Deep k-Means: Jointly clustering with k-Means and learning representations
•Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering ap...
Saved in:
Published in | Pattern recognition letters Vol. 138; pp. 185 - 192 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2020.07.028 |
Cover
Abstract | •Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering approaches.
We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them. |
---|---|
AbstractList | We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them. •Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic annealing.•Straightforward training algorithm based on stochastic gradient descent.•Careful comparison against k-Means-related and deep clustering approaches. We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them. |
Author | Moradi Fard, Maziar Thonet, Thibaut Gaussier, Eric |
Author_xml | – sequence: 1 givenname: Maziar surname: Moradi Fard fullname: Moradi Fard, Maziar organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France – sequence: 2 givenname: Thibaut surname: Thonet fullname: Thonet, Thibaut email: thibaut.thonet@naverlabs.com organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France – sequence: 3 givenname: Eric surname: Gaussier fullname: Gaussier, Eric organization: University Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble F-38000, France |
BackLink | https://hal.univ-grenoble-alpes.fr/hal-03356552$$DView record in HAL |
BookMark | eNqFkM1O3DAURq0KpA5D36CLSKy6SPBvnLBAQlAYRoO6adeWx7nueBqc1PZQzdvjUSgLFrCydH2-T_eeE3TkBw8IfSW4IpjU59tq1CmAqSimuMKywrT5hGakkbSUjPMjNMuYLJtaiM_oJMYtxrhmbTNDyxuAsfhTPoD28aJYDs6nfl-YfhcTBOd_F_9c2vwHCu27ogcd_OEnwBgggk86ucHHU3RsdR_hy8s7R79uv_-8XpSrH3f311er0nDCU9lRxpnEBNa10MJaLnQnibAtNm3Ha4qNJRzsmkhGBRGENrY1TOiGtHnQWTZH36beje7VGNyjDns1aKcWVyt1mGHGRL6UPpHMnk3sGIa_O4hJbYdd8Hk9RXkteINlwzPFJ8qEIcYA9rWWYHUwrLZqMqwOhhWWKhvOsYs3MeMmFylo138UvpzCkFU9OQgqGgfeQOcymlQ3uPcLngEGmpnZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3327640 crossref_primary_10_3390_app12063008 crossref_primary_10_1142_S0218213023500616 crossref_primary_10_1016_j_camwa_2024_08_032 crossref_primary_10_1109_TIV_2022_3171215 crossref_primary_10_3233_JIFS_231747 crossref_primary_10_1007_s00521_023_09335_w crossref_primary_10_1007_s40747_025_01800_4 crossref_primary_10_1155_2022_4827021 crossref_primary_10_1016_j_neucom_2025_129359 crossref_primary_10_1007_s40766_025_00065_4 crossref_primary_10_1109_TITS_2021_3106779 crossref_primary_10_1016_j_jcp_2024_113526 crossref_primary_10_1007_s00500_025_10500_7 crossref_primary_10_1109_TIP_2022_3171421 crossref_primary_10_1016_j_talanta_2024_126076 crossref_primary_10_3390_land14030598 crossref_primary_10_1016_j_engappai_2024_109509 crossref_primary_10_1016_j_imavis_2023_104746 crossref_primary_10_1016_j_knosys_2022_110029 crossref_primary_10_1007_s12652_021_02997_1 crossref_primary_10_1088_1361_6501_ad2a33 crossref_primary_10_1049_ell2_12758 crossref_primary_10_3103_S014768822206003X crossref_primary_10_1016_j_ins_2023_119374 crossref_primary_10_1016_j_patrec_2021_08_012 crossref_primary_10_1016_j_neunet_2024_106542 crossref_primary_10_1109_JSTARS_2020_3040218 crossref_primary_10_1007_s10489_022_03752_5 crossref_primary_10_5194_esurf_12_801_2024 crossref_primary_10_1109_TDSC_2023_3326299 crossref_primary_10_1111_tgis_12905 crossref_primary_10_1088_1402_4896_ada4fe crossref_primary_10_1109_TNNLS_2022_3160381 crossref_primary_10_1016_j_conengprac_2023_105529 crossref_primary_10_1007_s11042_024_18912_7 crossref_primary_10_1007_s12559_024_10364_3 crossref_primary_10_1016_j_eswa_2023_121531 crossref_primary_10_1016_j_jcp_2024_113227 crossref_primary_10_32604_cmc_2025_057693 crossref_primary_10_1016_j_neucom_2022_05_091 crossref_primary_10_1016_j_patrec_2023_10_018 crossref_primary_10_1155_2022_3469979 crossref_primary_10_1101_gr_276600_122 crossref_primary_10_5937_AASer2152159L crossref_primary_10_1016_j_ins_2024_120191 crossref_primary_10_1016_j_neucom_2022_06_059 crossref_primary_10_1007_s13748_023_00310_z crossref_primary_10_3390_s21092984 crossref_primary_10_1016_j_patrec_2021_10_020 crossref_primary_10_3390_rs13132501 crossref_primary_10_1016_j_knosys_2022_109346 crossref_primary_10_1002_for_3263 crossref_primary_10_1016_j_sigpro_2024_109597 crossref_primary_10_1109_JSEN_2023_3284554 crossref_primary_10_1016_j_neucom_2024_128101 crossref_primary_10_3390_computers13060149 crossref_primary_10_1007_s10479_022_04642_2 crossref_primary_10_3390_app13010674 crossref_primary_10_1051_e3sconf_202125402022 crossref_primary_10_1016_j_physa_2024_129705 crossref_primary_10_1080_01431161_2022_2061317 crossref_primary_10_1155_2022_9091208 crossref_primary_10_1016_j_engappai_2024_108612 crossref_primary_10_1109_TII_2024_3424583 crossref_primary_10_1016_j_patcog_2024_110504 crossref_primary_10_3390_s21248252 crossref_primary_10_1007_s10489_022_03895_5 crossref_primary_10_1186_s13040_023_00333_1 crossref_primary_10_1016_j_econmod_2023_106461 crossref_primary_10_1109_TCSVT_2021_3089480 crossref_primary_10_3390_rs13214418 crossref_primary_10_1016_j_patcog_2022_108787 crossref_primary_10_1007_s12559_023_10225_5 crossref_primary_10_1016_j_compag_2024_108825 crossref_primary_10_1016_j_iswa_2024_200387 crossref_primary_10_3390_a16030158 crossref_primary_10_1049_cvi2_12117 crossref_primary_10_1016_j_patcog_2023_110036 crossref_primary_10_1016_j_knosys_2021_107182 crossref_primary_10_1016_j_robot_2024_104914 crossref_primary_10_1109_TCSVT_2023_3299318 crossref_primary_10_1080_15435075_2024_2386070 crossref_primary_10_1007_s13042_022_01614_7 crossref_primary_10_1016_j_inffus_2025_103012 crossref_primary_10_1093_ijlct_ctab010 crossref_primary_10_21456_vol13iss1pp20_28 crossref_primary_10_1016_j_neunet_2022_03_030 crossref_primary_10_1016_j_patcog_2024_110682 crossref_primary_10_1109_TCSS_2021_3114419 crossref_primary_10_3389_fenvs_2022_946729 crossref_primary_10_1016_j_cosrev_2021_100435 crossref_primary_10_1016_j_neucom_2023_126848 crossref_primary_10_1016_j_patrec_2023_05_003 crossref_primary_10_1109_TCSVT_2023_3258926 crossref_primary_10_1007_s10994_021_06015_5 crossref_primary_10_3390_fractalfract7100733 crossref_primary_10_1109_TIP_2021_3079800 crossref_primary_10_1051_bioconf_20202502002 crossref_primary_10_1109_TII_2022_3171349 crossref_primary_10_1016_j_engappai_2023_106164 |
Cites_doi | 10.1109/TKDE.2010.165 10.1109/TMM.2017.2745702 10.1126/science.1127647 10.1016/0167-8655(90)90010-Y |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier Science Ltd. Oct 2020 Attribution - NonCommercial |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier Science Ltd. Oct 2020 – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1016/j.patrec.2020.07.028 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 192 |
ExternalDocumentID | oai_HAL_hal_03356552v1 10_1016_j_patrec_2020_07_028 S0167865520302749 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c414t-d2343701eb65a5ff45ad715f90c9d4620cf14efb1732515128f9c35a819325df3 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Sep 12 12:37:17 EDT 2025 Fri Jul 25 03:08:58 EDT 2025 Tue Jul 01 02:40:41 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Fri Feb 23 02:47:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Clustering k-Means Deep clustering k-Means Deep learning Clustering |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-d2343701eb65a5ff45ad715f90c9d4620cf14efb1732515128f9c35a819325df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8858-3233 |
OpenAccessLink | https://hal.univ-grenoble-alpes.fr/hal-03356552 |
PQID | 2465480784 |
PQPubID | 2047552 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_03356552v1 proquest_journals_2465480784 crossref_primary_10_1016_j_patrec_2020_07_028 crossref_citationtrail_10_1016_j_patrec_2020_07_028 elsevier_sciencedirect_doi_10_1016_j_patrec_2020_07_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier |
References | Guo, Gao, Liu, Yin (bib0011) 2017 Ji, Zhang, Li, Salzmann, Reid (bib0017) 2017 Maddison, Mnih, Teh (bib0023) 2017 Jang, Gu, Poole (bib0016) 2017 Arthur, Vassilvitskii (bib0003) 2007 MacQueen (bib0022) 1967 Agustsson, Mentzer, Tschannen, Cavigelli, Timofte, Benini, Van Gool (bib0001) 2017 E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with Deep Learning: Taxonomy and New Methods, arXiv Yang, Parikh, Batra (bib0030) 2016 Chang, Wang, Meng, Xiang, Pan (bib0007) 2017 Peng, Feng, Lu, Yau, Yi (bib0025) 2017 Nair, Hinton (bib0024) 2010 Hinton, Salakhutdinov (bib0012) 2006; 313 Xie, Girshick, Farhadi (bib0028) 2016 Bishop (bib0005) 2006 Huang, Huang, Wang, Wang (bib0015) 2014 N. Dilokthanakul, P.A.M. Mediano, M. Garnelo, M.C.H. Lee, H. Salimbeni, K. Arulkumaran, M. Shanahan, Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders, arXiv Kingma, Ba (bib0019) 2015 Rose, Gurewitz, Fox (bib0027) 1990; 11 Yang, Fu, Sidiropoulos, Hong (bib0029) 2017 Kingma, Welling (bib0020) 2014 (2018). Dizaji, Herandi, Deng, Cai, Huang (bib0009) 2017 (2017). Glorot, Bengio (bib0010) 2010 Hu, Miyato, Tokui, Matsumoto, Sugiyama (bib0014) 2017 Cai, He, Han (bib0006) 2011; 23 Jiang, Zheng, Tan, Tang, Zhou (bib0018) 2017 Peng, Xiao, Feng, Yau, Yi (bib0026) 2016 van der Maaten, Hinton (bib0021) 2008; 9 Hsu, Lin (bib0013) 2018; 20 Bengio, Lamblin, Popovici, Larochelle (bib0004) 2006 Arthur (10.1016/j.patrec.2020.07.028_bib0003) 2007 Hinton (10.1016/j.patrec.2020.07.028_bib0012) 2006; 313 Hsu (10.1016/j.patrec.2020.07.028_bib0013) 2018; 20 Kingma (10.1016/j.patrec.2020.07.028_bib0019) 2015 Bengio (10.1016/j.patrec.2020.07.028_bib0004) 2006 Yang (10.1016/j.patrec.2020.07.028_bib0030) 2016 10.1016/j.patrec.2020.07.028_bib0008 Jang (10.1016/j.patrec.2020.07.028_bib0016) 2017 Bishop (10.1016/j.patrec.2020.07.028_bib0005) 2006 Rose (10.1016/j.patrec.2020.07.028_bib0027) 1990; 11 Xie (10.1016/j.patrec.2020.07.028_bib0028) 2016 Guo (10.1016/j.patrec.2020.07.028_bib0011) 2017 MacQueen (10.1016/j.patrec.2020.07.028_bib0022) 1967 Peng (10.1016/j.patrec.2020.07.028_bib0026) 2016 Yang (10.1016/j.patrec.2020.07.028_bib0029) 2017 Jiang (10.1016/j.patrec.2020.07.028_bib0018) 2017 Glorot (10.1016/j.patrec.2020.07.028_bib0010) 2010 van der Maaten (10.1016/j.patrec.2020.07.028_bib0021) 2008; 9 Cai (10.1016/j.patrec.2020.07.028_bib0006) 2011; 23 Dizaji (10.1016/j.patrec.2020.07.028_bib0009) 2017 Hu (10.1016/j.patrec.2020.07.028_bib0014) 2017 Peng (10.1016/j.patrec.2020.07.028_bib0025) 2017 Maddison (10.1016/j.patrec.2020.07.028_bib0023) 2017 Nair (10.1016/j.patrec.2020.07.028_bib0024) 2010 Kingma (10.1016/j.patrec.2020.07.028_bib0020) 2014 Agustsson (10.1016/j.patrec.2020.07.028_bib0001) 2017 10.1016/j.patrec.2020.07.028_bib0002 Ji (10.1016/j.patrec.2020.07.028_bib0017) 2017 Huang (10.1016/j.patrec.2020.07.028_bib0015) 2014 Chang (10.1016/j.patrec.2020.07.028_bib0007) 2017 |
References_xml | – year: 2014 ident: bib0020 article-title: Auto-Encoding Variational Bayes publication-title: Proceedings of the 2nd International Conference on Learning Representations, ICLR ’14 – reference: N. Dilokthanakul, P.A.M. Mediano, M. Garnelo, M.C.H. Lee, H. Salimbeni, K. Arulkumaran, M. Shanahan, Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders, arXiv: – start-page: 1532 year: 2014 end-page: 1537 ident: bib0015 article-title: Deep embedding network for clustering publication-title: Proceedings of the 22nd International Conference on Pattern Recognition, ICPR ’14 – start-page: 1141 year: 2017 end-page: 1151 ident: bib0001 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations publication-title: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS ’17 – start-page: 5736 year: 2017 end-page: 5745 ident: bib0009 article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization publication-title: Proceedings of the 2017 IEEE International Conference on Computer Vision, ICCV ’17 – start-page: 1025 year: 2007 end-page: 1027 ident: bib0003 article-title: K-Means++: the advantages of careful seeding publication-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07 – volume: 11 start-page: 589 year: 1990 end-page: 594 ident: bib0027 article-title: A deterministic annealing approach to clustering publication-title: Pattern Recognit. Lett. – start-page: 2478 year: 2017 end-page: 2484 ident: bib0025 article-title: Cascade subspace clustering publication-title: Proceedings of the 31th Conference on Artificial Intelligence, AAAI ’17 – volume: 23 start-page: 902 year: 2011 end-page: 913 ident: bib0006 article-title: Locally consistent concept factorization for document clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1925 year: 2016 end-page: 1931 ident: bib0026 article-title: Deep subspace clustering with sparsity prior publication-title: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI ’16 – start-page: 281 year: 1967 end-page: 297 ident: bib0022 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability – year: 2010 ident: bib0010 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS ’10 – start-page: 1753 year: 2017 end-page: 1759 ident: bib0011 article-title: Improved deep embedded clustering with local structure preservation publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI ’17 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0012 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 1558 year: 2017 end-page: 1567 ident: bib0014 article-title: Learning discrete representations via information maximizing self-augmented training publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML ’17 – start-page: 5147 year: 2016 end-page: 5156 ident: bib0030 article-title: Joint unsupervised learning of deep representations and image clusters publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16 – start-page: 3861 year: 2017 end-page: 3870 ident: bib0029 article-title: Towards publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML ’17 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0021 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – year: 2017 ident: bib0016 article-title: Categorical reparameterization with gumbel-softmax publication-title: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17 – reference: E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with Deep Learning: Taxonomy and New Methods, arXiv: – reference: (2018). – start-page: 23 year: 2017 end-page: 32 ident: bib0017 article-title: Deep subspace clustering networks publication-title: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS ’17 – start-page: 1965 year: 2017 end-page: 1972 ident: bib0018 article-title: Variational deep embedding: an unsupervised and generative approach to clustering publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI ’17 – start-page: 807 year: 2010 end-page: 814 ident: bib0024 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning, ICML ’10 – year: 2006 ident: bib0005 article-title: Pattern Recognition and Machine Learning – start-page: 478 year: 2016 end-page: 487 ident: bib0028 article-title: Unsupervised deep embedding for clustering analysis publication-title: Proceedings of the 33rd International Conference on Machine Learning, ICML ’16 – year: 2017 ident: bib0023 article-title: The concrete distribution: a continuous relaxation of discrete random variables publication-title: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17 – volume: 20 start-page: 421 year: 2018 end-page: 429 ident: bib0013 article-title: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data publication-title: IEEE Trans. Multimed. – year: 2015 ident: bib0019 article-title: Adam: a method for stochastic optimization publication-title: Proceedings of the 3rd International Conference on Learning Representations, ICLR ’15 – start-page: 5879 year: 2017 end-page: 5887 ident: bib0007 article-title: Deep adaptive image clustering publication-title: Proceedings of the 2017 IEEE International Conference on Computer Vision, ICCV ’17 – start-page: 153 year: 2006 end-page: 160 ident: bib0004 article-title: Greedy layer-wise training of deep networks publication-title: Proceedings of the 20th Annual Conference on Neural Information Processing Systems, NIPS ’06 – reference: (2017). – start-page: 5147 year: 2016 ident: 10.1016/j.patrec.2020.07.028_bib0030 article-title: Joint unsupervised learning of deep representations and image clusters – year: 2015 ident: 10.1016/j.patrec.2020.07.028_bib0019 article-title: Adam: a method for stochastic optimization – start-page: 1558 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0014 article-title: Learning discrete representations via information maximizing self-augmented training – year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0016 article-title: Categorical reparameterization with gumbel-softmax – start-page: 281 year: 1967 ident: 10.1016/j.patrec.2020.07.028_bib0022 article-title: Some methods for classification and analysis of multivariate observations – start-page: 807 year: 2010 ident: 10.1016/j.patrec.2020.07.028_bib0024 article-title: Rectified linear units improve restricted Boltzmann machines – start-page: 478 year: 2016 ident: 10.1016/j.patrec.2020.07.028_bib0028 article-title: Unsupervised deep embedding for clustering analysis – volume: 23 start-page: 902 issue: 6 year: 2011 ident: 10.1016/j.patrec.2020.07.028_bib0006 article-title: Locally consistent concept factorization for document clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.165 – start-page: 1925 year: 2016 ident: 10.1016/j.patrec.2020.07.028_bib0026 article-title: Deep subspace clustering with sparsity prior – start-page: 2478 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0025 article-title: Cascade subspace clustering – volume: 20 start-page: 421 issue: 2 year: 2018 ident: 10.1016/j.patrec.2020.07.028_bib0013 article-title: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2745702 – start-page: 1753 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0011 article-title: Improved deep embedded clustering with local structure preservation – start-page: 1965 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0018 article-title: Variational deep embedding: an unsupervised and generative approach to clustering – start-page: 1141 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0001 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations – start-page: 1025 year: 2007 ident: 10.1016/j.patrec.2020.07.028_bib0003 article-title: K-Means++: the advantages of careful seeding – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.patrec.2020.07.028_bib0012 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2014 ident: 10.1016/j.patrec.2020.07.028_bib0020 article-title: Auto-Encoding Variational Bayes – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.patrec.2020.07.028_bib0021 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0023 article-title: The concrete distribution: a continuous relaxation of discrete random variables – start-page: 153 year: 2006 ident: 10.1016/j.patrec.2020.07.028_bib0004 article-title: Greedy layer-wise training of deep networks – start-page: 23 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0017 article-title: Deep subspace clustering networks – year: 2006 ident: 10.1016/j.patrec.2020.07.028_bib0005 – start-page: 5736 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0009 article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization – ident: 10.1016/j.patrec.2020.07.028_bib0002 – ident: 10.1016/j.patrec.2020.07.028_bib0008 – volume: 11 start-page: 589 issue: 9 year: 1990 ident: 10.1016/j.patrec.2020.07.028_bib0027 article-title: A deterministic annealing approach to clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(90)90010-Y – start-page: 3861 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0029 article-title: Towards k-Means-friendly spaces: simultaneous deep learning and clustering – start-page: 1532 year: 2014 ident: 10.1016/j.patrec.2020.07.028_bib0015 article-title: Deep embedding network for clustering – year: 2010 ident: 10.1016/j.patrec.2020.07.028_bib0010 article-title: Understanding the difficulty of training deep feedforward neural networks – start-page: 5879 year: 2017 ident: 10.1016/j.patrec.2020.07.028_bib0007 article-title: Deep adaptive image clustering |
SSID | ssj0006398 |
Score | 2.6536083 |
Snippet | •Differentiable reformulation of the k-Means problem in a learned embedding space.•Proposition of an alternative to pretraining based on deterministic... We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 185 |
SubjectTerms | Algorithms Artificial Intelligence Cluster analysis Clustering Computer Science Deep clustering Deep learning k-Means Learning Machine Learning Representations Vector quantization |
Title | Deep k-Means: Jointly clustering with k-Means and learning representations |
URI | https://dx.doi.org/10.1016/j.patrec.2020.07.028 https://www.proquest.com/docview/2465480784 https://hal.univ-grenoble-alpes.fr/hal-03356552 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxsxDLdoeWEPsAHTCh2K0F6zXr7uLnurCqjrgJcNibfoPhIoq44KCtJe9rcvvkuqbZqEtMeLbCWyHdvK2T8DfCh4VnnbkLSotaBSCkG1YxVlLnE-meNacmxOvrhMp1dydq2uN2ASe2GwrDL4_s6nt946rIyCNEfL-Xz0FQvosa2SJ_jvTeoebHKhU9WHzfHnL9PLtUP2QTiPEN_IEDvo2jIvfHK2iGXIkxbFE8ey_ztC9W6xVPIvj92GobPXsB3yRzLujvgGNmyzCztxNgMJV3UXXv0GNLgHsxNrl-Q7vbA-Mn0is_t5s1r8INXiCXESPAnB99hIQIqmJmGcxA1pYS9ji1LzuA9XZ6ffJlMapijQSjK5ojUXUmQJs2WqCuWcVEWdMeV0UulapjypHJPWlSwTPtfx8T93uhKqyDG1U7UTb6Hf3Df2HZAyzW2tLSLw49T0XHPrFEMrENhNUA5ARMmZKkCM46SLhYm1ZHemk7dBeZskM17eA6BrrmUHsfECfRaVYv4wFeOjwAucx16H600QWXs6Pje4lgih0Jae2QCGUcUm3OdHwxF2DqH55cF_734IW_jVVQIOob96eLLvfUazKo-g9_EnOwp2-wsFZPKF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BPVAO0NIiArRYiKub9Su75oZoUUgTLoDEzdqHDYFoiSAgceG349m1aUGVkHq1x_JqPJ4Zeb_5BmA352npbUPSvNKCSikE1Y6VlLnE-WSOa8mxOHl03OufycG5Op-Dg1gLg7DK4Ptbn9546zDSDdrsTsfj7gkC6LGskif4703qefgglUgR1_fj6Q_Ow4fgLBJ8o3isn2tAXvjgbJHJkCcNhyc2Zf93fJq_RKDkG3_dBKHDT7Acskey337gZ5iz9SqsxM4MJFzUVVj6i2bwCwx-Wjsl13RkfVzaI4ObcT2bPJJyco8sCV6E4GtsFCB5XZHQTOKCNKSXsUCpvvsKZ4e_Tg_6NPRQoKVkckYrLqRIE2aLnsqVc1LlVcqU00mpK9njSemYtK5gqfCZjo_-mdOlUHmGiZ2qnFiDhfqmtutAil5mK22Rfx97pmeaW6cY2oDAWoKiAyJqzpSBYBz7XExMRJJdmVbfBvVtktR4fXeAvqyatgQb78in8VDMK0MxPga8s3LHn-HLJsir3d8fGhxLhFBoSQ-sA1vxiE24zXeGI-kcEvPLjf_efRsW-6ejoRkeHf_ehI8402ICt2Bhdntvv_ncZlZ8b2z3GQ8V81A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+k-Means%3A+Jointly+clustering+with+k-Means+and+learning+representations&rft.jtitle=Pattern+recognition+letters&rft.au=Moradi+Fard%2C+Maziar&rft.au=Thonet%2C+Thibaut&rft.au=Gaussier%2C+Eric&rft.date=2020-10-01&rft.issn=0167-8655&rft.volume=138&rft.spage=185&rft.epage=192&rft_id=info:doi/10.1016%2Fj.patrec.2020.07.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2020_07_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |