Addition of MWCNT-Al2O3 nanopowders to water- ethylene glycol (EG) base fluid for enhancing the thermal characteristics: Design an optimum feed-forward neural network
Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water-...
Saved in:
Published in | Case studies in thermal engineering Vol. 27; p. 101293 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2021.101293 |
Cover
Abstract | Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water- EG/MWCNT-Al2O3 hybrid nanofluid (knf) a feed-forward neural network with different neuron numbers has been tested and the best network based on the performance is selected. The Levenberg Marquardt algorithm is used for training the network, which is one of the best algorithms in machine learning. Also, using a fitting method, a surface is used to illustrate the behavior of nanofluids based on the volume fraction of nanoparticles (ϕ) and temperature (T). ϕ=0, 0.001, 0.002, 0.004, 0.008, 0.0016 and T = 25, 30, 35, 40, 45, 50 °C are used.. The obtained results show that the ANN and Fitting results are close to the experimental datapoints, and both methods can predict knf accurately. As the results of these methods are very close, but the ANN method is better in predicting the behavior of this nanofluid. |
---|---|
AbstractList | Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water- EG/MWCNT-Al2O3 hybrid nanofluid (knf) a feed-forward neural network with different neuron numbers has been tested and the best network based on the performance is selected. The Levenberg Marquardt algorithm is used for training the network, which is one of the best algorithms in machine learning. Also, using a fitting method, a surface is used to illustrate the behavior of nanofluids based on the volume fraction of nanoparticles (ϕ) and temperature (T). ϕ=0, 0.001, 0.002, 0.004, 0.008, 0.0016 and T = 25, 30, 35, 40, 45, 50 °C are used.. The obtained results show that the ANN and Fitting results are close to the experimental datapoints, and both methods can predict knf accurately. As the results of these methods are very close, but the ANN method is better in predicting the behavior of this nanofluid. |
ArticleNumber | 101293 |
Author | Sina, Nima Hamedi, Sajad Fuxi, Shi Alizadeh, As'ad Hajian, Mehdi Toghraie, Davood Hekmatifar, Mabood |
Author_xml | – sequence: 1 givenname: Shi surname: Fuxi fullname: Fuxi, Shi organization: College of Mechanical and Electronic Engineering Northwest A&F University, PR China – sequence: 2 givenname: Sajad surname: Hamedi fullname: Hamedi, Sajad organization: Department of Mechanical Engineering, Daneshpajoohan higher education institute, Iran – sequence: 3 givenname: Mehdi surname: Hajian fullname: Hajian, Mehdi organization: Faculty of Mechanics, Malek Ashtar University of Technology, Iran – sequence: 4 givenname: Davood surname: Toghraie fullname: Toghraie, Davood email: Toghraee@iaukhsh.ac.ir organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran – sequence: 5 givenname: As'ad surname: Alizadeh fullname: Alizadeh, As'ad organization: Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq – sequence: 6 givenname: Mabood surname: Hekmatifar fullname: Hekmatifar, Mabood organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran – sequence: 7 givenname: Nima surname: Sina fullname: Sina, Nima organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran |
BookMark | eNqNkcFu1DAQhiNUJErpE3DxEQ5ZbMdJ1kgcVksplQq9FMHNmtiTXS9ee2V7ifaFeE6SBiHEAThYtkb6Ps_M_7Q488FjUTxndMEoa17tFjrZjAtOOZsqXFaPinPOmShZ3X45--39pLhMaUcpZW21ZEKcF99XxthsgyehJx8-rz_elyvH7yriwYdDGAzGRHIgA2SMJcG8PTn0SDbupIMjL66uX5IOEpLeHa0hfYgE_Ra8tn5D8hanE_fgiN5CBD1KbMpWp9fkLSa78QTGnw_Z7o970iOacjQMEA3xeIwj5jEPIX59VjzuwSW8_HlfFJ_eXd2v35e3d9c369VtqQUTuTQtB-gYNajrZWO0gUZoLSST2Elaaw2SNholbSvNqEBh2hZoI2hdLynv6uqiuJm9JsBOHaLdQzypAFY9FELcKIhj_w5V1XSG9QywMUwskcmaCb6kVQWV5LKXo0vMrqM_wGkA534JGVVTdGqnHqJTU3Rqjm7EqhnTMaQUsf9PSv5BaZthCjZHsO4f7JuZxXGz3yxGlbRFr9HYiDqPo9u_8j8AkMnKCQ |
CitedBy_id | crossref_primary_10_1007_s11814_024_00062_z crossref_primary_10_1016_j_triboint_2023_108534 crossref_primary_10_1016_j_colsurfa_2022_129811 crossref_primary_10_1016_j_triboint_2023_109135 crossref_primary_10_1021_acs_iecr_2c02059 crossref_primary_10_1007_s10973_024_13984_x crossref_primary_10_1016_j_triboint_2022_108161 crossref_primary_10_1016_j_colsurfa_2022_128808 crossref_primary_10_1016_j_mtcomm_2023_106798 crossref_primary_10_1002_zamm_202200186 crossref_primary_10_1007_s11814_022_1156_6 crossref_primary_10_1007_s10973_024_13249_7 crossref_primary_10_1016_j_colsurfa_2022_129591 crossref_primary_10_1016_j_fuel_2025_134294 crossref_primary_10_1016_j_heliyon_2023_e19228 crossref_primary_10_3390_math9212681 |
Cites_doi | 10.1090/qam/10666 10.1007/s10765-020-02749-x 10.1080/10407782.2013.846196 10.1016/j.icheatmasstransfer.2014.07.018 10.1016/j.icheatmasstransfer.2016.05.029 10.1016/j.colsurfa.2020.125968 10.1007/s10973-020-09458-5 10.1016/j.egyr.2021.03.020 10.1016/j.solmat.2019.110323 10.1016/j.powtec.2020.09.011 10.1016/j.powtec.2017.10.025 10.1016/j.physa.2019.122142 10.14429/dsj.58.1682 10.1016/j.icheatmasstransfer.2013.05.009 10.1016/j.energy.2020.118760 10.1137/0111030 10.1016/j.physleta.2011.01.040 10.1007/s10973-016-5436-4 10.1016/j.powtec.2019.07.086 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.1016/j.csite.2021.101293 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9 10.1016/j.csite.2021.101293 10_1016_j_csite_2021_101293 S2214157X21004561 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION ADTOC UNPAY |
ID | FETCH-LOGICAL-c414t-d72aab10dec586dcda64cc4919eb905cca906ce9073c104e4d77a064055802b53 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 00:52:03 EDT 2025 Tue Aug 19 16:51:09 EDT 2025 Tue Jul 01 02:28:29 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Tue Jul 25 20:58:12 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Levenberg marquardt algorithm Thermal conductivity ANNs Nanofluids Surface fitting method |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-d72aab10dec586dcda64cc4919eb905cca906ce9073c104e4d77a064055802b53 |
OpenAccessLink | https://doaj.org/article/36bd1f1ae6d148e1951428033a3929f9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9 unpaywall_primary_10_1016_j_csite_2021_101293 crossref_primary_10_1016_j_csite_2021_101293 crossref_citationtrail_10_1016_j_csite_2021_101293 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Pare, Ghosh (bib16) 2021; 377 Li, Wang (bib6) March 2021; 612 Yu, Xie, Wang, Wang (bib15) 2011; 375 Akhgar, Toghraie, Sina, Afrand (bib7) 2019; 355 Harandi, Karimipour, Afrand, Akbari, D'Orazio (bib11) 2016; 76 Cao, Doustgani, Salehi, Nemati, Ghasemi, Koohshekan (bib1) 2020; 213 Toghraie, Chaharsoghi, Afrand (bib12) 2016; 125 Esfahani, Toghraie, Afrand (bib13) 2018; 323 Li, Zeng (bib9) March 2020; 206 Reddy, Rao (bib10) 2013; 46 Rostami, Toghraie, Shabani, Sina, Barnoon (bib8) 2021; 143 Toghraie, Aghahadi, Sina, Soltani (bib3) 2020; 41 Levenberg (bib20) 1944; 2 Toghraie, Sina, Jolfaei, Hajian, Afrand (bib2) 2019; 534 Hajjar, morad Rashidi, Ghozatloo (bib19) 2014; 57 Cao, Doustgani, Salehi, Nemati, Ghasemi, Koohshekan (bib5) 2016; 213 Alkanhal (bib17) 2021 TaherKarim, Ahmed Tofiq, Shariati, Nikafshan Rad, Ghasemi (bib4) 2021; 7 Shahrul, Mahbubul, Saidur, Khaleduzzaman, Sabri, Rahman (bib18) 2014; 65 Marquardt (bib21) 1963; 11 Singh (bib14) 2008; 58 Esfahani (10.1016/j.csite.2021.101293_bib13) 2018; 323 Alkanhal (10.1016/j.csite.2021.101293_bib17) 2021 Cao (10.1016/j.csite.2021.101293_bib1) 2020; 213 Harandi (10.1016/j.csite.2021.101293_bib11) 2016; 76 Marquardt (10.1016/j.csite.2021.101293_bib21) 1963; 11 Akhgar (10.1016/j.csite.2021.101293_bib7) 2019; 355 Toghraie (10.1016/j.csite.2021.101293_bib3) 2020; 41 Li (10.1016/j.csite.2021.101293_bib9) 2020; 206 Toghraie (10.1016/j.csite.2021.101293_bib2) 2019; 534 Rostami (10.1016/j.csite.2021.101293_bib8) 2021; 143 Shahrul (10.1016/j.csite.2021.101293_bib18) 2014; 65 Li (10.1016/j.csite.2021.101293_bib6) 2021; 612 Reddy (10.1016/j.csite.2021.101293_bib10) 2013; 46 Singh (10.1016/j.csite.2021.101293_bib14) 2008; 58 Yu (10.1016/j.csite.2021.101293_bib15) 2011; 375 Toghraie (10.1016/j.csite.2021.101293_bib12) 2016; 125 Pare (10.1016/j.csite.2021.101293_bib16) 2021; 377 TaherKarim (10.1016/j.csite.2021.101293_bib4) 2021; 7 Hajjar (10.1016/j.csite.2021.101293_bib19) 2014; 57 Levenberg (10.1016/j.csite.2021.101293_bib20) 1944; 2 Cao (10.1016/j.csite.2021.101293_bib5) 2016; 213 |
References_xml | – volume: 7 start-page: 1780 year: 2021 end-page: 1797 ident: bib4 article-title: 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications publication-title: Energy reports – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib21 article-title: “An algorithm for least-squares estimation of non-linear parameters publication-title: J. Soc. Ind. Appl. Math. – volume: 143 start-page: 1097 year: 2021 end-page: 1105 ident: bib8 article-title: “Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs) publication-title: J. Therm. Anal. Calorim. – volume: 76 start-page: 171 year: 2016 end-page: 177 ident: bib11 article-title: “An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration publication-title: Int. Commun. Heat Mass Tran. – volume: 375 start-page: 1323 year: 2011 end-page: 1328 ident: bib15 article-title: “Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets publication-title: Phys. Lett. – volume: 534 start-page: 122142 year: 2019 ident: bib2 article-title: “Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles publication-title: Phys. Stat. Mech. Appl. – volume: 41 start-page: 1 year: 2020 end-page: 17 ident: bib3 article-title: “Application of artificial neural networks (ANNs) for predicting the viscosity of tungsten oxide (WO 3)-MWCNTs/engine oil hybrid nanofluid publication-title: I – volume: 206 start-page: 110323 year: March 2020 ident: bib9 article-title: Xinyu Lei, the stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application, publication-title: Sol. Energy Mater. Sol. Cell. – volume: 377 start-page: 429 year: 2021 end-page: 438 ident: bib16 article-title: “A unique thermal conductivity model (ANN) for nanofluid based on experimental study publication-title: Powder Technol. – volume: 213 year: 2016 ident: bib5 article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran publication-title: Energy – volume: 57 start-page: 128 year: 2014 end-page: 131 ident: bib19 article-title: Enhanced thermal conductivities of graphene oxide nanofluids publication-title: Int. Commun. Heat Mass Tran. – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib20 article-title: “A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 323 start-page: 367 year: 2018 end-page: 373 ident: bib13 article-title: “A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study publication-title: Powder Technol. – volume: 355 start-page: 602 year: 2019 end-page: 610 ident: bib7 article-title: “Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid publication-title: Powder Technol. – volume: 125 start-page: 527 year: 2016 end-page: 535 ident: bib12 article-title: “Measurement of thermal conductivity of ZnO–TiO 2/EG hybrid nanofluid publication-title: J. Therm. Anal. Calorim. – volume: 46 start-page: 31 year: 2013 end-page: 36 ident: bib10 article-title: “Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids publication-title: Int. Commun. Heat Mass Tran. – start-page: 1 year: 2021 end-page: 10 ident: bib17 article-title: “Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling,” publication-title: J. Therm. Anal. Calorim. – volume: 58 start-page: 600 year: 2008 ident: bib14 article-title: “Thermal conductivity of nanofluids publication-title: Defence Sci. J. – volume: 612 start-page: 125968 year: March 2021 ident: bib6 article-title: Boqiu Luo, the thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system, Colloids and Surfaces A: publication-title: Physicochemical and Engineering Aspects – volume: 65 start-page: 699 year: 2014 end-page: 713 ident: bib18 article-title: “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates publication-title: Numer. Heat Tran., Part A: Applications – volume: 213 year: 2020 ident: bib1 article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran publication-title: Energy – volume: 2 start-page: 164 issue: 2 year: 1944 ident: 10.1016/j.csite.2021.101293_bib20 article-title: “A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 41 start-page: 1 issue: 12 year: 2020 ident: 10.1016/j.csite.2021.101293_bib3 article-title: “Application of artificial neural networks (ANNs) for predicting the viscosity of tungsten oxide (WO 3)-MWCNTs/engine oil hybrid nanofluid publication-title: Int. J. Thermophys. doi: 10.1007/s10765-020-02749-x – volume: 65 start-page: 699 issue: 7 year: 2014 ident: 10.1016/j.csite.2021.101293_bib18 article-title: “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates publication-title: Numer. Heat Tran., Part A: Applications doi: 10.1080/10407782.2013.846196 – start-page: 1 year: 2021 ident: 10.1016/j.csite.2021.101293_bib17 article-title: “Comprehensive investigation of reduced graphene oxide (rGO) in the base fluid: thermal analysis and ANN modeling,” publication-title: J. Therm. Anal. Calorim. – volume: 57 start-page: 128 year: 2014 ident: 10.1016/j.csite.2021.101293_bib19 article-title: Enhanced thermal conductivities of graphene oxide nanofluids publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2014.07.018 – volume: 76 start-page: 171 year: 2016 ident: 10.1016/j.csite.2021.101293_bib11 article-title: “An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2016.05.029 – volume: 612 start-page: 125968 issue: 5 year: 2021 ident: 10.1016/j.csite.2021.101293_bib6 article-title: Boqiu Luo, the thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system, Colloids and Surfaces A: publication-title: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2020.125968 – volume: 143 start-page: 1097 issue: 2 year: 2021 ident: 10.1016/j.csite.2021.101293_bib8 article-title: “Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs) publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09458-5 – volume: 7 start-page: 1780 year: 2021 ident: 10.1016/j.csite.2021.101293_bib4 article-title: 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications publication-title: Energy reports doi: 10.1016/j.egyr.2021.03.020 – volume: 206 start-page: 110323 year: 2020 ident: 10.1016/j.csite.2021.101293_bib9 article-title: Xinyu Lei, the stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application, publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2019.110323 – volume: 377 start-page: 429 year: 2021 ident: 10.1016/j.csite.2021.101293_bib16 article-title: “A unique thermal conductivity model (ANN) for nanofluid based on experimental study publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.09.011 – volume: 323 start-page: 367 year: 2018 ident: 10.1016/j.csite.2021.101293_bib13 article-title: “A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.10.025 – volume: 534 start-page: 122142 year: 2019 ident: 10.1016/j.csite.2021.101293_bib2 article-title: “Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2019.122142 – volume: 58 start-page: 600 issue: 5 year: 2008 ident: 10.1016/j.csite.2021.101293_bib14 article-title: “Thermal conductivity of nanofluids publication-title: Defence Sci. J. doi: 10.14429/dsj.58.1682 – volume: 46 start-page: 31 year: 2013 ident: 10.1016/j.csite.2021.101293_bib10 article-title: “Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2013.05.009 – volume: 213 year: 2020 ident: 10.1016/j.csite.2021.101293_bib1 article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran publication-title: Energy doi: 10.1016/j.energy.2020.118760 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.csite.2021.101293_bib21 article-title: “An algorithm for least-squares estimation of non-linear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 375 start-page: 1323 issue: 10 year: 2011 ident: 10.1016/j.csite.2021.101293_bib15 article-title: “Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets publication-title: Phys. Lett. doi: 10.1016/j.physleta.2011.01.040 – volume: 125 start-page: 527 issue: 1 year: 2016 ident: 10.1016/j.csite.2021.101293_bib12 article-title: “Measurement of thermal conductivity of ZnO–TiO 2/EG hybrid nanofluid publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5436-4 – volume: 355 start-page: 602 year: 2019 ident: 10.1016/j.csite.2021.101293_bib7 article-title: “Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.07.086 – volume: 213 year: 2016 ident: 10.1016/j.csite.2021.101293_bib5 article-title: The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran publication-title: Energy |
SSID | ssj0001738144 |
Score | 2.278573 |
Snippet | Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of... |
SourceID | doaj unpaywall crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 101293 |
SubjectTerms | ANNs Levenberg marquardt algorithm Nanofluids Surface fitting method Thermal conductivity |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VvQAHxFOEl_bAASRW8T68rrmloaVCajnQitys9T5CkLuOokRR_xC_k5m1HZpLhTjkkNWu18pM5puxv_2GkHe1LepMl4FZIzOmyhBYjd3c86Bt0IpzWeAB5_MLfXalvs7y2QGZDmdhkFbZx_4upqdo3Y-M-19zvFwsxt-F4IA-xUzwlJdgCSRVkQ7xzY7_PmcpAJNST1ecz3DBID6UaF42vaQVAHU4Ikq5B1BJx38Pp-5t4tLcbE3T3MKh00fkYZ9A0kl3j4_JgY9PyINbsoJPye-Jc4mJRdtAz39MLy7ZpBHfJI0mtst2i9xlum7pFvLMFaMebAXY4-m8uQG3oO9PvnygiG40NJuFo5DWUh9_ojBHnFNIGPED8byhdl_t-RP9nPgg1MDOEIquN9c0ADoyuAKScymKZ8Ky2FHPn5Gr05PL6Rnr-zEwq7haM1cIY2qeOW_zI-2sM1pZq0pe-rrMcvCFMtPWQ7ktLVR5XrmiMPimMM-PMlHn8jk5jG30LwgtTMh8CEZAHayMC0aWkgturUOdXK9HRAxGqGwvVo49M5pqYKX9qpLlKrRc1VluRD7uFi07rY67px-jdXdTUWg7DbSredV7WiV17XjgxmsHhaPn4McKG3pJg4llKEdED75R7fktXGpx9-5s50n_crcv_3ejV-Q-fusIiK_J4Xq18W8gkVrXb9M_5Q_D8hui priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcyltsBWgOHEDCVRw7TsNtKS0VUhcOXbGcIsePUkiTVUm0Kj-I38lMkl11EarKIRfLj0gz9nwjf_6GsZeFTYtIZ4FbIyOushB4QdXck6Bt0EoImdID5-OpPpqpj_NkPuhs01uYjfv7jodlu1tUzNEFtWB0us22NN0mjdjWbPp58pXKx8VCcZGk85Wu0L9HbsSeTqJ_IwTdaauFuVyasrwSYg7v9W-3f3bKhMQs-bHbNsWu_fWXbuMN__4-2x6gJkx633jAbvnqIbt7RYDwEfs9ca7jbEEd4PjL_vSET8r4k4TKVPWiXhLLGZoalohILzh4tCpGKQ-n5SU6ELw6-PAaKA5CKNszBwiAwVffSMKjOgWElvThyV-C3dSFfgvvO-YIGFwZD63z9hwCxlGOMxCNF0hmE4dVPUn9MZsdHpzsH_GhcgO3SqiGuzQ2phCR8zbZ0846o5W1KhOZL7IoQa_JIm09JubSYj7olUtTQ3eKSbIXxUUin7BRVVf-KYPUhMiHYGLMmJVxwchMilhY60hR1-sxi1c2ze0ga07VNcp8xV_7nndGyMkIeW-EMXuzHrToVT2u7_6OnGXdlSS5uwa0dT7s8FzqwokgjNcOU0wv0OMVlf6ShiBoyMZMr1wtH9BNj1pwqrPrV-drx7zJ3-78Z_9nbNRctP45gqumeDFsqj_htCK4 priority: 102 providerName: Unpaywall |
Title | Addition of MWCNT-Al2O3 nanopowders to water- ethylene glycol (EG) base fluid for enhancing the thermal characteristics: Design an optimum feed-forward neural network |
URI | https://dx.doi.org/10.1016/j.csite.2021.101293 https://doi.org/10.1016/j.csite.2021.101293 https://doaj.org/article/36bd1f1ae6d148e1951428033a3929f9 |
UnpaywallVersion | publishedVersion |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: KQ8 dateStart: 20131001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: IXB dateStart: 20131001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2214-157X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001738144 issn: 2214-157X databaseCode: AKRWK dateStart: 20131001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hcgAOiKcIpdUcOIDECq93va57S0sfIDVwaEQ4Wet9lCLXjqpEUf8Qv7MzaydKLoVDD_bB8o5XnrG_Gfvbbxh7X9m8SnQRuDUy4aoIgVfUzT0L2gathJA5LXA-G-nTsfo2ySZrrb6IE9bJA3c37rPUlRNBGK8dZu5eoCFFHZWkIWQPcekewthaMRW_ruSIRLGTa5oKxUWWT5aSQ5HcZeOvWSz8BR1JC7kBS1G9fwOdHs2bqblZmLpeQ5_jZ-xpnzbCsJvuc_bANy_YkzUxwZfs79C5yL-CNsDZz8PROR_W6XcJjWnaabsgxjLMWlhgdnnNwaOHEHE8XNQ3GAzw4ejkIxCmQajnlw4wmQXf_CY5juYCME2kDd_iNdhNjed9-BJZIGDwyvgCuppfQUBM5GiBKLlAkpk4rOkI56_Y-Pjo_PCU910YuFVCzbjLU2MqkThvsz3trDNaWasKUfiqSDKMgCLR1mORLS3Wdl65PDf0fzDL9pK0yuRrttW0jX_DIDch8SGYFKtfZVxAF0qRCmsdqeN6PWDp0gml7SXKqVNGXS65aH_K6LmSPFd2nhuwT6tB006h4-7TD8i7q1NJXjsewKAr-6Ar_xV0A6aXsVH2mUqXgaCpy7uvzleR9D-zfXsfs91mj8lkR0F8x7Zm13O_g6nUrNqNTw3uv04OdtnD8ejH8Nct_6oclQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy2HhgHiK8vSBA0hYje3E2XDrll26sC0HuqK3yPGjFGWTqmpV7R_idzLjJGV7WSEOVSUnjq3OdL6Z5Ms3hLwtTFpEKvPMaBmxOPOeFdjNPfHKeBVzLlN8wXk8UaPL-MssmR2QYfcuDNIq29jfxPQQrduRfvtr9peLRf-7EBzQJ50JHvISKIHuwFeEvK7z2cnfGy0pgFJo6ooTGM7o1IcCz8uEp7QCsA5HRCb3ECoI-e8B1dGmWurrrS7LG0B09oDcbzNIOmg2-ZAcuOoRuXdDV_Ax-T2wNlCxaO3p-MdwMmWDUnyTtNJVvay3SF6m65puIdFcMerAWAA-js7La_AL-u7083uK8EZ9uVlYCnktddVPVOao5hQyRvxAQC-p2Zd7_kg_BUII1bAyxKKrzRX1AI8MroDsXIrqmTCtarjnT8jl2el0OGJtQwZmYh6vmU2F1gWPrDPJsbLGahUbE2c8c0UWJeAMWaSMg3pbGijzXGzTVOOjwiQ5jkSRyKfksKor94zQVPvIea8FFMKxtl7LTHLBjbEolOtUj4jOCLlp1cqxaUaZd7S0X3mwXI6WyxvL9ciH3aRlI9Zx--knaN3dqai0HQbq1TxvXS2XqrDcc-2UhcrRcXDkGDt6SY2Zpc96RHW-ke85LlxqcfvqbOdJ_7Lb5_-70BtyNJqOL_KL88nXF-QuHmnYiC_J4Xq1ca8gq1oXr8O_5g8HDx7D |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcyltsBWgOHEDCVRw7TsNtKS0VUhcOXbGcIsePUkiTVUm0Kj-I38lMkl11EarKIRfLj0gz9nwjf_6GsZeFTYtIZ4FbIyOushB4QdXck6Bt0EoImdID5-OpPpqpj_NkPuhs01uYjfv7jodlu1tUzNEFtWB0us22NN0mjdjWbPp58pXKx8VCcZGk85Wu0L9HbsSeTqJ_IwTdaauFuVyasrwSYg7v9W-3f3bKhMQs-bHbNsWu_fWXbuMN__4-2x6gJkx633jAbvnqIbt7RYDwEfs9ca7jbEEd4PjL_vSET8r4k4TKVPWiXhLLGZoalohILzh4tCpGKQ-n5SU6ELw6-PAaKA5CKNszBwiAwVffSMKjOgWElvThyV-C3dSFfgvvO-YIGFwZD63z9hwCxlGOMxCNF0hmE4dVPUn9MZsdHpzsH_GhcgO3SqiGuzQ2phCR8zbZ0846o5W1KhOZL7IoQa_JIm09JubSYj7olUtTQ3eKSbIXxUUin7BRVVf-KYPUhMiHYGLMmJVxwchMilhY60hR1-sxi1c2ze0ga07VNcp8xV_7nndGyMkIeW-EMXuzHrToVT2u7_6OnGXdlSS5uwa0dT7s8FzqwokgjNcOU0wv0OMVlf6ShiBoyMZMr1wtH9BNj1pwqrPrV-drx7zJ3-78Z_9nbNRctP45gqumeDFsqj_htCK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addition+of+MWCNT-Al2O3+nanopowders+to+water-+ethylene+glycol+%28EG%29+base+fluid+for+enhancing+the+thermal+characteristics%3A+Design+an+optimum+feed-forward+neural+network&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Shi+Fuxi&rft.au=Sajad+Hamedi&rft.au=Mehdi+Hajian&rft.au=Davood+Toghraie&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=27&rft.spage=101293&rft_id=info:doi/10.1016%2Fj.csite.2021.101293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_36bd1f1ae6d148e1951428033a3929f9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |