A geometric method for the detection and correction of segmentation leaks of anatomical structures in volumetric medical images
Purpose Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Althoug...
Saved in:
| Published in | International journal for computer assisted radiology and surgery Vol. 11; no. 3; pp. 369 - 380 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1861-6410 1861-6429 1861-6429 |
| DOI | 10.1007/s11548-015-1285-z |
Cover
| Abstract | Purpose
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.
Methods
We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.
Results
Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5 % respectively, with respect to the ground-truth.
Conclusions
The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction. |
|---|---|
| AbstractList | Purpose
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.
Methods
We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.
Results
Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5 % respectively, with respect to the ground-truth.
Conclusions
The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction. Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications. We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude. Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth. The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction. Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.PURPOSEPatient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.METHODSWe present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth.RESULTSOur evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth.The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.CONCLUSIONSThe advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction. |
| Author | Joskowicz, Leo Kronman, Achia |
| Author_xml | – sequence: 1 givenname: Achia surname: Kronman fullname: Kronman, Achia organization: Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem – sequence: 2 givenname: Leo surname: Joskowicz fullname: Joskowicz, Leo email: josko@cs.huji.ac.il organization: Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26337441$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPJSEQhYlx4mv8AW4My9m0As2rl8bMw8TEja4JQvW1tRscoCeZu_GvD_f21cUsXBVFvlMU5xyj_RADIHRGyQUlRF1mSgXXDaGioUyLZr2HjqiWtJGcdfsfZ0oO0XHOz4RwoVpxgA6ZbFvFOT1Cb1d4BXGCkgaHa3mKHvcx4fIE2EMBV4YYsA0eu5jSro09zrCaIBS77UewL3lza4MtcRqcHXEuaXZlTpDxEPCfOM4fj_gtMEx2Bfkr-tLbMcPprp6ghx_f769_Nbd3P2-ur24bxykvjVPcE6ddL7df7jh30jMnO6kele2Zl6rzTGvNBW2F49q10DPKuCacK-bbE_Rtmfua4u8ZcjHTkB2Mow0Q52yoklqIjnWyouc7dH6sy5rXVFdNf827aRVQC-BSzDlBb9ywOFGSHUZDidnEY5Z4TI3HbOIx66qk_ynfh3-mYYsmVzasIJnnOKdQzfpE9A9YUKOw |
| CitedBy_id | crossref_primary_10_1016_j_pbiomolbio_2023_07_001 crossref_primary_10_1016_j_compbiomed_2017_05_025 crossref_primary_10_1016_j_media_2017_05_001 crossref_primary_10_1016_j_media_2020_101884 crossref_primary_10_1016_j_media_2020_101876 crossref_primary_10_1142_S2196888824500076 crossref_primary_10_1155_2019_1075434 crossref_primary_10_1007_s00371_022_02656_2 crossref_primary_10_3390_cancers13215546 crossref_primary_10_1016_j_media_2018_08_006 crossref_primary_10_1002_ima_70025 crossref_primary_10_1007_s10278_019_00227_x crossref_primary_10_1016_j_media_2019_07_003 crossref_primary_10_1142_S0219519422400061 |
| Cites_doi | 10.1109/TMI.2002.808355 10.1007/s11263-006-7934-5 10.1016/j.cag.2009.03.005 10.1023/A:1007979827043 10.1109/TPAMI.2006.233 10.1007/s11517-011-0838-8 10.1145/37402.37422 10.1145/992200.992206 10.1117/12.431013 10.1109/ISPA.2007.4383681 10.1007/978-3-642-33418-4_45 10.1145/1186415.1186491 10.1007/978-3-642-23626-6_74 10.1109/CVPR.2010.5540057 10.1007/978-3-642-40763-5_26 |
| ContentType | Journal Article |
| Copyright | CARS 2015 |
| Copyright_xml | – notice: CARS 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1007/s11548-015-1285-z |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1861-6429 |
| EndPage | 380 |
| ExternalDocumentID | 26337441 10_1007_s11548_015_1285_z |
| Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Israeli Ministry of Trade and Industry grantid: KAMIN Grant 46217 |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c414t-c74d0c8cf611548944c6d2c6967b7af2d679d288845135c48c3ef2124804472d3 |
| IEDL.DBID | AGYKE |
| ISSN | 1861-6410 1861-6429 |
| IngestDate | Thu Oct 02 12:03:47 EDT 2025 Mon Jul 21 05:40:46 EDT 2025 Wed Oct 01 00:20:28 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Fri Feb 21 02:42:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Laplace deformation Volumetric images Segmentation errors correction Medical image segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-c74d0c8cf611548944c6d2c6967b7af2d679d288845135c48c3ef2124804472d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 26337441 |
| PQID | 1768559296 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1768559296 pubmed_primary_26337441 crossref_citationtrail_10_1007_s11548_015_1285_z crossref_primary_10_1007_s11548_015_1285_z springer_journals_10_1007_s11548_015_1285_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
| PublicationTitle | International journal for computer assisted radiology and surgery |
| PublicationTitleAbbrev | Int J CARS |
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Grimson, Willsky (CR6) 2003; 22 Pohle, Toennies (CR1) 2001; 4322 Lorensen, Cline (CR20) 1987; 21 Grady (CR9) 2006; 28 CR8 CR7 CR17 CR15 CR14 CR13 Caselles, Kimmel, Sapiro (CR4) 1997; 22 CR12 CR11 Davis (CR19) 2004; 30 CR10 Boykov, Funka-Lea (CR3) 2006; 70 Styner, Oguz, Xu, Brechbühler, Pantazis, Levitt, Shenton, Gerig (CR16) 2006; 1071 Reuter, Biasotti, Giorgi, Patanèc, Spagnuolo (CR18) 2009; 33 Freedman, Zhang (CR5) 2005; 1 Dodin, Martel-Pelletier, Pelletier, Abram (CR2) 2011; 49 L Grady (1285_CR9) 2006; 28 1285_CR15 1285_CR17 A Tsai (1285_CR6) 2003; 22 1285_CR11 M Styner (1285_CR16) 2006; 1071 1285_CR12 V Caselles (1285_CR4) 1997; 22 1285_CR13 1285_CR14 1285_CR7 D Freedman (1285_CR5) 2005; 1 1285_CR10 TA Davis (1285_CR19) 2004; 30 Y Boykov (1285_CR3) 2006; 70 M Reuter (1285_CR18) 2009; 33 WE Lorensen (1285_CR20) 1987; 21 R Pohle (1285_CR1) 2001; 4322 P Dodin (1285_CR2) 2011; 49 1285_CR8 17354857 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):888-95 24579142 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):206-13 21941375 - Insight J. 2006;(1071):242-250 12715991 - IEEE Trans Med Imaging. 2003 Feb;22(2):137-54 22003749 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83 23286069 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):363-70 |
| References_xml | – volume: 1 start-page: 755 year: 2005 end-page: 762 ident: CR5 article-title: Interactive graph cut based segmentation with shape priors publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – volume: 22 start-page: 137 issue: 2 year: 2003 end-page: 154 ident: CR6 article-title: A shape-based approach to the segmentation of medical imagery using level sets publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.808355 – volume: 70 start-page: 109 issue: 2 year: 2006 end-page: 131 ident: CR3 article-title: Graph cuts and efficient and image segmentation publication-title: Int J Comput Vis doi: 10.1007/s11263-006-7934-5 – ident: CR14 – ident: CR15 – ident: CR12 – ident: CR17 – ident: CR13 – volume: 33 start-page: 381 issue: 3 year: 2009 end-page: 390 ident: CR18 article-title: Discrete Laplace Beltrami operators for shape analysis and segmentation publication-title: Comput Graph doi: 10.1016/j.cag.2009.03.005 – ident: CR10 – ident: CR11 – volume: 22 start-page: 61 issue: 1 year: 1997 end-page: 79 ident: CR4 article-title: Geodesic active contours publication-title: Int J Comput Vis doi: 10.1023/A:1007979827043 – volume: 28 start-page: 1768 issue: 11 year: 2006 end-page: 1783 ident: CR9 article-title: Random walks for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.233 – volume: 1071 start-page: 242 year: 2006 ident: CR16 article-title: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Workshop on medical image computing and computer-assisted intervention publication-title: Insight J – volume: 49 start-page: 1413 issue: 12 year: 2011 end-page: 1424 ident: CR2 article-title: A fully automated human knee 3D MRI bone segmentation using the ray casting technique publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0838-8 – ident: CR7 – ident: CR8 – volume: 21 start-page: 163 issue: 4 year: 1987 end-page: 169 ident: CR20 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: Comput Graph doi: 10.1145/37402.37422 – volume: 30 start-page: 196 issue: 2 year: 2004 end-page: 199 ident: CR19 article-title: Algorithm 832: Umfpack V4.3—an unsymmetric-pattern multifrontal method publication-title: ACM Trans Math Softw doi: 10.1145/992200.992206 – volume: 4322 start-page: 1337 year: 2001 end-page: 1346 ident: CR1 article-title: Segmentation of medical images using adaptive region growing publication-title: Proc SPIE Med Imaging doi: 10.1117/12.431013 – volume: 1 start-page: 755 year: 2005 ident: 1285_CR5 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: 1285_CR7 doi: 10.1109/ISPA.2007.4383681 – volume: 33 start-page: 381 issue: 3 year: 2009 ident: 1285_CR18 publication-title: Comput Graph doi: 10.1016/j.cag.2009.03.005 – volume: 22 start-page: 137 issue: 2 year: 2003 ident: 1285_CR6 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.808355 – volume: 70 start-page: 109 issue: 2 year: 2006 ident: 1285_CR3 publication-title: Int J Comput Vis doi: 10.1007/s11263-006-7934-5 – ident: 1285_CR17 – volume: 4322 start-page: 1337 year: 2001 ident: 1285_CR1 publication-title: Proc SPIE Med Imaging doi: 10.1117/12.431013 – volume: 1071 start-page: 242 year: 2006 ident: 1285_CR16 publication-title: Insight J – volume: 22 start-page: 61 issue: 1 year: 1997 ident: 1285_CR4 publication-title: Int J Comput Vis doi: 10.1023/A:1007979827043 – ident: 1285_CR12 – volume: 49 start-page: 1413 issue: 12 year: 2011 ident: 1285_CR2 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0838-8 – ident: 1285_CR11 – ident: 1285_CR14 doi: 10.1007/978-3-642-33418-4_45 – volume: 21 start-page: 163 issue: 4 year: 1987 ident: 1285_CR20 publication-title: Comput Graph doi: 10.1145/37402.37422 – ident: 1285_CR15 doi: 10.1145/1186415.1186491 – ident: 1285_CR10 doi: 10.1007/978-3-642-23626-6_74 – volume: 28 start-page: 1768 issue: 11 year: 2006 ident: 1285_CR9 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.233 – ident: 1285_CR8 doi: 10.1109/CVPR.2010.5540057 – ident: 1285_CR13 doi: 10.1007/978-3-642-40763-5_26 – volume: 30 start-page: 196 issue: 2 year: 2004 ident: 1285_CR19 publication-title: ACM Trans Math Softw doi: 10.1145/992200.992206 – reference: 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83 – reference: 23286069 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):363-70 – reference: 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24 – reference: 12715991 - IEEE Trans Med Imaging. 2003 Feb;22(2):137-54 – reference: 24579142 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):206-13 – reference: 21941375 - Insight J. 2006;(1071):242-250 – reference: 17354857 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):888-95 – reference: 22003749 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10 |
| SSID | ssj0045735 |
| Score | 2.1288893 |
| Snippet | Purpose
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many... Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 369 |
| SubjectTerms | Algorithms Computer Imaging Computer Science Health Informatics Humans Imaging Imaging, Three-Dimensional - methods Lung Neoplasms - diagnostic imaging Lung Neoplasms - physiopathology Medicine Medicine & Public Health Original Article Pattern Recognition and Graphics Pattern Recognition, Automated Radiographic Image Enhancement Radiographic Image Interpretation, Computer-Assisted Radiology Reproducibility of Results Surgery Tomography, X-Ray Computed - standards Vision |
| Title | A geometric method for the detection and correction of segmentation leaks of anatomical structures in volumetric medical images |
| URI | https://link.springer.com/article/10.1007/s11548-015-1285-z https://www.ncbi.nlm.nih.gov/pubmed/26337441 https://www.proquest.com/docview/1768559296 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: U2A dateStart: 20060625 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61WwlxoVCgLNDKSJxArjZ-JT6uUB-iKqeuVE5R4kdVtetFyu5lL_x1xo6zFRSQekyU-O3xN5rx9wF8NFLbCW84NY1TVFgraCWYodor2UbGqjJpRl58U2cz8fVKXuV73N2Q7T6EJJOlvr_sFtE1ur6Sok2VdL0NO4luawQ709Pv58eDARayTLqaRaUKqkSxCWb-rZDfj6MHGPNBfDQdOye7cDk0uM82uT1aLdsjs_6Dy_GRPXoOzzIMJdN-3byALRf2YHeQeCB5x-_Bk4sce38JP6fk2i3mUYHLkF54miDiJYggiXXLlNIVSBMsMVHxo39ceNK563m-4BTInWtuu_i2CejtJ6oC0lPYrtDvJzeB9OYyV5KCSORmjkavewWzk-PLL2c0yzdQIwqxpKYUdmIq41XqpxbCKMuM0qpsy8Yzq0ptGXrgQhZcGlEZ7jyepKKaCFEyy1_DKCyCewOk0p5rrrwp0P1h2rZV6xnXhdfGikaaMUyGWaxN5jaPEht39T0rc2xDjWNdx7Gu12P4tPnlR0_s8b-PPwxLo8btF2MqTXCLVVcX6K6hU8a0GsN-v2Y2xTHFeYlwcwyfh_mvs4Xo_l3X20d9_Q6eIoRTfVbcexjhjLkDhEnL9jBvi0PYnrHpL_nYCn0 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkYALhUJh-TQSJ5Cljb8SH1eo1QLdnrpSb1bij6pq11sp20sv_HXGjrMVKiBxTJTYkV88fqOx3wP4ZKV2U95yaluvqHBO0EYwS3VQskuKVXX2jFwcq_lSfD-Vp-Ucdz_udh9LkjlS3x52S-waU19JMaZKenMfHiT9qiSYv2SzMfwKWWdXzapRFVWi2pYy_9TE74vRHYZ5pzqaF53Dp_CksEUyG-B9Bvd83IPd0YmBlIm5Bw8XpUT-HH7OyJlfr5JRliWDPzRBYkqQ6BHnN3nnVSRtdMQmY47hch1I789W5RxSJJe-vejT3TZiUp4VBcigNHuN6Tk5j2SIaqWTXOsh5yuMTf0LWB4enHyd0-KyQK2oxIbaWripbWxQeXS0EFY5ZpVWdVe3gTlVa8cwURay4tKKxnIfcMETzVSImjm-DztxHf0rII0OXHMVbIVZCtOua7rAuK6Ctk600k5gOg63sUWCPDlhXJpb8eT0DQYRMgkhczOBz9tXrgb9jX89_HHE0OAsSaWPNvr1dW8qzKowd2JaTeDlAO62OaY4r5EVTuDLiLYpE7n_e1-v_-vpD_BofrI4Mkffjn-8gcfIutSwke0t7CB6_h0ym033Pv_JvwDFGu9a |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXHuW1QMFInEBWN_bYiY8r2lV5tOLASr1ZiR9VRddbKdtLL_x1xrGzFSog9ZjIsSOPPf5GM_4-Qt5bqd1UtILZ1isGzgFrgFumg5JdYqyqB83Io2N1uIAvJ_Kk6Jz2Y7X7mJLMdxoSS1Nc7124sHd98S0hbQyDJUP_KtnVXXIPEk8CLugFn42uGGQ9KGxWjaqYgmqT1vxbF38eTDfQ5o1M6XAAzR-RBwU50lk29WNyx8cd8nBUZaBlk-6Q7aOSLn9Cfs3oqV8tk2iWpVkrmiJIpQj6qPProQor0jY6apNIR35cBdr702W5kxTpuW9_9ultGzFAH9gFaGadvcRQnZ5Fmj1cGWTI-9CzJfqp_ilZzA9-fDpkRXGBWahgzWwNbmobG9QwOxrAKset0qru6jZwp2rtOAbNICshLTRW-ICHHzRTgJo78YxsxVX0LwhtdBBaqGArjFi4dl3TBS50FbR10Eo7IdNxuo0tdORJFePcXBMpp38waCGTLGSuJuTD5pOLzMXxv8bvRhsa3DEpDdJGv7rsTYURFsZRXKsJeZ6Nu-mOKyFqRIgT8nG0timbuv_3WC9v1fot2f6-PzffPh9_fUXuIwBTuabtNdlC4_ldBDnr7s2wkH8De5_zlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+geometric+method+for+the+detection+and+correction+of+segmentation+leaks+of+anatomical+structures+in+volumetric+medical+images&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Kronman%2C+Achia&rft.au=Joskowicz%2C+Leo&rft.date=2016-03-01&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=11&rft.issue=3&rft.spage=369&rft.epage=380&rft_id=info:doi/10.1007%2Fs11548-015-1285-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11548_015_1285_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |