00932J/cit154/1) 2019; 4
Perera (D1CS00932J/cit24/1) 1999; 314
Arrazola (D1CS00932J/cit96/1)
Wang (D1CS00932J/cit91/1) 2021; 5
Meissner (D1CS00932J/cit40/1) 1989; 91
Cao (D1CS00932J/cit3/1) 2019; 119
Suzuki (D1CS00932J/cit62/1) 1976; 51
Greene-Diniz (D1CS00932J/cit118/1) 2021; 121
Foulkes (D1CS00932J/cit141/1) 2001; 73
Tang (D1CS00932J/cit115/1) 2021; 2
Abe (D1CS00932J/cit21/1) 2014; 90
Schuld (D1CS00932J/cit70/1) 2019; 99
Lee (D1CS00932J/cit19/1) 1984; 81
Čížek (D1CS00932J/cit11/1) 1966; 45
Manin (D1CS00932J/cit1/1) 1980
Peruzzo (D1CS00932J/cit66/1) 2014; 5
Coester (D1CS00932J/cit9/1) 1960; 17
Evangelista (D1CS00932J/cit71/1) 2019; 151
Abrams (D1CS00932J/cit65/1) 1999; 83
Feynman (D1CS00932J/cit2/1) 1982; 21
Neuscamman (D1CS00932J/cit142/1) 2013; 139
Bergholm (D1CS00932J/cit95/1)
van den Berg (D1CS00932J/cit87/1) 2020; 4
References_xml – volume: 22
  start-page: 12980
  year: 2020
  ident: D1CS00932J/cit84/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01707H
– volume: 549
  start-page: 242
  year: 2017
  ident: D1CS00932J/cit151/1
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 11
  start-page: 011020
  year: 2021
  ident: D1CS00932J/cit67/1
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 10856
  year: 2019
  ident: D1CS00932J/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
– volume: 17
  start-page: 841
  year: 2021
  ident: D1CS00932J/cit73/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01052
– volume-title: Molecular Electronic-Structure Theory
  year: 2014
  ident: D1CS00932J/cit31/1
– volume: 1
  start-page: 644
  year: 1970
  ident: D1CS00932J/cit124/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.1.644
– volume: 48
  start-page: 157
  year: 1980
  ident: D1CS00932J/cit132/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)80045-0
– volume-title: Qiskit: An Open-source Framework for Quantum Computing
  year: 2021
  ident: D1CS00932J/cit98/1
– volume: 22
  start-page: 073009
  year: 2020
  ident: D1CS00932J/cit117/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab867b
– volume: 120
  start-page: 12685
  year: 2020
  ident: D1CS00932J/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00829
– volume: 15
  start-page: 249
  year: 2019
  ident: D1CS00932J/cit109/1
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.8b00943
– volume: 62
  start-page: 1225
  year: 1975
  ident: D1CS00932J/cit122/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.430637
– volume: 103
  start-page: 032605
  year: 2021
  ident: D1CS00932J/cit128/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.032605
– ident: D1CS00932J/cit95/1
– volume: 330
  start-page: 585
  year: 2000
  ident: D1CS00932J/cit51/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01137-4
– ident: D1CS00932J/cit111/1
– volume: 17
  start-page: 3252
  year: 2021
  ident: D1CS00932J/cit137/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00220
– volume: 16
  start-page: 5057
  year: 2020
  ident: D1CS00932J/cit127/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00463
– volume: 73
  start-page: 33
  year: 2001
  ident: D1CS00932J/cit141/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.33
– ident: D1CS00932J/cit138/1
– volume: 11
  start-page: 6842
  year: 2020
  ident: D1CS00932J/cit160/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01908A
– volume: 134
  start-page: 224102
  year: 2011
  ident: D1CS00932J/cit56/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3598471
– volume: 12
  start-page: 3497
  year: 2021
  ident: D1CS00932J/cit69/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC06627C
– volume: 16
  start-page: 1
  year: 2020
  ident: D1CS00932J/cit82/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b01083
– volume: 102
  start-page: 062612
  year: 2020
  ident: D1CS00932J/cit80/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.062612
– volume: 401
  start-page: 136
  year: 2012
  ident: D1CS00932J/cit44/1
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2011.09.012
– volume: 91
  start-page: 6187
  year: 1989
  ident: D1CS00932J/cit40/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.457437
– volume: 151
  start-page: 244112
  year: 2019
  ident: D1CS00932J/cit71/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5133059
– volume: 80
  start-page: 95
  year: 1991
  ident: D1CS00932J/cit26/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01119617
– volume: 67
  start-page: 303
  year: 1977
  ident: D1CS00932J/cit13/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434526
– volume: 16
  start-page: 944
  year: 2020
  ident: D1CS00932J/cit143/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00963
– ident: D1CS00932J/cit162/1
– ident: D1CS00932J/cit101/1
– volume: 80
  start-page: 469
  year: 1991
  ident: D1CS00932J/cit42/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01119666
– volume: 34
  start-page: 2040049
  year: 2020
  ident: D1CS00932J/cit72/1
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984920400497
– volume: 6
  start-page: 034008
  year: 2021
  ident: D1CS00932J/cit131/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/abf602
– volume: 148
  start-page: 044107
  year: 2018
  ident: D1CS00932J/cit54/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5011033
– volume: 1
  start-page: 020319
  year: 2020
  ident: D1CS00932J/cit153/1
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.1.020319
– volume: 202
  start-page: 217
  year: 1996
  ident: D1CS00932J/cit25/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(95)00321-5
– volume: 52
  start-page: 1191
  year: 1997
  ident: D1CS00932J/cit63/1
  publication-title: Russian Mathematical Surveys
  doi: 10.1070/RM1997v052n06ABEH002155
– volume: 21
  start-page: 467
  year: 1982
  ident: D1CS00932J/cit2/1
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02650179
– volume: 152
  start-page: 074105
  year: 2020
  ident: D1CS00932J/cit126/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5141880
– volume: 90
  start-page: 022501
  year: 2014
  ident: D1CS00932J/cit21/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.90.022501
– volume: 2
  start-page: 033421
  year: 2020
  ident: D1CS00932J/cit135/1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033421
– volume: 15
  start-page: 4764
  year: 2019
  ident: D1CS00932J/cit86/1
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.9b00236
– volume: 112
  start-page: 75
  year: 2012
  ident: D1CS00932J/cit140/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200204r
– volume: 45
  start-page: 4256
  year: 1966
  ident: D1CS00932J/cit11/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1727484
– volume: 120
  start-page: 2149
  year: 2004
  ident: D1CS00932J/cit23/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637579
– volume-title: Second quantized approach to quantum chemistry: an elementary introduction
  year: 2012
  ident: D1CS00932J/cit29/1
– volume: 151
  start-page: 014107
  year: 2019
  ident: D1CS00932J/cit129/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5094643
– volume: 10
  start-page: 1
  year: 2019
  ident: D1CS00932J/cit100/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10988-2
– volume: 34
  start-page: 535
  year: 1988
  ident: D1CS00932J/cit20/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560340607
– volume-title: Group Theory - Application to the Physics of Condensed Matter
  year: 2008
  ident: D1CS00932J/cit146/1
– volume: 126
  start-page: 070504
  year: 2021
  ident: D1CS00932J/cit83/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.070504
– volume: 16
  start-page: 1055
  year: 2020
  ident: D1CS00932J/cit110/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b01084
– volume: 16
  start-page: 6165
  year: 2020
  ident: D1CS00932J/cit130/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00421
– volume: 6
  start-page: 1
  year: 2020
  ident: D1CS00932J/cit114/1
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-019-0240-1
– volume: 49
  start-page: 192
  year: 1968
  ident: D1CS00932J/cit119/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1669809
– volume: 36
  start-page: 706
  year: 1962
  ident: D1CS00932J/cit10/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1732596
– volume: 115
  start-page: 5033
  year: 2001
  ident: D1CS00932J/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1390516
– volume: 151
  start-page: 311
  year: 1983
  ident: D1CS00932J/cit49/1
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(83)90284-1
– ident: D1CS00932J/cit97/1
– volume: 152
  start-page: 124107
  year: 2020
  ident: D1CS00932J/cit134/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5141835
– volume: 8
  start-page: 031022
  year: 2018
  ident: D1CS00932J/cit159/1
  publication-title: Phys. Rev. X
– volume: 12
  start-page: 663
  year: 2021
  ident: D1CS00932J/cit104/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03410
– volume: 314
  start-page: 381
  year: 1999
  ident: D1CS00932J/cit24/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01186-0
– volume: 58
  start-page: 1017
  year: 1973
  ident: D1CS00932J/cit121/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1679283
– volume: 36
  start-page: 2519
  year: 1987
  ident: D1CS00932J/cit50/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.36.2519
– volume: 3
  start-page: 676
  year: 2002
  ident: D1CS00932J/cit35/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/i3060676
– volume: 14
  start-page: 6317
  year: 2018
  ident: D1CS00932J/cit108/1
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.8b00932
– volume: 5
  start-page: 509
  year: 2021
  ident: D1CS00932J/cit91/1
  publication-title: Quantum
  doi: 10.22331/q-2021-07-26-509
– volume-title: Many-body methods in chemistry and physics: MBPT and coupled-cluster theory
  year: 2009
  ident: D1CS00932J/cit30/1
  doi: 10.1017/CBO9780511596834
– volume: 94
  start-page: 6670
  year: 1991
  ident: D1CS00932J/cit41/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460295
– volume: 121
  start-page: e26352
  year: 2021
  ident: D1CS00932J/cit118/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26352
– volume: 148
  start-page: 094104
  year: 2018
  ident: D1CS00932J/cit57/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5010693
– volume: 92
  start-page: 042303
  year: 2015
  ident: D1CS00932J/cit152/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.92.042303
– volume: 14
  start-page: 545
  year: 1978
  ident: D1CS00932J/cit16/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560140503
– volume: 80
  start-page: 427
  year: 1991
  ident: D1CS00932J/cit43/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01119664
– volume: 150
  start-page: 29
  year: 1988
  ident: D1CS00932J/cit45/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)80392-0
– volume-title: Sovetskoye Radio
  year: 1980
  ident: D1CS00932J/cit1/1
– volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition
  year: 2010
  ident: D1CS00932J/cit33/1
  doi: 10.1017/CBO9780511976667
– ident: D1CS00932J/cit76/1
– volume: 139
  start-page: 181101
  year: 2013
  ident: D1CS00932J/cit142/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4829536
– volume: 4
  start-page: 322
  year: 2020
  ident: D1CS00932J/cit87/1
  publication-title: Quantum
  doi: 10.22331/q-2020-09-12-322
– volume: 94
  start-page: 4334
  year: 1991
  ident: D1CS00932J/cit145/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460620
– volume: 133
  start-page: 234102
  year: 2010
  ident: D1CS00932J/cit55/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3520564
– volume: 137
  start-page: 221101
  year: 2012
  ident: D1CS00932J/cit144/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768241
– start-page: 1
  year: 2021
  ident: D1CS00932J/cit7/1
  publication-title: Nat. Rev. Phys.
– ident: D1CS00932J/cit88/1
– volume: 76
  start-page: 1910
  year: 1982
  ident: D1CS00932J/cit18/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443164
– volume: 6
  start-page: 025019
  year: 2021
  ident: D1CS00932J/cit155/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/abe107
– volume: 77
  start-page: 3081
  year: 1982
  ident: D1CS00932J/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444231
– ident: D1CS00932J/cit96/1
– ident: D1CS00932J/cit161/1
– volume: 70
  start-page: 837
  year: 2005
  ident: D1CS00932J/cit125/1
  publication-title: Collect. Czech. Chem. Commun.
  doi: 10.1135/cccc20050837
– volume: 21
  start-page: 255
  year: 1980
  ident: D1CS00932J/cit17/1
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/21/3-4/007
– volume: 163
  start-page: 171
  year: 1989
  ident: D1CS00932J/cit38/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)80030-2
– volume: 6
  start-page: 024009
  year: 2021
  ident: D1CS00932J/cit93/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/abe567
– volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
  year: 1996
  ident: D1CS00932J/cit32/1
– volume: 4
  start-page: 045005
  year: 2019
  ident: D1CS00932J/cit154/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ab3951
– ident: D1CS00932J/cit74/1
– ident: D1CS00932J/cit85/1
– volume: 17
  start-page: 841
  year: 2021
  ident: D1CS00932J/cit163/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01052
– volume: 24
  start-page: 1668
  year: 1981
  ident: D1CS00932J/cit34/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.24.1668
– ident: D1CS00932J/cit105/1
– volume-title: Group theory and quantum mechanics
  year: 1964
  ident: D1CS00932J/cit147/1
– volume: 113
  start-page: 4549
  year: 2000
  ident: D1CS00932J/cit52/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1288912
– volume: 10
  start-page: 151
  year: 1957
  ident: D1CS00932J/cit139/1
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.3160100201
– ident: D1CS00932J/cit6/1
– volume: 17
  start-page: 66
  year: 2020
  ident: D1CS00932J/cit112/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00170
– volume: 18
  start-page: 023023
  year: 2016
  ident: D1CS00932J/cit107/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– volume: 79
  start-page: 291
  year: 2007
  ident: D1CS00932J/cit27/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.291
– ident: D1CS00932J/cit89/1
– volume: 51
  start-page: 183
  year: 1976
  ident: D1CS00932J/cit62/1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01609348
– volume: 30
  start-page: 1861
  year: 1975
  ident: D1CS00932J/cit36/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268977500103351
– ident: D1CS00932J/cit102/1
– volume: 79
  start-page: 2586
  year: 1997
  ident: D1CS00932J/cit64/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.2586
– volume: 148
  start-page: 164104
  year: 2018
  ident: D1CS00932J/cit79/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019371
– volume: 2
  start-page: 020310
  year: 2021
  ident: D1CS00932J/cit115/1
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020310
– ident: D1CS00932J/cit123/1
– volume: 104
  start-page: 032804
  year: 2021
  ident: D1CS00932J/cit58/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.032804
– volume: 155
  start-page: 133
  year: 1989
  ident: D1CS00932J/cit47/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(89)87372-5
– ident: D1CS00932J/cit103/1
– volume: 128
  start-page: 69
  year: 2011
  ident: D1CS00932J/cit149/1
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-010-0764-0
– volume: 5
  start-page: 473
  year: 2021
  ident: D1CS00932J/cit150/1
  publication-title: Quantum
  doi: 10.22331/q-2021-06-10-473
– volume: 5
  start-page: 034014
  year: 2020
  ident: D1CS00932J/cit94/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ab8ebc
– volume: 80
  start-page: 349
  year: 1991
  ident: D1CS00932J/cit48/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01117418
– volume: 47
  start-page: 14
  year: 1928
  ident: D1CS00932J/cit77/1
  publication-title: Z. Phys.
– volume: 153
  start-page: 214106
  year: 2020
  ident: D1CS00932J/cit164/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0026141
– volume: 99
  start-page: 032331
  year: 2019
  ident: D1CS00932J/cit70/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032331
– volume: 6
  start-page: 015001
  year: 2020
  ident: D1CS00932J/cit113/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/abbc74
– volume: 90
  start-page: 1007
  year: 1989
  ident: D1CS00932J/cit148/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 92
  start-page: 015003
  year: 2020
  ident: D1CS00932J/cit4/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– volume: 17
  start-page: 477
  year: 1960
  ident: D1CS00932J/cit9/1
  publication-title: Nuclear Physics
  doi: 10.1016/0029-5582(60)90140-1
– volume: 3
  start-page: 023092
  year: 2021
  ident: D1CS00932J/cit156/1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023092
– ident: D1CS00932J/cit75/1
– volume: 81
  start-page: 5906
  year: 1984
  ident: D1CS00932J/cit19/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447591
– volume: 309
  start-page: 1704
  year: 2005
  ident: D1CS00932J/cit60/1
  publication-title: Science
  doi: 10.1126/science.1113479
– volume: 26
  start-page: 255
  year: 1984
  ident: D1CS00932J/cit22/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560260826
– volume: 83
  start-page: 5162
  year: 1999
  ident: D1CS00932J/cit65/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.5162
– volume: 7
  start-page: 1
  year: 2021
  ident: D1CS00932J/cit92/1
  publication-title: npj Quantum Information
  doi: 10.1038/s41534-021-00416-z
– volume: 15
  start-page: 311
  year: 2019
  ident: D1CS00932J/cit116/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01004
– volume: 98
  start-page: 022322
  year: 2018
  ident: D1CS00932J/cit68/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.022322
– volume: 6
  start-page: 024004
  year: 2021
  ident: D1CS00932J/cit136/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/abd334
– volume: 95
  start-page: 020501
  year: 2017
  ident: D1CS00932J/cit158/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.020501
– volume: 6
  start-page: 031007
  year: 2016
  ident: D1CS00932J/cit157/1
  publication-title: Phys. Rev. X
– volume-title: Second Quantization-Based Methods in Quantum Chemistry
  year: 1981
  ident: D1CS00932J/cit28/1
– volume: 21
  start-page: 1218
  year: 2019
  ident: D1CS00932J/cit81/1
  publication-title: Entropy
  doi: 10.3390/e21121218
– volume: 5
  start-page: 341
  year: 1971
  ident: D1CS00932J/cit120/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560050839
– volume: 5
  start-page: 4213
  year: 2014
  ident: D1CS00932J/cit66/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 3
  start-page: 013039
  year: 2021
  ident: D1CS00932J/cit90/1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013039
– volume: 17
  start-page: 805
  year: 1978
  ident: D1CS00932J/cit14/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.17.805
– volume: 12
  start-page: 1760
  year: 2016
  ident: D1CS00932J/cit133/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00156
– volume: 14
  start-page: 561
  year: 1978
  ident: D1CS00932J/cit15/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560140504
– volume: 16
  start-page: 2236
  year: 2020
  ident: D1CS00932J/cit106/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b01125
– volume: 5
  start-page: 50
  year: 1972
  ident: D1CS00932J/cit12/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.5.50
– volume: 88
  start-page: 993
  year: 1988
  ident: D1CS00932J/cit46/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454125
– volume: 109
  start-page: 735
  year: 2011
  ident: D1CS00932J/cit61/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2011.552441
– volume: 90
  start-page: 2714
  year: 1989
  ident: D1CS00932J/cit39/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455919
– volume: 5
  start-page: 024002
  year: 2020
  ident: D1CS00932J/cit99/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ab6bf6
– volume: 11
  start-page: 8922
  year: 2020
  ident: D1CS00932J/cit59/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02621
– volume: 298
  start-page: 210
  year: 2002
  ident: D1CS00932J/cit78/1
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.2002.6254
– volume: 4
  start-page: 014008
  year: 2019
  ident: D1CS00932J/cit8/1
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aad3e4
SSID ssj0011762
Score 2.7184405
SecondaryResourceType review_article
Snippet We present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1659
SubjectTerms Clusters
computer techniques
computers
Electronic structure
fields
methodology
Microprocessors
problem solving
Quantum computers
Quantum computing
Title A quantum computing view on unitary coupled cluster theory
URI https://www.ncbi.nlm.nih.gov/pubmed/35166276
https://www.proquest.com/docview/2636855011
https://www.proquest.com/docview/2629059214
https://www.proquest.com/docview/2661036259
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry P&R
  customDbUrl: https://pubs.rsc.org
  eissn: 1460-4744
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011762
  issn: 0306-0012
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxJuUgoxASKgy9T7iB7eopCpRKAcSkZtlr2dFUeqkNObAD-B3M-Nd26koFXCxEnuz3uzMvma--YaxlyHXUa4U-HGeKF-ZgOZB0H4kAh0ZzYMYKMD5w0l4PFeTxXDR6_3cQi1Vm_yN_nFlXMn_SBXvoVwpSvYfJNtWijfwM8oXryhhvP6VjEcUE4mLxlmNDK9qBLONRCn3KxyrhIjTq2q9xF2lXlbEiWAjFy_5clvOgAbB6RhKOwtBA37MKdn2985382UJp3rLLrNuf7IkAuXSn0JmoT9nZYcCnkDpzD7OFbH_2RlbnfUBD64Ev4pafbE2jqZ5NYDEpanbmsckGS0Ch5YGO8-qMPBVZKkfm4nYMc-ebru661mVh441HNxXm1Xut9k_kESeWnB9QYYa8bVb4xq__snH9Gg-naaz8WL2an3uU_Yx8tK7VCw32I7A1SHos53RePZ-2vqjeBQ6f5T9Kw3RrUwOutdd3tr84bxS71tmd9htd-DwRlZ77rIelPfYzbYD77O3I89pkddqkUcK4K1Kz2mR57TIc1rkWS16wOZH49nhse8yavhacbXxoYgzmasYZGAMFIWWIjF5VuRDUQwhSgQkEoCHxJEJKjImyDIKU8kgjAUvEvmQ9ctVCY-Zl5uCF7iZNzE-T0SeYVUJVqmiGKLYmAF73XRGqh3dPGU9WaY17EEm6Tt--KnuuMmAvWjLri3JypWl9po-Td0gvEhFSBkUhiihAXvePsYeJL9XVsKqojIiwVOE4Oq6MniOkGQMGLBHVl5tU-SQU5qEcPf6Bjxht7oRssf6m28VPMUd6yZ_5tTpF-wImxs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum+computing+view+on+unitary+coupled+cluster+theory&rft.jtitle=Chemical+Society+reviews&rft.au=Anand%2C+Abhinav&rft.au=Schleich%2C+Philipp&rft.au=Alperin-Lea%2C+Sumner&rft.au=Jensen%2C+Phillip+W+K&rft.date=2022-03-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=5&rft.spage=1659&rft.epage=1684&rft_id=info:doi/10.1039%2Fd1cs00932j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon