ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production

[Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed. ReaxFF mo...

Full description

Saved in:
Bibliographic Details
Published inCarbon resources conversion Vol. 4; pp. 230 - 238
Main Authors Qian, Yanan, Zhan, Jin-Hui, Xu, Wei, Han, Zhennan, Liu, Xiaoxing, Xu, Guangwen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2588-9133
2588-9133
DOI10.1016/j.crcon.2021.10.001

Cover

Abstract [Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed. ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products.
AbstractList ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products.
[Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed. ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products.
Author Liu, Xiaoxing
Xu, Guangwen
Han, Zhennan
Xu, Wei
Qian, Yanan
Zhan, Jin-Hui
Author_xml – sequence: 1
  givenname: Yanan
  surname: Qian
  fullname: Qian, Yanan
  email: qianyn.qday@sinopec.com
  organization: State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China
– sequence: 2
  givenname: Jin-Hui
  surname: Zhan
  fullname: Zhan, Jin-Hui
  organization: State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China
– sequence: 4
  givenname: Zhennan
  surname: Han
  fullname: Han, Zhennan
  organization: Key Laboratory on Resources Chemicals and Materials of Ministry of Education of China, Shenyang University of Chemical Technology, Shenyang 110142, China
– sequence: 5
  givenname: Xiaoxing
  surname: Liu
  fullname: Liu, Xiaoxing
  organization: State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Guangwen
  surname: Xu
  fullname: Xu, Guangwen
  email: gwxu@syuct.edu.cn
  organization: Key Laboratory on Resources Chemicals and Materials of Ministry of Education of China, Shenyang University of Chemical Technology, Shenyang 110142, China
BookMark eNqNkc-KFDEQxoOs4LruE3jJC_SYpNP_Dh5kcXRhQRA9h-qksmRIJ0PSPdp3H9z0zCLiQSWHVBX1-4qq7yW5CjEgIa8523HG2zeHnU46hp1ggpfKjjH-jFyLpu-rgdf11W_xC3Kb84ExJvqCyuGa_PiM8H2_p1P0qBcPiZo1wOQ0zW4q-exioNHSY3ITpJVCMDRjGWe2LCHorSNTF07Rn1x4LBHNy1iNbl4mF-KSqY7g6XFN0a_ZZWpjonMZdEzRLGf8FXluwWe8ffpvyNf9-y93H6uHTx_u7949VFpyOVdGaGZFeXboW4uyA8ns0PYoZTNAixYMb5tutAK50V3dDV1jhOAd2tLHRH1D7i-6JsJBPa2kIjh1LsT0qCDNTntUVuiubfjQcNlKLbEHOY5MoG2hFxJl0ZIXrSUcYf0G3v8S5ExtxqiDOhujNmO2YjGmYMMF0ynmnNAq7ebzlecEzv-Drf9g_2_i2wuF5bInh0ll7TBoNC6hnsvq7q_8T8cEwRo
CitedBy_id crossref_primary_10_1016_j_crcon_2024_100296
crossref_primary_10_1021_acsomega_3c01321
crossref_primary_10_1016_j_jaap_2025_107042
crossref_primary_10_1016_j_tca_2023_179522
crossref_primary_10_1016_j_energy_2024_131735
Cites_doi 10.1016/j.fuproc.2013.04.022
10.1016/j.fuel.2014.05.064
10.1016/j.fuel.2020.119341
10.1016/j.fuproc.2018.06.019
10.1021/jp709896w
10.1016/j.ces.2018.12.064
10.1021/ef501923f
10.1016/j.ijhydene.2016.05.106
10.1016/j.fuel.2011.11.025
10.1021/ef9901490
10.1016/j.fuproc.2017.01.005
10.1016/j.fuel.2019.115926
10.1016/j.fuel.2015.07.068
10.1016/j.fuel.2020.118844
10.1016/j.fuel.2016.01.052
10.1016/j.fuproc.2017.06.029
10.1021/jp004368u
10.1016/j.jaap.2020.104833
10.1021/ef00034a011
10.1016/j.enconman.2020.113065
10.1016/j.psep.2020.12.036
10.1016/j.crcon.2020.11.002
10.1016/j.jaap.2018.03.007
10.1021/ef400143z
10.1016/j.fuel.2019.05.085
10.1021/ef401546n
10.1016/j.fuproc.2019.106269
10.1016/j.crcon.2019.10.001
10.1016/j.fuel.2020.117290
10.1016/j.crcon.2018.10.001
10.1016/j.fuel.2016.01.007
10.1016/j.fuel.2014.06.005
10.1016/j.crcon.2021.01.005
10.1016/S0165-2370(03)00031-7
10.1016/j.fuel.2020.119156
10.1016/j.fuproc.2015.05.023
10.1016/0360-1285(92)90021-R
10.1016/j.energy.2020.119553
10.1016/j.fuel.2018.12.093
10.1016/j.crcon.2018.06.003
10.1016/j.orggeochem.2009.09.001
10.1016/j.jaap.2021.105163
10.1016/j.fuproc.2020.106662
10.1039/C7RA02347B
10.1021/ef2012276
10.1016/j.crcon.2021.01.001
10.1016/j.jaap.2019.04.009
10.1016/j.jaap.2013.05.005
10.1016/j.jaap.2014.07.011
10.1016/j.fuel.2018.06.100
10.1016/j.apenergy.2017.08.227
10.1016/j.fuproc.2016.02.033
10.1016/j.fuproc.2013.04.026
10.1016/j.fuproc.2018.05.011
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.crcon.2021.10.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2588-9133
EndPage 238
ExternalDocumentID oai_doaj_org_article_f2c7651951464c4e8a4bb02ef6a824e4
10.1016/j.crcon.2021.10.001
10_1016_j_crcon_2021_10_001
S2588913321000351
GroupedDBID 0R~
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
ADMLS
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c414t-d2c0f2f2ff986fe47a40f968e4459a6efad1657bf2e1dc737975d2217ef0f9023
IEDL.DBID DOA
ISSN 2588-9133
IngestDate Fri Oct 03 12:46:02 EDT 2025
Tue Aug 19 21:25:06 EDT 2025
Thu Apr 24 22:53:36 EDT 2025
Tue Jul 01 02:58:11 EDT 2025
Sun Apr 06 06:54:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Primary formation
ReaxFF MD simulation
Sub-bituminous coal pyrolysis
Secondary upgrading
Reaction paths
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-d2c0f2f2ff986fe47a40f968e4459a6efad1657bf2e1dc737975d2217ef0f9023
OpenAccessLink https://doaj.org/article/f2c7651951464c4e8a4bb02ef6a824e4
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_f2c7651951464c4e8a4bb02ef6a824e4
unpaywall_primary_10_1016_j_crcon_2021_10_001
crossref_citationtrail_10_1016_j_crcon_2021_10_001
crossref_primary_10_1016_j_crcon_2021_10_001
elsevier_sciencedirect_doi_10_1016_j_crcon_2021_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Carbon resources conversion
PublicationYear 2021
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Zhang, Zhao, Linghu, Wang, Zhang (b0030) 2019; 2
Chenoweth, van Duin, Goddard (b0215) 2008; 112
Baerends (b0270) 2013
Qian, Zhan, Yu, Xu, Liu (b0130) 2019; 200
Wang, Li, Zhou, Zhang, Yang, Wang (b0285) 2020; 200
Qian, Yu, Xu, Liu (b0125) 2018; 233
Wang, Zeng, Kang, Li, Ma, Xu (b0115) 2021; 156
Zeng, Wang, Yu, Wu, Han, Xu, Xu (b0055) 2011; 25
van Duin, Dasgupta, Lorant, Goddard (b0210) 2001; 105
Niu, Liu, Yin, Wu, Zhou (b0205) 2016; 172
Fushimi, Okuyama, Kobayashi, Koyama, Tanimura, Fukushima, Thangavel, Matsuoka (b0065) 2017; 167
Hayashi, Takahashi, Doi, Kumagai, Chiba, Yoshida, Tsutsumi (b0020) 2000; 14
He, Liu, Liu, Ci, Lievens, Guo (b0095) 2014; 134
Lai, Zhang, Xu (b0160) 2017; 158
Xu, Hu, Zhang, Li, Chen, Xiong, Xu, Jiang, Wang, Su, Xiang (b0180) 2021; 213
Dong, Han, Yu, Lei, Kang, Zhang, Yan, Li, Shui, Wang, Ren, Pan (b0100) 2019; 140
Fletcher, Kerstein, Pugmire, Solum, Grant (b0195) 1992; 6
Alyeksandr, Bai, Bai, Janchig, Barnasan, Feng, Hou, He (b0035) 2021; 4
Zhong, Mao, Xiao, van Duin, Mathews (b0275) 2018; 132
Diao, Zhao, Chen, Duan, Song (b0230) 2013; 104
Wang, Chen, Li, Wang, Li, Yang, Liu, Yu, Gao (b0075) 2021; 285
Konwar, Nath, Bhuyan, Saikia, Borah, Kalita, Saikia (b0290) 2019; 256
Eckhard, Wütscher, Muhler (b0190) 2020; 149
Zheng, Li, Wang, Guo (b0010) 2019; 253
Han, Geng, Zeng, Xu, An, Cheng, Yang, Li, Zhang, Liu, Guan, Xu (b0085) 2018; 1
Lai, Chen, Shi, Lin, Zhan, Gao, Xu (b0150) 2015; 159
Yan, Yang, Zhang, Lei, Li, Wang, Ren, Kang, Shui (b0040) 2020; 3
Zhang, Wu, Xu (b0105) 2014; 28
Qian, Zhan, Lai, Li, Liu, Xu (b0235) 2016; 41
Castro-Marcano, Russo, van Duin, Mathews (b0245) 2014; 109
Gao, Li, Guo (b0250) 2018; 178
Cheng, Lai, Shi, Hong, Zhang, Zeng, Gao, Xu (b0110) 2017; 25
Arenillas, Rubiera, Pis, Cuesta, Iglesias, Jiménez, Suárez-Ruiz (b0175) 2003; 68–69
Zheng, Pan, Wang, Li, Guo (b0280) 2020; 268
Wang, Fan, Dong, Bai, Kuznetsov, Liang, Liu, Wei (b0005) 2020; 282
Bai, Xu, Zhang, Zhong, Zhang (b0050) 2011; 36
Mathews, Chaffee (b0255) 2012; 96
Zheng, Li, Liu, Guo (b0265) 2013; 27
Chen, Gao, Xu (b0080) 2017; 208
Lin, Lai, Shi, Han, Xu (b0145) 2017; 7
Jin, Zhao, Wang, Wei, Hu (b0025) 2019; 241
Lievens, Ci, Bai, Ma, Zhang, Chen, Gai, Long, Guo (b0185) 2013; 116
Lin, Zhang, Li, Lai, Xu (b0135) 2015; 138
Solomon, Serio, Suuberg (b0170) 1992; 18
Siramard, Lin, Zhang, Lai, Cheng, Xu (b0140) 2016; 148
Salmon, van Duin, Lorant, Marquaire, Goddard (b0225) 2009; 40
Hong, Li, Si, Guo (b0240) 2021; 218
Chen, Wang, Li, Yang, Wang, Lai, Yu, Gao (b0070) 2020; 220
Xu, Lai, Zeng, Zhang, Han, Cheng, Wu, Mašek, Xu (b0165) 2018; 1
Qian, Xu, Zhan, Jia, Zhang (b0220) 2021; 147
Zhang, Wu, Hu, Liu, Xu (b0120) 2014; 28
Chen, Wang, Yang, Zhang, Li, Li, Yu, Gao (b0045) 2021; 4
Shinn (b0260) 1996; 41
Zhan, Wu, Liu, Gao, Xu (b0015) 2014; 134
Fan, Zhang, Li, Xu, Wu, Yang (b0090) 2021; 286
Zhou, Zou, Zhong, Zhang, Wu, Gao, Xu (b0060) 2013; 116
Lai, Shi, Geng, Chen, Gao, Zhan, Xu (b0155) 2016; 173
Tian, Qiao, Lin, Jiang, Xu, Ma, Tian (b0200) 2018; 179
Xu (10.1016/j.crcon.2021.10.001_b0180) 2021; 213
Wang (10.1016/j.crcon.2021.10.001_b0075) 2021; 285
Fushimi (10.1016/j.crcon.2021.10.001_b0065) 2017; 167
Zhang (10.1016/j.crcon.2021.10.001_b0120) 2014; 28
Zeng (10.1016/j.crcon.2021.10.001_b0055) 2011; 25
Fletcher (10.1016/j.crcon.2021.10.001_b0195) 1992; 6
Zhang (10.1016/j.crcon.2021.10.001_b0105) 2014; 28
Gao (10.1016/j.crcon.2021.10.001_b0250) 2018; 178
Zheng (10.1016/j.crcon.2021.10.001_b0280) 2020; 268
Lai (10.1016/j.crcon.2021.10.001_b0155) 2016; 173
Hong (10.1016/j.crcon.2021.10.001_b0240) 2021; 218
Eckhard (10.1016/j.crcon.2021.10.001_b0190) 2020; 149
Chen (10.1016/j.crcon.2021.10.001_b0080) 2017; 208
Qian (10.1016/j.crcon.2021.10.001_b0125) 2018; 233
Diao (10.1016/j.crcon.2021.10.001_b0230) 2013; 104
Yan (10.1016/j.crcon.2021.10.001_b0040) 2020; 3
Wang (10.1016/j.crcon.2021.10.001_b0005) 2020; 282
Jin (10.1016/j.crcon.2021.10.001_b0025) 2019; 241
Tian (10.1016/j.crcon.2021.10.001_b0200) 2018; 179
Niu (10.1016/j.crcon.2021.10.001_b0205) 2016; 172
Chenoweth (10.1016/j.crcon.2021.10.001_b0215) 2008; 112
Zhan (10.1016/j.crcon.2021.10.001_b0015) 2014; 134
Lin (10.1016/j.crcon.2021.10.001_b0135) 2015; 138
Lai (10.1016/j.crcon.2021.10.001_b0150) 2015; 159
Hayashi (10.1016/j.crcon.2021.10.001_b0020) 2000; 14
Dong (10.1016/j.crcon.2021.10.001_b0100) 2019; 140
Mathews (10.1016/j.crcon.2021.10.001_b0255) 2012; 96
Zhong (10.1016/j.crcon.2021.10.001_b0275) 2018; 132
Qian (10.1016/j.crcon.2021.10.001_b0220) 2021; 147
Chen (10.1016/j.crcon.2021.10.001_b0045) 2021; 4
Bai (10.1016/j.crcon.2021.10.001_b0050) 2011; 36
Fan (10.1016/j.crcon.2021.10.001_b0090) 2021; 286
Han (10.1016/j.crcon.2021.10.001_b0085) 2018; 1
Zheng (10.1016/j.crcon.2021.10.001_b0010) 2019; 253
Qian (10.1016/j.crcon.2021.10.001_b0130) 2019; 200
Konwar (10.1016/j.crcon.2021.10.001_b0290) 2019; 256
Lievens (10.1016/j.crcon.2021.10.001_b0185) 2013; 116
Lai (10.1016/j.crcon.2021.10.001_b0160) 2017; 158
Castro-Marcano (10.1016/j.crcon.2021.10.001_b0245) 2014; 109
Alyeksandr (10.1016/j.crcon.2021.10.001_b0035) 2021; 4
Chen (10.1016/j.crcon.2021.10.001_b0070) 2020; 220
Salmon (10.1016/j.crcon.2021.10.001_b0225) 2009; 40
Wang (10.1016/j.crcon.2021.10.001_b0115) 2021; 156
Qian (10.1016/j.crcon.2021.10.001_b0235) 2016; 41
Solomon (10.1016/j.crcon.2021.10.001_b0170) 1992; 18
Shinn (10.1016/j.crcon.2021.10.001_b0260) 1996; 41
Zhang (10.1016/j.crcon.2021.10.001_b0030) 2019; 2
van Duin (10.1016/j.crcon.2021.10.001_b0210) 2001; 105
Zhou (10.1016/j.crcon.2021.10.001_b0060) 2013; 116
Baerends (10.1016/j.crcon.2021.10.001_b0270) 2013
Zheng (10.1016/j.crcon.2021.10.001_b0265) 2013; 27
Siramard (10.1016/j.crcon.2021.10.001_b0140) 2016; 148
Cheng (10.1016/j.crcon.2021.10.001_b0110) 2017; 25
Xu (10.1016/j.crcon.2021.10.001_b0165) 2018; 1
He (10.1016/j.crcon.2021.10.001_b0095) 2014; 134
Arenillas (10.1016/j.crcon.2021.10.001_b0175) 2003; 68–69
Lin (10.1016/j.crcon.2021.10.001_b0145) 2017; 7
Wang (10.1016/j.crcon.2021.10.001_b0285) 2020; 200
References_xml – volume: 178
  start-page: 197
  year: 2018
  end-page: 205
  ident: b0250
  article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics
  publication-title: Fuel Process. Technol.
– volume: 132
  start-page: 134
  year: 2018
  end-page: 142
  ident: b0275
  article-title: Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 25
  start-page: 5242
  year: 2011
  end-page: 5249
  ident: b0055
  article-title: Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer
  publication-title: Energy Fuels
– volume: 68–69
  start-page: 371
  year: 2003
  end-page: 385
  ident: b0175
  article-title: Thermal behaviour during the pyrolysis of low rank perhydrous coals
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 208
  start-page: 1527
  year: 2017
  end-page: 1537
  ident: b0080
  article-title: Simultaneous production of CH
  publication-title: Appl. Energy
– volume: 213
  start-page: 106662
  year: 2021
  ident: b0180
  article-title: Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation
  publication-title: Fuel Process. Technol.
– volume: 253
  start-page: 910
  year: 2019
  end-page: 920
  ident: b0010
  article-title: Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation
  publication-title: Fuel
– volume: 172
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0205
  article-title: Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR
  publication-title: Fuel
– volume: 116
  start-page: 85
  year: 2013
  end-page: 93
  ident: b0185
  article-title: A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS
  publication-title: Fuel Process. Technol.
– volume: 112
  start-page: 1040
  year: 2008
  end-page: 1053
  ident: b0215
  article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
  publication-title: J. Phys. Chem. A
– volume: 158
  start-page: 191
  year: 2017
  end-page: 198
  ident: b0160
  article-title: Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals
  publication-title: Fuel Process. Technol.
– volume: 41
  start-page: 12093
  year: 2016
  end-page: 12100
  ident: b0235
  article-title: Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation
  publication-title: Int. J. Hydrogen Energy
– volume: 148
  start-page: 248
  year: 2016
  end-page: 255
  ident: b0140
  article-title: Oil shale pyrolysis in indirectly heated fixed bed with internals under reduced pressure
  publication-title: Fuel Process. Technol.
– volume: 1
  start-page: 228
  year: 2018
  end-page: 237
  ident: b0165
  article-title: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals
  publication-title: Carbon Resour. Convers.
– volume: 134
  start-page: 375
  year: 2014
  end-page: 380
  ident: b0095
  article-title: Behaviors of radical fragments in tar generated from pyrolysis of 4 coals
  publication-title: Fuel
– volume: 233
  start-page: 685
  year: 2018
  end-page: 694
  ident: b0125
  article-title: CFD modeling of coal pyrolysis in externally heated fixed-bed reactor
  publication-title: Fuel
– volume: 105
  start-page: 9396
  year: 2001
  end-page: 9409
  ident: b0210
  article-title: ReaxFF: a reactive force field for hydrocarbons
  publication-title: J. Phys. Chem. A
– volume: 156
  start-page: 105163
  year: 2021
  ident: b0115
  article-title: Secondary reactions suppression during fuel fast pyrolysis in an infrared heating apparatus for the fixed bed pyrolysis process with internals
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 2
  start-page: 217
  year: 2019
  end-page: 224
  ident: b0030
  article-title: Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer
  publication-title: Carbon Resour. Convers.
– volume: 173
  start-page: 138
  year: 2016
  end-page: 145
  ident: b0155
  article-title: Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals
  publication-title: Fuel
– volume: 6
  start-page: 414
  year: 1992
  end-page: 431
  ident: b0195
  article-title: Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type
  publication-title: Energy Fuels
– volume: 18
  start-page: 133
  year: 1992
  end-page: 220
  ident: b0170
  article-title: Coal pyrolysis: experiments, kinetic rates and mechanisms
  publication-title: Prog. Energy Combust. Sci.
– volume: 200
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0130
  article-title: CFD model of coal pyrolysis in fixed bed reactor
  publication-title: Chem. Eng. Sci.
– volume: 4
  start-page: 10
  year: 2021
  end-page: 18
  ident: b0045
  article-title: Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal
  publication-title: Carbon Resour. Convers.
– volume: 40
  start-page: 1195
  year: 2009
  end-page: 1209
  ident: b0225
  article-title: Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures
  publication-title: Org. Geochem.
– volume: 27
  start-page: 2942
  year: 2013
  end-page: 2951
  ident: b0265
  article-title: Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics
  publication-title: Energy Fuels
– volume: 41
  start-page: 510
  year: 1996
  end-page: 515
  ident: b0260
  article-title: Visualization of complex hydrocarbon reaction systems
  publication-title: Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem.
– volume: 36
  start-page: 114
  year: 2011
  end-page: 117
  ident: b0050
  article-title: Effect of pyrolysis conditions on Shenmu long flame coal for tar by inner-heated rotary bed
  publication-title: J. China Coal Soc.
– volume: 282
  start-page: 118844
  year: 2020
  ident: b0005
  article-title: Insights into the structural characteristics of four thermal dissolution extracts of a subbituminous coal by using higher-energy collisional dissociation
  publication-title: Fuel
– volume: 220
  start-page: 113065
  year: 2020
  ident: b0070
  article-title: A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar
  publication-title: Energy Convers. Manage.
– volume: 1
  start-page: 109
  year: 2018
  end-page: 125
  ident: b0085
  article-title: Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed
  publication-title: Carbon Resour. Convers.
– volume: 286
  start-page: 119341
  year: 2021
  ident: b0090
  article-title: Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: distribution and characteristics of products
  publication-title: Fuel
– volume: 14
  start-page: 400
  year: 2000
  end-page: 408
  ident: b0020
  article-title: Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield
  publication-title: Energy Fuels
– volume: 285
  start-page: 119156
  year: 2021
  ident: b0075
  article-title: High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed
  publication-title: Fuel
– year: 2013
  ident: b0270
  article-title: ADF2013, SCM, Theoretical chemistry
– volume: 179
  start-page: 99
  year: 2018
  end-page: 107
  ident: b0200
  article-title: Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis
  publication-title: Fuel Process. Technol.
– volume: 147
  start-page: 578
  year: 2021
  end-page: 588
  ident: b0220
  article-title: Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: combining ReaxFF MD and DFT methods
  publication-title: Process Saf. Environ.
– volume: 159
  start-page: 943
  year: 2015
  end-page: 951
  ident: b0150
  article-title: Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals
  publication-title: Fuel
– volume: 167
  start-page: 136
  year: 2017
  end-page: 145
  ident: b0065
  article-title: Pyrolysis of low-rank coal with heat-carrying particles in a downer reactor
  publication-title: Fuel Process. Technol.
– volume: 138
  start-page: 147
  year: 2015
  end-page: 155
  ident: b0135
  article-title: Pyrolysis in indirectly heated fixed bed with internals: the first application to oil shale
  publication-title: Fuel Process. Technol.
– volume: 3
  start-page: 173
  year: 2020
  end-page: 181
  ident: b0040
  article-title: Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods
  publication-title: Carbon Resour. Convers.
– volume: 4
  start-page: 19
  year: 2021
  end-page: 27
  ident: b0035
  article-title: Thermal behavior of Mongolian low-rank coals during pyrolysis
  publication-title: Carbon Resour. Convers.
– volume: 268
  start-page: 117290
  year: 2020
  ident: b0280
  article-title: Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments
  publication-title: Fuel
– volume: 25
  start-page: 507
  year: 2017
  end-page: 515
  ident: b0110
  article-title: Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor, Chinese
  publication-title: J Chem. Eng.
– volume: 134
  start-page: 283
  year: 2014
  end-page: 292
  ident: b0015
  article-title: Preliminary understanding of initial reaction process for sub-bituminous coal pyrolysis with molecular dynamics simulation
  publication-title: Fuel
– volume: 109
  start-page: 79
  year: 2014
  end-page: 89
  ident: b0245
  article-title: Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 28
  start-page: 236
  year: 2014
  end-page: 244
  ident: b0105
  article-title: Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals
  publication-title: Energy Fuels
– volume: 256
  start-page: 115926
  year: 2019
  ident: b0290
  article-title: Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal
  publication-title: Fuel
– volume: 140
  start-page: 321
  year: 2019
  end-page: 330
  ident: b0100
  article-title: Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 218
  start-page: 119553
  year: 2021
  ident: b0240
  article-title: ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene
  publication-title: Energy
– volume: 104
  start-page: 618
  year: 2013
  end-page: 624
  ident: b0230
  article-title: ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 7
  start-page: 21467
  year: 2017
  end-page: 21474
  ident: b0145
  article-title: Distinctive oil shale pyrolysis behavior in indirectly heated fixed bed with internals
  publication-title: RSC Adv.
– volume: 241
  start-page: 1129
  year: 2019
  end-page: 1137
  ident: b0025
  article-title: Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a sub-bituminous coal
  publication-title: Fuel
– volume: 116
  start-page: 35
  year: 2013
  end-page: 43
  ident: b0060
  article-title: Lignite upgrading by multistage fluidized bed pyrolysis
  publication-title: Fuel Process. Technol.
– volume: 28
  start-page: 7294
  year: 2014
  end-page: 7302
  ident: b0120
  article-title: Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals
  publication-title: Energy Fuels
– volume: 149
  start-page: 104833
  year: 2020
  ident: b0190
  article-title: Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis-GC/MS-GC/TCD
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 96
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0255
  article-title: The molecular representations of coal-a review
  publication-title: Fuel
– volume: 200
  start-page: 106269
  year: 2020
  ident: b0285
  article-title: Experimental investigation of thermal effect in coal pyrolysis process
  publication-title: Fuel Process. Technol.
– volume: 116
  start-page: 35
  year: 2013
  ident: 10.1016/j.crcon.2021.10.001_b0060
  article-title: Lignite upgrading by multistage fluidized bed pyrolysis
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.04.022
– volume: 134
  start-page: 375
  year: 2014
  ident: 10.1016/j.crcon.2021.10.001_b0095
  article-title: Behaviors of radical fragments in tar generated from pyrolysis of 4 coals
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.05.064
– volume: 286
  start-page: 119341
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0090
  article-title: Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: distribution and characteristics of products
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119341
– volume: 179
  start-page: 99
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0200
  article-title: Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.06.019
– volume: 112
  start-page: 1040
  year: 2008
  ident: 10.1016/j.crcon.2021.10.001_b0215
  article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp709896w
– volume: 200
  start-page: 1
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0130
  article-title: CFD model of coal pyrolysis in fixed bed reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.12.064
– volume: 28
  start-page: 7294
  year: 2014
  ident: 10.1016/j.crcon.2021.10.001_b0120
  article-title: Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals
  publication-title: Energy Fuels
  doi: 10.1021/ef501923f
– volume: 41
  start-page: 12093
  year: 2016
  ident: 10.1016/j.crcon.2021.10.001_b0235
  article-title: Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.106
– volume: 96
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.crcon.2021.10.001_b0255
  article-title: The molecular representations of coal-a review
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.11.025
– year: 2013
  ident: 10.1016/j.crcon.2021.10.001_b0270
– volume: 14
  start-page: 400
  issue: 2
  year: 2000
  ident: 10.1016/j.crcon.2021.10.001_b0020
  article-title: Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield
  publication-title: Energy Fuels
  doi: 10.1021/ef9901490
– volume: 158
  start-page: 191
  year: 2017
  ident: 10.1016/j.crcon.2021.10.001_b0160
  article-title: Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.01.005
– volume: 256
  start-page: 115926
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0290
  article-title: Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115926
– volume: 159
  start-page: 943
  year: 2015
  ident: 10.1016/j.crcon.2021.10.001_b0150
  article-title: Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.068
– volume: 282
  start-page: 118844
  issue: 15
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0005
  article-title: Insights into the structural characteristics of four thermal dissolution extracts of a subbituminous coal by using higher-energy collisional dissociation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118844
– volume: 173
  start-page: 138
  year: 2016
  ident: 10.1016/j.crcon.2021.10.001_b0155
  article-title: Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.01.052
– volume: 167
  start-page: 136
  year: 2017
  ident: 10.1016/j.crcon.2021.10.001_b0065
  article-title: Pyrolysis of low-rank coal with heat-carrying particles in a downer reactor
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.06.029
– volume: 105
  start-page: 9396
  year: 2001
  ident: 10.1016/j.crcon.2021.10.001_b0210
  article-title: ReaxFF: a reactive force field for hydrocarbons
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp004368u
– volume: 36
  start-page: 114
  issue: 4
  year: 2011
  ident: 10.1016/j.crcon.2021.10.001_b0050
  article-title: Effect of pyrolysis conditions on Shenmu long flame coal for tar by inner-heated rotary bed
  publication-title: J. China Coal Soc.
– volume: 149
  start-page: 104833
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0190
  article-title: Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis-GC/MS-GC/TCD
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2020.104833
– volume: 6
  start-page: 414
  year: 1992
  ident: 10.1016/j.crcon.2021.10.001_b0195
  article-title: Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type
  publication-title: Energy Fuels
  doi: 10.1021/ef00034a011
– volume: 220
  start-page: 113065
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0070
  article-title: A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113065
– volume: 147
  start-page: 578
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0220
  article-title: Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: combining ReaxFF MD and DFT methods
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2020.12.036
– volume: 3
  start-page: 173
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0040
  article-title: Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2020.11.002
– volume: 132
  start-page: 134
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0275
  article-title: Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2018.03.007
– volume: 27
  start-page: 2942
  issue: 6
  year: 2013
  ident: 10.1016/j.crcon.2021.10.001_b0265
  article-title: Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics
  publication-title: Energy Fuels
  doi: 10.1021/ef400143z
– volume: 253
  start-page: 910
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0010
  article-title: Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.05.085
– volume: 28
  start-page: 236
  issue: 1
  year: 2014
  ident: 10.1016/j.crcon.2021.10.001_b0105
  article-title: Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals
  publication-title: Energy Fuels
  doi: 10.1021/ef401546n
– volume: 200
  start-page: 106269
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0285
  article-title: Experimental investigation of thermal effect in coal pyrolysis process
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.106269
– volume: 2
  start-page: 217
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0030
  article-title: Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2019.10.001
– volume: 268
  start-page: 117290
  year: 2020
  ident: 10.1016/j.crcon.2021.10.001_b0280
  article-title: Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117290
– volume: 1
  start-page: 228
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0165
  article-title: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2018.10.001
– volume: 172
  start-page: 1
  year: 2016
  ident: 10.1016/j.crcon.2021.10.001_b0205
  article-title: Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.01.007
– volume: 134
  start-page: 283
  year: 2014
  ident: 10.1016/j.crcon.2021.10.001_b0015
  article-title: Preliminary understanding of initial reaction process for sub-bituminous coal pyrolysis with molecular dynamics simulation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.06.005
– volume: 4
  start-page: 19
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0035
  article-title: Thermal behavior of Mongolian low-rank coals during pyrolysis
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2021.01.005
– volume: 25
  start-page: 507
  year: 2017
  ident: 10.1016/j.crcon.2021.10.001_b0110
  article-title: Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor, Chinese
  publication-title: J Chem. Eng.
– volume: 68–69
  start-page: 371
  year: 2003
  ident: 10.1016/j.crcon.2021.10.001_b0175
  article-title: Thermal behaviour during the pyrolysis of low rank perhydrous coals
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(03)00031-7
– volume: 285
  start-page: 119156
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0075
  article-title: High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119156
– volume: 138
  start-page: 147
  year: 2015
  ident: 10.1016/j.crcon.2021.10.001_b0135
  article-title: Pyrolysis in indirectly heated fixed bed with internals: the first application to oil shale
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.05.023
– volume: 18
  start-page: 133
  year: 1992
  ident: 10.1016/j.crcon.2021.10.001_b0170
  article-title: Coal pyrolysis: experiments, kinetic rates and mechanisms
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(92)90021-R
– volume: 218
  start-page: 119553
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0240
  article-title: ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119553
– volume: 241
  start-page: 1129
  issue: 1
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0025
  article-title: Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a sub-bituminous coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.12.093
– volume: 41
  start-page: 510
  year: 1996
  ident: 10.1016/j.crcon.2021.10.001_b0260
  article-title: Visualization of complex hydrocarbon reaction systems
  publication-title: Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem.
– volume: 1
  start-page: 109
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0085
  article-title: Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2018.06.003
– volume: 40
  start-page: 1195
  year: 2009
  ident: 10.1016/j.crcon.2021.10.001_b0225
  article-title: Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.09.001
– volume: 156
  start-page: 105163
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0115
  article-title: Secondary reactions suppression during fuel fast pyrolysis in an infrared heating apparatus for the fixed bed pyrolysis process with internals
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2021.105163
– volume: 213
  start-page: 106662
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0180
  article-title: Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106662
– volume: 7
  start-page: 21467
  issue: 35
  year: 2017
  ident: 10.1016/j.crcon.2021.10.001_b0145
  article-title: Distinctive oil shale pyrolysis behavior in indirectly heated fixed bed with internals
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02347B
– volume: 25
  start-page: 5242
  issue: 11
  year: 2011
  ident: 10.1016/j.crcon.2021.10.001_b0055
  article-title: Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer
  publication-title: Energy Fuels
  doi: 10.1021/ef2012276
– volume: 4
  start-page: 10
  year: 2021
  ident: 10.1016/j.crcon.2021.10.001_b0045
  article-title: Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2021.01.001
– volume: 140
  start-page: 321
  year: 2019
  ident: 10.1016/j.crcon.2021.10.001_b0100
  article-title: Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2019.04.009
– volume: 104
  start-page: 618
  year: 2013
  ident: 10.1016/j.crcon.2021.10.001_b0230
  article-title: ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2013.05.005
– volume: 109
  start-page: 79
  year: 2014
  ident: 10.1016/j.crcon.2021.10.001_b0245
  article-title: Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.07.011
– volume: 233
  start-page: 685
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0125
  article-title: CFD modeling of coal pyrolysis in externally heated fixed-bed reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.06.100
– volume: 208
  start-page: 1527
  year: 2017
  ident: 10.1016/j.crcon.2021.10.001_b0080
  article-title: Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.227
– volume: 148
  start-page: 248
  year: 2016
  ident: 10.1016/j.crcon.2021.10.001_b0140
  article-title: Oil shale pyrolysis in indirectly heated fixed bed with internals under reduced pressure
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.02.033
– volume: 116
  start-page: 85
  issue: 116
  year: 2013
  ident: 10.1016/j.crcon.2021.10.001_b0185
  article-title: A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.04.026
– volume: 178
  start-page: 197
  year: 2018
  ident: 10.1016/j.crcon.2021.10.001_b0250
  article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.05.011
SSID ssj0002810149
Score 2.182279
Snippet [Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is...
ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 230
SubjectTerms Primary formation
Reaction paths
ReaxFF MD simulation
Secondary upgrading
Sub-bituminous coal pyrolysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9NOmLbmiDDj3Wy1qWJeuYli6hh1BKF9KTkaURuN31LmubNjnnh3cky0u2lJDigx_oxWjk-cYefUPIuyoViiEcSipZqIRDNk-UNSZB46Uzx4yVNkT5XoqLJf98lV9Fnm2_F-bg_32IwzI77xiij57OQhgWujpHIkfgPSFHy8sv5999-ri88Ms2y0ZeoX_XPLA9gaL_wAQ97putvv6lV6s7JmZxPOzdbgMzoY8s-Tnru2pmbv7ibXzg6E_I0wg16fmgG8_II2iekyd3CAhfkNuvoH8vFnQ9JsmldshQT9t6HRN70Y2j24GTgurG0ta70NbfId4MuyJaWjf4lvOfJvCKtj3OSd3169rTv1KzwUFsr3ebQH5CESTTDjvaDlSzWP0lWS4-fft4kcS8DInhKe8Sy8zcMTycKoQDLjWfOyUK4DxXWoDTNhW5rByD1BqZSSVzy9D3AYflECS8IpNm08BrQguFrYBVQgO2jSfpUgsWnKoQiRk1JWycsdJE0nKfO2NVjtFpP8og4tKL2D9EEU_J-32lKJ_7i3_wqrAv6gm3wwOcyTKu3xLVVgrPxIOWhRsOheZVNWfghC4YBz4lYlSkMmKXAZNgU_X9vSd7tXvIaE__s_wbMul2PbxF6NRVZ3HJ_AE7xBoy
  priority: 102
  providerName: Unpaywall
Title ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production
URI https://dx.doi.org/10.1016/j.crcon.2021.10.001
https://doi.org/10.1016/j.crcon.2021.10.001
https://doaj.org/article/f2c7651951464c4e8a4bb02ef6a824e4
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2588-9133
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810149
  issn: 2588-9133
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2588-9133
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810149
  issn: 2588-9133
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQewAOq-Ulug_kA0cCiePY8ZFdbYU4IISoBKfIscdSUJtWbSrgvj98x05SlQtwQDkkseyx5bEz31iTbwg5KROhGMKhqJS5ijikcaSsMREaL506Zqy0Icr3WlyO-NV9dr-W6svHhLX0wO3EnWN9KTwFCm5pbjjkmpdlzMAJnTMOgQk0ztWaM_UYjox8DlqPfVmW-x2dpj3lUAjuMnPvbaLjn5yF2K7klVkK7P2vrNPWsp7plyc9Hq9Zn-E38rWDjfSiHe4u2YB6j-yskQnuk3-3oJ-HQzrpE95S22abp4tq0iXpolNHZy2_BNW1pQvvDlv_htgx_OGwoFWNXyx_zIBPdLHE-a2a5aTyVK7UTHEQs5f5NBCZUAS8tMGOZi1tLDY_IKPh37s_l1GXYyEyPOFNZJmJHcPLqVw44FLz2CmRA-eZ0gKctonIZOkYJNbIVCqZWYZ-DDishwb_kGzW0xqOCM0VSgGrhAaUjTfpEgsWnCoRVRk1IKyf4sJ0BOQ-D8a46CPNHougl8LrxReiXgbkdNWom5-3q__2ultV9eTZoQCXVNEtqeK9JTUgotd80eGQFl-gqOrt3qPVOvnIaL9_xmh_kG0vsj0W-kk2m_kSfiFQasrjsCeOyZfR9c3Fw39EzBPJ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9NOmLbmiDDj3Wy1qWJeuYli6hh1BKF9KTkaURuN31LmubNjnnh3cky0u2lJDigx_oxWjk-cYefUPIuyoViiEcSipZqIRDNk-UNSZB46Uzx4yVNkT5XoqLJf98lV9Fnm2_F-bg_32IwzI77xiij57OQhgWujpHIkfgPSFHy8sv5999-ri88Ms2y0ZeoX_XPLA9gaL_wAQ97putvv6lV6s7JmZxPOzdbgMzoY8s-Tnru2pmbv7ibXzg6E_I0wg16fmgG8_II2iekyd3CAhfkNuvoH8vFnQ9JsmldshQT9t6HRN70Y2j24GTgurG0ta70NbfId4MuyJaWjf4lvOfJvCKtj3OSd3169rTv1KzwUFsr3ebQH5CESTTDjvaDlSzWP0lWS4-fft4kcS8DInhKe8Sy8zcMTycKoQDLjWfOyUK4DxXWoDTNhW5rByD1BqZSSVzy9D3AYflECS8IpNm08BrQguFrYBVQgO2jSfpUgsWnKoQiRk1JWycsdJE0nKfO2NVjtFpP8og4tKL2D9EEU_J-32lKJ_7i3_wqrAv6gm3wwOcyTKu3xLVVgrPxIOWhRsOheZVNWfghC4YBz4lYlSkMmKXAZNgU_X9vSd7tXvIaE__s_wbMul2PbxF6NRVZ3HJ_AE7xBoy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReaxFF+molecular+dynamic+simulation+of+primary+and+secondary+reactions+involving+in+sub-bituminous+coal+pyrolysis+for+tar+production&rft.jtitle=Carbon+resources+conversion&rft.au=Qian%2C+Yanan&rft.au=Zhan%2C+Jin-Hui&rft.au=Xu%2C+Wei&rft.au=Han%2C+Zhennan&rft.date=2021&rft.issn=2588-9133&rft.eissn=2588-9133&rft.volume=4&rft.spage=230&rft.epage=238&rft_id=info:doi/10.1016%2Fj.crcon.2021.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_crcon_2021_10_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2588-9133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2588-9133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2588-9133&client=summon