Accelerated reconstruction of dictionary-based T2 relaxation maps based on dictionary compression and gradient descent search algorithms

Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based t...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 87; pp. 56 - 66
Main Authors Shpringer, Guy, Bendahan, David, Ben-Eliezer, Noam
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2021.12.006

Cover

Abstract Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.
AbstractList Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.
Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.
Author Bendahan, David
Shpringer, Guy
Ben-Eliezer, Noam
Author_xml – sequence: 1
  givenname: Guy
  surname: Shpringer
  fullname: Shpringer, Guy
  organization: Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: David
  surname: Bendahan
  fullname: Bendahan, David
  organization: Aix Marseille University, CNRS UMR 7339, CRMBM, Marseille, France
– sequence: 3
  givenname: Noam
  surname: Ben-Eliezer
  fullname: Ben-Eliezer, Noam
  email: noambe@tauex.tau.ac.il
  organization: Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
BackLink https://hal.science/hal-03606818$$DView record in HAL
BookMark eNqFkc1u1DAURi1UJKaFB2CXJSwSbCdxHLEaVUCRRmJTJHaWc33T8eDEg-2p6Bvw2DgTEFIXZeW_c6xP97skF7OfkZDXjFaMMvHuUE3BVpxyVjFeUSqekQ2TXV22sm8uyIZ2NS073n57QS5jPFBKW163G_JrC4AOg05oioDg55jCCZL1c-HHwtjzVoeHctAxI7c8U07_1Gdi0sdYrA_59A8uwE_HgDEukJ5NcRe0sTinwmCEZY2oA-wL7e58sGk_xZfk-ahdxFd_1ivy9eOH2-ubcvfl0-fr7a6EhjWpHAbknWwMF0xwU8uua_Q48t60Net0A9QwaUYJrUBBAXsKXEDTG1prOTSDqK_I2_XfvXbqGOyU4yqvrbrZ7tRyR2tBhWTynmX2zcoeg_9xwpjUZHN85_SM_hRVDtH2nEreZbRbUQg-xoCjApvOQ0pBW6cYVUtP6qByT2rpSTGuck_ZZI_Mv6mect6vDuZJ3VsMKkIeL6CxucOkjLdP2v0jG5ydLWj3HR_-4_4Gux7C_g
CitedBy_id crossref_primary_10_1002_mrm_30023
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1002_mrm_30239
crossref_primary_10_1016_j_mri_2023_01_007
Cites_doi 10.1002/mrm.20058
10.1055/s-2004-815677
10.1016/j.mri.2017.04.004
10.1002/jmri.21849
10.1109/TMI.2014.2337321
10.1364/JOSAA.4.000519
10.1055/s-0040-1709482
10.1002/(SICI)1099-0534(1996)8:4<269::AID-CMR3>3.0.CO;2-X
10.1016/0730-725X(92)90001-G
10.1002/mrm.25156
10.1177/1352458509350310
10.1002/jmri.1880060408
10.1002/mrm.28136
10.1103/PhysRev.80.580
10.1016/j.jat.2007.03.002
10.1037/h0071325
10.1109/TMI.2018.2817547
10.1016/j.nicl.2017.01.029
10.1002/mrm.26285
10.1002/mrm.22874
10.1016/j.mri.2008.08.001
10.1102/1470-7330.2013.0041
10.1002/cmr.1820030302
10.1111/j.1600-0404.2011.01574.x
10.1002/mrm.21391
10.1002/mrm.25439
10.1055/s-2004-861764
10.1016/j.joca.2013.03.002
10.1002/mrm.25558
10.1161/CIRCIMAGING.111.971101
10.1088/0031-9155/61/15/5587
10.1002/jmri.1880020512
10.1016/j.acra.2017.04.008
10.1002/mrm.27704
10.1007/s10334-016-0573-0
10.1002/jmri.20758
10.1016/j.mri.2019.11.015
10.1148/radiol.11102234
10.1148/radiol.12120208
10.1002/mrm.20314
10.1002/nbm.4537
10.1002/(SICI)1522-2594(200004)43:4<589::AID-MRM14>3.0.CO;2-2
10.1038/nature11971
10.1148/radiol.10091928
10.1002/mrm.10407
10.1002/mrm.27198
10.2214/AJR.19.21927
10.1016/j.neuroimage.2019.116364
10.1186/1532-429X-11-56
10.1002/mrm.27403
10.1161/STROKEAHA.108.542548
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
DOI 10.1016/j.mri.2021.12.006
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 66
ExternalDocumentID oai:HAL:hal-03606818v1
10_1016_j_mri_2021_12_006
S0730725X21002551
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
7X8
1XC
ID FETCH-LOGICAL-c414t-bbe2784d26162d38774aff29d5317a4c0d18df8c56e60ce90c26c49d03a8b4b63
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Tue Oct 14 20:43:18 EDT 2025
Sun Sep 28 00:15:39 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Thu Oct 16 04:27:03 EDT 2025
Fri Feb 23 02:40:40 EST 2024
Tue Oct 14 19:31:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gradient descent
Magnetic resonance imaging
T2 mapping
Dictionary compression
Principal component analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-bbe2784d26162d38774aff29d5317a4c0d18df8c56e60ce90c26c49d03a8b4b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2615920827
PQPubID 23479
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03606818v1
proquest_miscellaneous_2615920827
crossref_citationtrail_10_1016_j_mri_2021_12_006
crossref_primary_10_1016_j_mri_2021_12_006
elsevier_sciencedirect_doi_10_1016_j_mri_2021_12_006
elsevier_clinicalkey_doi_10_1016_j_mri_2021_12_006
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
2022-04
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Magnetic resonance imaging
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Schmitt, Griswold, Jakob, Kotas, Gulani, Flentje (bb0145) 2004; 51
Wang, Ostenson, Smith (bb0255) 2020; 66
Siemonsen, Mouridsen, Holst, Ries (bb0065) 2009; 40
Knight, Mccann, Tsivos, Dillon, Coulthard, Kauppinen (bb0100) 2016; 61
Burstein (bb0130) 1996; 8
Popiel, Noakes (bb0280) 2007; 148
Ben-Eliezer, Sodickson, Block (bb0125) 2015; 73
Jolliffe (bb0265) 2002
Cohen, Zhu, Rosen (bb0205) 2018; 80
Liu (bb0215) 2020; 24
Tao, Lelieveldt, van der Geest (bb0225) 2020; 214
Smith, Li, Abramson, Quarles, Yankeelov, Welch (bb0240) 2013; 13
Deoni (bb0165) 2009; 30
Mcphee, Wilman (bb0110) 2017; 77
Sled, Pike (bb0170) 2000; 43
Zhang, Zhou, Chen, Chen, Li, Hu (bb0195) 2017; 41
Constable, Anderson, Zhong, Gore (bb0135) 1992; 10
Radunsky, Stern, Nassar, Tsarfaty, Blumenfeld Katzir, Ben (bb0285) 2021
Knight, Mccann, Tsivos, Couthard, Kauppinen (bb0095) 2016; 29
Fabes, Matthews, Filippini, Talbot, Jenkinson, Turner (bb0090) 2017; 24
Ben-Eliezer, Sodickson, Shepherd, Wiggins, Block (bb0140) 2016; 75
Lund, Jønsson, Andresen, Rostrup, Paulson, Sørensen (bb0010) 2012; 125
McGivney, Pierre, Ma, Jiang, Saybasili, Gulani (bb0230) 2014; 33
Pan, Pialat, Joseph, Kuo, Joseph, Nevitt (bb0040) 2011; 261
Bipin Mehta, Coppo, Frances McGivney, Ian Hamilton, Chen, Jiang (bb0235) 2019; 81
Remmele, Xu, Liu, Turkbey, Se, Kruecker (bb0025) 2011; 65
Shepherd, Kirov, Charlson, Bruno, Babb, Sodickson (bb0015) 2017; 14
Fang, Chen, Hung, Zhang, Lin, Shen (bb0220) 2020; 84
Ben-eliezer, Raya, Babb, Youm, Sodickson, Lattanzi (bb0060) 2019
Sati, George, Shea, Gaitán, Reich (bb0085) 2012; 265
Deoni, Rutt, Peters (bb0150) 2003; 49
Lindner, Chechik, Beer, Tal, Lysyy, Blumendfeld-Katzir (bb0055) 2020
Hennig (bb0175) 1988; 78
Roebuck, Haker, Mitsouras, Rybicki, Tempany, Mulkern (bb0020) 2009; 27
Fang, Chen, Nie, Lin, Shen (bb0210) 2019; 11766
Radunsky, Barazany, Ben (bb0190) 2019; 82
Shah, Giri, Cotts, Mcgee, Gordon, Collins (bb0075) 2012; 5
Nishii, Shiomi, Tanaka, Yamazaki, Murase, Sugano (bb0045) 2010; 256
Deoni, Peters, Rutt (bb0155) 2005; 53
Hennig (bb0180) 1991; 3
Poon, Henkelman (bb0160) 1992; 2
Ma, Gulani, Seiberlich, Liu, Sunshine, Duerk (bb0185) 2013; 495
Ceccarelli, Rocca, Neema, Martinelli, Arora, Tauhid (bb0005) 2010; 16
Patten, Meyer, Fleckenstein (bb0080) 2003; 7
Hahn (bb0115) 1950; 80
Cauley, Setsompop, Ma, Jiang, Ye, Adalsteinsson (bb0250) 2015; 74
Mosher, Dardzinski, Ph (bb0035) 2004; 1
Sirovich (bb0275) 2014; 4
Farraher, Chang, Ozonoff, Soto (bb0030) 2006; 24
Lustig, Donoho, Pauly (bb0245) 2007; 58
Giri, Chung, Merchant, Mihai, Rajagopalan, Raman (bb0070) 2009; 11
Gracien, Maiworm, Brüche, Shrestha, Ulrike (bb0105) 2020; 207
Liney, Knowles, Manton, Turnbull, Blackband, Horsman (bb0120) 1996; 6
Nataraj, Nielsen, Scott, Fessler (bb0200) 2018; 37
Hotelling (bb0270) 1933; 24
Son, Goodman, Chen, Hargreaves, Gold, Levenston (bb0050) 2013; 21
Roebuck (10.1016/j.mri.2021.12.006_bb0020) 2009; 27
Cauley (10.1016/j.mri.2021.12.006_bb0250) 2015; 74
Gracien (10.1016/j.mri.2021.12.006_bb0105) 2020; 207
Deoni (10.1016/j.mri.2021.12.006_bb0150) 2003; 49
Ben-Eliezer (10.1016/j.mri.2021.12.006_bb0140) 2016; 75
Nishii (10.1016/j.mri.2021.12.006_bb0045) 2010; 256
Hennig (10.1016/j.mri.2021.12.006_bb0180) 1991; 3
Farraher (10.1016/j.mri.2021.12.006_bb0030) 2006; 24
Ben-Eliezer (10.1016/j.mri.2021.12.006_bb0125) 2015; 73
Bipin Mehta (10.1016/j.mri.2021.12.006_bb0235) 2019; 81
Shepherd (10.1016/j.mri.2021.12.006_bb0015) 2017; 14
Zhang (10.1016/j.mri.2021.12.006_bb0195) 2017; 41
Fang (10.1016/j.mri.2021.12.006_bb0220) 2020; 84
Wang (10.1016/j.mri.2021.12.006_bb0255) 2020; 66
Hahn (10.1016/j.mri.2021.12.006_bb0115) 1950; 80
Ma (10.1016/j.mri.2021.12.006_bb0185) 2013; 495
Giri (10.1016/j.mri.2021.12.006_bb0070) 2009; 11
Popiel (10.1016/j.mri.2021.12.006_bb0280) 2007; 148
Cohen (10.1016/j.mri.2021.12.006_bb0205) 2018; 80
Smith (10.1016/j.mri.2021.12.006_bb0240) 2013; 13
McGivney (10.1016/j.mri.2021.12.006_bb0230) 2014; 33
Lustig (10.1016/j.mri.2021.12.006_bb0245) 2007; 58
Liney (10.1016/j.mri.2021.12.006_bb0120) 1996; 6
Patten (10.1016/j.mri.2021.12.006_bb0080) 2003; 7
Fang (10.1016/j.mri.2021.12.006_bb0210) 2019; 11766
Siemonsen (10.1016/j.mri.2021.12.006_bb0065) 2009; 40
Mcphee (10.1016/j.mri.2021.12.006_bb0110) 2017; 77
Remmele (10.1016/j.mri.2021.12.006_bb0025) 2011; 65
Mosher (10.1016/j.mri.2021.12.006_bb0035) 2004; 1
Lindner (10.1016/j.mri.2021.12.006_bb0055) 2020
Poon (10.1016/j.mri.2021.12.006_bb0160) 1992; 2
Nataraj (10.1016/j.mri.2021.12.006_bb0200) 2018; 37
Constable (10.1016/j.mri.2021.12.006_bb0135) 1992; 10
Deoni (10.1016/j.mri.2021.12.006_bb0155) 2005; 53
Pan (10.1016/j.mri.2021.12.006_bb0040) 2011; 261
Radunsky (10.1016/j.mri.2021.12.006_bb0190) 2019; 82
Tao (10.1016/j.mri.2021.12.006_bb0225) 2020; 214
Hotelling (10.1016/j.mri.2021.12.006_bb0270) 1933; 24
Knight (10.1016/j.mri.2021.12.006_bb0095) 2016; 29
Jolliffe (10.1016/j.mri.2021.12.006_bb0265) 2002
Schmitt (10.1016/j.mri.2021.12.006_bb0145) 2004; 51
Hennig (10.1016/j.mri.2021.12.006_bb0175) 1988; 78
Shah (10.1016/j.mri.2021.12.006_bb0075) 2012; 5
Radunsky (10.1016/j.mri.2021.12.006_bb0285) 2021
Liu (10.1016/j.mri.2021.12.006_bb0215) 2020; 24
Fabes (10.1016/j.mri.2021.12.006_bb0090) 2017; 24
Knight (10.1016/j.mri.2021.12.006_bb0100) 2016; 61
Burstein (10.1016/j.mri.2021.12.006_bb0130) 1996; 8
Deoni (10.1016/j.mri.2021.12.006_bb0165) 2009; 30
Lund (10.1016/j.mri.2021.12.006_bb0010) 2012; 125
Ben-eliezer (10.1016/j.mri.2021.12.006_bb0060) 2019
Ceccarelli (10.1016/j.mri.2021.12.006_bb0005) 2010; 16
Sled (10.1016/j.mri.2021.12.006_bb0170) 2000; 43
Sirovich (10.1016/j.mri.2021.12.006_bb0275) 2014; 4
Sati (10.1016/j.mri.2021.12.006_bb0085) 2012; 265
Son (10.1016/j.mri.2021.12.006_bb0050) 2013; 21
References_xml – volume: 37
  start-page: 2103
  year: 2018
  end-page: 2114
  ident: bb0200
  article-title: Dictionary-free MRI PERK: parameter estimation via regression with kernels
  publication-title: IEEE Trans Med Imaging
– volume: 75
  start-page: 1346
  year: 2016
  end-page: 1354
  ident: bb0140
  article-title: Accelerated and motion-robust in vivo T
  publication-title: Magn Reson Med
– volume: 265
  start-page: 926
  year: 2012
  end-page: 932
  ident: bb0085
  article-title: FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins
  publication-title: Radiology
– volume: 8
  start-page: 269
  year: 1996
  end-page: 278
  ident: bb0130
  article-title: Stimulated echoes: description, applications, practical hints
  publication-title: Concepts Magn Reson
– year: 2020
  ident: bb0055
  article-title: T2 mapping values in postmeniscectomy knee articular cartilage after running: early signs of osteoarthritis?
  publication-title: J Knee Surg
– volume: 148
  start-page: 111
  year: 2007
  end-page: 127
  ident: bb0280
  article-title: Bézier curves and C 2 interpolation in Riemannian manifolds
  publication-title: J Approx Theory
– volume: 41
  start-page: 53
  year: 2017
  end-page: 62
  ident: bb0195
  article-title: MR fingerprinting reconstruction with Kalman filter
  publication-title: Magn Reson Imaging
– volume: 214
  start-page: 529
  year: 2020
  end-page: 535
  ident: bb0225
  article-title: Deep learning for quantitative cardiac MRI
  publication-title: AJR Am J Roentgenol
– volume: 24
  start-page: 1187
  year: 2017
  end-page: 1194
  ident: bb0090
  article-title: Quantitative FLAIR MRI in amyotrophic lateral sclerosis
  publication-title: Acad Radiol
– volume: 65
  start-page: 1400
  year: 2011
  end-page: 1406
  ident: bb0025
  article-title: Accelerated T 2 mapping for characterization of prostate cancer
  publication-title: Magn Reson Med
– volume: 29
  start-page: 833
  year: 2016
  end-page: 842
  ident: bb0095
  article-title: Quantitative T
  publication-title: Magn Reson Mater Physics, Biol Med
– volume: 3
  start-page: 125
  year: 1991
  end-page: 143
  ident: bb0180
  article-title: Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes
  publication-title: Concepts Magn Reson
– volume: 21
  start-page: 796
  year: 2013
  end-page: 805
  ident: bb0050
  article-title: Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition
  publication-title: Osteoarthr Cartil
– volume: 61
  start-page: 5587
  year: 2016
  end-page: 5605
  ident: bb0100
  article-title: Quantitative T2 mapping of white matter: applications for ageing and cognitive decline
  publication-title: Phys Med Biol
– volume: 51
  start-page: 661
  year: 2004
  end-page: 667
  ident: bb0145
  article-title: Inversion recovery TrueFISP: quantification of T
  publication-title: Magn Reson Med
– volume: 4
  start-page: 519
  year: 2014
  end-page: 524
  ident: bb0275
  article-title: Low-dimensional procedure for the characterization of human faces
  publication-title: J Opt Soc Am A
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  ident: bb0185
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 30
  start-page: 411
  year: 2009
  end-page: 417
  ident: bb0165
  article-title: Transverse relaxation time (T
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 417
  year: 1933
  end-page: 441
  ident: bb0270
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J Educ Psychol
– volume: 261
  start-page: 507
  year: 2011
  end-page: 515
  ident: bb0040
  article-title: Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative
  publication-title: Radiology
– year: 2019
  ident: bb0060
  article-title: A new method for cartilage evaluation in femoroacetabular impingement using quantitative T2 magnetic resonance imaging: preliminary validation against arthroscopic findings
  publication-title: Cartilage
– volume: 13
  start-page: 633
  year: 2013
  end-page: 644
  ident: bb0240
  article-title: Potential of compressed sensing in quantitative MR imaging of cancer
  publication-title: Cancer Imaging
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bb0245
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 40
  start-page: 1612
  year: 2009
  end-page: 1616
  ident: bb0065
  article-title: Quantitative T
  publication-title: Stroke
– volume: 84
  start-page: 579
  year: 2020
  end-page: 591
  ident: bb0220
  article-title: Submillimeter MR fingerprinting using deep learning-based tissue quantification
  publication-title: Magn Reson Med
– volume: 11
  start-page: 1
  year: 2009
  end-page: 13
  ident: bb0070
  article-title: T
  publication-title: J Cardiovasc Magn Reson
– volume: 82
  start-page: 145
  year: 2019
  end-page: 158
  ident: bb0190
  article-title: Analysis of magnetization transfer (MT) influence on quantitative mapping of T2 relaxation time
  publication-title: Magn Reson Med
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  ident: bb0250
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 77
  start-page: 2057
  year: 2017
  end-page: 2065
  ident: bb0110
  article-title: Transverse relaxation and flip angle mapping: evaluation of simultaneous and independent methods using multiple spin echoes
  publication-title: Magn Reson Med
– volume: 80
  start-page: 885
  year: 2018
  end-page: 894
  ident: bb0205
  article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
  publication-title: Magn Reson Med
– volume: 24
  start-page: 1333
  year: 2006
  end-page: 1341
  ident: bb0030
  article-title: Differentiation of hepatocellular carcinoma and hepatic metastasis from cysts and hemangiomas with calculated T
  publication-title: J Magn Reson Imaging
– volume: 2
  start-page: 541
  year: 1992
  end-page: 553
  ident: bb0160
  article-title: Practical T
  publication-title: J Magn Reson Imaging
– volume: 49
  start-page: 515
  year: 2003
  end-page: 526
  ident: bb0150
  article-title: Rapid combined T
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  ident: bb0230
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 78
  start-page: 397
  year: 1988
  end-page: 407
  ident: bb0175
  article-title: Multiecho imaging sequences with low refocusing flip angles
  publication-title: J Magn Reson
– volume: 16
  start-page: 39
  year: 2010
  end-page: 44
  ident: bb0005
  article-title: Deep gray matter T
  publication-title: Mult Scler
– year: 2021
  ident: bb0285
  article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time
  publication-title: NMR Biomed
– volume: 5
  start-page: 782
  year: 2012
  end-page: 790
  ident: bb0075
  article-title: Cardiac magnetic resonance T
  publication-title: Circ Cardiovasc Imaging
– volume: 207
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0105
  article-title: How stable is quantitative MRI ? – assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs
  publication-title: Neuroimage
– volume: 66
  start-page: 248
  year: 2020
  end-page: 256
  ident: bb0255
  article-title: snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs
  publication-title: Magn Reson Imaging
– volume: 6
  start-page: 603
  year: 1996
  end-page: 607
  ident: bb0120
  article-title: Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate
  publication-title: J Magn Reson Imaging
– volume: 256
  start-page: 955
  year: 2010
  end-page: 965
  ident: bb0045
  article-title: Loaded cartilage T2 mapping in patients with hip dysplasia
  publication-title: Radiology
– volume: 80
  start-page: 580
  year: 1950
  end-page: 594
  ident: bb0115
  article-title: Spin echoes
  publication-title: Phys Rev
– volume: 27
  start-page: 497
  year: 2009
  end-page: 502
  ident: bb0020
  article-title: Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T
  publication-title: Magn Reson Imaging
– volume: 11766
  start-page: 101
  year: 2019
  end-page: 109
  ident: bb0210
  article-title: RCA-U-net: residual channel attention U-net for fast tissue quantification in magnetic resonance fingerprinting. Med Image Comput Comput Interv MICCAI
  publication-title: Int Conf Med Image Comput Comput Interv
– volume: 1
  start-page: 355
  year: 2004
  end-page: 368
  ident: bb0035
  article-title: Cartilage MRI T2 relaxation time mapping: overview and applications
  publication-title: Semin Muscuoloskeletal Radiol
– volume: 43
  start-page: 589
  year: 2000
  end-page: 593
  ident: bb0170
  article-title: Correction for B
  publication-title: Magn Reson Med
– volume: 24
  start-page: 451
  year: 2020
  end-page: 459
  ident: bb0215
  article-title: Improving quantitative magnetic resonance imaging using deep learning
  publication-title: Semin Musculoskelet Radiol
– volume: 73
  start-page: 809
  year: 2015
  end-page: 817
  ident: bb0125
  article-title: Rapid and accurate T
  publication-title: Magn Reson Med
– volume: 81
  start-page: 25
  year: 2019
  end-page: 46
  ident: bb0235
  article-title: Magnetic resonance fingerprinting: a technical review
  publication-title: Magn Reson Med
– year: 2002
  ident: bb0265
  article-title: Principal Component Analysis
– volume: 14
  start-page: 363
  year: 2017
  end-page: 370
  ident: bb0015
  article-title: New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients
  publication-title: NeuroImage Clin
– volume: 125
  start-page: 338
  year: 2012
  end-page: 344
  ident: bb0010
  article-title: Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue
  publication-title: Acta Neruologica Scand
– volume: 10
  start-page: 497
  year: 1992
  end-page: 511
  ident: bb0135
  article-title: Factors influencing contrast in fast spin-echo MR imaging
  publication-title: Magn Reson Imaging
– volume: 7
  start-page: 297
  year: 2003
  end-page: 307
  ident: bb0080
  article-title: T
  publication-title: Semin Muscuoloskeletal Radiol
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  ident: bb0155
  article-title: High-resolution T
  publication-title: Magn Reson Med
– volume: 51
  start-page: 661
  year: 2004
  ident: 10.1016/j.mri.2021.12.006_bb0145
  article-title: Inversion recovery TrueFISP: quantification of T1, T2, and spin density
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20058
– volume: 7
  start-page: 297
  year: 2003
  ident: 10.1016/j.mri.2021.12.006_bb0080
  article-title: T2 mapping of muscle
  publication-title: Semin Muscuoloskeletal Radiol
  doi: 10.1055/s-2004-815677
– volume: 41
  start-page: 53
  year: 2017
  ident: 10.1016/j.mri.2021.12.006_bb0195
  article-title: MR fingerprinting reconstruction with Kalman filter
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2017.04.004
– volume: 30
  start-page: 411
  year: 2009
  ident: 10.1016/j.mri.2021.12.006_bb0165
  article-title: Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase- cycled steady-state free precession imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21849
– volume: 33
  start-page: 2311
  year: 2014
  ident: 10.1016/j.mri.2021.12.006_bb0230
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2337321
– volume: 4
  start-page: 519
  year: 2014
  ident: 10.1016/j.mri.2021.12.006_bb0275
  article-title: Low-dimensional procedure for the characterization of human faces
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.4.000519
– volume: 24
  start-page: 451
  year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0215
  article-title: Improving quantitative magnetic resonance imaging using deep learning
  publication-title: Semin Musculoskelet Radiol
  doi: 10.1055/s-0040-1709482
– year: 2019
  ident: 10.1016/j.mri.2021.12.006_bb0060
  article-title: A new method for cartilage evaluation in femoroacetabular impingement using quantitative T2 magnetic resonance imaging: preliminary validation against arthroscopic findings
  publication-title: Cartilage
– volume: 8
  start-page: 269
  year: 1996
  ident: 10.1016/j.mri.2021.12.006_bb0130
  article-title: Stimulated echoes: description, applications, practical hints
  publication-title: Concepts Magn Reson
  doi: 10.1002/(SICI)1099-0534(1996)8:4<269::AID-CMR3>3.0.CO;2-X
– volume: 10
  start-page: 497
  year: 1992
  ident: 10.1016/j.mri.2021.12.006_bb0135
  article-title: Factors influencing contrast in fast spin-echo MR imaging
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(92)90001-G
– volume: 73
  start-page: 809
  year: 2015
  ident: 10.1016/j.mri.2021.12.006_bb0125
  article-title: Rapid and accurate T2 mapping from multi-spin-echo data using bloch-simulation-based reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25156
– volume: 16
  start-page: 39
  year: 2010
  ident: 10.1016/j.mri.2021.12.006_bb0005
  article-title: Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis
  publication-title: Mult Scler
  doi: 10.1177/1352458509350310
– volume: 6
  start-page: 603
  year: 1996
  ident: 10.1016/j.mri.2021.12.006_bb0120
  article-title: Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880060408
– volume: 84
  start-page: 579
  year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0220
  article-title: Submillimeter MR fingerprinting using deep learning-based tissue quantification
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28136
– volume: 80
  start-page: 580
  year: 1950
  ident: 10.1016/j.mri.2021.12.006_bb0115
  article-title: Spin echoes
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.80.580
– volume: 148
  start-page: 111
  year: 2007
  ident: 10.1016/j.mri.2021.12.006_bb0280
  article-title: Bézier curves and C 2 interpolation in Riemannian manifolds
  publication-title: J Approx Theory
  doi: 10.1016/j.jat.2007.03.002
– year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0055
  article-title: T2 mapping values in postmeniscectomy knee articular cartilage after running: early signs of osteoarthritis?
  publication-title: J Knee Surg
– volume: 24
  start-page: 417
  year: 1933
  ident: 10.1016/j.mri.2021.12.006_bb0270
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J Educ Psychol
  doi: 10.1037/h0071325
– volume: 37
  start-page: 2103
  year: 2018
  ident: 10.1016/j.mri.2021.12.006_bb0200
  article-title: Dictionary-free MRI PERK: parameter estimation via regression with kernels
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2817547
– volume: 14
  start-page: 363
  year: 2017
  ident: 10.1016/j.mri.2021.12.006_bb0015
  article-title: New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.01.029
– volume: 77
  start-page: 2057
  year: 2017
  ident: 10.1016/j.mri.2021.12.006_bb0110
  article-title: Transverse relaxation and flip angle mapping: evaluation of simultaneous and independent methods using multiple spin echoes
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26285
– year: 2002
  ident: 10.1016/j.mri.2021.12.006_bb0265
– volume: 65
  start-page: 1400
  year: 2011
  ident: 10.1016/j.mri.2021.12.006_bb0025
  article-title: Accelerated T 2 mapping for characterization of prostate cancer
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22874
– volume: 27
  start-page: 497
  year: 2009
  ident: 10.1016/j.mri.2021.12.006_bb0020
  article-title: Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T2 values for cancer discrimination
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2008.08.001
– volume: 13
  start-page: 633
  year: 2013
  ident: 10.1016/j.mri.2021.12.006_bb0240
  article-title: Potential of compressed sensing in quantitative MR imaging of cancer
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2013.0041
– volume: 3
  start-page: 125
  year: 1991
  ident: 10.1016/j.mri.2021.12.006_bb0180
  article-title: Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes
  publication-title: Concepts Magn Reson
  doi: 10.1002/cmr.1820030302
– volume: 125
  start-page: 338
  year: 2012
  ident: 10.1016/j.mri.2021.12.006_bb0010
  article-title: Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue
  publication-title: Acta Neruologica Scand
  doi: 10.1111/j.1600-0404.2011.01574.x
– volume: 58
  start-page: 1182
  year: 2007
  ident: 10.1016/j.mri.2021.12.006_bb0245
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 74
  start-page: 523
  year: 2015
  ident: 10.1016/j.mri.2021.12.006_bb0250
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25439
– volume: 1
  start-page: 355
  year: 2004
  ident: 10.1016/j.mri.2021.12.006_bb0035
  article-title: Cartilage MRI T2 relaxation time mapping: overview and applications
  publication-title: Semin Muscuoloskeletal Radiol
  doi: 10.1055/s-2004-861764
– volume: 21
  start-page: 796
  year: 2013
  ident: 10.1016/j.mri.2021.12.006_bb0050
  article-title: Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2013.03.002
– volume: 75
  start-page: 1346
  year: 2016
  ident: 10.1016/j.mri.2021.12.006_bb0140
  article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25558
– volume: 5
  start-page: 782
  year: 2012
  ident: 10.1016/j.mri.2021.12.006_bb0075
  article-title: Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection a pilot study
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.111.971101
– volume: 11766
  start-page: 101
  year: 2019
  ident: 10.1016/j.mri.2021.12.006_bb0210
  article-title: RCA-U-net: residual channel attention U-net for fast tissue quantification in magnetic resonance fingerprinting. Med Image Comput Comput Interv MICCAI
  publication-title: Int Conf Med Image Comput Comput Interv
– volume: 61
  start-page: 5587
  year: 2016
  ident: 10.1016/j.mri.2021.12.006_bb0100
  article-title: Quantitative T2 mapping of white matter: applications for ageing and cognitive decline
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/15/5587
– volume: 2
  start-page: 541
  year: 1992
  ident: 10.1016/j.mri.2021.12.006_bb0160
  article-title: Practical T2 quantitation for clinical applications
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880020512
– volume: 24
  start-page: 1187
  year: 2017
  ident: 10.1016/j.mri.2021.12.006_bb0090
  article-title: Quantitative FLAIR MRI in amyotrophic lateral sclerosis
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2017.04.008
– volume: 82
  start-page: 145
  year: 2019
  ident: 10.1016/j.mri.2021.12.006_bb0190
  article-title: Analysis of magnetization transfer (MT) influence on quantitative mapping of T2 relaxation time
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27704
– volume: 29
  start-page: 833
  year: 2016
  ident: 10.1016/j.mri.2021.12.006_bb0095
  article-title: Quantitative T1 and T2 MRI signal characteristics in the human brain: different patterns of MR contrasts in normal ageing
  publication-title: Magn Reson Mater Physics, Biol Med
  doi: 10.1007/s10334-016-0573-0
– volume: 24
  start-page: 1333
  year: 2006
  ident: 10.1016/j.mri.2021.12.006_bb0030
  article-title: Differentiation of hepatocellular carcinoma and hepatic metastasis from cysts and hemangiomas with calculated T2 relaxation times and the T1/T2 relaxation times ratio
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20758
– volume: 66
  start-page: 248
  year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0255
  article-title: snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.11.015
– volume: 261
  start-page: 507
  year: 2011
  ident: 10.1016/j.mri.2021.12.006_bb0040
  article-title: Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative
  publication-title: Radiology
  doi: 10.1148/radiol.11102234
– volume: 265
  start-page: 926
  year: 2012
  ident: 10.1016/j.mri.2021.12.006_bb0085
  article-title: FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins
  publication-title: Radiology
  doi: 10.1148/radiol.12120208
– volume: 53
  start-page: 237
  year: 2005
  ident: 10.1016/j.mri.2021.12.006_bb0155
  article-title: High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20314
– volume: 78
  start-page: 397
  year: 1988
  ident: 10.1016/j.mri.2021.12.006_bb0175
  article-title: Multiecho imaging sequences with low refocusing flip angles
  publication-title: J Magn Reson
– year: 2021
  ident: 10.1016/j.mri.2021.12.006_bb0285
  article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4537
– volume: 43
  start-page: 589
  year: 2000
  ident: 10.1016/j.mri.2021.12.006_bb0170
  article-title: Correction for B1 and B0 variations in quantitative T2 measurements using MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(200004)43:4<589::AID-MRM14>3.0.CO;2-2
– volume: 495
  start-page: 187
  year: 2013
  ident: 10.1016/j.mri.2021.12.006_bb0185
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
  doi: 10.1038/nature11971
– volume: 256
  start-page: 955
  year: 2010
  ident: 10.1016/j.mri.2021.12.006_bb0045
  article-title: Loaded cartilage T2 mapping in patients with hip dysplasia
  publication-title: Radiology
  doi: 10.1148/radiol.10091928
– volume: 49
  start-page: 515
  year: 2003
  ident: 10.1016/j.mri.2021.12.006_bb0150
  article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10407
– volume: 80
  start-page: 885
  year: 2018
  ident: 10.1016/j.mri.2021.12.006_bb0205
  article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27198
– volume: 214
  start-page: 529
  year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0225
  article-title: Deep learning for quantitative cardiac MRI
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.19.21927
– volume: 207
  start-page: 1
  year: 2020
  ident: 10.1016/j.mri.2021.12.006_bb0105
  article-title: How stable is quantitative MRI ? – assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116364
– volume: 11
  start-page: 1
  year: 2009
  ident: 10.1016/j.mri.2021.12.006_bb0070
  article-title: T2 quantification for improved detection of myocardial edema
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-11-56
– volume: 81
  start-page: 25
  year: 2019
  ident: 10.1016/j.mri.2021.12.006_bb0235
  article-title: Magnetic resonance fingerprinting: a technical review
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27403
– volume: 40
  start-page: 1612
  year: 2009
  ident: 10.1016/j.mri.2021.12.006_bb0065
  article-title: Quantitative T2 values predict time from symptom onset in acute stroke patients
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.542548
SSID ssj0005235
Score 2.3717172
Snippet Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of...
Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Dictionary compression
Engineering Sciences
Gradient descent
Magnetic resonance imaging
Principal component analysis
T2 mapping
Title Accelerated reconstruction of dictionary-based T2 relaxation maps based on dictionary compression and gradient descent search algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21002551
https://dx.doi.org/10.1016/j.mri.2021.12.006
https://www.proquest.com/docview/2615920827
https://hal.science/hal-03606818
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cQLyIK9aljOJJiE0m0yQ9lmKpS71owdswmZloxKalraIXz_5s35skdUEqeEvTeSTM276XeQshR4lSsceUdCQEtA4HnXAkhyhFuQrgBGAEbbBQuHsVdHr8_LZ-O0daZS0MplUWtj-36dZaF3dqxW7Whmlau0bhDBkEW54FxraCnYc4xeDk7WuaRz5kExY7uLo82bQ5Xv1RCiEi8-wXQRx69Ltvmr_HJMkftto6oPYqWSmQI23mL7dG5ky2Tpa6xdn4BnlvKgU-BFs_aGrj3GlvWDpIqE7tpRy9Oui5NL1hFAtZXixraF8OxzT_A359LqaYc57nymZUZprejWyS2ITqvBEUzXWFyse7wSid3PfHm6TXPr1pdZxizoKjuMcnThwbPH7UEEwFTPsRIEKZJKyhQT9DyZWrvUgnkaoHJnCVabiKBYo3tOvLKOZx4G-RhWyQmW1CfQ0BYogYB-K6hMvY1D0ZuipBiiDyK8Qtd1ioogk5zsJ4FGW22YMApghkivCYAKZUyPGUZJh34Ji1mJVsE2VpKRhDAf5hFhGfEn2Tvb_IDkEupu-Efbo7zUuB9wAWuAFAoWevQg5KsRGguHgaIzMzeBoL2O16gwECC3f-9_xdssywFsOmEe2RBZApsw8IaRJXrQpUyWLz7KJz9QHrshCx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6kGAXNL60DgYe4oQUmjjOR48VWlVY2wut1Jvl2A5komnVFrRdOPNn856TlIFQkXZLUz8l8vv6_eLnZ0JOU6USjynpSCC0DgefcCQHlqJcBXACMII2uFG41w87Q341CkY1clHthcGyyjL2FzHdRuvyTqOczcY0yxrXaJwRA7LlWWAMFGidByxCBnb--G-dR3HKJox2cHi1tGmLvMazDDgi8-wnQTz16P3k9OkWqyTfBGubgdpfyFYJHWmreLttUjP5DtnolYvju-SppRQkEez9oKklusvmsHSSUp3ZSzn762Dq0nTAKO5k-WN1Q8dyOqfFH_DrZTDFovOiWDanMtf0ZmarxBZUF52gaOEsVN7dTGbZ4nY83yPD9s_BRccpD1pwFPf4wkkSg-uPGthUyLQfAySUacqaGhw0kly52ot1GqsgNKGrTNNVLFS8qV1fxglPQn-frOWT3Hwl1NfAECMEOUDsUi4TE3gyclWKEmHs14lbzbBQZRdyPAzjTlTlZr8FKEWgUoTHBCilTs6WItOiBceqwaxSm6j2lkI0FJAgVgnxpdAr4_tI7ATsYvlO2Ki70-oKvAe4wA0BCz14dfKjMhsBnovLMTI3k_u5gNkOmgwgWPTt_55_TDY7g15XdC_7vw7IZ4YbM2xN0SFZA_sy3wEuLZIj6w7PGEISRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+reconstruction+of+dictionary-based+T2+relaxation+maps+based+on+dictionary+compression+and+gradient+descent+search+algorithms&rft.jtitle=Magnetic+resonance+imaging&rft.au=Shpringer%2C+Guy&rft.au=Bendahan%2C+David&rft.au=Ben-Eliezer%2C+Noam&rft.date=2022-04-01&rft.pub=Elsevier&rft.issn=0730-725X&rft.volume=87&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.mri.2021.12.006&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03606818v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon