Surface modified carbon nanotubes fiber as flexible bifunctional electrocatalyst for overall electrochemical water splitting reactions

Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential...

Full description

Saved in:
Bibliographic Details
Published inJournal of science. Advanced materials and devices Vol. 8; no. 4; p. 100638
Main Authors Aldosari, Haia, Ali, Abid, Asghar, Muhammad Adeel, Haider, Ali, Mehmood, Yasir, Iqbal, Zafar, Nazir, Arif, Iqbal, Munawar
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text
ISSN2468-2179
2468-2179
DOI10.1016/j.jsamd.2023.100638

Cover

Abstract Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential requirement. Herein this work, we used a one-step hydrothermal method for the in-situ synthesis of CoSe nanoparticles over the surface of carbon nanotube-based fiber (CNTs fiber) and utilized it as a bifunctional electrocatalyst for the electrochemical water splitting process. Surface-modified fiber showed excellent performance towards OER with a low overpotential (η10 = 414 mV) and Tafel slope (77 mVdec−1). We also exploited the same material as cathode, which exhibited an excellent hydrogen evolution reaction (HER) at the counterpart with improved catalytic performance as compared to bare CNTs materials. During the HER process in the cathodic potential region, the electrocatalyst displayed a current density of 10 mAcm−2 at an overpotential of 496 mV. Furthermore, the electrocatalyst exhibited excellent performance during the testing for the overall water splitting. The outcomes reveal that the fabricated electrode can be potentially applied as an efficient and flexible electrode to derive the hydrogen as fuels during the overall electrochemical water splitting reaction.
AbstractList Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly constrained due to the sluggish proton-coupled four-electrode transfer process at the anode for oxygen evolution reaction (OER) with high overpotential requirement. Herein this work, we used a one-step hydrothermal method for the in-situ synthesis of CoSe nanoparticles over the surface of carbon nanotube-based fiber (CNTs fiber) and utilized it as a bifunctional electrocatalyst for the electrochemical water splitting process. Surface-modified fiber showed excellent performance towards OER with a low overpotential (η10 = 414 mV) and Tafel slope (77 mVdec−1). We also exploited the same material as cathode, which exhibited an excellent hydrogen evolution reaction (HER) at the counterpart with improved catalytic performance as compared to bare CNTs materials. During the HER process in the cathodic potential region, the electrocatalyst displayed a current density of 10 mAcm−2 at an overpotential of 496 mV. Furthermore, the electrocatalyst exhibited excellent performance during the testing for the overall water splitting. The outcomes reveal that the fabricated electrode can be potentially applied as an efficient and flexible electrode to derive the hydrogen as fuels during the overall electrochemical water splitting reaction.
ArticleNumber 100638
Author Iqbal, Munawar
Iqbal, Zafar
Mehmood, Yasir
Asghar, Muhammad Adeel
Ali, Abid
Nazir, Arif
Aldosari, Haia
Haider, Ali
Author_xml – sequence: 1
  givenname: Haia
  surname: Aldosari
  fullname: Aldosari, Haia
– sequence: 2
  givenname: Abid
  orcidid: 0000-0002-0452-4827
  surname: Ali
  fullname: Ali, Abid
– sequence: 3
  givenname: Muhammad Adeel
  orcidid: 0000-0002-9731-3382
  surname: Asghar
  fullname: Asghar, Muhammad Adeel
– sequence: 4
  givenname: Ali
  surname: Haider
  fullname: Haider, Ali
– sequence: 5
  givenname: Yasir
  surname: Mehmood
  fullname: Mehmood, Yasir
– sequence: 6
  givenname: Zafar
  surname: Iqbal
  fullname: Iqbal, Zafar
– sequence: 7
  givenname: Arif
  surname: Nazir
  fullname: Nazir, Arif
– sequence: 8
  givenname: Munawar
  surname: Iqbal
  fullname: Iqbal, Munawar
BookMark eNp9kctOIzEQRS3ESDyGL2DjH0jGr3TaS4R4SUizGFhbZXcZ3HLayHZ4_ADfjZMgZjQLVnV1XfdI5XtE9qc0ISGnnM05492vcT4WWA1zwYRsDutkv0cOher6meBLvf-PPiAnpYyMMcF5rxbqkLz_WWcPDukqDcEHHKiDbNNEJ5hSXVss1AeLmUITEV-DjUht8OvJ1ZAmiBQjupqTgwrxrVTqU6bpGTPEv2-PuAqu7b5AbajyFEOtYXqgGWGLKT_JDw-x4MnnPCb3lxd359ez299XN-dntzOnuKoz1Ci5Q89cD-0IxcRCaYe9ba6zg-R-Abjshx67TisJHDVzfGCC-aa8kMfkZscdEozmKYcV5DeTIJitkfKDgVyDi2iktqg143rwSikpQGlhu070yyW3oBeNJXcsl1MpGf0XjzOzacaMZtuM2TRjds20lP4v5UKFzSfUDCF-m_0AT82big
CitedBy_id crossref_primary_10_1515_zpch_2023_0440
crossref_primary_10_1007_s12598_024_02882_8
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1002_ente_202301504
crossref_primary_10_3390_ijms242015388
Cites_doi 10.1021/jacs.7b07044
10.1002/chem.202000209
10.1021/acsanm.1c00246
10.1016/j.electacta.2020.137642
10.1016/j.apcatb.2022.122295
10.1002/eng2.12437
10.1002/smll.201770178
10.1021/cs3003098
10.1016/j.ijhydene.2023.01.330
10.1016/j.jcis.2021.06.038
10.1002/smll.201400703
10.1016/j.ijhydene.2023.01.063
10.1039/D0TA09495A
10.1016/j.ijhydene.2022.10.169
10.1007/s40820-021-00679-3
10.1002/smll.201701931
10.1021/acsaem.7b00085
10.1016/j.apsadv.2021.100184
10.1038/natrevmats.2016.23
10.1021/acsanm.1c02792
10.1021/acscatal.9b02457
10.1016/j.cclet.2021.11.041
10.1016/j.nanoen.2020.105270
10.1039/D0NJ04197A
10.1002/anie.201409524
10.1016/j.apcatb.2014.08.033
10.1039/C9TA04163J
10.1126/sciadv.1500564
10.1007/s40820-018-0229-x
10.1039/D1TA07644B
10.1016/j.cej.2021.129982
10.1039/D0SE01087A
10.1016/j.cclet.2021.01.047
10.1016/j.electacta.2018.02.133
10.1016/j.apcatb.2021.120641
10.1039/C8SE00002F
10.1007/s41918-018-0003-2
10.1021/jp069006m
10.1021/accountsmr.1c00190
10.1016/j.apsusc.2019.07.231
10.1039/C7TA09828F
10.1021/acscatal.6b02573
10.1021/acsami.8b01295
10.1002/adfm.201502217
10.1039/D1TA09864K
10.1002/adma.201806403
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.jsamd.2023.100638
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2468-2179
ExternalDocumentID oai_doaj_org_article_39be99019df44432a492b6628771ba95
10_1016_j_jsamd_2023_100638
GroupedDBID 0R~
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
O9-
OK1
RIG
ROL
SSZ
ID FETCH-LOGICAL-c414t-e9e31cef0c8a002402549ce8b31ccbd31f5ae78d8e66943a1e90c1d020fe90f23
IEDL.DBID DOA
ISSN 2468-2179
IngestDate Wed Aug 27 01:31:52 EDT 2025
Tue Jul 01 01:19:32 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-e9e31cef0c8a002402549ce8b31ccbd31f5ae78d8e66943a1e90c1d020fe90f23
ORCID 0000-0002-0452-4827
0000-0002-9731-3382
OpenAccessLink https://doaj.org/article/39be99019df44432a492b6628771ba95
ParticipantIDs doaj_primary_oai_doaj_org_article_39be99019df44432a492b6628771ba95
crossref_primary_10_1016_j_jsamd_2023_100638
crossref_citationtrail_10_1016_j_jsamd_2023_100638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Journal of science. Advanced materials and devices
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Sivanantham (10.1016/j.jsamd.2023.100638_bib47) 2018; 8
Zhu (10.1016/j.jsamd.2023.100638_bib39) 2021; 602
Wang (10.1016/j.jsamd.2023.100638_bib33) 2017; 13
Zhou (10.1016/j.jsamd.2023.100638_bib12) 2021; 3
Yang (10.1016/j.jsamd.2023.100638_bib15) 2021; 13
Andersen (10.1016/j.jsamd.2023.100638_bib30) 2015; 163
Ouyang (10.1016/j.jsamd.2023.100638_bib32) 2018; 6
Zhang (10.1016/j.jsamd.2023.100638_bib19) 2020; 4
Li (10.1016/j.jsamd.2023.100638_bib16) 2021; 32
Yang (10.1016/j.jsamd.2023.100638_bib28) 2017; 7
Zhang (10.1016/j.jsamd.2023.100638_bib2) 2021; 299
Miao (10.1016/j.jsamd.2023.100638_bib4) 2017; 139
Herbaut (10.1016/j.jsamd.2023.100638_bib17) 2021; 4
Lu (10.1016/j.jsamd.2023.100638_bib20) 2017; 13
Ashok (10.1016/j.jsamd.2023.100638_bib34) 2021; 368
Hou (10.1016/j.jsamd.2023.100638_bib44) 2018; 269
Shi (10.1016/j.jsamd.2023.100638_bib35) 2021; 9
Li (10.1016/j.jsamd.2023.100638_bib24) 2021; 9
Battiato (10.1016/j.jsamd.2023.100638_bib11) 2023; 48
Chen (10.1016/j.jsamd.2023.100638_bib14) 2020; 78
Zhang (10.1016/j.jsamd.2023.100638_bib22) 2021; 33
Liu (10.1016/j.jsamd.2023.100638_bib31) 2015; 25
Reddy (10.1016/j.jsamd.2023.100638_bib29) 2007; 111
Zhang (10.1016/j.jsamd.2023.100638_bib45) 2022
Qiu (10.1016/j.jsamd.2023.100638_bib46) 2015; 11
Deng (10.1016/j.jsamd.2023.100638_bib27) 2015; 54
Liu (10.1016/j.jsamd.2023.100638_bib42) 2020; 44
Hu (10.1016/j.jsamd.2023.100638_bib23) 2019; 7
Zhai (10.1016/j.jsamd.2023.100638_bib21) 2021; 2
Vazhayil (10.1016/j.jsamd.2023.100638_bib40) 2021; 6
Zhang (10.1016/j.jsamd.2023.100638_bib25) 2015; 1
Wei (10.1016/j.jsamd.2023.100638_bib48) 2018; 10
Hu (10.1016/j.jsamd.2023.100638_bib26) 2018; 1
Wang (10.1016/j.jsamd.2023.100638_bib1) 2023; 325
Gryszel (10.1016/j.jsamd.2023.100638_bib7) 2018; 10
Barber (10.1016/j.jsamd.2023.100638_bib8) 2018; 2
Xu (10.1016/j.jsamd.2023.100638_bib38) 2021; 422
Reghunath (10.1016/j.jsamd.2023.100638_bib3) 2023; 48
Li (10.1016/j.jsamd.2023.100638_bib6) 2016; 1
Yu (10.1016/j.jsamd.2023.100638_bib13) 2019; 9
Singh (10.1016/j.jsamd.2023.100638_bib36) 2022; 10
Hu (10.1016/j.jsamd.2023.100638_bib37) 2021; 4
Yu (10.1016/j.jsamd.2023.100638_bib18) 2020; 26
Yu (10.1016/j.jsamd.2023.100638_bib9) 2018; 1
Zhou (10.1016/j.jsamd.2023.100638_bib10) 2023; 48
Paul (10.1016/j.jsamd.2023.100638_bib41) 2019; 31
Xu (10.1016/j.jsamd.2023.100638_bib43) 2019; 494
Reier (10.1016/j.jsamd.2023.100638_bib5) 2012; 2
References_xml – volume: 139
  start-page: 13604
  year: 2017
  ident: 10.1016/j.jsamd.2023.100638_bib4
  article-title: Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07044
– volume: 26
  start-page: 6423
  year: 2020
  ident: 10.1016/j.jsamd.2023.100638_bib18
  article-title: Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.202000209
– volume: 4
  start-page: 907
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib17
  article-title: Nanomaterials-based water splitting: How far are We from a sustainable solution?
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00246
– volume: 368
  start-page: 137642
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib34
  article-title: Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137642
– volume: 325
  start-page: 122295
  year: 2023
  ident: 10.1016/j.jsamd.2023.100638_bib1
  article-title: Intensified Kirkendall effect assisted construction of double-shell hollow Cu-doped CoP nanoparticles anchored by carbon arrays for water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.122295
– volume: 3
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib12
  article-title: Novel engineering of ruthenium-based electrocatalysts for acidic water oxidation: a mini review
  publication-title: Engineering Reports
  doi: 10.1002/eng2.12437
– volume: 13
  year: 2017
  ident: 10.1016/j.jsamd.2023.100638_bib33
  article-title: Graphene composites with cobalt sulfide: efficient trifunctional electrocatalysts for oxygen reversible Catalysis and hydrogen production in the same electrolyte
  publication-title: Small
  doi: 10.1002/smll.201770178
– volume: 2
  start-page: 1765
  year: 2012
  ident: 10.1016/j.jsamd.2023.100638_bib5
  article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a Comparative study of nanoparticles and Bulk materials
  publication-title: ACS Catal.
  doi: 10.1021/cs3003098
– start-page: 1
  year: 2022
  ident: 10.1016/j.jsamd.2023.100638_bib45
  article-title: Carbon nanotubes for flexible fiber Batteries
– volume: 48
  start-page: 18291
  year: 2023
  ident: 10.1016/j.jsamd.2023.100638_bib11
  article-title: Composition-controlled chemical bath deposition of Fe-doped NiO microflowers for boosting oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.330
– volume: 602
  start-page: 384
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib39
  article-title: Iron molybdenum selenide supported on reduced graphene oxide as an efficient hydrogen electrocatalyst in acidic and alkaline media
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.038
– volume: 11
  start-page: 1150
  year: 2015
  ident: 10.1016/j.jsamd.2023.100638_bib46
  article-title: Freestanding aligned carbon nanotube array grown on a large‐area single‐layered graphene sheet for efficient dye‐sensitized, solar cell
  publication-title: Small
  doi: 10.1002/smll.201400703
– volume: 48
  start-page: 15748
  year: 2023
  ident: 10.1016/j.jsamd.2023.100638_bib10
  article-title: Energy-saving cathodic H2 production enabled by non-oxygen evolution anodic reactions: a critical review on fundamental principles and applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.063
– volume: 9
  start-page: 3786
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib24
  article-title: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09495A
– volume: 48
  start-page: 2906
  year: 2023
  ident: 10.1016/j.jsamd.2023.100638_bib3
  article-title: N-doped graphene quantum dots incorporated cobalt ferrite/graphitic carbon nitride ternary composite for electrochemical overall water splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.10.169
– volume: 13
  start-page: 160
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib15
  article-title: Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00679-3
– volume: 13
  year: 2017
  ident: 10.1016/j.jsamd.2023.100638_bib20
  article-title: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances
  publication-title: Small
  doi: 10.1002/smll.201701931
– volume: 1
  start-page: 267
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib9
  article-title: Novel Pd–Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00085
– volume: 8
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib47
  article-title: A stable graphitic, Nanocarbon-encapsulated, cobalt-rich Core–shell electrocatalyst as an oxygen electrode in a water electrolyzer
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 100184
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib40
  article-title: A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100184
– volume: 1
  start-page: 16023
  year: 2016
  ident: 10.1016/j.jsamd.2023.100638_bib6
  article-title: Mesoporous materials for energy conversion and storage devices
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.23
– volume: 4
  start-page: 13267
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib37
  article-title: Reduced graphene oxide Nanosheet-Wrapped hollow cobalt selenide Nanocubes as electrodes for Supercapacitors
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c02792
– volume: 9
  start-page: 9973
  year: 2019
  ident: 10.1016/j.jsamd.2023.100638_bib13
  article-title: Recent Advances and Prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02457
– volume: 33
  start-page: 3623
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib22
  article-title: Recent progress in carbon-based materials boosting electrochemical water splitting
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.11.041
– volume: 78
  start-page: 105270
  year: 2020
  ident: 10.1016/j.jsamd.2023.100638_bib14
  article-title: Iridium-based nanomaterials for electrochemical water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105270
– volume: 44
  start-page: 17313
  year: 2020
  ident: 10.1016/j.jsamd.2023.100638_bib42
  article-title: The one-pot synthesis of porous Ni0.85Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ04197A
– volume: 54
  start-page: 2100
  year: 2015
  ident: 10.1016/j.jsamd.2023.100638_bib27
  article-title: Enhanced electron Penetration through an Ultrathin graphene layer for highly efficient Catalysis of the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409524
– volume: 163
  start-page: 623
  year: 2015
  ident: 10.1016/j.jsamd.2023.100638_bib30
  article-title: Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.08.033
– volume: 7
  start-page: 14380
  year: 2019
  ident: 10.1016/j.jsamd.2023.100638_bib23
  article-title: Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04163J
– volume: 1
  year: 2015
  ident: 10.1016/j.jsamd.2023.100638_bib25
  article-title: Carbon-based electrocatalysts for advanced energy conversion and storage
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500564
– volume: 10
  start-page: 75
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib48
  article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0229-x
– volume: 9
  start-page: 24261
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib35
  article-title: A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07644B
– volume: 422
  start-page: 129982
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib38
  article-title: Rationally constructing CoO and CoSe2 hybrid with CNTs-graphene for impressively enhanced oxygen evolution and DFT calculations
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129982
– volume: 4
  start-page: 5417
  year: 2020
  ident: 10.1016/j.jsamd.2023.100638_bib19
  article-title: First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE01087A
– volume: 32
  start-page: 2597
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib16
  article-title: Transition metal-based electrocatalysts for overall water splitting
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.01.047
– volume: 269
  start-page: 155
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib44
  article-title: Self-assembled CNT/Ni0.85Se-SnO2 networks as highly efficient and stable electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.133
– volume: 299
  start-page: 120641
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib2
  article-title: Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120641
– volume: 2
  start-page: 927
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib8
  article-title: Hydrogen derived from water as a sustainable solar fuel: learning from biology
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00002F
– volume: 1
  start-page: 84
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib26
  article-title: Carbon-based metal-Free electrocatalysis for energy conversion, energy storage, and environmental Protection
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0003-2
– volume: 111
  start-page: 7727
  year: 2007
  ident: 10.1016/j.jsamd.2023.100638_bib29
  article-title: Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as Supercapacitor electrodes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp069006m
– volume: 2
  start-page: 1239
  year: 2021
  ident: 10.1016/j.jsamd.2023.100638_bib21
  article-title: Carbon-based metal-Free electrocatalysts: Past, present, and Future
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00190
– volume: 494
  start-page: 749
  year: 2019
  ident: 10.1016/j.jsamd.2023.100638_bib43
  article-title: Co doped Ni0.85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.231
– volume: 6
  start-page: 2289
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib32
  article-title: Molybdenum sulfide clusters immobilized on defective graphene: a stable catalyst for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09828F
– volume: 7
  start-page: 469
  year: 2017
  ident: 10.1016/j.jsamd.2023.100638_bib28
  article-title: Tuning electronic structures of Nonprecious ternary alloys encapsulated in graphene layers for Optimizing overall water splitting activity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02573
– volume: 10
  start-page: 13253
  year: 2018
  ident: 10.1016/j.jsamd.2023.100638_bib7
  article-title: General Observation of Photocatalytic oxygen reduction to hydrogen Peroxide by organic Semiconductor thin films and Colloidal Crystals
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01295
– volume: 25
  start-page: 5799
  year: 2015
  ident: 10.1016/j.jsamd.2023.100638_bib31
  article-title: Metal (Ni, Co)-Metal oxides/graphene nanocomposites as multifunctional electrocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502217
– volume: 10
  start-page: 6772
  year: 2022
  ident: 10.1016/j.jsamd.2023.100638_bib36
  article-title: Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09864K
– volume: 31
  year: 2019
  ident: 10.1016/j.jsamd.2023.100638_bib41
  article-title: Recent Advances in carbon-based metal-Free electrocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806403
SSID ssj0002118454
Score 2.3295276
Snippet Electrocatalytic water splitting is regarded as a promising approach to produce hydrogen, which is a clean and renewable fuel. The process is mainly...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100638
SubjectTerms CNTs fiber
CoSe nanoparticles
Electrocatalysis
Flexibility
Water splitting
Title Surface modified carbon nanotubes fiber as flexible bifunctional electrocatalyst for overall electrochemical water splitting reactions
URI https://doaj.org/article/39be99019df44432a492b6628771ba95
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp3JAhYKgUORDj43YxI43PtKqCIFAQgWJW-SxxxJoyaJNVhU_wHcz42RpTuXCJbEcx7I8k8wbe_xGiO8hECpQpSYJADkoFkzmAIvMFBjLkBd054PCl1fm7Faf35V3o1RfHBPW0wP3E3esLCDv3dgQtdaqcNoWYAwB_WkOzib20omdjJwp_geTW1PpUq9ohlJA10PrHpkbtFAcGmD4RMrIFI0Y-5NpOf0sNgdMKE_6sWyJNWy2xcaIKfCLePmzXETnUT7Ow30k2Ci9W8C8kY1r5t0SsJWRYz-kowJzXMIMJdyz1eoX--SQ7yYt1zy3nSSwKjl8083-PRvIA-RfAqAL2RI-TVHRkoBl6qbdEbenv29-nWVDCoXM61x3GVpUucc48ZVLdGbsD3qsgGo9BJXH0uG0ChUaY7VyOdqJzwNhyEilWKhdsd7MG9wTclrR9w80r9YEHRSAR817OGDzSEat2hfFajZrP_CLc5qLWb0KJHuokwhqFkHdi2Bf_Hh76amn1_h_858spremzI2dKkhj6kFj6vc05utHdHIgPvG4-sCWQ7HeLZb4jeBJB0dJE-l6cV29AvO85T0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+modified+carbon+nanotubes+fiber+as+flexible+bifunctional+electrocatalyst+for+overall+electrochemical+water+splitting+reactions&rft.jtitle=Journal+of+science.+Advanced+materials+and+devices&rft.au=Aldosari%2C+Haia&rft.au=Ali%2C+Abid&rft.au=Asghar%2C+Muhammad+Adeel&rft.au=Haider%2C+Ali&rft.date=2023-12-01&rft.issn=2468-2179&rft.eissn=2468-2179&rft.volume=8&rft.issue=4&rft.spage=100638&rft_id=info:doi/10.1016%2Fj.jsamd.2023.100638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsamd_2023_100638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2179&client=summon