A geometric method for the detection and correction of segmentation leaks of anatomical structures in volumetric medical images

Purpose Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Althoug...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 11; no. 3; pp. 369 - 380
Main Authors Kronman, Achia, Joskowicz, Leo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2016
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-015-1285-z

Cover

Abstract Purpose Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications. Methods    We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude. Results    Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5 % respectively, with respect to the ground-truth. Conclusions    The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.
AbstractList Purpose Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications. Methods    We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude. Results    Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5 % respectively, with respect to the ground-truth. Conclusions    The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications. We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude. Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth. The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.PURPOSEPatient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.METHODSWe present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth.RESULTSOur evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5% respectively, with respect to the ground-truth.The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.CONCLUSIONSThe advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.
Author Joskowicz, Leo
Kronman, Achia
Author_xml – sequence: 1
  givenname: Achia
  surname: Kronman
  fullname: Kronman, Achia
  organization: Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem
– sequence: 2
  givenname: Leo
  surname: Joskowicz
  fullname: Joskowicz, Leo
  email: josko@cs.huji.ac.il
  organization: Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26337441$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPJSEQhYlx4mv8AW4My9m0As2rl8bMw8TEja4JQvW1tRscoCeZu_GvD_f21cUsXBVFvlMU5xyj_RADIHRGyQUlRF1mSgXXDaGioUyLZr2HjqiWtJGcdfsfZ0oO0XHOz4RwoVpxgA6ZbFvFOT1Cb1d4BXGCkgaHa3mKHvcx4fIE2EMBV4YYsA0eu5jSro09zrCaIBS77UewL3lza4MtcRqcHXEuaXZlTpDxEPCfOM4fj_gtMEx2Bfkr-tLbMcPprp6ghx_f769_Nbd3P2-ur24bxykvjVPcE6ddL7df7jh30jMnO6kele2Zl6rzTGvNBW2F49q10DPKuCacK-bbE_Rtmfua4u8ZcjHTkB2Mow0Q52yoklqIjnWyouc7dH6sy5rXVFdNf827aRVQC-BSzDlBb9ywOFGSHUZDidnEY5Z4TI3HbOIx66qk_ynfh3-mYYsmVzasIJnnOKdQzfpE9A9YUKOw
CitedBy_id crossref_primary_10_1016_j_pbiomolbio_2023_07_001
crossref_primary_10_1016_j_compbiomed_2017_05_025
crossref_primary_10_1016_j_media_2017_05_001
crossref_primary_10_1016_j_media_2020_101884
crossref_primary_10_1016_j_media_2020_101876
crossref_primary_10_1142_S2196888824500076
crossref_primary_10_1155_2019_1075434
crossref_primary_10_1007_s00371_022_02656_2
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1016_j_media_2018_08_006
crossref_primary_10_1002_ima_70025
crossref_primary_10_1007_s10278_019_00227_x
crossref_primary_10_1016_j_media_2019_07_003
crossref_primary_10_1142_S0219519422400061
Cites_doi 10.1109/TMI.2002.808355
10.1007/s11263-006-7934-5
10.1016/j.cag.2009.03.005
10.1023/A:1007979827043
10.1109/TPAMI.2006.233
10.1007/s11517-011-0838-8
10.1145/37402.37422
10.1145/992200.992206
10.1117/12.431013
10.1109/ISPA.2007.4383681
10.1007/978-3-642-33418-4_45
10.1145/1186415.1186491
10.1007/978-3-642-23626-6_74
10.1109/CVPR.2010.5540057
10.1007/978-3-642-40763-5_26
ContentType Journal Article
Copyright CARS 2015
Copyright_xml – notice: CARS 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s11548-015-1285-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 380
ExternalDocumentID 26337441
10_1007_s11548_015_1285_z
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Israeli Ministry of Trade and Industry
  grantid: KAMIN Grant 46217
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c414t-c74d0c8cf611548944c6d2c6967b7af2d679d288845135c48c3ef2124804472d3
IEDL.DBID AGYKE
ISSN 1861-6410
1861-6429
IngestDate Thu Oct 02 12:03:47 EDT 2025
Mon Jul 21 05:40:46 EDT 2025
Wed Oct 01 00:20:28 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Fri Feb 21 02:42:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Laplace deformation
Volumetric images
Segmentation errors correction
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-c74d0c8cf611548944c6d2c6967b7af2d679d288845135c48c3ef2124804472d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 26337441
PQID 1768559296
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1768559296
pubmed_primary_26337441
crossref_citationtrail_10_1007_s11548_015_1285_z
crossref_primary_10_1007_s11548_015_1285_z
springer_journals_10_1007_s11548_015_1285_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Tsai, Yezzi, Wells, Tempany, Tucker, Fan, Grimson, Willsky (CR6) 2003; 22
Pohle, Toennies (CR1) 2001; 4322
Lorensen, Cline (CR20) 1987; 21
Grady (CR9) 2006; 28
CR8
CR7
CR17
CR15
CR14
CR13
Caselles, Kimmel, Sapiro (CR4) 1997; 22
CR12
CR11
Davis (CR19) 2004; 30
CR10
Boykov, Funka-Lea (CR3) 2006; 70
Styner, Oguz, Xu, Brechbühler, Pantazis, Levitt, Shenton, Gerig (CR16) 2006; 1071
Reuter, Biasotti, Giorgi, Patanèc, Spagnuolo (CR18) 2009; 33
Freedman, Zhang (CR5) 2005; 1
Dodin, Martel-Pelletier, Pelletier, Abram (CR2) 2011; 49
L Grady (1285_CR9) 2006; 28
1285_CR15
1285_CR17
A Tsai (1285_CR6) 2003; 22
1285_CR11
M Styner (1285_CR16) 2006; 1071
1285_CR12
V Caselles (1285_CR4) 1997; 22
1285_CR13
1285_CR14
1285_CR7
D Freedman (1285_CR5) 2005; 1
1285_CR10
TA Davis (1285_CR19) 2004; 30
Y Boykov (1285_CR3) 2006; 70
M Reuter (1285_CR18) 2009; 33
WE Lorensen (1285_CR20) 1987; 21
R Pohle (1285_CR1) 2001; 4322
P Dodin (1285_CR2) 2011; 49
1285_CR8
17354857 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):888-95
24579142 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):206-13
21941375 - Insight J. 2006;(1071):242-250
12715991 - IEEE Trans Med Imaging. 2003 Feb;22(2):137-54
22003749 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10
22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24
17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
23286069 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):363-70
References_xml – volume: 1
  start-page: 755
  year: 2005
  end-page: 762
  ident: CR5
  article-title: Interactive graph cut based segmentation with shape priors
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 22
  start-page: 137
  issue: 2
  year: 2003
  end-page: 154
  ident: CR6
  article-title: A shape-based approach to the segmentation of medical imagery using level sets
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.808355
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  end-page: 131
  ident: CR3
  article-title: Graph cuts and efficient and image segmentation
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-006-7934-5
– ident: CR14
– ident: CR15
– ident: CR12
– ident: CR17
– ident: CR13
– volume: 33
  start-page: 381
  issue: 3
  year: 2009
  end-page: 390
  ident: CR18
  article-title: Discrete Laplace Beltrami operators for shape analysis and segmentation
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2009.03.005
– ident: CR10
– ident: CR11
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  end-page: 79
  ident: CR4
  article-title: Geodesic active contours
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007979827043
– volume: 28
  start-page: 1768
  issue: 11
  year: 2006
  end-page: 1783
  ident: CR9
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.233
– volume: 1071
  start-page: 242
  year: 2006
  ident: CR16
  article-title: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Workshop on medical image computing and computer-assisted intervention
  publication-title: Insight J
– volume: 49
  start-page: 1413
  issue: 12
  year: 2011
  end-page: 1424
  ident: CR2
  article-title: A fully automated human knee 3D MRI bone segmentation using the ray casting technique
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0838-8
– ident: CR7
– ident: CR8
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  end-page: 169
  ident: CR20
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: Comput Graph
  doi: 10.1145/37402.37422
– volume: 30
  start-page: 196
  issue: 2
  year: 2004
  end-page: 199
  ident: CR19
  article-title: Algorithm 832: Umfpack V4.3—an unsymmetric-pattern multifrontal method
  publication-title: ACM Trans Math Softw
  doi: 10.1145/992200.992206
– volume: 4322
  start-page: 1337
  year: 2001
  end-page: 1346
  ident: CR1
  article-title: Segmentation of medical images using adaptive region growing
  publication-title: Proc SPIE Med Imaging
  doi: 10.1117/12.431013
– volume: 1
  start-page: 755
  year: 2005
  ident: 1285_CR5
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: 1285_CR7
  doi: 10.1109/ISPA.2007.4383681
– volume: 33
  start-page: 381
  issue: 3
  year: 2009
  ident: 1285_CR18
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2009.03.005
– volume: 22
  start-page: 137
  issue: 2
  year: 2003
  ident: 1285_CR6
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.808355
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 1285_CR3
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-006-7934-5
– ident: 1285_CR17
– volume: 4322
  start-page: 1337
  year: 2001
  ident: 1285_CR1
  publication-title: Proc SPIE Med Imaging
  doi: 10.1117/12.431013
– volume: 1071
  start-page: 242
  year: 2006
  ident: 1285_CR16
  publication-title: Insight J
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 1285_CR4
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007979827043
– ident: 1285_CR12
– volume: 49
  start-page: 1413
  issue: 12
  year: 2011
  ident: 1285_CR2
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0838-8
– ident: 1285_CR11
– ident: 1285_CR14
  doi: 10.1007/978-3-642-33418-4_45
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  ident: 1285_CR20
  publication-title: Comput Graph
  doi: 10.1145/37402.37422
– ident: 1285_CR15
  doi: 10.1145/1186415.1186491
– ident: 1285_CR10
  doi: 10.1007/978-3-642-23626-6_74
– volume: 28
  start-page: 1768
  issue: 11
  year: 2006
  ident: 1285_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.233
– ident: 1285_CR8
  doi: 10.1109/CVPR.2010.5540057
– ident: 1285_CR13
  doi: 10.1007/978-3-642-40763-5_26
– volume: 30
  start-page: 196
  issue: 2
  year: 2004
  ident: 1285_CR19
  publication-title: ACM Trans Math Softw
  doi: 10.1145/992200.992206
– reference: 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
– reference: 23286069 - Med Image Comput Comput Assist Interv. 2012;15(Pt 2):363-70
– reference: 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24
– reference: 12715991 - IEEE Trans Med Imaging. 2003 Feb;22(2):137-54
– reference: 24579142 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):206-13
– reference: 21941375 - Insight J. 2006;(1071):242-250
– reference: 17354857 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):888-95
– reference: 22003749 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10
SSID ssj0045735
Score 2.1288893
Snippet Purpose Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many...
Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 369
SubjectTerms Algorithms
Computer Imaging
Computer Science
Health Informatics
Humans
Imaging
Imaging, Three-Dimensional - methods
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - physiopathology
Medicine
Medicine & Public Health
Original Article
Pattern Recognition and Graphics
Pattern Recognition, Automated
Radiographic Image Enhancement
Radiographic Image Interpretation, Computer-Assisted
Radiology
Reproducibility of Results
Surgery
Tomography, X-Ray Computed - standards
Vision
Title A geometric method for the detection and correction of segmentation leaks of anatomical structures in volumetric medical images
URI https://link.springer.com/article/10.1007/s11548-015-1285-z
https://www.ncbi.nlm.nih.gov/pubmed/26337441
https://www.proquest.com/docview/1768559296
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61WwlxoVCgLNDKSJxArjZ-JT6uUB-iKqeuVE5R4kdVtetFyu5lL_x1xo6zFRSQekyU-O3xN5rx9wF8NFLbCW84NY1TVFgraCWYodor2UbGqjJpRl58U2cz8fVKXuV73N2Q7T6EJJOlvr_sFtE1ur6Sok2VdL0NO4luawQ709Pv58eDARayTLqaRaUKqkSxCWb-rZDfj6MHGPNBfDQdOye7cDk0uM82uT1aLdsjs_6Dy_GRPXoOzzIMJdN-3byALRf2YHeQeCB5x-_Bk4sce38JP6fk2i3mUYHLkF54miDiJYggiXXLlNIVSBMsMVHxo39ceNK563m-4BTInWtuu_i2CejtJ6oC0lPYrtDvJzeB9OYyV5KCSORmjkavewWzk-PLL2c0yzdQIwqxpKYUdmIq41XqpxbCKMuM0qpsy8Yzq0ptGXrgQhZcGlEZ7jyepKKaCFEyy1_DKCyCewOk0p5rrrwp0P1h2rZV6xnXhdfGikaaMUyGWaxN5jaPEht39T0rc2xDjWNdx7Gu12P4tPnlR0_s8b-PPwxLo8btF2MqTXCLVVcX6K6hU8a0GsN-v2Y2xTHFeYlwcwyfh_mvs4Xo_l3X20d9_Q6eIoRTfVbcexjhjLkDhEnL9jBvi0PYnrHpL_nYCn0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkYALhUJh-TQSJ5Cljb8SH1eo1QLdnrpSb1bij6pq11sp20sv_HXGjrMVKiBxTJTYkV88fqOx3wP4ZKV2U95yaluvqHBO0EYwS3VQskuKVXX2jFwcq_lSfD-Vp-Ucdz_udh9LkjlS3x52S-waU19JMaZKenMfHiT9qiSYv2SzMfwKWWdXzapRFVWi2pYy_9TE74vRHYZ5pzqaF53Dp_CksEUyG-B9Bvd83IPd0YmBlIm5Bw8XpUT-HH7OyJlfr5JRliWDPzRBYkqQ6BHnN3nnVSRtdMQmY47hch1I789W5RxSJJe-vejT3TZiUp4VBcigNHuN6Tk5j2SIaqWTXOsh5yuMTf0LWB4enHyd0-KyQK2oxIbaWripbWxQeXS0EFY5ZpVWdVe3gTlVa8cwURay4tKKxnIfcMETzVSImjm-DztxHf0rII0OXHMVbIVZCtOua7rAuK6Ctk600k5gOg63sUWCPDlhXJpb8eT0DQYRMgkhczOBz9tXrgb9jX89_HHE0OAsSaWPNvr1dW8qzKowd2JaTeDlAO62OaY4r5EVTuDLiLYpE7n_e1-v_-vpD_BofrI4Mkffjn-8gcfIutSwke0t7CB6_h0ym033Pv_JvwDFGu9a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXHuW1QMFInEBWN_bYiY8r2lV5tOLASr1ZiR9VRddbKdtLL_x1xrGzFSog9ZjIsSOPPf5GM_4-Qt5bqd1UtILZ1isGzgFrgFumg5JdYqyqB83Io2N1uIAvJ_Kk6Jz2Y7X7mJLMdxoSS1Nc7124sHd98S0hbQyDJUP_KtnVXXIPEk8CLugFn42uGGQ9KGxWjaqYgmqT1vxbF38eTDfQ5o1M6XAAzR-RBwU50lk29WNyx8cd8nBUZaBlk-6Q7aOSLn9Cfs3oqV8tk2iWpVkrmiJIpQj6qPProQor0jY6apNIR35cBdr702W5kxTpuW9_9ultGzFAH9gFaGadvcRQnZ5Fmj1cGWTI-9CzJfqp_ilZzA9-fDpkRXGBWahgzWwNbmobG9QwOxrAKset0qru6jZwp2rtOAbNICshLTRW-ICHHzRTgJo78YxsxVX0LwhtdBBaqGArjFi4dl3TBS50FbR10Eo7IdNxuo0tdORJFePcXBMpp38waCGTLGSuJuTD5pOLzMXxv8bvRhsa3DEpDdJGv7rsTYURFsZRXKsJeZ6Nu-mOKyFqRIgT8nG0timbuv_3WC9v1fot2f6-PzffPh9_fUXuIwBTuabtNdlC4_ldBDnr7s2wkH8De5_zlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+geometric+method+for+the+detection+and+correction+of+segmentation+leaks+of+anatomical+structures+in+volumetric+medical+images&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Kronman%2C+Achia&rft.au=Joskowicz%2C+Leo&rft.date=2016-03-01&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=11&rft.issue=3&rft.spage=369&rft.epage=380&rft_id=info:doi/10.1007%2Fs11548-015-1285-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11548_015_1285_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon