ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production
[Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed. ReaxFF mo...
Saved in:
| Published in | Carbon resources conversion Vol. 4; pp. 230 - 238 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2021
KeAi Communications Co., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2588-9133 2588-9133 |
| DOI | 10.1016/j.crcon.2021.10.001 |
Cover
| Abstract | [Display omitted]
•ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed.
ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products. |
|---|---|
| AbstractList | ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products. [Display omitted] •ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is clarified between bond breakage and products generation.•The primary generation and secondary upgrading mechanisms of tar are revealed. ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary and secondary reactions involving in tar formation of sub-bituminous coal pyrolysis. Quantitative relationship at atomic level is clarified between bond breakage of functional groups and products generation, revealing that the amount and order in forming each product are subject to the number of corresponding functional groups and their bond energies respectively. The primary breakage of –C–O– and –C–C– bridge-bonds present in initial coal macromolecular generates molecular of heavy tar, whereas heavy tar can be converted into light tar through cracking side chain of aromatic rings and cyclic hydrocarbons at increased pyrolysis temperatures. At very high temperatures the cracking of short-chain hydrocarbons and residual atoms connecting to aromatic rings further occurs to generate light tar and gas. The remaining aromatic-ring fragments of heavy tar are likely cross-linked to form char. Furthermore, the simultaneous evolution tendency of tar yield and tar quality under different pyrolysis temperatures and heating rates is obtained at molecular level. For obtaining high yield and quality of tar, appropriately high temperature as well as suitable heating rate are needed to compromise the high yield of primary tar and high quality of secondarily upgraded products. |
| Author | Liu, Xiaoxing Xu, Guangwen Han, Zhennan Xu, Wei Qian, Yanan Zhan, Jin-Hui |
| Author_xml | – sequence: 1 givenname: Yanan surname: Qian fullname: Qian, Yanan email: qianyn.qday@sinopec.com organization: State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China – sequence: 2 givenname: Jin-Hui surname: Zhan fullname: Zhan, Jin-Hui organization: State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Wei surname: Xu fullname: Xu, Wei organization: State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China – sequence: 4 givenname: Zhennan surname: Han fullname: Han, Zhennan organization: Key Laboratory on Resources Chemicals and Materials of Ministry of Education of China, Shenyang University of Chemical Technology, Shenyang 110142, China – sequence: 5 givenname: Xiaoxing surname: Liu fullname: Liu, Xiaoxing organization: State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Guangwen surname: Xu fullname: Xu, Guangwen email: gwxu@syuct.edu.cn organization: Key Laboratory on Resources Chemicals and Materials of Ministry of Education of China, Shenyang University of Chemical Technology, Shenyang 110142, China |
| BookMark | eNqNkc-KFDEQxoOs4LruE3jJC_SYpNP_Dh5kcXRhQRA9h-qksmRIJ0PSPdp3H9z0zCLiQSWHVBX1-4qq7yW5CjEgIa8523HG2zeHnU46hp1ggpfKjjH-jFyLpu-rgdf11W_xC3Kb84ExJvqCyuGa_PiM8H2_p1P0qBcPiZo1wOQ0zW4q-exioNHSY3ITpJVCMDRjGWe2LCHorSNTF07Rn1x4LBHNy1iNbl4mF-KSqY7g6XFN0a_ZZWpjonMZdEzRLGf8FXluwWe8ffpvyNf9-y93H6uHTx_u7949VFpyOVdGaGZFeXboW4uyA8ns0PYoZTNAixYMb5tutAK50V3dDV1jhOAd2tLHRH1D7i-6JsJBPa2kIjh1LsT0qCDNTntUVuiubfjQcNlKLbEHOY5MoG2hFxJl0ZIXrSUcYf0G3v8S5ExtxqiDOhujNmO2YjGmYMMF0ynmnNAq7ebzlecEzv-Drf9g_2_i2wuF5bInh0ll7TBoNC6hnsvq7q_8T8cEwRo |
| CitedBy_id | crossref_primary_10_1016_j_crcon_2024_100296 crossref_primary_10_1021_acsomega_3c01321 crossref_primary_10_1016_j_jaap_2025_107042 crossref_primary_10_1016_j_tca_2023_179522 crossref_primary_10_1016_j_energy_2024_131735 |
| Cites_doi | 10.1016/j.fuproc.2013.04.022 10.1016/j.fuel.2014.05.064 10.1016/j.fuel.2020.119341 10.1016/j.fuproc.2018.06.019 10.1021/jp709896w 10.1016/j.ces.2018.12.064 10.1021/ef501923f 10.1016/j.ijhydene.2016.05.106 10.1016/j.fuel.2011.11.025 10.1021/ef9901490 10.1016/j.fuproc.2017.01.005 10.1016/j.fuel.2019.115926 10.1016/j.fuel.2015.07.068 10.1016/j.fuel.2020.118844 10.1016/j.fuel.2016.01.052 10.1016/j.fuproc.2017.06.029 10.1021/jp004368u 10.1016/j.jaap.2020.104833 10.1021/ef00034a011 10.1016/j.enconman.2020.113065 10.1016/j.psep.2020.12.036 10.1016/j.crcon.2020.11.002 10.1016/j.jaap.2018.03.007 10.1021/ef400143z 10.1016/j.fuel.2019.05.085 10.1021/ef401546n 10.1016/j.fuproc.2019.106269 10.1016/j.crcon.2019.10.001 10.1016/j.fuel.2020.117290 10.1016/j.crcon.2018.10.001 10.1016/j.fuel.2016.01.007 10.1016/j.fuel.2014.06.005 10.1016/j.crcon.2021.01.005 10.1016/S0165-2370(03)00031-7 10.1016/j.fuel.2020.119156 10.1016/j.fuproc.2015.05.023 10.1016/0360-1285(92)90021-R 10.1016/j.energy.2020.119553 10.1016/j.fuel.2018.12.093 10.1016/j.crcon.2018.06.003 10.1016/j.orggeochem.2009.09.001 10.1016/j.jaap.2021.105163 10.1016/j.fuproc.2020.106662 10.1039/C7RA02347B 10.1021/ef2012276 10.1016/j.crcon.2021.01.001 10.1016/j.jaap.2019.04.009 10.1016/j.jaap.2013.05.005 10.1016/j.jaap.2014.07.011 10.1016/j.fuel.2018.06.100 10.1016/j.apenergy.2017.08.227 10.1016/j.fuproc.2016.02.033 10.1016/j.fuproc.2013.04.026 10.1016/j.fuproc.2018.05.011 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.crcon.2021.10.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2588-9133 |
| EndPage | 238 |
| ExternalDocumentID | oai_doaj_org_article_f2c7651951464c4e8a4bb02ef6a824e4 10.1016/j.crcon.2021.10.001 10_1016_j_crcon_2021_10_001 S2588913321000351 |
| GroupedDBID | 0R~ 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV ADMLS ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c414t-d2c0f2f2ff986fe47a40f968e4459a6efad1657bf2e1dc737975d2217ef0f9023 |
| IEDL.DBID | DOA |
| ISSN | 2588-9133 |
| IngestDate | Fri Oct 03 12:46:02 EDT 2025 Tue Aug 19 21:25:06 EDT 2025 Thu Apr 24 22:53:36 EDT 2025 Tue Jul 01 02:58:11 EDT 2025 Sun Apr 06 06:54:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Primary formation ReaxFF MD simulation Sub-bituminous coal pyrolysis Secondary upgrading Reaction paths |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-d2c0f2f2ff986fe47a40f968e4459a6efad1657bf2e1dc737975d2217ef0f9023 |
| OpenAccessLink | https://doaj.org/article/f2c7651951464c4e8a4bb02ef6a824e4 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f2c7651951464c4e8a4bb02ef6a824e4 unpaywall_primary_10_1016_j_crcon_2021_10_001 crossref_citationtrail_10_1016_j_crcon_2021_10_001 crossref_primary_10_1016_j_crcon_2021_10_001 elsevier_sciencedirect_doi_10_1016_j_crcon_2021_10_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021 2021-00-00 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Carbon resources conversion |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Zhang, Zhao, Linghu, Wang, Zhang (b0030) 2019; 2 Chenoweth, van Duin, Goddard (b0215) 2008; 112 Baerends (b0270) 2013 Qian, Zhan, Yu, Xu, Liu (b0130) 2019; 200 Wang, Li, Zhou, Zhang, Yang, Wang (b0285) 2020; 200 Qian, Yu, Xu, Liu (b0125) 2018; 233 Wang, Zeng, Kang, Li, Ma, Xu (b0115) 2021; 156 Zeng, Wang, Yu, Wu, Han, Xu, Xu (b0055) 2011; 25 van Duin, Dasgupta, Lorant, Goddard (b0210) 2001; 105 Niu, Liu, Yin, Wu, Zhou (b0205) 2016; 172 Fushimi, Okuyama, Kobayashi, Koyama, Tanimura, Fukushima, Thangavel, Matsuoka (b0065) 2017; 167 Hayashi, Takahashi, Doi, Kumagai, Chiba, Yoshida, Tsutsumi (b0020) 2000; 14 He, Liu, Liu, Ci, Lievens, Guo (b0095) 2014; 134 Lai, Zhang, Xu (b0160) 2017; 158 Xu, Hu, Zhang, Li, Chen, Xiong, Xu, Jiang, Wang, Su, Xiang (b0180) 2021; 213 Dong, Han, Yu, Lei, Kang, Zhang, Yan, Li, Shui, Wang, Ren, Pan (b0100) 2019; 140 Fletcher, Kerstein, Pugmire, Solum, Grant (b0195) 1992; 6 Alyeksandr, Bai, Bai, Janchig, Barnasan, Feng, Hou, He (b0035) 2021; 4 Zhong, Mao, Xiao, van Duin, Mathews (b0275) 2018; 132 Diao, Zhao, Chen, Duan, Song (b0230) 2013; 104 Wang, Chen, Li, Wang, Li, Yang, Liu, Yu, Gao (b0075) 2021; 285 Konwar, Nath, Bhuyan, Saikia, Borah, Kalita, Saikia (b0290) 2019; 256 Eckhard, Wütscher, Muhler (b0190) 2020; 149 Zheng, Li, Wang, Guo (b0010) 2019; 253 Han, Geng, Zeng, Xu, An, Cheng, Yang, Li, Zhang, Liu, Guan, Xu (b0085) 2018; 1 Lai, Chen, Shi, Lin, Zhan, Gao, Xu (b0150) 2015; 159 Yan, Yang, Zhang, Lei, Li, Wang, Ren, Kang, Shui (b0040) 2020; 3 Zhang, Wu, Xu (b0105) 2014; 28 Qian, Zhan, Lai, Li, Liu, Xu (b0235) 2016; 41 Castro-Marcano, Russo, van Duin, Mathews (b0245) 2014; 109 Gao, Li, Guo (b0250) 2018; 178 Cheng, Lai, Shi, Hong, Zhang, Zeng, Gao, Xu (b0110) 2017; 25 Arenillas, Rubiera, Pis, Cuesta, Iglesias, Jiménez, Suárez-Ruiz (b0175) 2003; 68–69 Zheng, Pan, Wang, Li, Guo (b0280) 2020; 268 Wang, Fan, Dong, Bai, Kuznetsov, Liang, Liu, Wei (b0005) 2020; 282 Bai, Xu, Zhang, Zhong, Zhang (b0050) 2011; 36 Mathews, Chaffee (b0255) 2012; 96 Zheng, Li, Liu, Guo (b0265) 2013; 27 Chen, Gao, Xu (b0080) 2017; 208 Lin, Lai, Shi, Han, Xu (b0145) 2017; 7 Jin, Zhao, Wang, Wei, Hu (b0025) 2019; 241 Lievens, Ci, Bai, Ma, Zhang, Chen, Gai, Long, Guo (b0185) 2013; 116 Lin, Zhang, Li, Lai, Xu (b0135) 2015; 138 Solomon, Serio, Suuberg (b0170) 1992; 18 Siramard, Lin, Zhang, Lai, Cheng, Xu (b0140) 2016; 148 Salmon, van Duin, Lorant, Marquaire, Goddard (b0225) 2009; 40 Hong, Li, Si, Guo (b0240) 2021; 218 Chen, Wang, Li, Yang, Wang, Lai, Yu, Gao (b0070) 2020; 220 Xu, Lai, Zeng, Zhang, Han, Cheng, Wu, Mašek, Xu (b0165) 2018; 1 Qian, Xu, Zhan, Jia, Zhang (b0220) 2021; 147 Zhang, Wu, Hu, Liu, Xu (b0120) 2014; 28 Chen, Wang, Yang, Zhang, Li, Li, Yu, Gao (b0045) 2021; 4 Shinn (b0260) 1996; 41 Zhan, Wu, Liu, Gao, Xu (b0015) 2014; 134 Fan, Zhang, Li, Xu, Wu, Yang (b0090) 2021; 286 Zhou, Zou, Zhong, Zhang, Wu, Gao, Xu (b0060) 2013; 116 Lai, Shi, Geng, Chen, Gao, Zhan, Xu (b0155) 2016; 173 Tian, Qiao, Lin, Jiang, Xu, Ma, Tian (b0200) 2018; 179 Xu (10.1016/j.crcon.2021.10.001_b0180) 2021; 213 Wang (10.1016/j.crcon.2021.10.001_b0075) 2021; 285 Fushimi (10.1016/j.crcon.2021.10.001_b0065) 2017; 167 Zhang (10.1016/j.crcon.2021.10.001_b0120) 2014; 28 Zeng (10.1016/j.crcon.2021.10.001_b0055) 2011; 25 Fletcher (10.1016/j.crcon.2021.10.001_b0195) 1992; 6 Zhang (10.1016/j.crcon.2021.10.001_b0105) 2014; 28 Gao (10.1016/j.crcon.2021.10.001_b0250) 2018; 178 Zheng (10.1016/j.crcon.2021.10.001_b0280) 2020; 268 Lai (10.1016/j.crcon.2021.10.001_b0155) 2016; 173 Hong (10.1016/j.crcon.2021.10.001_b0240) 2021; 218 Eckhard (10.1016/j.crcon.2021.10.001_b0190) 2020; 149 Chen (10.1016/j.crcon.2021.10.001_b0080) 2017; 208 Qian (10.1016/j.crcon.2021.10.001_b0125) 2018; 233 Diao (10.1016/j.crcon.2021.10.001_b0230) 2013; 104 Yan (10.1016/j.crcon.2021.10.001_b0040) 2020; 3 Wang (10.1016/j.crcon.2021.10.001_b0005) 2020; 282 Jin (10.1016/j.crcon.2021.10.001_b0025) 2019; 241 Tian (10.1016/j.crcon.2021.10.001_b0200) 2018; 179 Niu (10.1016/j.crcon.2021.10.001_b0205) 2016; 172 Chenoweth (10.1016/j.crcon.2021.10.001_b0215) 2008; 112 Zhan (10.1016/j.crcon.2021.10.001_b0015) 2014; 134 Lin (10.1016/j.crcon.2021.10.001_b0135) 2015; 138 Lai (10.1016/j.crcon.2021.10.001_b0150) 2015; 159 Hayashi (10.1016/j.crcon.2021.10.001_b0020) 2000; 14 Dong (10.1016/j.crcon.2021.10.001_b0100) 2019; 140 Mathews (10.1016/j.crcon.2021.10.001_b0255) 2012; 96 Zhong (10.1016/j.crcon.2021.10.001_b0275) 2018; 132 Qian (10.1016/j.crcon.2021.10.001_b0220) 2021; 147 Chen (10.1016/j.crcon.2021.10.001_b0045) 2021; 4 Bai (10.1016/j.crcon.2021.10.001_b0050) 2011; 36 Fan (10.1016/j.crcon.2021.10.001_b0090) 2021; 286 Han (10.1016/j.crcon.2021.10.001_b0085) 2018; 1 Zheng (10.1016/j.crcon.2021.10.001_b0010) 2019; 253 Qian (10.1016/j.crcon.2021.10.001_b0130) 2019; 200 Konwar (10.1016/j.crcon.2021.10.001_b0290) 2019; 256 Lievens (10.1016/j.crcon.2021.10.001_b0185) 2013; 116 Lai (10.1016/j.crcon.2021.10.001_b0160) 2017; 158 Castro-Marcano (10.1016/j.crcon.2021.10.001_b0245) 2014; 109 Alyeksandr (10.1016/j.crcon.2021.10.001_b0035) 2021; 4 Chen (10.1016/j.crcon.2021.10.001_b0070) 2020; 220 Salmon (10.1016/j.crcon.2021.10.001_b0225) 2009; 40 Wang (10.1016/j.crcon.2021.10.001_b0115) 2021; 156 Qian (10.1016/j.crcon.2021.10.001_b0235) 2016; 41 Solomon (10.1016/j.crcon.2021.10.001_b0170) 1992; 18 Shinn (10.1016/j.crcon.2021.10.001_b0260) 1996; 41 Zhang (10.1016/j.crcon.2021.10.001_b0030) 2019; 2 van Duin (10.1016/j.crcon.2021.10.001_b0210) 2001; 105 Zhou (10.1016/j.crcon.2021.10.001_b0060) 2013; 116 Baerends (10.1016/j.crcon.2021.10.001_b0270) 2013 Zheng (10.1016/j.crcon.2021.10.001_b0265) 2013; 27 Siramard (10.1016/j.crcon.2021.10.001_b0140) 2016; 148 Cheng (10.1016/j.crcon.2021.10.001_b0110) 2017; 25 Xu (10.1016/j.crcon.2021.10.001_b0165) 2018; 1 He (10.1016/j.crcon.2021.10.001_b0095) 2014; 134 Arenillas (10.1016/j.crcon.2021.10.001_b0175) 2003; 68–69 Lin (10.1016/j.crcon.2021.10.001_b0145) 2017; 7 Wang (10.1016/j.crcon.2021.10.001_b0285) 2020; 200 |
| References_xml | – volume: 178 start-page: 197 year: 2018 end-page: 205 ident: b0250 article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics publication-title: Fuel Process. Technol. – volume: 132 start-page: 134 year: 2018 end-page: 142 ident: b0275 article-title: Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations publication-title: J. Anal. Appl. Pyrolysis – volume: 25 start-page: 5242 year: 2011 end-page: 5249 ident: b0055 article-title: Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer publication-title: Energy Fuels – volume: 68–69 start-page: 371 year: 2003 end-page: 385 ident: b0175 article-title: Thermal behaviour during the pyrolysis of low rank perhydrous coals publication-title: J. Anal. Appl. Pyrolysis – volume: 208 start-page: 1527 year: 2017 end-page: 1537 ident: b0080 article-title: Simultaneous production of CH publication-title: Appl. Energy – volume: 213 start-page: 106662 year: 2021 ident: b0180 article-title: Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation publication-title: Fuel Process. Technol. – volume: 253 start-page: 910 year: 2019 end-page: 920 ident: b0010 article-title: Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation publication-title: Fuel – volume: 172 start-page: 1 year: 2016 end-page: 10 ident: b0205 article-title: Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR publication-title: Fuel – volume: 116 start-page: 85 year: 2013 end-page: 93 ident: b0185 article-title: A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS publication-title: Fuel Process. Technol. – volume: 112 start-page: 1040 year: 2008 end-page: 1053 ident: b0215 article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation publication-title: J. Phys. Chem. A – volume: 158 start-page: 191 year: 2017 end-page: 198 ident: b0160 article-title: Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals publication-title: Fuel Process. Technol. – volume: 41 start-page: 12093 year: 2016 end-page: 12100 ident: b0235 article-title: Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation publication-title: Int. J. Hydrogen Energy – volume: 148 start-page: 248 year: 2016 end-page: 255 ident: b0140 article-title: Oil shale pyrolysis in indirectly heated fixed bed with internals under reduced pressure publication-title: Fuel Process. Technol. – volume: 1 start-page: 228 year: 2018 end-page: 237 ident: b0165 article-title: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals publication-title: Carbon Resour. Convers. – volume: 134 start-page: 375 year: 2014 end-page: 380 ident: b0095 article-title: Behaviors of radical fragments in tar generated from pyrolysis of 4 coals publication-title: Fuel – volume: 233 start-page: 685 year: 2018 end-page: 694 ident: b0125 article-title: CFD modeling of coal pyrolysis in externally heated fixed-bed reactor publication-title: Fuel – volume: 105 start-page: 9396 year: 2001 end-page: 9409 ident: b0210 article-title: ReaxFF: a reactive force field for hydrocarbons publication-title: J. Phys. Chem. A – volume: 156 start-page: 105163 year: 2021 ident: b0115 article-title: Secondary reactions suppression during fuel fast pyrolysis in an infrared heating apparatus for the fixed bed pyrolysis process with internals publication-title: J. Anal. Appl. Pyrolysis – volume: 2 start-page: 217 year: 2019 end-page: 224 ident: b0030 article-title: Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer publication-title: Carbon Resour. Convers. – volume: 173 start-page: 138 year: 2016 end-page: 145 ident: b0155 article-title: Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals publication-title: Fuel – volume: 6 start-page: 414 year: 1992 end-page: 431 ident: b0195 article-title: Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type publication-title: Energy Fuels – volume: 18 start-page: 133 year: 1992 end-page: 220 ident: b0170 article-title: Coal pyrolysis: experiments, kinetic rates and mechanisms publication-title: Prog. Energy Combust. Sci. – volume: 200 start-page: 1 year: 2019 end-page: 11 ident: b0130 article-title: CFD model of coal pyrolysis in fixed bed reactor publication-title: Chem. Eng. Sci. – volume: 4 start-page: 10 year: 2021 end-page: 18 ident: b0045 article-title: Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal publication-title: Carbon Resour. Convers. – volume: 40 start-page: 1195 year: 2009 end-page: 1209 ident: b0225 article-title: Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures publication-title: Org. Geochem. – volume: 27 start-page: 2942 year: 2013 end-page: 2951 ident: b0265 article-title: Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics publication-title: Energy Fuels – volume: 41 start-page: 510 year: 1996 end-page: 515 ident: b0260 article-title: Visualization of complex hydrocarbon reaction systems publication-title: Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. – volume: 36 start-page: 114 year: 2011 end-page: 117 ident: b0050 article-title: Effect of pyrolysis conditions on Shenmu long flame coal for tar by inner-heated rotary bed publication-title: J. China Coal Soc. – volume: 282 start-page: 118844 year: 2020 ident: b0005 article-title: Insights into the structural characteristics of four thermal dissolution extracts of a subbituminous coal by using higher-energy collisional dissociation publication-title: Fuel – volume: 220 start-page: 113065 year: 2020 ident: b0070 article-title: A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar publication-title: Energy Convers. Manage. – volume: 1 start-page: 109 year: 2018 end-page: 125 ident: b0085 article-title: Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed publication-title: Carbon Resour. Convers. – volume: 286 start-page: 119341 year: 2021 ident: b0090 article-title: Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: distribution and characteristics of products publication-title: Fuel – volume: 14 start-page: 400 year: 2000 end-page: 408 ident: b0020 article-title: Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield publication-title: Energy Fuels – volume: 285 start-page: 119156 year: 2021 ident: b0075 article-title: High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed publication-title: Fuel – year: 2013 ident: b0270 article-title: ADF2013, SCM, Theoretical chemistry – volume: 179 start-page: 99 year: 2018 end-page: 107 ident: b0200 article-title: Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis publication-title: Fuel Process. Technol. – volume: 147 start-page: 578 year: 2021 end-page: 588 ident: b0220 article-title: Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: combining ReaxFF MD and DFT methods publication-title: Process Saf. Environ. – volume: 159 start-page: 943 year: 2015 end-page: 951 ident: b0150 article-title: Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals publication-title: Fuel – volume: 167 start-page: 136 year: 2017 end-page: 145 ident: b0065 article-title: Pyrolysis of low-rank coal with heat-carrying particles in a downer reactor publication-title: Fuel Process. Technol. – volume: 138 start-page: 147 year: 2015 end-page: 155 ident: b0135 article-title: Pyrolysis in indirectly heated fixed bed with internals: the first application to oil shale publication-title: Fuel Process. Technol. – volume: 3 start-page: 173 year: 2020 end-page: 181 ident: b0040 article-title: Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods publication-title: Carbon Resour. Convers. – volume: 4 start-page: 19 year: 2021 end-page: 27 ident: b0035 article-title: Thermal behavior of Mongolian low-rank coals during pyrolysis publication-title: Carbon Resour. Convers. – volume: 268 start-page: 117290 year: 2020 ident: b0280 article-title: Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments publication-title: Fuel – volume: 25 start-page: 507 year: 2017 end-page: 515 ident: b0110 article-title: Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor, Chinese publication-title: J Chem. Eng. – volume: 134 start-page: 283 year: 2014 end-page: 292 ident: b0015 article-title: Preliminary understanding of initial reaction process for sub-bituminous coal pyrolysis with molecular dynamics simulation publication-title: Fuel – volume: 109 start-page: 79 year: 2014 end-page: 89 ident: b0245 article-title: Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field publication-title: J. Anal. Appl. Pyrolysis – volume: 28 start-page: 236 year: 2014 end-page: 244 ident: b0105 article-title: Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals publication-title: Energy Fuels – volume: 256 start-page: 115926 year: 2019 ident: b0290 article-title: Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal publication-title: Fuel – volume: 140 start-page: 321 year: 2019 end-page: 330 ident: b0100 article-title: Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal publication-title: J. Anal. Appl. Pyrolysis – volume: 218 start-page: 119553 year: 2021 ident: b0240 article-title: ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene publication-title: Energy – volume: 104 start-page: 618 year: 2013 end-page: 624 ident: b0230 article-title: ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound publication-title: J. Anal. Appl. Pyrolysis – volume: 7 start-page: 21467 year: 2017 end-page: 21474 ident: b0145 article-title: Distinctive oil shale pyrolysis behavior in indirectly heated fixed bed with internals publication-title: RSC Adv. – volume: 241 start-page: 1129 year: 2019 end-page: 1137 ident: b0025 article-title: Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a sub-bituminous coal publication-title: Fuel – volume: 116 start-page: 35 year: 2013 end-page: 43 ident: b0060 article-title: Lignite upgrading by multistage fluidized bed pyrolysis publication-title: Fuel Process. Technol. – volume: 28 start-page: 7294 year: 2014 end-page: 7302 ident: b0120 article-title: Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals publication-title: Energy Fuels – volume: 149 start-page: 104833 year: 2020 ident: b0190 article-title: Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis-GC/MS-GC/TCD publication-title: J. Anal. Appl. Pyrolysis – volume: 96 start-page: 1 year: 2012 end-page: 14 ident: b0255 article-title: The molecular representations of coal-a review publication-title: Fuel – volume: 200 start-page: 106269 year: 2020 ident: b0285 article-title: Experimental investigation of thermal effect in coal pyrolysis process publication-title: Fuel Process. Technol. – volume: 116 start-page: 35 year: 2013 ident: 10.1016/j.crcon.2021.10.001_b0060 article-title: Lignite upgrading by multistage fluidized bed pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.04.022 – volume: 134 start-page: 375 year: 2014 ident: 10.1016/j.crcon.2021.10.001_b0095 article-title: Behaviors of radical fragments in tar generated from pyrolysis of 4 coals publication-title: Fuel doi: 10.1016/j.fuel.2014.05.064 – volume: 286 start-page: 119341 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0090 article-title: Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: distribution and characteristics of products publication-title: Fuel doi: 10.1016/j.fuel.2020.119341 – volume: 179 start-page: 99 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0200 article-title: Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.06.019 – volume: 112 start-page: 1040 year: 2008 ident: 10.1016/j.crcon.2021.10.001_b0215 article-title: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation publication-title: J. Phys. Chem. A doi: 10.1021/jp709896w – volume: 200 start-page: 1 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0130 article-title: CFD model of coal pyrolysis in fixed bed reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.12.064 – volume: 28 start-page: 7294 year: 2014 ident: 10.1016/j.crcon.2021.10.001_b0120 article-title: Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals publication-title: Energy Fuels doi: 10.1021/ef501923f – volume: 41 start-page: 12093 year: 2016 ident: 10.1016/j.crcon.2021.10.001_b0235 article-title: Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.106 – volume: 96 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.crcon.2021.10.001_b0255 article-title: The molecular representations of coal-a review publication-title: Fuel doi: 10.1016/j.fuel.2011.11.025 – year: 2013 ident: 10.1016/j.crcon.2021.10.001_b0270 – volume: 14 start-page: 400 issue: 2 year: 2000 ident: 10.1016/j.crcon.2021.10.001_b0020 article-title: Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield publication-title: Energy Fuels doi: 10.1021/ef9901490 – volume: 158 start-page: 191 year: 2017 ident: 10.1016/j.crcon.2021.10.001_b0160 article-title: Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.01.005 – volume: 256 start-page: 115926 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0290 article-title: Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal publication-title: Fuel doi: 10.1016/j.fuel.2019.115926 – volume: 159 start-page: 943 year: 2015 ident: 10.1016/j.crcon.2021.10.001_b0150 article-title: Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals publication-title: Fuel doi: 10.1016/j.fuel.2015.07.068 – volume: 282 start-page: 118844 issue: 15 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0005 article-title: Insights into the structural characteristics of four thermal dissolution extracts of a subbituminous coal by using higher-energy collisional dissociation publication-title: Fuel doi: 10.1016/j.fuel.2020.118844 – volume: 173 start-page: 138 year: 2016 ident: 10.1016/j.crcon.2021.10.001_b0155 article-title: Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals publication-title: Fuel doi: 10.1016/j.fuel.2016.01.052 – volume: 167 start-page: 136 year: 2017 ident: 10.1016/j.crcon.2021.10.001_b0065 article-title: Pyrolysis of low-rank coal with heat-carrying particles in a downer reactor publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.06.029 – volume: 105 start-page: 9396 year: 2001 ident: 10.1016/j.crcon.2021.10.001_b0210 article-title: ReaxFF: a reactive force field for hydrocarbons publication-title: J. Phys. Chem. A doi: 10.1021/jp004368u – volume: 36 start-page: 114 issue: 4 year: 2011 ident: 10.1016/j.crcon.2021.10.001_b0050 article-title: Effect of pyrolysis conditions on Shenmu long flame coal for tar by inner-heated rotary bed publication-title: J. China Coal Soc. – volume: 149 start-page: 104833 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0190 article-title: Simultaneous analysis of light gases and heavy pyrolyzates evolved from lignite and hard coal by pyrolysis-GC/MS-GC/TCD publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2020.104833 – volume: 6 start-page: 414 year: 1992 ident: 10.1016/j.crcon.2021.10.001_b0195 article-title: Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type publication-title: Energy Fuels doi: 10.1021/ef00034a011 – volume: 220 start-page: 113065 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0070 article-title: A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113065 – volume: 147 start-page: 578 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0220 article-title: Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: combining ReaxFF MD and DFT methods publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2020.12.036 – volume: 3 start-page: 173 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0040 article-title: Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2020.11.002 – volume: 132 start-page: 134 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0275 article-title: Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.03.007 – volume: 27 start-page: 2942 issue: 6 year: 2013 ident: 10.1016/j.crcon.2021.10.001_b0265 article-title: Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics publication-title: Energy Fuels doi: 10.1021/ef400143z – volume: 253 start-page: 910 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0010 article-title: Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation publication-title: Fuel doi: 10.1016/j.fuel.2019.05.085 – volume: 28 start-page: 236 issue: 1 year: 2014 ident: 10.1016/j.crcon.2021.10.001_b0105 article-title: Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals publication-title: Energy Fuels doi: 10.1021/ef401546n – volume: 200 start-page: 106269 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0285 article-title: Experimental investigation of thermal effect in coal pyrolysis process publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106269 – volume: 2 start-page: 217 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0030 article-title: Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2019.10.001 – volume: 268 start-page: 117290 year: 2020 ident: 10.1016/j.crcon.2021.10.001_b0280 article-title: Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments publication-title: Fuel doi: 10.1016/j.fuel.2020.117290 – volume: 1 start-page: 228 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0165 article-title: Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2018.10.001 – volume: 172 start-page: 1 year: 2016 ident: 10.1016/j.crcon.2021.10.001_b0205 article-title: Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR publication-title: Fuel doi: 10.1016/j.fuel.2016.01.007 – volume: 134 start-page: 283 year: 2014 ident: 10.1016/j.crcon.2021.10.001_b0015 article-title: Preliminary understanding of initial reaction process for sub-bituminous coal pyrolysis with molecular dynamics simulation publication-title: Fuel doi: 10.1016/j.fuel.2014.06.005 – volume: 4 start-page: 19 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0035 article-title: Thermal behavior of Mongolian low-rank coals during pyrolysis publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2021.01.005 – volume: 25 start-page: 507 year: 2017 ident: 10.1016/j.crcon.2021.10.001_b0110 article-title: Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor, Chinese publication-title: J Chem. Eng. – volume: 68–69 start-page: 371 year: 2003 ident: 10.1016/j.crcon.2021.10.001_b0175 article-title: Thermal behaviour during the pyrolysis of low rank perhydrous coals publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(03)00031-7 – volume: 285 start-page: 119156 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0075 article-title: High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed publication-title: Fuel doi: 10.1016/j.fuel.2020.119156 – volume: 138 start-page: 147 year: 2015 ident: 10.1016/j.crcon.2021.10.001_b0135 article-title: Pyrolysis in indirectly heated fixed bed with internals: the first application to oil shale publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.05.023 – volume: 18 start-page: 133 year: 1992 ident: 10.1016/j.crcon.2021.10.001_b0170 article-title: Coal pyrolysis: experiments, kinetic rates and mechanisms publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(92)90021-R – volume: 218 start-page: 119553 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0240 article-title: ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene publication-title: Energy doi: 10.1016/j.energy.2020.119553 – volume: 241 start-page: 1129 issue: 1 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0025 article-title: Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a sub-bituminous coal publication-title: Fuel doi: 10.1016/j.fuel.2018.12.093 – volume: 41 start-page: 510 year: 1996 ident: 10.1016/j.crcon.2021.10.001_b0260 article-title: Visualization of complex hydrocarbon reaction systems publication-title: Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. – volume: 1 start-page: 109 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0085 article-title: Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2018.06.003 – volume: 40 start-page: 1195 year: 2009 ident: 10.1016/j.crcon.2021.10.001_b0225 article-title: Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.09.001 – volume: 156 start-page: 105163 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0115 article-title: Secondary reactions suppression during fuel fast pyrolysis in an infrared heating apparatus for the fixed bed pyrolysis process with internals publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2021.105163 – volume: 213 start-page: 106662 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0180 article-title: Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106662 – volume: 7 start-page: 21467 issue: 35 year: 2017 ident: 10.1016/j.crcon.2021.10.001_b0145 article-title: Distinctive oil shale pyrolysis behavior in indirectly heated fixed bed with internals publication-title: RSC Adv. doi: 10.1039/C7RA02347B – volume: 25 start-page: 5242 issue: 11 year: 2011 ident: 10.1016/j.crcon.2021.10.001_b0055 article-title: Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer publication-title: Energy Fuels doi: 10.1021/ef2012276 – volume: 4 start-page: 10 year: 2021 ident: 10.1016/j.crcon.2021.10.001_b0045 article-title: Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2021.01.001 – volume: 140 start-page: 321 year: 2019 ident: 10.1016/j.crcon.2021.10.001_b0100 article-title: Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2019.04.009 – volume: 104 start-page: 618 year: 2013 ident: 10.1016/j.crcon.2021.10.001_b0230 article-title: ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2013.05.005 – volume: 109 start-page: 79 year: 2014 ident: 10.1016/j.crcon.2021.10.001_b0245 article-title: Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.07.011 – volume: 233 start-page: 685 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0125 article-title: CFD modeling of coal pyrolysis in externally heated fixed-bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2018.06.100 – volume: 208 start-page: 1527 year: 2017 ident: 10.1016/j.crcon.2021.10.001_b0080 article-title: Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.227 – volume: 148 start-page: 248 year: 2016 ident: 10.1016/j.crcon.2021.10.001_b0140 article-title: Oil shale pyrolysis in indirectly heated fixed bed with internals under reduced pressure publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.02.033 – volume: 116 start-page: 85 issue: 116 year: 2013 ident: 10.1016/j.crcon.2021.10.001_b0185 article-title: A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.04.026 – volume: 178 start-page: 197 year: 2018 ident: 10.1016/j.crcon.2021.10.001_b0250 article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.05.011 |
| SSID | ssj0002810149 |
| Score | 2.182279 |
| Snippet | [Display omitted]
•ReaxFF MD is performed to understand the chemical behaviors of sub-bituminous coal pyrolysis.•Atomic-level quantitative relationship is... ReaxFF molecular dynamic simulation combined with experimental verification was performed to understand the overall reaction mechanism, especially the primary... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 230 |
| SubjectTerms | Primary formation Reaction paths ReaxFF MD simulation Secondary upgrading Sub-bituminous coal pyrolysis |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9NOmLbmiDDj3Wy1qWJeuYli6hh1BKF9KTkaURuN31LmubNjnnh3cky0u2lJDigx_oxWjk-cYefUPIuyoViiEcSipZqIRDNk-UNSZB46Uzx4yVNkT5XoqLJf98lV9Fnm2_F-bg_32IwzI77xiij57OQhgWujpHIkfgPSFHy8sv5999-ri88Ms2y0ZeoX_XPLA9gaL_wAQ97putvv6lV6s7JmZxPOzdbgMzoY8s-Tnru2pmbv7ibXzg6E_I0wg16fmgG8_II2iekyd3CAhfkNuvoH8vFnQ9JsmldshQT9t6HRN70Y2j24GTgurG0ta70NbfId4MuyJaWjf4lvOfJvCKtj3OSd3169rTv1KzwUFsr3ebQH5CESTTDjvaDlSzWP0lWS4-fft4kcS8DInhKe8Sy8zcMTycKoQDLjWfOyUK4DxXWoDTNhW5rByD1BqZSSVzy9D3AYflECS8IpNm08BrQguFrYBVQgO2jSfpUgsWnKoQiRk1JWycsdJE0nKfO2NVjtFpP8og4tKL2D9EEU_J-32lKJ_7i3_wqrAv6gm3wwOcyTKu3xLVVgrPxIOWhRsOheZVNWfghC4YBz4lYlSkMmKXAZNgU_X9vSd7tXvIaE__s_wbMul2PbxF6NRVZ3HJ_AE7xBoy priority: 102 providerName: Unpaywall |
| Title | ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production |
| URI | https://dx.doi.org/10.1016/j.crcon.2021.10.001 https://doi.org/10.1016/j.crcon.2021.10.001 https://doaj.org/article/f2c7651951464c4e8a4bb02ef6a824e4 |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2588-9133 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810149 issn: 2588-9133 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2588-9133 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810149 issn: 2588-9133 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQewAOq-Ulug_kA0cCiePY8ZFdbYU4IISoBKfIscdSUJtWbSrgvj98x05SlQtwQDkkseyx5bEz31iTbwg5KROhGMKhqJS5ijikcaSsMREaL506Zqy0Icr3WlyO-NV9dr-W6svHhLX0wO3EnWN9KTwFCm5pbjjkmpdlzMAJnTMOgQk0ztWaM_UYjox8DlqPfVmW-x2dpj3lUAjuMnPvbaLjn5yF2K7klVkK7P2vrNPWsp7plyc9Hq9Zn-E38rWDjfSiHe4u2YB6j-yskQnuk3-3oJ-HQzrpE95S22abp4tq0iXpolNHZy2_BNW1pQvvDlv_htgx_OGwoFWNXyx_zIBPdLHE-a2a5aTyVK7UTHEQs5f5NBCZUAS8tMGOZi1tLDY_IKPh37s_l1GXYyEyPOFNZJmJHcPLqVw44FLz2CmRA-eZ0gKctonIZOkYJNbIVCqZWYZ-DDishwb_kGzW0xqOCM0VSgGrhAaUjTfpEgsWnCoRVRk1IKyf4sJ0BOQ-D8a46CPNHougl8LrxReiXgbkdNWom5-3q__2ultV9eTZoQCXVNEtqeK9JTUgotd80eGQFl-gqOrt3qPVOvnIaL9_xmh_kG0vsj0W-kk2m_kSfiFQasrjsCeOyZfR9c3Fw39EzBPJ |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9NOmLbmiDDj3Wy1qWJeuYli6hh1BKF9KTkaURuN31LmubNjnnh3cky0u2lJDigx_oxWjk-cYefUPIuyoViiEcSipZqIRDNk-UNSZB46Uzx4yVNkT5XoqLJf98lV9Fnm2_F-bg_32IwzI77xiij57OQhgWujpHIkfgPSFHy8sv5999-ri88Ms2y0ZeoX_XPLA9gaL_wAQ97putvv6lV6s7JmZxPOzdbgMzoY8s-Tnru2pmbv7ibXzg6E_I0wg16fmgG8_II2iekyd3CAhfkNuvoH8vFnQ9JsmldshQT9t6HRN70Y2j24GTgurG0ta70NbfId4MuyJaWjf4lvOfJvCKtj3OSd3169rTv1KzwUFsr3ebQH5CESTTDjvaDlSzWP0lWS4-fft4kcS8DInhKe8Sy8zcMTycKoQDLjWfOyUK4DxXWoDTNhW5rByD1BqZSSVzy9D3AYflECS8IpNm08BrQguFrYBVQgO2jSfpUgsWnKoQiRk1JWycsdJE0nKfO2NVjtFpP8og4tKL2D9EEU_J-32lKJ_7i3_wqrAv6gm3wwOcyTKu3xLVVgrPxIOWhRsOheZVNWfghC4YBz4lYlSkMmKXAZNgU_X9vSd7tXvIaE__s_wbMul2PbxF6NRVZ3HJ_AE7xBoy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReaxFF+molecular+dynamic+simulation+of+primary+and+secondary+reactions+involving+in+sub-bituminous+coal+pyrolysis+for+tar+production&rft.jtitle=Carbon+resources+conversion&rft.au=Qian%2C+Yanan&rft.au=Zhan%2C+Jin-Hui&rft.au=Xu%2C+Wei&rft.au=Han%2C+Zhennan&rft.date=2021&rft.issn=2588-9133&rft.eissn=2588-9133&rft.volume=4&rft.spage=230&rft.epage=238&rft_id=info:doi/10.1016%2Fj.crcon.2021.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_crcon_2021_10_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2588-9133&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2588-9133&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2588-9133&client=summon |