Addition of MWCNT-Al2O3 nanopowders to water- ethylene glycol (EG) base fluid for enhancing the thermal characteristics: Design an optimum feed-forward neural network

Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water-...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 27; p. 101293
Main Authors Fuxi, Shi, Hamedi, Sajad, Hajian, Mehdi, Toghraie, Davood, Alizadeh, As'ad, Hekmatifar, Mabood, Sina, Nima
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2021.101293

Cover

Abstract Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water- EG/MWCNT-Al2O3 hybrid nanofluid (knf) a feed-forward neural network with different neuron numbers has been tested and the best network based on the performance is selected. The Levenberg Marquardt algorithm is used for training the network, which is one of the best algorithms in machine learning. Also, using a fitting method, a surface is used to illustrate the behavior of nanofluids based on the volume fraction of nanoparticles (ϕ) and temperature (T). ϕ=0, 0.001, 0.002, 0.004, 0.008, 0.0016 and T = 25, 30, 35, 40, 45, 50 °C are used.. The obtained results show that the ANN and Fitting results are close to the experimental datapoints, and both methods can predict knf accurately. As the results of these methods are very close, but the ANN method is better in predicting the behavior of this nanofluid.
AbstractList Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water- EG/MWCNT-Al2O3 hybrid nanofluid (knf) a feed-forward neural network with different neuron numbers has been tested and the best network based on the performance is selected. The Levenberg Marquardt algorithm is used for training the network, which is one of the best algorithms in machine learning. Also, using a fitting method, a surface is used to illustrate the behavior of nanofluids based on the volume fraction of nanoparticles (ϕ) and temperature (T). ϕ=0, 0.001, 0.002, 0.004, 0.008, 0.0016 and T = 25, 30, 35, 40, 45, 50 °C are used.. The obtained results show that the ANN and Fitting results are close to the experimental datapoints, and both methods can predict knf accurately. As the results of these methods are very close, but the ANN method is better in predicting the behavior of this nanofluid.
ArticleNumber 101293
Author Sina, Nima
Hamedi, Sajad
Fuxi, Shi
Alizadeh, As'ad
Hajian, Mehdi
Toghraie, Davood
Hekmatifar, Mabood
Author_xml – sequence: 1
  givenname: Shi
  surname: Fuxi
  fullname: Fuxi, Shi
  organization: College of Mechanical and Electronic Engineering Northwest A&F University, PR China
– sequence: 2
  givenname: Sajad
  surname: Hamedi
  fullname: Hamedi, Sajad
  organization: Department of Mechanical Engineering, Daneshpajoohan higher education institute, Iran
– sequence: 3
  givenname: Mehdi
  surname: Hajian
  fullname: Hajian, Mehdi
  organization: Faculty of Mechanics, Malek Ashtar University of Technology, Iran
– sequence: 4
  givenname: Davood
  surname: Toghraie
  fullname: Toghraie, Davood
  email: Toghraee@iaukhsh.ac.ir
  organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
– sequence: 5
  givenname: As'ad
  surname: Alizadeh
  fullname: Alizadeh, As'ad
  organization: Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq
– sequence: 6
  givenname: Mabood
  surname: Hekmatifar
  fullname: Hekmatifar, Mabood
  organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
– sequence: 7
  givenname: Nima
  surname: Sina
  fullname: Sina, Nima
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
BookMark eNqNkcFu1DAQhiNUJErpE3DxEQ5ZbMdJ1kgcVksplQq9FMHNmtiTXS9ee2V7ifaFeE6SBiHEAThYtkb6Ps_M_7Q488FjUTxndMEoa17tFjrZjAtOOZsqXFaPinPOmShZ3X45--39pLhMaUcpZW21ZEKcF99XxthsgyehJx8-rz_elyvH7yriwYdDGAzGRHIgA2SMJcG8PTn0SDbupIMjL66uX5IOEpLeHa0hfYgE_Ra8tn5D8hanE_fgiN5CBD1KbMpWp9fkLSa78QTGnw_Z7o970iOacjQMEA3xeIwj5jEPIX59VjzuwSW8_HlfFJ_eXd2v35e3d9c369VtqQUTuTQtB-gYNajrZWO0gUZoLSST2Elaaw2SNholbSvNqEBh2hZoI2hdLynv6uqiuJm9JsBOHaLdQzypAFY9FELcKIhj_w5V1XSG9QywMUwskcmaCb6kVQWV5LKXo0vMrqM_wGkA534JGVVTdGqnHqJTU3Rqjm7EqhnTMaQUsf9PSv5BaZthCjZHsO4f7JuZxXGz3yxGlbRFr9HYiDqPo9u_8j8AkMnKCQ
CitedBy_id crossref_primary_10_1007_s11814_024_00062_z
crossref_primary_10_1016_j_triboint_2023_108534
crossref_primary_10_1016_j_colsurfa_2022_129811
crossref_primary_10_1016_j_triboint_2023_109135
crossref_primary_10_1021_acs_iecr_2c02059
crossref_primary_10_1007_s10973_024_13984_x
crossref_primary_10_1016_j_triboint_2022_108161
crossref_primary_10_1016_j_colsurfa_2022_128808
crossref_primary_10_1016_j_mtcomm_2023_106798
crossref_primary_10_1002_zamm_202200186
crossref_primary_10_1007_s11814_022_1156_6
crossref_primary_10_1007_s10973_024_13249_7
crossref_primary_10_1016_j_colsurfa_2022_129591
crossref_primary_10_1016_j_fuel_2025_134294
crossref_primary_10_1016_j_heliyon_2023_e19228
crossref_primary_10_3390_math9212681
Cites_doi 10.1090/qam/10666
10.1007/s10765-020-02749-x
10.1080/10407782.2013.846196
10.1016/j.icheatmasstransfer.2014.07.018
10.1016/j.icheatmasstransfer.2016.05.029
10.1016/j.colsurfa.2020.125968
10.1007/s10973-020-09458-5
10.1016/j.egyr.2021.03.020
10.1016/j.solmat.2019.110323
10.1016/j.powtec.2020.09.011
10.1016/j.powtec.2017.10.025
10.1016/j.physa.2019.122142
10.14429/dsj.58.1682
10.1016/j.icheatmasstransfer.2013.05.009
10.1016/j.energy.2020.118760
10.1137/0111030
10.1016/j.physleta.2011.01.040
10.1007/s10973-016-5436-4
10.1016/j.powtec.2019.07.086
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.csite.2021.101293
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9
10.1016/j.csite.2021.101293
10_1016_j_csite_2021_101293
S2214157X21004561
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c414t-d72aab10dec586dcda64cc4919eb905cca906ce9073c104e4d77a064055802b53
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 00:52:03 EDT 2025
Tue Aug 19 16:51:09 EDT 2025
Tue Jul 01 02:28:29 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Tue Jul 25 20:58:12 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Levenberg marquardt algorithm
Thermal conductivity
ANNs
Nanofluids
Surface fitting method
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-d72aab10dec586dcda64cc4919eb905cca906ce9073c104e4d77a064055802b53
OpenAccessLink https://doaj.org/article/36bd1f1ae6d148e1951428033a3929f9
ParticipantIDs doaj_primary_oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9
unpaywall_primary_10_1016_j_csite_2021_101293
crossref_primary_10_1016_j_csite_2021_101293
crossref_citationtrail_10_1016_j_csite_2021_101293
elsevier_sciencedirect_doi_10_1016_j_csite_2021_101293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pare, Ghosh (bib16) 2021; 377
Li, Wang (bib6) March 2021; 612
Yu, Xie, Wang, Wang (bib15) 2011; 375
Akhgar, Toghraie, Sina, Afrand (bib7) 2019; 355
Harandi, Karimipour, Afrand, Akbari, D'Orazio (bib11) 2016; 76
Cao, Doustgani, Salehi, Nemati, Ghasemi, Koohshekan (bib1) 2020; 213
Toghraie, Chaharsoghi, Afrand (bib12) 2016; 125
Esfahani, Toghraie, Afrand (bib13) 2018; 323
Li, Zeng (bib9) March 2020; 206
Reddy, Rao (bib10) 2013; 46
Rostami, Toghraie, Shabani, Sina, Barnoon (bib8) 2021; 143
Toghraie, Aghahadi, Sina, Soltani (bib3) 2020; 41
Levenberg (bib20) 1944; 2
Toghraie, Sina, Jolfaei, Hajian, Afrand (bib2) 2019; 534
Hajjar, morad Rashidi, Ghozatloo (bib19) 2014; 57
Cao, Doustgani, Salehi, Nemati, Ghasemi, Koohshekan (bib5) 2016; 213
Alkanhal (bib17) 2021
TaherKarim, Ahmed Tofiq, Shariati, Nikafshan Rad, Ghasemi (bib4) 2021; 7
Shahrul, Mahbubul, Saidur, Khaleduzzaman, Sabri, Rahman (bib18) 2014; 65
Marquardt (bib21) 1963; 11
Singh (bib14) 2008; 58
Esfahani (10.1016/j.csite.2021.101293_bib13) 2018; 323
Alkanhal (10.1016/j.csite.2021.101293_bib17) 2021
Cao (10.1016/j.csite.2021.101293_bib1) 2020; 213
Harandi (10.1016/j.csite.2021.101293_bib11) 2016; 76
Marquardt (10.1016/j.csite.2021.101293_bib21) 1963; 11
Akhgar (10.1016/j.csite.2021.101293_bib7) 2019; 355
Toghraie (10.1016/j.csite.2021.101293_bib3) 2020; 41
Li (10.1016/j.csite.2021.101293_bib9) 2020; 206
Toghraie (10.1016/j.csite.2021.101293_bib2) 2019; 534
Rostami (10.1016/j.csite.2021.101293_bib8) 2021; 143
Shahrul (10.1016/j.csite.2021.101293_bib18) 2014; 65
Li (10.1016/j.csite.2021.101293_bib6) 2021; 612
Reddy (10.1016/j.csite.2021.101293_bib10) 2013; 46
Singh (10.1016/j.csite.2021.101293_bib14) 2008; 58
Yu (10.1016/j.csite.2021.101293_bib15) 2011; 375
Toghraie (10.1016/j.csite.2021.101293_bib12) 2016; 125
Pare (10.1016/j.csite.2021.101293_bib16) 2021; 377
TaherKarim (10.1016/j.csite.2021.101293_bib4) 2021; 7
Hajjar (10.1016/j.csite.2021.101293_bib19) 2014; 57
Levenberg (10.1016/j.csite.2021.101293_bib20) 1944; 2
Cao (10.1016/j.csite.2021.101293_bib5) 2016; 213
References_xml – volume: 7
  start-page: 1780
  year: 2021
  end-page: 1797
  ident: bib4
  article-title: 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications
  publication-title: Energy reports
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib21
  article-title: “An algorithm for least-squares estimation of non-linear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 143
  start-page: 1097
  year: 2021
  end-page: 1105
  ident: bib8
  article-title: “Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
  publication-title: J. Therm. Anal. Calorim.
– volume: 76
  start-page: 171
  year: 2016
  end-page: 177
  ident: bib11
  article-title: “An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 375
  start-page: 1323
  year: 2011
  end-page: 1328
  ident: bib15
  article-title: “Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
  publication-title: Phys. Lett.
– volume: 534
  start-page: 122142
  year: 2019
  ident: bib2
  article-title: “Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles
  publication-title: Phys. Stat. Mech. Appl.
– volume: 41
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib3
  article-title: “Application of artificial neural networks (ANNs) for predicting the viscosity of tungsten oxide (WO 3)-MWCNTs/engine oil hybrid nanofluid
  publication-title: I
– volume: 206
  start-page: 110323
  year: March 2020
  ident: bib9
  article-title: Xinyu Lei, the stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application,
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 377
  start-page: 429
  year: 2021
  end-page: 438
  ident: bib16
  article-title: “A unique thermal conductivity model (ANN) for nanofluid based on experimental study
  publication-title: Powder Technol.
– volume: 213
  year: 2016
  ident: bib5
  article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran
  publication-title: Energy
– volume: 57
  start-page: 128
  year: 2014
  end-page: 131
  ident: bib19
  article-title: Enhanced thermal conductivities of graphene oxide nanofluids
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib20
  article-title: “A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 323
  start-page: 367
  year: 2018
  end-page: 373
  ident: bib13
  article-title: “A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study
  publication-title: Powder Technol.
– volume: 355
  start-page: 602
  year: 2019
  end-page: 610
  ident: bib7
  article-title: “Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid
  publication-title: Powder Technol.
– volume: 125
  start-page: 527
  year: 2016
  end-page: 535
  ident: bib12
  article-title: “Measurement of thermal conductivity of ZnO–TiO 2/EG hybrid nanofluid
  publication-title: J. Therm. Anal. Calorim.
– volume: 46
  start-page: 31
  year: 2013
  end-page: 36
  ident: bib10
  article-title: “Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids
  publication-title: Int. Commun. Heat Mass Tran.
– start-page: 1
  year: 2021
  end-page: 10
  ident: bib17
  article-title: “Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling,”
  publication-title: J. Therm. Anal. Calorim.
– volume: 58
  start-page: 600
  year: 2008
  ident: bib14
  article-title: “Thermal conductivity of nanofluids
  publication-title: Defence Sci. J.
– volume: 612
  start-page: 125968
  year: March 2021
  ident: bib6
  article-title: Boqiu Luo, the thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system, Colloids and Surfaces A:
  publication-title: Physicochemical and Engineering Aspects
– volume: 65
  start-page: 699
  year: 2014
  end-page: 713
  ident: bib18
  article-title: “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates
  publication-title: Numer. Heat Tran., Part A: Applications
– volume: 213
  year: 2020
  ident: bib1
  article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran
  publication-title: Energy
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  ident: 10.1016/j.csite.2021.101293_bib20
  article-title: “A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 41
  start-page: 1
  issue: 12
  year: 2020
  ident: 10.1016/j.csite.2021.101293_bib3
  article-title: “Application of artificial neural networks (ANNs) for predicting the viscosity of tungsten oxide (WO 3)-MWCNTs/engine oil hybrid nanofluid
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-020-02749-x
– volume: 65
  start-page: 699
  issue: 7
  year: 2014
  ident: 10.1016/j.csite.2021.101293_bib18
  article-title: “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates
  publication-title: Numer. Heat Tran., Part A: Applications
  doi: 10.1080/10407782.2013.846196
– start-page: 1
  year: 2021
  ident: 10.1016/j.csite.2021.101293_bib17
  article-title: “Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling,”
  publication-title: J. Therm. Anal. Calorim.
– volume: 57
  start-page: 128
  year: 2014
  ident: 10.1016/j.csite.2021.101293_bib19
  article-title: Enhanced thermal conductivities of graphene oxide nanofluids
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2014.07.018
– volume: 76
  start-page: 171
  year: 2016
  ident: 10.1016/j.csite.2021.101293_bib11
  article-title: “An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2016.05.029
– volume: 612
  start-page: 125968
  issue: 5
  year: 2021
  ident: 10.1016/j.csite.2021.101293_bib6
  article-title: Boqiu Luo, the thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system, Colloids and Surfaces A:
  publication-title: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2020.125968
– volume: 143
  start-page: 1097
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2021.101293_bib8
  article-title: “Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09458-5
– volume: 7
  start-page: 1780
  year: 2021
  ident: 10.1016/j.csite.2021.101293_bib4
  article-title: 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications
  publication-title: Energy reports
  doi: 10.1016/j.egyr.2021.03.020
– volume: 206
  start-page: 110323
  year: 2020
  ident: 10.1016/j.csite.2021.101293_bib9
  article-title: Xinyu Lei, the stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application,
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2019.110323
– volume: 377
  start-page: 429
  year: 2021
  ident: 10.1016/j.csite.2021.101293_bib16
  article-title: “A unique thermal conductivity model (ANN) for nanofluid based on experimental study
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.09.011
– volume: 323
  start-page: 367
  year: 2018
  ident: 10.1016/j.csite.2021.101293_bib13
  article-title: “A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.10.025
– volume: 534
  start-page: 122142
  year: 2019
  ident: 10.1016/j.csite.2021.101293_bib2
  article-title: “Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.122142
– volume: 58
  start-page: 600
  issue: 5
  year: 2008
  ident: 10.1016/j.csite.2021.101293_bib14
  article-title: “Thermal conductivity of nanofluids
  publication-title: Defence Sci. J.
  doi: 10.14429/dsj.58.1682
– volume: 46
  start-page: 31
  year: 2013
  ident: 10.1016/j.csite.2021.101293_bib10
  article-title: “Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2013.05.009
– volume: 213
  year: 2020
  ident: 10.1016/j.csite.2021.101293_bib1
  article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118760
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.csite.2021.101293_bib21
  article-title: “An algorithm for least-squares estimation of non-linear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 375
  start-page: 1323
  issue: 10
  year: 2011
  ident: 10.1016/j.csite.2021.101293_bib15
  article-title: “Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2011.01.040
– volume: 125
  start-page: 527
  issue: 1
  year: 2016
  ident: 10.1016/j.csite.2021.101293_bib12
  article-title: “Measurement of thermal conductivity of ZnO–TiO 2/EG hybrid nanofluid
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5436-4
– volume: 355
  start-page: 602
  year: 2019
  ident: 10.1016/j.csite.2021.101293_bib7
  article-title: “Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.07.086
– volume: 213
  year: 2016
  ident: 10.1016/j.csite.2021.101293_bib5
  article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran
  publication-title: Energy
SSID ssj0001738144
Score 2.278573
Snippet Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101293
SubjectTerms ANNs
Levenberg marquardt algorithm
Nanofluids
Surface fitting method
Thermal conductivity
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VvQAHxFOEl_bAASRW8T68rrmloaVCajnQitys9T5CkLuOokRR_xC_k5m1HZpLhTjkkNWu18pM5puxv_2GkHe1LepMl4FZIzOmyhBYjd3c86Bt0IpzWeAB5_MLfXalvs7y2QGZDmdhkFbZx_4upqdo3Y-M-19zvFwsxt-F4IA-xUzwlJdgCSRVkQ7xzY7_PmcpAJNST1ecz3DBID6UaF42vaQVAHU4Ikq5B1BJx38Pp-5t4tLcbE3T3MKh00fkYZ9A0kl3j4_JgY9PyINbsoJPye-Jc4mJRdtAz39MLy7ZpBHfJI0mtst2i9xlum7pFvLMFaMebAXY4-m8uQG3oO9PvnygiG40NJuFo5DWUh9_ojBHnFNIGPED8byhdl_t-RP9nPgg1MDOEIquN9c0ADoyuAKScymKZ8Ky2FHPn5Gr05PL6Rnr-zEwq7haM1cIY2qeOW_zI-2sM1pZq0pe-rrMcvCFMtPWQ7ktLVR5XrmiMPimMM-PMlHn8jk5jG30LwgtTMh8CEZAHayMC0aWkgturUOdXK9HRAxGqGwvVo49M5pqYKX9qpLlKrRc1VluRD7uFi07rY67px-jdXdTUWg7DbSredV7WiV17XjgxmsHhaPn4McKG3pJg4llKEdED75R7fktXGpx9-5s50n_crcv_3ejV-Q-fusIiK_J4Xq18W8gkVrXb9M_5Q_D8hui
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcyltsBWgOHEDCVRw7TsNtKS0VUhcOXbGcIsePUkiTVUm0Kj-I38lMkl11EarKIRfLj0gz9nwjf_6GsZeFTYtIZ4FbIyOushB4QdXck6Bt0EoImdID5-OpPpqpj_NkPuhs01uYjfv7jodlu1tUzNEFtWB0us22NN0mjdjWbPp58pXKx8VCcZGk85Wu0L9HbsSeTqJ_IwTdaauFuVyasrwSYg7v9W-3f3bKhMQs-bHbNsWu_fWXbuMN__4-2x6gJkx633jAbvnqIbt7RYDwEfs9ca7jbEEd4PjL_vSET8r4k4TKVPWiXhLLGZoalohILzh4tCpGKQ-n5SU6ELw6-PAaKA5CKNszBwiAwVffSMKjOgWElvThyV-C3dSFfgvvO-YIGFwZD63z9hwCxlGOMxCNF0hmE4dVPUn9MZsdHpzsH_GhcgO3SqiGuzQ2phCR8zbZ0846o5W1KhOZL7IoQa_JIm09JubSYj7olUtTQ3eKSbIXxUUin7BRVVf-KYPUhMiHYGLMmJVxwchMilhY60hR1-sxi1c2ze0ga07VNcp8xV_7nndGyMkIeW-EMXuzHrToVT2u7_6OnGXdlSS5uwa0dT7s8FzqwokgjNcOU0wv0OMVlf6ShiBoyMZMr1wtH9BNj1pwqrPrV-drx7zJ3-78Z_9nbNRctP45gqumeDFsqj_htCK4
  priority: 102
  providerName: Unpaywall
Title Addition of MWCNT-Al2O3 nanopowders to water- ethylene glycol (EG) base fluid for enhancing the thermal characteristics: Design an optimum feed-forward neural network
URI https://dx.doi.org/10.1016/j.csite.2021.101293
https://doi.org/10.1016/j.csite.2021.101293
https://doaj.org/article/36bd1f1ae6d148e1951428033a3929f9
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: KQ8
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: IXB
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: AKRWK
  dateStart: 20131001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hcgAOiKcIpdUcOIDECq93va57S0sfIDVwaEQ4Wet9lCLXjqpEUf8Qv7MzaydKLoVDD_bB8o5XnrG_Gfvbbxh7X9m8SnQRuDUy4aoIgVfUzT0L2gathJA5LXA-G-nTsfo2ySZrrb6IE9bJA3c37rPUlRNBGK8dZu5eoCFFHZWkIWQPcekewthaMRW_ruSIRLGTa5oKxUWWT5aSQ5HcZeOvWSz8BR1JC7kBS1G9fwOdHs2bqblZmLpeQ5_jZ-xpnzbCsJvuc_bANy_YkzUxwZfs79C5yL-CNsDZz8PROR_W6XcJjWnaabsgxjLMWlhgdnnNwaOHEHE8XNQ3GAzw4ejkIxCmQajnlw4wmQXf_CY5juYCME2kDd_iNdhNjed9-BJZIGDwyvgCuppfQUBM5GiBKLlAkpk4rOkI56_Y-Pjo_PCU910YuFVCzbjLU2MqkThvsz3trDNaWasKUfiqSDKMgCLR1mORLS3Wdl65PDf0fzDL9pK0yuRrttW0jX_DIDch8SGYFKtfZVxAF0qRCmsdqeN6PWDp0gml7SXKqVNGXS65aH_K6LmSPFd2nhuwT6tB006h4-7TD8i7q1NJXjsewKAr-6Ar_xV0A6aXsVH2mUqXgaCpy7uvzleR9D-zfXsfs91mj8lkR0F8x7Zm13O_g6nUrNqNTw3uv04OdtnD8ejH8Nct_6oclQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy2HhgHiK8vSBA0hYje3E2XDrll26sC0HuqK3yPGjFGWTqmpV7R_idzLjJGV7WSEOVSUnjq3OdL6Z5Ms3hLwtTFpEKvPMaBmxOPOeFdjNPfHKeBVzLlN8wXk8UaPL-MssmR2QYfcuDNIq29jfxPQQrduRfvtr9peLRf-7EBzQJ50JHvISKIHuwFeEvK7z2cnfGy0pgFJo6ooTGM7o1IcCz8uEp7QCsA5HRCb3ECoI-e8B1dGmWurrrS7LG0B09oDcbzNIOmg2-ZAcuOoRuXdDV_Ax-T2wNlCxaO3p-MdwMmWDUnyTtNJVvay3SF6m65puIdFcMerAWAA-js7La_AL-u7083uK8EZ9uVlYCnktddVPVOao5hQyRvxAQC-p2Zd7_kg_BUII1bAyxKKrzRX1AI8MroDsXIrqmTCtarjnT8jl2el0OGJtQwZmYh6vmU2F1gWPrDPJsbLGahUbE2c8c0UWJeAMWaSMg3pbGijzXGzTVOOjwiQ5jkSRyKfksKor94zQVPvIea8FFMKxtl7LTHLBjbEolOtUj4jOCLlp1cqxaUaZd7S0X3mwXI6WyxvL9ciH3aRlI9Zx--knaN3dqai0HQbq1TxvXS2XqrDcc-2UhcrRcXDkGDt6SY2Zpc96RHW-ke85LlxqcfvqbOdJ_7Lb5_-70BtyNJqOL_KL88nXF-QuHmnYiC_J4Xq1ca8gq1oXr8O_5g8HDx7D
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcyltsBWgOHEDCVRw7TsNtKS0VUhcOXbGcIsePUkiTVUm0Kj-I38lMkl11EarKIRfLj0gz9nwjf_6GsZeFTYtIZ4FbIyOushB4QdXck6Bt0EoImdID5-OpPpqpj_NkPuhs01uYjfv7jodlu1tUzNEFtWB0us22NN0mjdjWbPp58pXKx8VCcZGk85Wu0L9HbsSeTqJ_IwTdaauFuVyasrwSYg7v9W-3f3bKhMQs-bHbNsWu_fWXbuMN__4-2x6gJkx633jAbvnqIbt7RYDwEfs9ca7jbEEd4PjL_vSET8r4k4TKVPWiXhLLGZoalohILzh4tCpGKQ-n5SU6ELw6-PAaKA5CKNszBwiAwVffSMKjOgWElvThyV-C3dSFfgvvO-YIGFwZD63z9hwCxlGOMxCNF0hmE4dVPUn9MZsdHpzsH_GhcgO3SqiGuzQ2phCR8zbZ0846o5W1KhOZL7IoQa_JIm09JubSYj7olUtTQ3eKSbIXxUUin7BRVVf-KYPUhMiHYGLMmJVxwchMilhY60hR1-sxi1c2ze0ga07VNcp8xV_7nndGyMkIeW-EMXuzHrToVT2u7_6OnGXdlSS5uwa0dT7s8FzqwokgjNcOU0wv0OMVlf6ShiBoyMZMr1wtH9BNj1pwqrPrV-drx7zJ3-78Z_9nbNRctP45gqumeDFsqj_htCK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addition+of+MWCNT-Al2O3+nanopowders+to+water-+ethylene+glycol+%28EG%29+base+fluid+for+enhancing+the+thermal+characteristics%3A+Design+an+optimum+feed-forward+neural+network&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Shi+Fuxi&rft.au=Sajad+Hamedi&rft.au=Mehdi+Hajian&rft.au=Davood+Toghraie&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=27&rft.spage=101293&rft_id=info:doi/10.1016%2Fj.csite.2021.101293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon