Surface modified carbon nanotubes fiber as flexible bifunctional electrocatalyst for overall electrochemical water splitting reactions
Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential...
Saved in:
Published in | Journal of science. Advanced materials and devices Vol. 8; no. 4; p. 100638 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2468-2179 2468-2179 |
DOI | 10.1016/j.jsamd.2023.100638 |
Cover
Abstract | Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential requirement. Herein this work, we used a one-step hydrothermal method for the in-situ synthesis of CoSe nanoparticles over the surface of carbon nanotube-based fiber (CNTs fiber) and utilized it as a bifunctional electrocatalyst for the electrochemical water splitting process. Surface-modified fiber showed excellent performance towards OER with a low overpotential (η10 = 414 mV) and Tafel slope (77 mVdec−1). We also exploited the same material as cathode, which exhibited an excellent hydrogen evolution reaction (HER) at the counterpart with improved catalytic performance as compared to bare CNTs materials. During the HER process in the cathodic potential region, the electrocatalyst displayed a current density of 10 mAcm−2 at an overpotential of 496 mV. Furthermore, the electrocatalyst exhibited excellent performance during the testing for the overall water splitting. The outcomes reveal that the fabricated electrode can be potentially applied as an efficient and flexible electrode to derive the hydrogen as fuels during the overall electrochemical water splitting reaction. |
---|---|
AbstractList | Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential requirement. Herein this work, we used a one-step hydrothermal method for the in-situ synthesis of CoSe nanoparticles over the surface of carbon nanotube-based fiber (CNTs fiber) and utilized it as a bifunctional electrocatalyst for the electrochemical water splitting process. Surface-modified fiber showed excellent performance towards OER with a low overpotential (η10 = 414 mV) and Tafel slope (77 mVdec−1). We also exploited the same material as cathode, which exhibited an excellent hydrogen evolution reaction (HER) at the counterpart with improved catalytic performance as compared to bare CNTs materials. During the HER process in the cathodic potential region, the electrocatalyst displayed a current density of 10 mAcm−2 at an overpotential of 496 mV. Furthermore, the electrocatalyst exhibited excellent performance during the testing for the overall water splitting. The outcomes reveal that the fabricated electrode can be potentially applied as an efficient and flexible electrode to derive the hydrogen as fuels during the overall electrochemical water splitting reaction. |
ArticleNumber | 100638 |
Author | Iqbal, Munawar Iqbal, Zafar Mehmood, Yasir Asghar, Muhammad Adeel Ali, Abid Nazir, Arif Aldosari, Haia Haider, Ali |
Author_xml | – sequence: 1 givenname: Haia surname: Aldosari fullname: Aldosari, Haia – sequence: 2 givenname: Abid orcidid: 0000-0002-0452-4827 surname: Ali fullname: Ali, Abid – sequence: 3 givenname: Muhammad Adeel orcidid: 0000-0002-9731-3382 surname: Asghar fullname: Asghar, Muhammad Adeel – sequence: 4 givenname: Ali surname: Haider fullname: Haider, Ali – sequence: 5 givenname: Yasir surname: Mehmood fullname: Mehmood, Yasir – sequence: 6 givenname: Zafar surname: Iqbal fullname: Iqbal, Zafar – sequence: 7 givenname: Arif surname: Nazir fullname: Nazir, Arif – sequence: 8 givenname: Munawar surname: Iqbal fullname: Iqbal, Munawar |
BookMark | eNp9kctOIzEQRS3ESDyGL2DjH0jGr3TaS4R4SUizGFhbZXcZ3HLayHZ4_ADfjZMgZjQLVnV1XfdI5XtE9qc0ISGnnM05492vcT4WWA1zwYRsDutkv0cOher6meBLvf-PPiAnpYyMMcF5rxbqkLz_WWcPDukqDcEHHKiDbNNEJ5hSXVss1AeLmUITEV-DjUht8OvJ1ZAmiBQjupqTgwrxrVTqU6bpGTPEv2-PuAqu7b5AbajyFEOtYXqgGWGLKT_JDw-x4MnnPCb3lxd359ez299XN-dntzOnuKoz1Ci5Q89cD-0IxcRCaYe9ba6zg-R-Abjshx67TisJHDVzfGCC-aa8kMfkZscdEozmKYcV5DeTIJitkfKDgVyDi2iktqg143rwSikpQGlhu070yyW3oBeNJXcsl1MpGf0XjzOzacaMZtuM2TRjds20lP4v5UKFzSfUDCF-m_0AT82big |
CitedBy_id | crossref_primary_10_1515_zpch_2023_0440 crossref_primary_10_1007_s12598_024_02882_8 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1002_ente_202301504 crossref_primary_10_3390_ijms242015388 |
Cites_doi | 10.1021/jacs.7b07044 10.1002/chem.202000209 10.1021/acsanm.1c00246 10.1016/j.electacta.2020.137642 10.1016/j.apcatb.2022.122295 10.1002/eng2.12437 10.1002/smll.201770178 10.1021/cs3003098 10.1016/j.ijhydene.2023.01.330 10.1016/j.jcis.2021.06.038 10.1002/smll.201400703 10.1016/j.ijhydene.2023.01.063 10.1039/D0TA09495A 10.1016/j.ijhydene.2022.10.169 10.1007/s40820-021-00679-3 10.1002/smll.201701931 10.1021/acsaem.7b00085 10.1016/j.apsadv.2021.100184 10.1038/natrevmats.2016.23 10.1021/acsanm.1c02792 10.1021/acscatal.9b02457 10.1016/j.cclet.2021.11.041 10.1016/j.nanoen.2020.105270 10.1039/D0NJ04197A 10.1002/anie.201409524 10.1016/j.apcatb.2014.08.033 10.1039/C9TA04163J 10.1126/sciadv.1500564 10.1007/s40820-018-0229-x 10.1039/D1TA07644B 10.1016/j.cej.2021.129982 10.1039/D0SE01087A 10.1016/j.cclet.2021.01.047 10.1016/j.electacta.2018.02.133 10.1016/j.apcatb.2021.120641 10.1039/C8SE00002F 10.1007/s41918-018-0003-2 10.1021/jp069006m 10.1021/accountsmr.1c00190 10.1016/j.apsusc.2019.07.231 10.1039/C7TA09828F 10.1021/acscatal.6b02573 10.1021/acsami.8b01295 10.1002/adfm.201502217 10.1039/D1TA09864K 10.1002/adma.201806403 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.jsamd.2023.100638 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2468-2179 |
ExternalDocumentID | oai_doaj_org_article_39be99019df44432a492b6628771ba95 10_1016_j_jsamd_2023_100638 |
GroupedDBID | 0R~ AAEDW AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ADBBV ADVLN AEXQZ AFJKZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 O9- OK1 RIG ROL SSZ |
ID | FETCH-LOGICAL-c414t-e9e31cef0c8a002402549ce8b31ccbd31f5ae78d8e66943a1e90c1d020fe90f23 |
IEDL.DBID | DOA |
ISSN | 2468-2179 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Tue Jul 01 01:19:32 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-e9e31cef0c8a002402549ce8b31ccbd31f5ae78d8e66943a1e90c1d020fe90f23 |
ORCID | 0000-0002-0452-4827 0000-0002-9731-3382 |
OpenAccessLink | https://doaj.org/article/39be99019df44432a492b6628771ba95 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_39be99019df44432a492b6628771ba95 crossref_primary_10_1016_j_jsamd_2023_100638 crossref_citationtrail_10_1016_j_jsamd_2023_100638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of science. Advanced materials and devices |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Sivanantham (10.1016/j.jsamd.2023.100638_bib47) 2018; 8 Zhu (10.1016/j.jsamd.2023.100638_bib39) 2021; 602 Wang (10.1016/j.jsamd.2023.100638_bib33) 2017; 13 Zhou (10.1016/j.jsamd.2023.100638_bib12) 2021; 3 Yang (10.1016/j.jsamd.2023.100638_bib15) 2021; 13 Andersen (10.1016/j.jsamd.2023.100638_bib30) 2015; 163 Ouyang (10.1016/j.jsamd.2023.100638_bib32) 2018; 6 Zhang (10.1016/j.jsamd.2023.100638_bib19) 2020; 4 Li (10.1016/j.jsamd.2023.100638_bib16) 2021; 32 Yang (10.1016/j.jsamd.2023.100638_bib28) 2017; 7 Zhang (10.1016/j.jsamd.2023.100638_bib2) 2021; 299 Miao (10.1016/j.jsamd.2023.100638_bib4) 2017; 139 Herbaut (10.1016/j.jsamd.2023.100638_bib17) 2021; 4 Lu (10.1016/j.jsamd.2023.100638_bib20) 2017; 13 Ashok (10.1016/j.jsamd.2023.100638_bib34) 2021; 368 Hou (10.1016/j.jsamd.2023.100638_bib44) 2018; 269 Shi (10.1016/j.jsamd.2023.100638_bib35) 2021; 9 Li (10.1016/j.jsamd.2023.100638_bib24) 2021; 9 Battiato (10.1016/j.jsamd.2023.100638_bib11) 2023; 48 Chen (10.1016/j.jsamd.2023.100638_bib14) 2020; 78 Zhang (10.1016/j.jsamd.2023.100638_bib22) 2021; 33 Liu (10.1016/j.jsamd.2023.100638_bib31) 2015; 25 Reddy (10.1016/j.jsamd.2023.100638_bib29) 2007; 111 Zhang (10.1016/j.jsamd.2023.100638_bib45) 2022 Qiu (10.1016/j.jsamd.2023.100638_bib46) 2015; 11 Deng (10.1016/j.jsamd.2023.100638_bib27) 2015; 54 Liu (10.1016/j.jsamd.2023.100638_bib42) 2020; 44 Hu (10.1016/j.jsamd.2023.100638_bib23) 2019; 7 Zhai (10.1016/j.jsamd.2023.100638_bib21) 2021; 2 Vazhayil (10.1016/j.jsamd.2023.100638_bib40) 2021; 6 Zhang (10.1016/j.jsamd.2023.100638_bib25) 2015; 1 Wei (10.1016/j.jsamd.2023.100638_bib48) 2018; 10 Hu (10.1016/j.jsamd.2023.100638_bib26) 2018; 1 Wang (10.1016/j.jsamd.2023.100638_bib1) 2023; 325 Gryszel (10.1016/j.jsamd.2023.100638_bib7) 2018; 10 Barber (10.1016/j.jsamd.2023.100638_bib8) 2018; 2 Xu (10.1016/j.jsamd.2023.100638_bib38) 2021; 422 Reghunath (10.1016/j.jsamd.2023.100638_bib3) 2023; 48 Li (10.1016/j.jsamd.2023.100638_bib6) 2016; 1 Yu (10.1016/j.jsamd.2023.100638_bib13) 2019; 9 Singh (10.1016/j.jsamd.2023.100638_bib36) 2022; 10 Hu (10.1016/j.jsamd.2023.100638_bib37) 2021; 4 Yu (10.1016/j.jsamd.2023.100638_bib18) 2020; 26 Yu (10.1016/j.jsamd.2023.100638_bib9) 2018; 1 Zhou (10.1016/j.jsamd.2023.100638_bib10) 2023; 48 Paul (10.1016/j.jsamd.2023.100638_bib41) 2019; 31 Xu (10.1016/j.jsamd.2023.100638_bib43) 2019; 494 Reier (10.1016/j.jsamd.2023.100638_bib5) 2012; 2 |
References_xml | – volume: 139 start-page: 13604 year: 2017 ident: 10.1016/j.jsamd.2023.100638_bib4 article-title: Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07044 – volume: 26 start-page: 6423 year: 2020 ident: 10.1016/j.jsamd.2023.100638_bib18 article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media publication-title: Chem. Eur J. doi: 10.1002/chem.202000209 – volume: 4 start-page: 907 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib17 article-title: Nanomaterials-based water splitting: How far are We from a sustainable solution? publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00246 – volume: 368 start-page: 137642 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib34 article-title: Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137642 – volume: 325 start-page: 122295 year: 2023 ident: 10.1016/j.jsamd.2023.100638_bib1 article-title: Intensified Kirkendall effect assisted construction of double-shell hollow Cu-doped CoP nanoparticles anchored by carbon arrays for water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.122295 – volume: 3 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib12 article-title: Novel engineering of ruthenium-based electrocatalysts for acidic water oxidation: a mini review publication-title: Engineering Reports doi: 10.1002/eng2.12437 – volume: 13 year: 2017 ident: 10.1016/j.jsamd.2023.100638_bib33 article-title: Graphene composites with cobalt sulfide: efficient trifunctional electrocatalysts for oxygen reversible Catalysis and hydrogen production in the same electrolyte publication-title: Small doi: 10.1002/smll.201770178 – volume: 2 start-page: 1765 year: 2012 ident: 10.1016/j.jsamd.2023.100638_bib5 article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a Comparative study of nanoparticles and Bulk materials publication-title: ACS Catal. doi: 10.1021/cs3003098 – start-page: 1 year: 2022 ident: 10.1016/j.jsamd.2023.100638_bib45 article-title: Carbon nanotubes for flexible fiber Batteries – volume: 48 start-page: 18291 year: 2023 ident: 10.1016/j.jsamd.2023.100638_bib11 article-title: Composition-controlled chemical bath deposition of Fe-doped NiO microflowers for boosting oxygen evolution reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.330 – volume: 602 start-page: 384 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib39 article-title: Iron molybdenum selenide supported on reduced graphene oxide as an efficient hydrogen electrocatalyst in acidic and alkaline media publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.038 – volume: 11 start-page: 1150 year: 2015 ident: 10.1016/j.jsamd.2023.100638_bib46 article-title: Freestanding aligned carbon nanotube array grown on a large‐area single‐layered graphene sheet for efficient dye‐sensitized, solar cell publication-title: Small doi: 10.1002/smll.201400703 – volume: 48 start-page: 15748 year: 2023 ident: 10.1016/j.jsamd.2023.100638_bib10 article-title: Energy-saving cathodic H2 production enabled by non-oxygen evolution anodic reactions: a critical review on fundamental principles and applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.063 – volume: 9 start-page: 3786 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib24 article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09495A – volume: 48 start-page: 2906 year: 2023 ident: 10.1016/j.jsamd.2023.100638_bib3 article-title: N-doped graphene quantum dots incorporated cobalt ferrite/graphitic carbon nitride ternary composite for electrochemical overall water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.169 – volume: 13 start-page: 160 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib15 article-title: Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00679-3 – volume: 13 year: 2017 ident: 10.1016/j.jsamd.2023.100638_bib20 article-title: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances publication-title: Small doi: 10.1002/smll.201701931 – volume: 1 start-page: 267 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib9 article-title: Novel Pd–Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00085 – volume: 8 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib47 article-title: A stable graphitic, Nanocarbon-encapsulated, cobalt-rich Core–shell electrocatalyst as an oxygen electrode in a water electrolyzer publication-title: Adv. Energy Mater. – volume: 6 start-page: 100184 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib40 article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100184 – volume: 1 start-page: 16023 year: 2016 ident: 10.1016/j.jsamd.2023.100638_bib6 article-title: Mesoporous materials for energy conversion and storage devices publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.23 – volume: 4 start-page: 13267 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib37 article-title: Reduced graphene oxide Nanosheet-Wrapped hollow cobalt selenide Nanocubes as electrodes for Supercapacitors publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02792 – volume: 9 start-page: 9973 year: 2019 ident: 10.1016/j.jsamd.2023.100638_bib13 article-title: Recent Advances and Prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b02457 – volume: 33 start-page: 3623 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib22 article-title: Recent progress in carbon-based materials boosting electrochemical water splitting publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.11.041 – volume: 78 start-page: 105270 year: 2020 ident: 10.1016/j.jsamd.2023.100638_bib14 article-title: Iridium-based nanomaterials for electrochemical water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105270 – volume: 44 start-page: 17313 year: 2020 ident: 10.1016/j.jsamd.2023.100638_bib42 article-title: The one-pot synthesis of porous Ni0.85Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting publication-title: New J. Chem. doi: 10.1039/D0NJ04197A – volume: 54 start-page: 2100 year: 2015 ident: 10.1016/j.jsamd.2023.100638_bib27 article-title: Enhanced electron Penetration through an Ultrathin graphene layer for highly efficient Catalysis of the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409524 – volume: 163 start-page: 623 year: 2015 ident: 10.1016/j.jsamd.2023.100638_bib30 article-title: Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.08.033 – volume: 7 start-page: 14380 year: 2019 ident: 10.1016/j.jsamd.2023.100638_bib23 article-title: Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04163J – volume: 1 year: 2015 ident: 10.1016/j.jsamd.2023.100638_bib25 article-title: Carbon-based electrocatalysts for advanced energy conversion and storage publication-title: Sci. Adv. doi: 10.1126/sciadv.1500564 – volume: 10 start-page: 75 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib48 article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0229-x – volume: 9 start-page: 24261 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib35 article-title: A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07644B – volume: 422 start-page: 129982 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib38 article-title: Rationally constructing CoO and CoSe2 hybrid with CNTs-graphene for impressively enhanced oxygen evolution and DFT calculations publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129982 – volume: 4 start-page: 5417 year: 2020 ident: 10.1016/j.jsamd.2023.100638_bib19 article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE01087A – volume: 32 start-page: 2597 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib16 article-title: Transition metal-based electrocatalysts for overall water splitting publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.01.047 – volume: 269 start-page: 155 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib44 article-title: Self-assembled CNT/Ni0.85Se-SnO2 networks as highly efficient and stable electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.133 – volume: 299 start-page: 120641 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib2 article-title: Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120641 – volume: 2 start-page: 927 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib8 article-title: Hydrogen derived from water as a sustainable solar fuel: learning from biology publication-title: Sustain. Energy Fuels doi: 10.1039/C8SE00002F – volume: 1 start-page: 84 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib26 article-title: Carbon-based metal-Free electrocatalysis for energy conversion, energy storage, and environmental Protection publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0003-2 – volume: 111 start-page: 7727 year: 2007 ident: 10.1016/j.jsamd.2023.100638_bib29 article-title: Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as Supercapacitor electrodes publication-title: J. Phys. Chem. C doi: 10.1021/jp069006m – volume: 2 start-page: 1239 year: 2021 ident: 10.1016/j.jsamd.2023.100638_bib21 article-title: Carbon-based metal-Free electrocatalysts: Past, present, and Future publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00190 – volume: 494 start-page: 749 year: 2019 ident: 10.1016/j.jsamd.2023.100638_bib43 article-title: Co doped Ni0.85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.231 – volume: 6 start-page: 2289 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib32 article-title: Molybdenum sulfide clusters immobilized on defective graphene: a stable catalyst for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09828F – volume: 7 start-page: 469 year: 2017 ident: 10.1016/j.jsamd.2023.100638_bib28 article-title: Tuning electronic structures of Nonprecious ternary alloys encapsulated in graphene layers for Optimizing overall water splitting activity publication-title: ACS Catal. doi: 10.1021/acscatal.6b02573 – volume: 10 start-page: 13253 year: 2018 ident: 10.1016/j.jsamd.2023.100638_bib7 article-title: General Observation of Photocatalytic oxygen reduction to hydrogen Peroxide by organic Semiconductor thin films and Colloidal Crystals publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01295 – volume: 25 start-page: 5799 year: 2015 ident: 10.1016/j.jsamd.2023.100638_bib31 article-title: Metal (Ni, Co)-Metal oxides/graphene nanocomposites as multifunctional electrocatalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502217 – volume: 10 start-page: 6772 year: 2022 ident: 10.1016/j.jsamd.2023.100638_bib36 article-title: Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09864K – volume: 31 year: 2019 ident: 10.1016/j.jsamd.2023.100638_bib41 article-title: Recent Advances in carbon-based metal-Free electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201806403 |
SSID | ssj0002118454 |
Score | 2.3295276 |
Snippet | Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 100638 |
SubjectTerms | CNTs fiber CoSe nanoparticles Electrocatalysis Flexibility Water splitting |
Title | Surface modified carbon nanotubes fiber as flexible bifunctional electrocatalyst for overall electrochemical water splitting reactions |
URI | https://doaj.org/article/39be99019df44432a492b6628771ba95 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp3JAhYKgUORDj43YxI43PtKqCIFAQgWJW-SxxxJoyaJNVhU_wHcz42RpTuXCJbEcx7I8k8wbe_xGiO8hECpQpSYJADkoFkzmAIvMFBjLkBd054PCl1fm7Faf35V3o1RfHBPW0wP3E3esLCDv3dgQtdaqcNoWYAwB_WkOzib20omdjJwp_geTW1PpUq9ohlJA10PrHpkbtFAcGmD4RMrIFI0Y-5NpOf0sNgdMKE_6sWyJNWy2xcaIKfCLePmzXETnUT7Ow30k2Ci9W8C8kY1r5t0SsJWRYz-kowJzXMIMJdyz1eoX--SQ7yYt1zy3nSSwKjl8083-PRvIA-RfAqAL2RI-TVHRkoBl6qbdEbenv29-nWVDCoXM61x3GVpUucc48ZVLdGbsD3qsgGo9BJXH0uG0ChUaY7VyOdqJzwNhyEilWKhdsd7MG9wTclrR9w80r9YEHRSAR817OGDzSEat2hfFajZrP_CLc5qLWb0KJHuokwhqFkHdi2Bf_Hh76amn1_h_858spremzI2dKkhj6kFj6vc05utHdHIgPvG4-sCWQ7HeLZb4jeBJB0dJE-l6cV29AvO85T0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modified+carbon+nanotubes+fiber+as+flexible+bifunctional+electrocatalyst+for+overall+electrochemical+water+splitting+reactions&rft.jtitle=Journal+of+science.+Advanced+materials+and+devices&rft.au=Aldosari%2C+Haia&rft.au=Ali%2C+Abid&rft.au=Asghar%2C+Muhammad+Adeel&rft.au=Haider%2C+Ali&rft.date=2023-12-01&rft.issn=2468-2179&rft.eissn=2468-2179&rft.volume=8&rft.issue=4&rft.spage=100638&rft_id=info:doi/10.1016%2Fj.jsamd.2023.100638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsamd_2023_100638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2179&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2179&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2179&client=summon |