Deep k-Means: Jointly clustering with k-Means and learning representations

•Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering ap...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 138; pp. 185 - 192
Main Authors Moradi Fard, Maziar, Thonet, Thibaut, Gaussier, Eric
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2020
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2020.07.028

Cover

Abstract •Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering approaches. We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them.
AbstractList We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them.
•Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering approaches. We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them.
Author Moradi Fard, Maziar
Thonet, Thibaut
Gaussier, Eric
Author_xml – sequence: 1
  givenname: Maziar
  surname: Moradi Fard
  fullname: Moradi Fard, Maziar
  organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France
– sequence: 2
  givenname: Thibaut
  surname: Thonet
  fullname: Thonet, Thibaut
  email: thibaut.thonet@naverlabs.com
  organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France
– sequence: 3
  givenname: Eric
  surname: Gaussier
  fullname: Gaussier, Eric
  organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France
BackLink https://hal.univ-grenoble-alpes.fr/hal-03356552$$DView record in HAL
BookMark eNqFkM1O3DAURq0KpA5D36CLSKy6SPBvnLBAQlAYRoO6adeWx7nueBqc1PZQzdvjUSgLFrCydH2-T_eeE3TkBw8IfSW4IpjU59tq1CmAqSimuMKywrT5hGakkbSUjPMjNMuYLJtaiM_oJMYtxrhmbTNDyxuAsfhTPoD28aJYDs6nfl-YfhcTBOd_F_9c2vwHCu27ogcd_OEnwBgggk86ucHHU3RsdR_hy8s7R79uv_-8XpSrH3f311er0nDCU9lRxpnEBNa10MJaLnQnibAtNm3Ha4qNJRzsmkhGBRGENrY1TOiGtHnQWTZH36beje7VGNyjDns1aKcWVyt1mGHGRL6UPpHMnk3sGIa_O4hJbYdd8Hk9RXkteINlwzPFJ8qEIcYA9rWWYHUwrLZqMqwOhhWWKhvOsYs3MeMmFylo138UvpzCkFU9OQgqGgfeQOcymlQ3uPcLngEGmpnZ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_3390_app12063008
crossref_primary_10_1142_S0218213023500616
crossref_primary_10_1016_j_camwa_2024_08_032
crossref_primary_10_1109_TIV_2022_3171215
crossref_primary_10_3233_JIFS_231747
crossref_primary_10_1007_s00521_023_09335_w
crossref_primary_10_1007_s40747_025_01800_4
crossref_primary_10_1155_2022_4827021
crossref_primary_10_1016_j_neucom_2025_129359
crossref_primary_10_1007_s40766_025_00065_4
crossref_primary_10_1109_TITS_2021_3106779
crossref_primary_10_1016_j_jcp_2024_113526
crossref_primary_10_1007_s00500_025_10500_7
crossref_primary_10_1109_TIP_2022_3171421
crossref_primary_10_1016_j_talanta_2024_126076
crossref_primary_10_3390_land14030598
crossref_primary_10_1016_j_engappai_2024_109509
crossref_primary_10_1016_j_imavis_2023_104746
crossref_primary_10_1016_j_knosys_2022_110029
crossref_primary_10_1007_s12652_021_02997_1
crossref_primary_10_1088_1361_6501_ad2a33
crossref_primary_10_1049_ell2_12758
crossref_primary_10_3103_S014768822206003X
crossref_primary_10_1016_j_ins_2023_119374
crossref_primary_10_1016_j_patrec_2021_08_012
crossref_primary_10_1016_j_neunet_2024_106542
crossref_primary_10_1109_JSTARS_2020_3040218
crossref_primary_10_1007_s10489_022_03752_5
crossref_primary_10_5194_esurf_12_801_2024
crossref_primary_10_1109_TDSC_2023_3326299
crossref_primary_10_1111_tgis_12905
crossref_primary_10_1088_1402_4896_ada4fe
crossref_primary_10_1109_TNNLS_2022_3160381
crossref_primary_10_1016_j_conengprac_2023_105529
crossref_primary_10_1007_s11042_024_18912_7
crossref_primary_10_1007_s12559_024_10364_3
crossref_primary_10_1016_j_eswa_2023_121531
crossref_primary_10_1016_j_jcp_2024_113227
crossref_primary_10_32604_cmc_2025_057693
crossref_primary_10_1016_j_neucom_2022_05_091
crossref_primary_10_1016_j_patrec_2023_10_018
crossref_primary_10_1155_2022_3469979
crossref_primary_10_1101_gr_276600_122
crossref_primary_10_5937_AASer2152159L
crossref_primary_10_1016_j_ins_2024_120191
crossref_primary_10_1016_j_neucom_2022_06_059
crossref_primary_10_1007_s13748_023_00310_z
crossref_primary_10_3390_s21092984
crossref_primary_10_1016_j_patrec_2021_10_020
crossref_primary_10_3390_rs13132501
crossref_primary_10_1016_j_knosys_2022_109346
crossref_primary_10_1002_for_3263
crossref_primary_10_1016_j_sigpro_2024_109597
crossref_primary_10_1109_JSEN_2023_3284554
crossref_primary_10_1016_j_neucom_2024_128101
crossref_primary_10_3390_computers13060149
crossref_primary_10_1007_s10479_022_04642_2
crossref_primary_10_3390_app13010674
crossref_primary_10_1051_e3sconf_202125402022
crossref_primary_10_1016_j_physa_2024_129705
crossref_primary_10_1080_01431161_2022_2061317
crossref_primary_10_1155_2022_9091208
crossref_primary_10_1016_j_engappai_2024_108612
crossref_primary_10_1109_TII_2024_3424583
crossref_primary_10_1016_j_patcog_2024_110504
crossref_primary_10_3390_s21248252
crossref_primary_10_1007_s10489_022_03895_5
crossref_primary_10_1186_s13040_023_00333_1
crossref_primary_10_1016_j_econmod_2023_106461
crossref_primary_10_1109_TCSVT_2021_3089480
crossref_primary_10_3390_rs13214418
crossref_primary_10_1016_j_patcog_2022_108787
crossref_primary_10_1007_s12559_023_10225_5
crossref_primary_10_1016_j_compag_2024_108825
crossref_primary_10_1016_j_iswa_2024_200387
crossref_primary_10_3390_a16030158
crossref_primary_10_1049_cvi2_12117
crossref_primary_10_1016_j_patcog_2023_110036
crossref_primary_10_1016_j_knosys_2021_107182
crossref_primary_10_1016_j_robot_2024_104914
crossref_primary_10_1109_TCSVT_2023_3299318
crossref_primary_10_1080_15435075_2024_2386070
crossref_primary_10_1007_s13042_022_01614_7
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1093_ijlct_ctab010
crossref_primary_10_21456_vol13iss1pp20_28
crossref_primary_10_1016_j_neunet_2022_03_030
crossref_primary_10_1016_j_patcog_2024_110682
crossref_primary_10_1109_TCSS_2021_3114419
crossref_primary_10_3389_fenvs_2022_946729
crossref_primary_10_1016_j_cosrev_2021_100435
crossref_primary_10_1016_j_neucom_2023_126848
crossref_primary_10_1016_j_patrec_2023_05_003
crossref_primary_10_1109_TCSVT_2023_3258926
crossref_primary_10_1007_s10994_021_06015_5
crossref_primary_10_3390_fractalfract7100733
crossref_primary_10_1109_TIP_2021_3079800
crossref_primary_10_1051_bioconf_20202502002
crossref_primary_10_1109_TII_2022_3171349
crossref_primary_10_1016_j_engappai_2023_106164
Cites_doi 10.1109/TKDE.2010.165
10.1109/TMM.2017.2745702
10.1126/science.1127647
10.1016/0167-8655(90)90010-Y
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Oct 2020
Attribution - NonCommercial
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Oct 2020
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.patrec.2020.07.028
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 192
ExternalDocumentID oai_HAL_hal_03356552v1
10_1016_j_patrec_2020_07_028
S0167865520302749
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c414t-d2343701eb65a5ff45ad715f90c9d4620cf14efb1732515128f9c35a819325df3
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Sep 12 12:37:17 EDT 2025
Fri Jul 25 03:08:58 EDT 2025
Tue Jul 01 02:40:41 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
Fri Feb 23 02:47:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Clustering
k-Means
Deep clustering
k-Means Deep
learning Clustering
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-d2343701eb65a5ff45ad715f90c9d4620cf14efb1732515128f9c35a819325df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8858-3233
OpenAccessLink https://hal.univ-grenoble-alpes.fr/hal-03356552
PQID 2465480784
PQPubID 2047552
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03356552v1
proquest_journals_2465480784
crossref_primary_10_1016_j_patrec_2020_07_028
crossref_citationtrail_10_1016_j_patrec_2020_07_028
elsevier_sciencedirect_doi_10_1016_j_patrec_2020_07_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier
References Guo, Gao, Liu, Yin (bib0011) 2017
Ji, Zhang, Li, Salzmann, Reid (bib0017) 2017
Maddison, Mnih, Teh (bib0023) 2017
Jang, Gu, Poole (bib0016) 2017
Arthur, Vassilvitskii (bib0003) 2007
MacQueen (bib0022) 1967
Agustsson, Mentzer, Tschannen, Cavigelli, Timofte, Benini, Van Gool (bib0001) 2017
E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with Deep Learning: Taxonomy and New Methods, arXiv
Yang, Parikh, Batra (bib0030) 2016
Chang, Wang, Meng, Xiang, Pan (bib0007) 2017
Peng, Feng, Lu, Yau, Yi (bib0025) 2017
Nair, Hinton (bib0024) 2010
Hinton, Salakhutdinov (bib0012) 2006; 313
Xie, Girshick, Farhadi (bib0028) 2016
Bishop (bib0005) 2006
Huang, Huang, Wang, Wang (bib0015) 2014
N. Dilokthanakul, P.A.M. Mediano, M. Garnelo, M.C.H. Lee, H. Salimbeni, K. Arulkumaran, M. Shanahan, Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders, arXiv
Kingma, Ba (bib0019) 2015
Rose, Gurewitz, Fox (bib0027) 1990; 11
Yang, Fu, Sidiropoulos, Hong (bib0029) 2017
Kingma, Welling (bib0020) 2014
(2018).
Dizaji, Herandi, Deng, Cai, Huang (bib0009) 2017
(2017).
Glorot, Bengio (bib0010) 2010
Hu, Miyato, Tokui, Matsumoto, Sugiyama (bib0014) 2017
Cai, He, Han (bib0006) 2011; 23
Jiang, Zheng, Tan, Tang, Zhou (bib0018) 2017
Peng, Xiao, Feng, Yau, Yi (bib0026) 2016
van der Maaten, Hinton (bib0021) 2008; 9
Hsu, Lin (bib0013) 2018; 20
Bengio, Lamblin, Popovici, Larochelle (bib0004) 2006
Arthur (10.1016/j.patrec.2020.07.028_bib0003) 2007
Hinton (10.1016/j.patrec.2020.07.028_bib0012) 2006; 313
Hsu (10.1016/j.patrec.2020.07.028_bib0013) 2018; 20
Kingma (10.1016/j.patrec.2020.07.028_bib0019) 2015
Bengio (10.1016/j.patrec.2020.07.028_bib0004) 2006
Yang (10.1016/j.patrec.2020.07.028_bib0030) 2016
10.1016/j.patrec.2020.07.028_bib0008
Jang (10.1016/j.patrec.2020.07.028_bib0016) 2017
Bishop (10.1016/j.patrec.2020.07.028_bib0005) 2006
Rose (10.1016/j.patrec.2020.07.028_bib0027) 1990; 11
Xie (10.1016/j.patrec.2020.07.028_bib0028) 2016
Guo (10.1016/j.patrec.2020.07.028_bib0011) 2017
MacQueen (10.1016/j.patrec.2020.07.028_bib0022) 1967
Peng (10.1016/j.patrec.2020.07.028_bib0026) 2016
Yang (10.1016/j.patrec.2020.07.028_bib0029) 2017
Jiang (10.1016/j.patrec.2020.07.028_bib0018) 2017
Glorot (10.1016/j.patrec.2020.07.028_bib0010) 2010
van der Maaten (10.1016/j.patrec.2020.07.028_bib0021) 2008; 9
Cai (10.1016/j.patrec.2020.07.028_bib0006) 2011; 23
Dizaji (10.1016/j.patrec.2020.07.028_bib0009) 2017
Hu (10.1016/j.patrec.2020.07.028_bib0014) 2017
Peng (10.1016/j.patrec.2020.07.028_bib0025) 2017
Maddison (10.1016/j.patrec.2020.07.028_bib0023) 2017
Nair (10.1016/j.patrec.2020.07.028_bib0024) 2010
Kingma (10.1016/j.patrec.2020.07.028_bib0020) 2014
Agustsson (10.1016/j.patrec.2020.07.028_bib0001) 2017
10.1016/j.patrec.2020.07.028_bib0002
Ji (10.1016/j.patrec.2020.07.028_bib0017) 2017
Huang (10.1016/j.patrec.2020.07.028_bib0015) 2014
Chang (10.1016/j.patrec.2020.07.028_bib0007) 2017
References_xml – year: 2014
  ident: bib0020
  article-title: Auto-Encoding Variational Bayes
  publication-title: Proceedings of the 2nd International Conference on Learning Representations, ICLR ’14
– reference: N. Dilokthanakul, P.A.M. Mediano, M. Garnelo, M.C.H. Lee, H. Salimbeni, K. Arulkumaran, M. Shanahan, Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders, arXiv:
– start-page: 1532
  year: 2014
  end-page: 1537
  ident: bib0015
  article-title: Deep embedding network for clustering
  publication-title: Proceedings of the 22nd International Conference on Pattern Recognition, ICPR ’14
– start-page: 1141
  year: 2017
  end-page: 1151
  ident: bib0001
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
  publication-title: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS ’17
– start-page: 5736
  year: 2017
  end-page: 5745
  ident: bib0009
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
  publication-title: Proceedings of the 2017 IEEE International Conference on Computer Vision, ICCV ’17
– start-page: 1025
  year: 2007
  end-page: 1027
  ident: bib0003
  article-title: K-Means++: the advantages of careful seeding
  publication-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07
– volume: 11
  start-page: 589
  year: 1990
  end-page: 594
  ident: bib0027
  article-title: A deterministic annealing approach to clustering
  publication-title: Pattern Recognit. Lett.
– start-page: 2478
  year: 2017
  end-page: 2484
  ident: bib0025
  article-title: Cascade subspace clustering
  publication-title: Proceedings of the 31th Conference on Artificial Intelligence, AAAI ’17
– volume: 23
  start-page: 902
  year: 2011
  end-page: 913
  ident: bib0006
  article-title: Locally consistent concept factorization for document clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1925
  year: 2016
  end-page: 1931
  ident: bib0026
  article-title: Deep subspace clustering with sparsity prior
  publication-title: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI ’16
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0022
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
– year: 2010
  ident: bib0010
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS ’10
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: bib0011
  article-title: Improved deep embedded clustering with local structure preservation
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI ’17
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0012
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 1558
  year: 2017
  end-page: 1567
  ident: bib0014
  article-title: Learning discrete representations via information maximizing self-augmented training
  publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML ’17
– start-page: 5147
  year: 2016
  end-page: 5156
  ident: bib0030
  article-title: Joint unsupervised learning of deep representations and image clusters
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16
– start-page: 3861
  year: 2017
  end-page: 3870
  ident: bib0029
  article-title: Towards
  publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML ’17
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0021
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: bib0016
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17
– reference: E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with Deep Learning: Taxonomy and New Methods, arXiv:
– reference: (2018).
– start-page: 23
  year: 2017
  end-page: 32
  ident: bib0017
  article-title: Deep subspace clustering networks
  publication-title: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS ’17
– start-page: 1965
  year: 2017
  end-page: 1972
  ident: bib0018
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI ’17
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0024
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning, ICML ’10
– year: 2006
  ident: bib0005
  article-title: Pattern Recognition and Machine Learning
– start-page: 478
  year: 2016
  end-page: 487
  ident: bib0028
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proceedings of the 33rd International Conference on Machine Learning, ICML ’16
– year: 2017
  ident: bib0023
  article-title: The concrete distribution: a continuous relaxation of discrete random variables
  publication-title: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17
– volume: 20
  start-page: 421
  year: 2018
  end-page: 429
  ident: bib0013
  article-title: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data
  publication-title: IEEE Trans. Multimed.
– year: 2015
  ident: bib0019
  article-title: Adam: a method for stochastic optimization
  publication-title: Proceedings of the 3rd International Conference on Learning Representations, ICLR ’15
– start-page: 5879
  year: 2017
  end-page: 5887
  ident: bib0007
  article-title: Deep adaptive image clustering
  publication-title: Proceedings of the 2017 IEEE International Conference on Computer Vision, ICCV ’17
– start-page: 153
  year: 2006
  end-page: 160
  ident: bib0004
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proceedings of the 20th Annual Conference on Neural Information Processing Systems, NIPS ’06
– reference: (2017).
– start-page: 5147
  year: 2016
  ident: 10.1016/j.patrec.2020.07.028_bib0030
  article-title: Joint unsupervised learning of deep representations and image clusters
– year: 2015
  ident: 10.1016/j.patrec.2020.07.028_bib0019
  article-title: Adam: a method for stochastic optimization
– start-page: 1558
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0014
  article-title: Learning discrete representations via information maximizing self-augmented training
– year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0016
  article-title: Categorical reparameterization with gumbel-softmax
– start-page: 281
  year: 1967
  ident: 10.1016/j.patrec.2020.07.028_bib0022
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 807
  year: 2010
  ident: 10.1016/j.patrec.2020.07.028_bib0024
  article-title: Rectified linear units improve restricted Boltzmann machines
– start-page: 478
  year: 2016
  ident: 10.1016/j.patrec.2020.07.028_bib0028
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 23
  start-page: 902
  issue: 6
  year: 2011
  ident: 10.1016/j.patrec.2020.07.028_bib0006
  article-title: Locally consistent concept factorization for document clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.165
– start-page: 1925
  year: 2016
  ident: 10.1016/j.patrec.2020.07.028_bib0026
  article-title: Deep subspace clustering with sparsity prior
– start-page: 2478
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0025
  article-title: Cascade subspace clustering
– volume: 20
  start-page: 421
  issue: 2
  year: 2018
  ident: 10.1016/j.patrec.2020.07.028_bib0013
  article-title: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2745702
– start-page: 1753
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0011
  article-title: Improved deep embedded clustering with local structure preservation
– start-page: 1965
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0018
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
– start-page: 1141
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0001
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
– start-page: 1025
  year: 2007
  ident: 10.1016/j.patrec.2020.07.028_bib0003
  article-title: K-Means++: the advantages of careful seeding
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.patrec.2020.07.028_bib0012
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2014
  ident: 10.1016/j.patrec.2020.07.028_bib0020
  article-title: Auto-Encoding Variational Bayes
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.patrec.2020.07.028_bib0021
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0023
  article-title: The concrete distribution: a continuous relaxation of discrete random variables
– start-page: 153
  year: 2006
  ident: 10.1016/j.patrec.2020.07.028_bib0004
  article-title: Greedy layer-wise training of deep networks
– start-page: 23
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0017
  article-title: Deep subspace clustering networks
– year: 2006
  ident: 10.1016/j.patrec.2020.07.028_bib0005
– start-page: 5736
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0009
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
– ident: 10.1016/j.patrec.2020.07.028_bib0002
– ident: 10.1016/j.patrec.2020.07.028_bib0008
– volume: 11
  start-page: 589
  issue: 9
  year: 1990
  ident: 10.1016/j.patrec.2020.07.028_bib0027
  article-title: A deterministic annealing approach to clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(90)90010-Y
– start-page: 3861
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0029
  article-title: Towards k-Means-friendly spaces: simultaneous deep learning and clustering
– start-page: 1532
  year: 2014
  ident: 10.1016/j.patrec.2020.07.028_bib0015
  article-title: Deep embedding network for clustering
– year: 2010
  ident: 10.1016/j.patrec.2020.07.028_bib0010
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 5879
  year: 2017
  ident: 10.1016/j.patrec.2020.07.028_bib0007
  article-title: Deep adaptive image clustering
SSID ssj0006398
Score 2.6536083
Snippet •Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic...
We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Computer Science
Deep clustering
Deep learning
k-Means
Learning
Machine Learning
Representations
Vector quantization
Title Deep k-Means: Jointly clustering with k-Means and learning representations
URI https://dx.doi.org/10.1016/j.patrec.2020.07.028
https://www.proquest.com/docview/2465480784
https://hal.univ-grenoble-alpes.fr/hal-03356552
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxsxDLdoeWEPsAHTCh2K0F6zXr7uLnurCqjrgJcNibfoPhIoq44KCtJe9rcvvkuqbZqEtMeLbCWyHdvK2T8DfCh4VnnbkLSotaBSCkG1YxVlLnE-meNacmxOvrhMp1dydq2uN2ASe2GwrDL4_s6nt946rIyCNEfL-Xz0FQvosa2SJ_jvTeoebHKhU9WHzfHnL9PLtUP2QTiPEN_IEDvo2jIvfHK2iGXIkxbFE8ey_ztC9W6xVPIvj92GobPXsB3yRzLujvgGNmyzCztxNgMJV3UXXv0GNLgHsxNrl-Q7vbA-Mn0is_t5s1r8INXiCXESPAnB99hIQIqmJmGcxA1pYS9ji1LzuA9XZ6ffJlMapijQSjK5ojUXUmQJs2WqCuWcVEWdMeV0UulapjypHJPWlSwTPtfx8T93uhKqyDG1U7UTb6Hf3Df2HZAyzW2tLSLw49T0XHPrFEMrENhNUA5ARMmZKkCM46SLhYm1ZHemk7dBeZskM17eA6BrrmUHsfECfRaVYv4wFeOjwAucx16H600QWXs6Pje4lgih0Jae2QCGUcUm3OdHwxF2DqH55cF_734IW_jVVQIOob96eLLvfUazKo-g9_EnOwp2-wsFZPKF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BPVAO0NIiArRYiKub9Su75oZoUUgTLoDEzdqHDYFoiSAgceG349m1aUGVkHq1x_JqPJ4Zeb_5BmA352npbUPSvNKCSikE1Y6VlLnE-WSOa8mxOHl03OufycG5Op-Dg1gLg7DK4Ptbn9546zDSDdrsTsfj7gkC6LGskif4703qefgglUgR1_fj6Q_Ow4fgLBJ8o3isn2tAXvjgbJHJkCcNhyc2Zf93fJq_RKDkG3_dBKHDT7Acskey337gZ5iz9SqsxM4MJFzUVVj6i2bwCwx-Wjsl13RkfVzaI4ObcT2bPJJyco8sCV6E4GtsFCB5XZHQTOKCNKSXsUCpvvsKZ4e_Tg_6NPRQoKVkckYrLqRIE2aLnsqVc1LlVcqU00mpK9njSemYtK5gqfCZjo_-mdOlUHmGiZ2qnFiDhfqmtutAil5mK22Rfx97pmeaW6cY2oDAWoKiAyJqzpSBYBz7XExMRJJdmVbfBvVtktR4fXeAvqyatgQb78in8VDMK0MxPga8s3LHn-HLJsir3d8fGhxLhFBoSQ-sA1vxiE24zXeGI-kcEvPLjf_efRsW-6ejoRkeHf_ehI8402ICt2Bhdntvv_ncZlZ8b2z3GQ8V81A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+k-Means%3A+Jointly+clustering+with+k-Means+and+learning+representations&rft.jtitle=Pattern+recognition+letters&rft.au=Moradi+Fard%2C+Maziar&rft.au=Thonet%2C+Thibaut&rft.au=Gaussier%2C+Eric&rft.date=2020-10-01&rft.issn=0167-8655&rft.volume=138&rft.spage=185&rft.epage=192&rft_id=info:doi/10.1016%2Fj.patrec.2020.07.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2020_07_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon