Accelerated reconstruction of dictionary-based T2 relaxation maps based on dictionary compression and gradient descent search algorithms
Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based t...
        Saved in:
      
    
          | Published in | Magnetic resonance imaging Vol. 87; pp. 56 - 66 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.04.2022
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0730-725X 1873-5894 1873-5894  | 
| DOI | 10.1016/j.mri.2021.12.006 | 
Cover
| Abstract | Background
Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones.
Purpose
Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps.
Methods
This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique.
Results
Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler.
Conclusions
Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values. | 
    
|---|---|
| AbstractList | Background
Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones.
Purpose
Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps.
Methods
This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique.
Results
Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler.
Conclusions
Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values. Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of quantitative maps, however, is impaired by long acquisition times, and time-consuming post-processing schemes. The EMC platform is a dictionary-based technique, which involves simulating theoretical signal curves for different physical and experimental values, followed by matching the experimentally acquired signals to the set simulated ones. Purpose Although the EMC technique has shown to produce accurate T2 maps, it involves computationally intensive post-processing procedures. In this work we present an approach for accelerating the reconstruction of T2 relaxation maps. Methods This work presents two alternative post-processing approaches for accelerating the reconstruction of EMC-based T2 relaxation maps. These are (a) Dictionary compression using principal component analysis (PCA) and (b) gradient-descent search algorithm. Additional acceleration was achieved by finding the optimal MATLAB C++ compiler. The utility of the two suggested approaches was examined by calculating the relative error, produced by each technique. Results Gradient descent method was in perfect agreement with the ground truth exhaustive search matching process. PCA based acceleration produced root mean square error (RMSE) of up to 4% compared to exhaustive matching process. Overall acceleration of x16 was achieved using gradient descent in addition to x7 acceleration by choosing the optimal MATLAB C++ compiler. Conclusions Postprocessing of EMC-based T2 relaxation maps can be accelerated without impairing the accuracy of the ensuing T2 values.  | 
    
| Author | Bendahan, David Shpringer, Guy Ben-Eliezer, Noam  | 
    
| Author_xml | – sequence: 1 givenname: Guy surname: Shpringer fullname: Shpringer, Guy organization: Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel – sequence: 2 givenname: David surname: Bendahan fullname: Bendahan, David organization: Aix Marseille University, CNRS UMR 7339, CRMBM, Marseille, France – sequence: 3 givenname: Noam surname: Ben-Eliezer fullname: Ben-Eliezer, Noam email: noambe@tauex.tau.ac.il organization: Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel  | 
    
| BackLink | https://hal.science/hal-03606818$$DView record in HAL | 
    
| BookMark | eNqFkc1u1DAURi1UJKaFB2CXJSwSbCdxHLEaVUCRRmJTJHaWc33T8eDEg-2p6Bvw2DgTEFIXZeW_c6xP97skF7OfkZDXjFaMMvHuUE3BVpxyVjFeUSqekQ2TXV22sm8uyIZ2NS073n57QS5jPFBKW163G_JrC4AOg05oioDg55jCCZL1c-HHwtjzVoeHctAxI7c8U07_1Gdi0sdYrA_59A8uwE_HgDEukJ5NcRe0sTinwmCEZY2oA-wL7e58sGk_xZfk-ahdxFd_1ivy9eOH2-ubcvfl0-fr7a6EhjWpHAbknWwMF0xwU8uua_Q48t60Net0A9QwaUYJrUBBAXsKXEDTG1prOTSDqK_I2_XfvXbqGOyU4yqvrbrZ7tRyR2tBhWTynmX2zcoeg_9xwpjUZHN85_SM_hRVDtH2nEreZbRbUQg-xoCjApvOQ0pBW6cYVUtP6qByT2rpSTGuck_ZZI_Mv6mect6vDuZJ3VsMKkIeL6CxucOkjLdP2v0jG5ydLWj3HR_-4_4Gux7C_g | 
    
| CitedBy_id | crossref_primary_10_1002_mrm_30023 crossref_primary_10_1002_mrm_29721 crossref_primary_10_1002_mrm_30239 crossref_primary_10_1016_j_mri_2023_01_007  | 
    
| Cites_doi | 10.1002/mrm.20058 10.1055/s-2004-815677 10.1016/j.mri.2017.04.004 10.1002/jmri.21849 10.1109/TMI.2014.2337321 10.1364/JOSAA.4.000519 10.1055/s-0040-1709482 10.1002/(SICI)1099-0534(1996)8:4<269::AID-CMR3>3.0.CO;2-X 10.1016/0730-725X(92)90001-G 10.1002/mrm.25156 10.1177/1352458509350310 10.1002/jmri.1880060408 10.1002/mrm.28136 10.1103/PhysRev.80.580 10.1016/j.jat.2007.03.002 10.1037/h0071325 10.1109/TMI.2018.2817547 10.1016/j.nicl.2017.01.029 10.1002/mrm.26285 10.1002/mrm.22874 10.1016/j.mri.2008.08.001 10.1102/1470-7330.2013.0041 10.1002/cmr.1820030302 10.1111/j.1600-0404.2011.01574.x 10.1002/mrm.21391 10.1002/mrm.25439 10.1055/s-2004-861764 10.1016/j.joca.2013.03.002 10.1002/mrm.25558 10.1161/CIRCIMAGING.111.971101 10.1088/0031-9155/61/15/5587 10.1002/jmri.1880020512 10.1016/j.acra.2017.04.008 10.1002/mrm.27704 10.1007/s10334-016-0573-0 10.1002/jmri.20758 10.1016/j.mri.2019.11.015 10.1148/radiol.11102234 10.1148/radiol.12120208 10.1002/mrm.20314 10.1002/nbm.4537 10.1002/(SICI)1522-2594(200004)43:4<589::AID-MRM14>3.0.CO;2-2 10.1038/nature11971 10.1148/radiol.10091928 10.1002/mrm.10407 10.1002/mrm.27198 10.2214/AJR.19.21927 10.1016/j.neuroimage.2019.116364 10.1186/1532-429X-11-56 10.1002/mrm.27403 10.1161/STROKEAHA.108.542548  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 7X8 1XC  | 
    
| DOI | 10.1016/j.mri.2021.12.006 | 
    
| DatabaseName | CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1873-5894 | 
    
| EndPage | 66 | 
    
| ExternalDocumentID | oai:HAL:hal-03606818v1 10_1016_j_mri_2021_12_006 S0730725X21002551  | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS G8K LCYCR RIG AAYXX CITATION 7X8 1XC  | 
    
| ID | FETCH-LOGICAL-c414t-bbe2784d26162d38774aff29d5317a4c0d18df8c56e60ce90c26c49d03a8b4b63 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0730-725X 1873-5894  | 
    
| IngestDate | Tue Oct 14 20:43:18 EDT 2025 Sun Sep 28 00:15:39 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Thu Oct 16 04:27:03 EDT 2025 Fri Feb 23 02:40:40 EST 2024 Tue Oct 14 19:31:02 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Gradient descent Magnetic resonance imaging T2 mapping Dictionary compression Principal component analysis  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c414t-bbe2784d26162d38774aff29d5317a4c0d18df8c56e60ce90c26c49d03a8b4b63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 2615920827 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_03606818v1 proquest_miscellaneous_2615920827 crossref_citationtrail_10_1016_j_mri_2021_12_006 crossref_primary_10_1016_j_mri_2021_12_006 elsevier_sciencedirect_doi_10_1016_j_mri_2021_12_006 elsevier_clinicalkey_doi_10_1016_j_mri_2021_12_006  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2022 2022-04-00 20220401 2022-04  | 
    
| PublicationDateYYYYMMDD | 2022-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Magnetic resonance imaging | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Schmitt, Griswold, Jakob, Kotas, Gulani, Flentje (bb0145) 2004; 51 Wang, Ostenson, Smith (bb0255) 2020; 66 Siemonsen, Mouridsen, Holst, Ries (bb0065) 2009; 40 Knight, Mccann, Tsivos, Dillon, Coulthard, Kauppinen (bb0100) 2016; 61 Burstein (bb0130) 1996; 8 Popiel, Noakes (bb0280) 2007; 148 Ben-Eliezer, Sodickson, Block (bb0125) 2015; 73 Jolliffe (bb0265) 2002 Cohen, Zhu, Rosen (bb0205) 2018; 80 Liu (bb0215) 2020; 24 Tao, Lelieveldt, van der Geest (bb0225) 2020; 214 Smith, Li, Abramson, Quarles, Yankeelov, Welch (bb0240) 2013; 13 Deoni (bb0165) 2009; 30 Mcphee, Wilman (bb0110) 2017; 77 Sled, Pike (bb0170) 2000; 43 Zhang, Zhou, Chen, Chen, Li, Hu (bb0195) 2017; 41 Constable, Anderson, Zhong, Gore (bb0135) 1992; 10 Radunsky, Stern, Nassar, Tsarfaty, Blumenfeld Katzir, Ben (bb0285) 2021 Knight, Mccann, Tsivos, Couthard, Kauppinen (bb0095) 2016; 29 Fabes, Matthews, Filippini, Talbot, Jenkinson, Turner (bb0090) 2017; 24 Ben-Eliezer, Sodickson, Shepherd, Wiggins, Block (bb0140) 2016; 75 Lund, Jønsson, Andresen, Rostrup, Paulson, Sørensen (bb0010) 2012; 125 McGivney, Pierre, Ma, Jiang, Saybasili, Gulani (bb0230) 2014; 33 Pan, Pialat, Joseph, Kuo, Joseph, Nevitt (bb0040) 2011; 261 Bipin Mehta, Coppo, Frances McGivney, Ian Hamilton, Chen, Jiang (bb0235) 2019; 81 Remmele, Xu, Liu, Turkbey, Se, Kruecker (bb0025) 2011; 65 Shepherd, Kirov, Charlson, Bruno, Babb, Sodickson (bb0015) 2017; 14 Fang, Chen, Hung, Zhang, Lin, Shen (bb0220) 2020; 84 Ben-eliezer, Raya, Babb, Youm, Sodickson, Lattanzi (bb0060) 2019 Sati, George, Shea, Gaitán, Reich (bb0085) 2012; 265 Deoni, Rutt, Peters (bb0150) 2003; 49 Lindner, Chechik, Beer, Tal, Lysyy, Blumendfeld-Katzir (bb0055) 2020 Hennig (bb0175) 1988; 78 Roebuck, Haker, Mitsouras, Rybicki, Tempany, Mulkern (bb0020) 2009; 27 Fang, Chen, Nie, Lin, Shen (bb0210) 2019; 11766 Radunsky, Barazany, Ben (bb0190) 2019; 82 Shah, Giri, Cotts, Mcgee, Gordon, Collins (bb0075) 2012; 5 Nishii, Shiomi, Tanaka, Yamazaki, Murase, Sugano (bb0045) 2010; 256 Deoni, Peters, Rutt (bb0155) 2005; 53 Hennig (bb0180) 1991; 3 Poon, Henkelman (bb0160) 1992; 2 Ma, Gulani, Seiberlich, Liu, Sunshine, Duerk (bb0185) 2013; 495 Ceccarelli, Rocca, Neema, Martinelli, Arora, Tauhid (bb0005) 2010; 16 Patten, Meyer, Fleckenstein (bb0080) 2003; 7 Hahn (bb0115) 1950; 80 Cauley, Setsompop, Ma, Jiang, Ye, Adalsteinsson (bb0250) 2015; 74 Mosher, Dardzinski, Ph (bb0035) 2004; 1 Sirovich (bb0275) 2014; 4 Farraher, Chang, Ozonoff, Soto (bb0030) 2006; 24 Lustig, Donoho, Pauly (bb0245) 2007; 58 Giri, Chung, Merchant, Mihai, Rajagopalan, Raman (bb0070) 2009; 11 Gracien, Maiworm, Brüche, Shrestha, Ulrike (bb0105) 2020; 207 Liney, Knowles, Manton, Turnbull, Blackband, Horsman (bb0120) 1996; 6 Nataraj, Nielsen, Scott, Fessler (bb0200) 2018; 37 Hotelling (bb0270) 1933; 24 Son, Goodman, Chen, Hargreaves, Gold, Levenston (bb0050) 2013; 21 Roebuck (10.1016/j.mri.2021.12.006_bb0020) 2009; 27 Cauley (10.1016/j.mri.2021.12.006_bb0250) 2015; 74 Gracien (10.1016/j.mri.2021.12.006_bb0105) 2020; 207 Deoni (10.1016/j.mri.2021.12.006_bb0150) 2003; 49 Ben-Eliezer (10.1016/j.mri.2021.12.006_bb0140) 2016; 75 Nishii (10.1016/j.mri.2021.12.006_bb0045) 2010; 256 Hennig (10.1016/j.mri.2021.12.006_bb0180) 1991; 3 Farraher (10.1016/j.mri.2021.12.006_bb0030) 2006; 24 Ben-Eliezer (10.1016/j.mri.2021.12.006_bb0125) 2015; 73 Bipin Mehta (10.1016/j.mri.2021.12.006_bb0235) 2019; 81 Shepherd (10.1016/j.mri.2021.12.006_bb0015) 2017; 14 Zhang (10.1016/j.mri.2021.12.006_bb0195) 2017; 41 Fang (10.1016/j.mri.2021.12.006_bb0220) 2020; 84 Wang (10.1016/j.mri.2021.12.006_bb0255) 2020; 66 Hahn (10.1016/j.mri.2021.12.006_bb0115) 1950; 80 Ma (10.1016/j.mri.2021.12.006_bb0185) 2013; 495 Giri (10.1016/j.mri.2021.12.006_bb0070) 2009; 11 Popiel (10.1016/j.mri.2021.12.006_bb0280) 2007; 148 Cohen (10.1016/j.mri.2021.12.006_bb0205) 2018; 80 Smith (10.1016/j.mri.2021.12.006_bb0240) 2013; 13 McGivney (10.1016/j.mri.2021.12.006_bb0230) 2014; 33 Lustig (10.1016/j.mri.2021.12.006_bb0245) 2007; 58 Liney (10.1016/j.mri.2021.12.006_bb0120) 1996; 6 Patten (10.1016/j.mri.2021.12.006_bb0080) 2003; 7 Fang (10.1016/j.mri.2021.12.006_bb0210) 2019; 11766 Siemonsen (10.1016/j.mri.2021.12.006_bb0065) 2009; 40 Mcphee (10.1016/j.mri.2021.12.006_bb0110) 2017; 77 Remmele (10.1016/j.mri.2021.12.006_bb0025) 2011; 65 Mosher (10.1016/j.mri.2021.12.006_bb0035) 2004; 1 Lindner (10.1016/j.mri.2021.12.006_bb0055) 2020 Poon (10.1016/j.mri.2021.12.006_bb0160) 1992; 2 Nataraj (10.1016/j.mri.2021.12.006_bb0200) 2018; 37 Constable (10.1016/j.mri.2021.12.006_bb0135) 1992; 10 Deoni (10.1016/j.mri.2021.12.006_bb0155) 2005; 53 Pan (10.1016/j.mri.2021.12.006_bb0040) 2011; 261 Radunsky (10.1016/j.mri.2021.12.006_bb0190) 2019; 82 Tao (10.1016/j.mri.2021.12.006_bb0225) 2020; 214 Hotelling (10.1016/j.mri.2021.12.006_bb0270) 1933; 24 Knight (10.1016/j.mri.2021.12.006_bb0095) 2016; 29 Jolliffe (10.1016/j.mri.2021.12.006_bb0265) 2002 Schmitt (10.1016/j.mri.2021.12.006_bb0145) 2004; 51 Hennig (10.1016/j.mri.2021.12.006_bb0175) 1988; 78 Shah (10.1016/j.mri.2021.12.006_bb0075) 2012; 5 Radunsky (10.1016/j.mri.2021.12.006_bb0285) 2021 Liu (10.1016/j.mri.2021.12.006_bb0215) 2020; 24 Fabes (10.1016/j.mri.2021.12.006_bb0090) 2017; 24 Knight (10.1016/j.mri.2021.12.006_bb0100) 2016; 61 Burstein (10.1016/j.mri.2021.12.006_bb0130) 1996; 8 Deoni (10.1016/j.mri.2021.12.006_bb0165) 2009; 30 Lund (10.1016/j.mri.2021.12.006_bb0010) 2012; 125 Ben-eliezer (10.1016/j.mri.2021.12.006_bb0060) 2019 Ceccarelli (10.1016/j.mri.2021.12.006_bb0005) 2010; 16 Sled (10.1016/j.mri.2021.12.006_bb0170) 2000; 43 Sirovich (10.1016/j.mri.2021.12.006_bb0275) 2014; 4 Sati (10.1016/j.mri.2021.12.006_bb0085) 2012; 265 Son (10.1016/j.mri.2021.12.006_bb0050) 2013; 21  | 
    
| References_xml | – volume: 37 start-page: 2103 year: 2018 end-page: 2114 ident: bb0200 article-title: Dictionary-free MRI PERK: parameter estimation via regression with kernels publication-title: IEEE Trans Med Imaging – volume: 75 start-page: 1346 year: 2016 end-page: 1354 ident: bb0140 article-title: Accelerated and motion-robust in vivo T publication-title: Magn Reson Med – volume: 265 start-page: 926 year: 2012 end-page: 932 ident: bb0085 article-title: FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins publication-title: Radiology – volume: 8 start-page: 269 year: 1996 end-page: 278 ident: bb0130 article-title: Stimulated echoes: description, applications, practical hints publication-title: Concepts Magn Reson – year: 2020 ident: bb0055 article-title: T2 mapping values in postmeniscectomy knee articular cartilage after running: early signs of osteoarthritis? publication-title: J Knee Surg – volume: 148 start-page: 111 year: 2007 end-page: 127 ident: bb0280 article-title: Bézier curves and C 2 interpolation in Riemannian manifolds publication-title: J Approx Theory – volume: 41 start-page: 53 year: 2017 end-page: 62 ident: bb0195 article-title: MR fingerprinting reconstruction with Kalman filter publication-title: Magn Reson Imaging – volume: 214 start-page: 529 year: 2020 end-page: 535 ident: bb0225 article-title: Deep learning for quantitative cardiac MRI publication-title: AJR Am J Roentgenol – volume: 24 start-page: 1187 year: 2017 end-page: 1194 ident: bb0090 article-title: Quantitative FLAIR MRI in amyotrophic lateral sclerosis publication-title: Acad Radiol – volume: 65 start-page: 1400 year: 2011 end-page: 1406 ident: bb0025 article-title: Accelerated T 2 mapping for characterization of prostate cancer publication-title: Magn Reson Med – volume: 29 start-page: 833 year: 2016 end-page: 842 ident: bb0095 article-title: Quantitative T publication-title: Magn Reson Mater Physics, Biol Med – volume: 3 start-page: 125 year: 1991 end-page: 143 ident: bb0180 article-title: Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes publication-title: Concepts Magn Reson – volume: 21 start-page: 796 year: 2013 end-page: 805 ident: bb0050 article-title: Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition publication-title: Osteoarthr Cartil – volume: 61 start-page: 5587 year: 2016 end-page: 5605 ident: bb0100 article-title: Quantitative T2 mapping of white matter: applications for ageing and cognitive decline publication-title: Phys Med Biol – volume: 51 start-page: 661 year: 2004 end-page: 667 ident: bb0145 article-title: Inversion recovery TrueFISP: quantification of T publication-title: Magn Reson Med – volume: 4 start-page: 519 year: 2014 end-page: 524 ident: bb0275 article-title: Low-dimensional procedure for the characterization of human faces publication-title: J Opt Soc Am A – volume: 495 start-page: 187 year: 2013 end-page: 192 ident: bb0185 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 30 start-page: 411 year: 2009 end-page: 417 ident: bb0165 article-title: Transverse relaxation time (T publication-title: J Magn Reson Imaging – volume: 24 start-page: 417 year: 1933 end-page: 441 ident: bb0270 article-title: Analysis of a complex of statistical variables into principal components publication-title: J Educ Psychol – volume: 261 start-page: 507 year: 2011 end-page: 515 ident: bb0040 article-title: Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative publication-title: Radiology – year: 2019 ident: bb0060 article-title: A new method for cartilage evaluation in femoroacetabular impingement using quantitative T2 magnetic resonance imaging: preliminary validation against arthroscopic findings publication-title: Cartilage – volume: 13 start-page: 633 year: 2013 end-page: 644 ident: bb0240 article-title: Potential of compressed sensing in quantitative MR imaging of cancer publication-title: Cancer Imaging – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: bb0245 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 40 start-page: 1612 year: 2009 end-page: 1616 ident: bb0065 article-title: Quantitative T publication-title: Stroke – volume: 84 start-page: 579 year: 2020 end-page: 591 ident: bb0220 article-title: Submillimeter MR fingerprinting using deep learning-based tissue quantification publication-title: Magn Reson Med – volume: 11 start-page: 1 year: 2009 end-page: 13 ident: bb0070 article-title: T publication-title: J Cardiovasc Magn Reson – volume: 82 start-page: 145 year: 2019 end-page: 158 ident: bb0190 article-title: Analysis of magnetization transfer (MT) influence on quantitative mapping of T2 relaxation time publication-title: Magn Reson Med – volume: 74 start-page: 523 year: 2015 end-page: 528 ident: bb0250 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med – volume: 77 start-page: 2057 year: 2017 end-page: 2065 ident: bb0110 article-title: Transverse relaxation and flip angle mapping: evaluation of simultaneous and independent methods using multiple spin echoes publication-title: Magn Reson Med – volume: 80 start-page: 885 year: 2018 end-page: 894 ident: bb0205 article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE) publication-title: Magn Reson Med – volume: 24 start-page: 1333 year: 2006 end-page: 1341 ident: bb0030 article-title: Differentiation of hepatocellular carcinoma and hepatic metastasis from cysts and hemangiomas with calculated T publication-title: J Magn Reson Imaging – volume: 2 start-page: 541 year: 1992 end-page: 553 ident: bb0160 article-title: Practical T publication-title: J Magn Reson Imaging – volume: 49 start-page: 515 year: 2003 end-page: 526 ident: bb0150 article-title: Rapid combined T publication-title: Magn Reson Med – volume: 33 start-page: 2311 year: 2014 end-page: 2322 ident: bb0230 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging – volume: 78 start-page: 397 year: 1988 end-page: 407 ident: bb0175 article-title: Multiecho imaging sequences with low refocusing flip angles publication-title: J Magn Reson – volume: 16 start-page: 39 year: 2010 end-page: 44 ident: bb0005 article-title: Deep gray matter T publication-title: Mult Scler – year: 2021 ident: bb0285 article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time publication-title: NMR Biomed – volume: 5 start-page: 782 year: 2012 end-page: 790 ident: bb0075 article-title: Cardiac magnetic resonance T publication-title: Circ Cardiovasc Imaging – volume: 207 start-page: 1 year: 2020 end-page: 11 ident: bb0105 article-title: How stable is quantitative MRI ? – assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs publication-title: Neuroimage – volume: 66 start-page: 248 year: 2020 end-page: 256 ident: bb0255 article-title: snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs publication-title: Magn Reson Imaging – volume: 6 start-page: 603 year: 1996 end-page: 607 ident: bb0120 article-title: Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate publication-title: J Magn Reson Imaging – volume: 256 start-page: 955 year: 2010 end-page: 965 ident: bb0045 article-title: Loaded cartilage T2 mapping in patients with hip dysplasia publication-title: Radiology – volume: 80 start-page: 580 year: 1950 end-page: 594 ident: bb0115 article-title: Spin echoes publication-title: Phys Rev – volume: 27 start-page: 497 year: 2009 end-page: 502 ident: bb0020 article-title: Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T publication-title: Magn Reson Imaging – volume: 11766 start-page: 101 year: 2019 end-page: 109 ident: bb0210 article-title: RCA-U-net: residual channel attention U-net for fast tissue quantification in magnetic resonance fingerprinting. Med Image Comput Comput Interv MICCAI publication-title: Int Conf Med Image Comput Comput Interv – volume: 1 start-page: 355 year: 2004 end-page: 368 ident: bb0035 article-title: Cartilage MRI T2 relaxation time mapping: overview and applications publication-title: Semin Muscuoloskeletal Radiol – volume: 43 start-page: 589 year: 2000 end-page: 593 ident: bb0170 article-title: Correction for B publication-title: Magn Reson Med – volume: 24 start-page: 451 year: 2020 end-page: 459 ident: bb0215 article-title: Improving quantitative magnetic resonance imaging using deep learning publication-title: Semin Musculoskelet Radiol – volume: 73 start-page: 809 year: 2015 end-page: 817 ident: bb0125 article-title: Rapid and accurate T publication-title: Magn Reson Med – volume: 81 start-page: 25 year: 2019 end-page: 46 ident: bb0235 article-title: Magnetic resonance fingerprinting: a technical review publication-title: Magn Reson Med – year: 2002 ident: bb0265 article-title: Principal Component Analysis – volume: 14 start-page: 363 year: 2017 end-page: 370 ident: bb0015 article-title: New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients publication-title: NeuroImage Clin – volume: 125 start-page: 338 year: 2012 end-page: 344 ident: bb0010 article-title: Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue publication-title: Acta Neruologica Scand – volume: 10 start-page: 497 year: 1992 end-page: 511 ident: bb0135 article-title: Factors influencing contrast in fast spin-echo MR imaging publication-title: Magn Reson Imaging – volume: 7 start-page: 297 year: 2003 end-page: 307 ident: bb0080 article-title: T publication-title: Semin Muscuoloskeletal Radiol – volume: 53 start-page: 237 year: 2005 end-page: 241 ident: bb0155 article-title: High-resolution T publication-title: Magn Reson Med – volume: 51 start-page: 661 year: 2004 ident: 10.1016/j.mri.2021.12.006_bb0145 article-title: Inversion recovery TrueFISP: quantification of T1, T2, and spin density publication-title: Magn Reson Med doi: 10.1002/mrm.20058 – volume: 7 start-page: 297 year: 2003 ident: 10.1016/j.mri.2021.12.006_bb0080 article-title: T2 mapping of muscle publication-title: Semin Muscuoloskeletal Radiol doi: 10.1055/s-2004-815677 – volume: 41 start-page: 53 year: 2017 ident: 10.1016/j.mri.2021.12.006_bb0195 article-title: MR fingerprinting reconstruction with Kalman filter publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2017.04.004 – volume: 30 start-page: 411 year: 2009 ident: 10.1016/j.mri.2021.12.006_bb0165 article-title: Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase- cycled steady-state free precession imaging publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21849 – volume: 33 start-page: 2311 year: 2014 ident: 10.1016/j.mri.2021.12.006_bb0230 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2337321 – volume: 4 start-page: 519 year: 2014 ident: 10.1016/j.mri.2021.12.006_bb0275 article-title: Low-dimensional procedure for the characterization of human faces publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.4.000519 – volume: 24 start-page: 451 year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0215 article-title: Improving quantitative magnetic resonance imaging using deep learning publication-title: Semin Musculoskelet Radiol doi: 10.1055/s-0040-1709482 – year: 2019 ident: 10.1016/j.mri.2021.12.006_bb0060 article-title: A new method for cartilage evaluation in femoroacetabular impingement using quantitative T2 magnetic resonance imaging: preliminary validation against arthroscopic findings publication-title: Cartilage – volume: 8 start-page: 269 year: 1996 ident: 10.1016/j.mri.2021.12.006_bb0130 article-title: Stimulated echoes: description, applications, practical hints publication-title: Concepts Magn Reson doi: 10.1002/(SICI)1099-0534(1996)8:4<269::AID-CMR3>3.0.CO;2-X – volume: 10 start-page: 497 year: 1992 ident: 10.1016/j.mri.2021.12.006_bb0135 article-title: Factors influencing contrast in fast spin-echo MR imaging publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(92)90001-G – volume: 73 start-page: 809 year: 2015 ident: 10.1016/j.mri.2021.12.006_bb0125 article-title: Rapid and accurate T2 mapping from multi-spin-echo data using bloch-simulation-based reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.25156 – volume: 16 start-page: 39 year: 2010 ident: 10.1016/j.mri.2021.12.006_bb0005 article-title: Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis publication-title: Mult Scler doi: 10.1177/1352458509350310 – volume: 6 start-page: 603 year: 1996 ident: 10.1016/j.mri.2021.12.006_bb0120 article-title: Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880060408 – volume: 84 start-page: 579 year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0220 article-title: Submillimeter MR fingerprinting using deep learning-based tissue quantification publication-title: Magn Reson Med doi: 10.1002/mrm.28136 – volume: 80 start-page: 580 year: 1950 ident: 10.1016/j.mri.2021.12.006_bb0115 article-title: Spin echoes publication-title: Phys Rev doi: 10.1103/PhysRev.80.580 – volume: 148 start-page: 111 year: 2007 ident: 10.1016/j.mri.2021.12.006_bb0280 article-title: Bézier curves and C 2 interpolation in Riemannian manifolds publication-title: J Approx Theory doi: 10.1016/j.jat.2007.03.002 – year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0055 article-title: T2 mapping values in postmeniscectomy knee articular cartilage after running: early signs of osteoarthritis? publication-title: J Knee Surg – volume: 24 start-page: 417 year: 1933 ident: 10.1016/j.mri.2021.12.006_bb0270 article-title: Analysis of a complex of statistical variables into principal components publication-title: J Educ Psychol doi: 10.1037/h0071325 – volume: 37 start-page: 2103 year: 2018 ident: 10.1016/j.mri.2021.12.006_bb0200 article-title: Dictionary-free MRI PERK: parameter estimation via regression with kernels publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2817547 – volume: 14 start-page: 363 year: 2017 ident: 10.1016/j.mri.2021.12.006_bb0015 article-title: New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.01.029 – volume: 77 start-page: 2057 year: 2017 ident: 10.1016/j.mri.2021.12.006_bb0110 article-title: Transverse relaxation and flip angle mapping: evaluation of simultaneous and independent methods using multiple spin echoes publication-title: Magn Reson Med doi: 10.1002/mrm.26285 – year: 2002 ident: 10.1016/j.mri.2021.12.006_bb0265 – volume: 65 start-page: 1400 year: 2011 ident: 10.1016/j.mri.2021.12.006_bb0025 article-title: Accelerated T 2 mapping for characterization of prostate cancer publication-title: Magn Reson Med doi: 10.1002/mrm.22874 – volume: 27 start-page: 497 year: 2009 ident: 10.1016/j.mri.2021.12.006_bb0020 article-title: Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T2 values for cancer discrimination publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2008.08.001 – volume: 13 start-page: 633 year: 2013 ident: 10.1016/j.mri.2021.12.006_bb0240 article-title: Potential of compressed sensing in quantitative MR imaging of cancer publication-title: Cancer Imaging doi: 10.1102/1470-7330.2013.0041 – volume: 3 start-page: 125 year: 1991 ident: 10.1016/j.mri.2021.12.006_bb0180 article-title: Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes publication-title: Concepts Magn Reson doi: 10.1002/cmr.1820030302 – volume: 125 start-page: 338 year: 2012 ident: 10.1016/j.mri.2021.12.006_bb0010 article-title: Cognitive deficits in multiple sclerosis: correlations with T2 changes in normal appearing brain tissue publication-title: Acta Neruologica Scand doi: 10.1111/j.1600-0404.2011.01574.x – volume: 58 start-page: 1182 year: 2007 ident: 10.1016/j.mri.2021.12.006_bb0245 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21391 – volume: 74 start-page: 523 year: 2015 ident: 10.1016/j.mri.2021.12.006_bb0250 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.25439 – volume: 1 start-page: 355 year: 2004 ident: 10.1016/j.mri.2021.12.006_bb0035 article-title: Cartilage MRI T2 relaxation time mapping: overview and applications publication-title: Semin Muscuoloskeletal Radiol doi: 10.1055/s-2004-861764 – volume: 21 start-page: 796 year: 2013 ident: 10.1016/j.mri.2021.12.006_bb0050 article-title: Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2013.03.002 – volume: 75 start-page: 1346 year: 2016 ident: 10.1016/j.mri.2021.12.006_bb0140 article-title: Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.25558 – volume: 5 start-page: 782 year: 2012 ident: 10.1016/j.mri.2021.12.006_bb0075 article-title: Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection a pilot study publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.111.971101 – volume: 11766 start-page: 101 year: 2019 ident: 10.1016/j.mri.2021.12.006_bb0210 article-title: RCA-U-net: residual channel attention U-net for fast tissue quantification in magnetic resonance fingerprinting. Med Image Comput Comput Interv MICCAI publication-title: Int Conf Med Image Comput Comput Interv – volume: 61 start-page: 5587 year: 2016 ident: 10.1016/j.mri.2021.12.006_bb0100 article-title: Quantitative T2 mapping of white matter: applications for ageing and cognitive decline publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/15/5587 – volume: 2 start-page: 541 year: 1992 ident: 10.1016/j.mri.2021.12.006_bb0160 article-title: Practical T2 quantitation for clinical applications publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880020512 – volume: 24 start-page: 1187 year: 2017 ident: 10.1016/j.mri.2021.12.006_bb0090 article-title: Quantitative FLAIR MRI in amyotrophic lateral sclerosis publication-title: Acad Radiol doi: 10.1016/j.acra.2017.04.008 – volume: 82 start-page: 145 year: 2019 ident: 10.1016/j.mri.2021.12.006_bb0190 article-title: Analysis of magnetization transfer (MT) influence on quantitative mapping of T2 relaxation time publication-title: Magn Reson Med doi: 10.1002/mrm.27704 – volume: 29 start-page: 833 year: 2016 ident: 10.1016/j.mri.2021.12.006_bb0095 article-title: Quantitative T1 and T2 MRI signal characteristics in the human brain: different patterns of MR contrasts in normal ageing publication-title: Magn Reson Mater Physics, Biol Med doi: 10.1007/s10334-016-0573-0 – volume: 24 start-page: 1333 year: 2006 ident: 10.1016/j.mri.2021.12.006_bb0030 article-title: Differentiation of hepatocellular carcinoma and hepatic metastasis from cysts and hemangiomas with calculated T2 relaxation times and the T1/T2 relaxation times ratio publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20758 – volume: 66 start-page: 248 year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0255 article-title: snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.11.015 – volume: 261 start-page: 507 year: 2011 ident: 10.1016/j.mri.2021.12.006_bb0040 article-title: Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative publication-title: Radiology doi: 10.1148/radiol.11102234 – volume: 265 start-page: 926 year: 2012 ident: 10.1016/j.mri.2021.12.006_bb0085 article-title: FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins publication-title: Radiology doi: 10.1148/radiol.12120208 – volume: 53 start-page: 237 year: 2005 ident: 10.1016/j.mri.2021.12.006_bb0155 article-title: High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med doi: 10.1002/mrm.20314 – volume: 78 start-page: 397 year: 1988 ident: 10.1016/j.mri.2021.12.006_bb0175 article-title: Multiecho imaging sequences with low refocusing flip angles publication-title: J Magn Reson – year: 2021 ident: 10.1016/j.mri.2021.12.006_bb0285 article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time publication-title: NMR Biomed doi: 10.1002/nbm.4537 – volume: 43 start-page: 589 year: 2000 ident: 10.1016/j.mri.2021.12.006_bb0170 article-title: Correction for B1 and B0 variations in quantitative T2 measurements using MRI publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(200004)43:4<589::AID-MRM14>3.0.CO;2-2 – volume: 495 start-page: 187 year: 2013 ident: 10.1016/j.mri.2021.12.006_bb0185 article-title: Magnetic resonance fingerprinting publication-title: Nature doi: 10.1038/nature11971 – volume: 256 start-page: 955 year: 2010 ident: 10.1016/j.mri.2021.12.006_bb0045 article-title: Loaded cartilage T2 mapping in patients with hip dysplasia publication-title: Radiology doi: 10.1148/radiol.10091928 – volume: 49 start-page: 515 year: 2003 ident: 10.1016/j.mri.2021.12.006_bb0150 article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state publication-title: Magn Reson Med doi: 10.1002/mrm.10407 – volume: 80 start-page: 885 year: 2018 ident: 10.1016/j.mri.2021.12.006_bb0205 article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE) publication-title: Magn Reson Med doi: 10.1002/mrm.27198 – volume: 214 start-page: 529 year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0225 article-title: Deep learning for quantitative cardiac MRI publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.19.21927 – volume: 207 start-page: 1 year: 2020 ident: 10.1016/j.mri.2021.12.006_bb0105 article-title: How stable is quantitative MRI ? – assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116364 – volume: 11 start-page: 1 year: 2009 ident: 10.1016/j.mri.2021.12.006_bb0070 article-title: T2 quantification for improved detection of myocardial edema publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-11-56 – volume: 81 start-page: 25 year: 2019 ident: 10.1016/j.mri.2021.12.006_bb0235 article-title: Magnetic resonance fingerprinting: a technical review publication-title: Magn Reson Med doi: 10.1002/mrm.27403 – volume: 40 start-page: 1612 year: 2009 ident: 10.1016/j.mri.2021.12.006_bb0065 article-title: Quantitative T2 values predict time from symptom onset in acute stroke patients publication-title: Stroke doi: 10.1161/STROKEAHA.108.542548  | 
    
| SSID | ssj0005235 | 
    
| Score | 2.3717172 | 
    
| Snippet | Background
Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of... Background Quantitative T2-relaxation-based contrast maps have shown to be highly beneficial for clinical diagnosis and follow-up. The generation of...  | 
    
| SourceID | hal proquest crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 56 | 
    
| SubjectTerms | Dictionary compression Engineering Sciences Gradient descent Magnetic resonance imaging Principal component analysis T2 mapping  | 
    
| Title | Accelerated reconstruction of dictionary-based T2 relaxation maps based on dictionary compression and gradient descent search algorithms | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21002551 https://dx.doi.org/10.1016/j.mri.2021.12.006 https://www.proquest.com/docview/2615920827 https://hal.science/hal-03606818  | 
    
| Volume | 87 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cQLyIK9aljOJJiE0m0yQ9lmKpS71owdswmZloxKalraIXz_5s35skdUEqeEvTeSTM276XeQshR4lSsceUdCQEtA4HnXAkhyhFuQrgBGAEbbBQuHsVdHr8_LZ-O0daZS0MplUWtj-36dZaF3dqxW7Whmlau0bhDBkEW54FxraCnYc4xeDk7WuaRz5kExY7uLo82bQ5Xv1RCiEi8-wXQRx69Ltvmr_HJMkftto6oPYqWSmQI23mL7dG5ky2Tpa6xdn4BnlvKgU-BFs_aGrj3GlvWDpIqE7tpRy9Oui5NL1hFAtZXixraF8OxzT_A359LqaYc57nymZUZprejWyS2ITqvBEUzXWFyse7wSid3PfHm6TXPr1pdZxizoKjuMcnThwbPH7UEEwFTPsRIEKZJKyhQT9DyZWrvUgnkaoHJnCVabiKBYo3tOvLKOZx4G-RhWyQmW1CfQ0BYogYB-K6hMvY1D0ZuipBiiDyK8Qtd1ioogk5zsJ4FGW22YMApghkivCYAKZUyPGUZJh34Ji1mJVsE2VpKRhDAf5hFhGfEn2Tvb_IDkEupu-Efbo7zUuB9wAWuAFAoWevQg5KsRGguHgaIzMzeBoL2O16gwECC3f-9_xdssywFsOmEe2RBZApsw8IaRJXrQpUyWLz7KJz9QHrshCx | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6kGAXNL60DgYe4oQUmjjOR48VWlVY2wut1Jvl2A5komnVFrRdOPNn856TlIFQkXZLUz8l8vv6_eLnZ0JOU6USjynpSCC0DgefcCQHlqJcBXACMII2uFG41w87Q341CkY1clHthcGyyjL2FzHdRuvyTqOczcY0yxrXaJwRA7LlWWAMFGidByxCBnb--G-dR3HKJox2cHi1tGmLvMazDDgi8-wnQTz16P3k9OkWqyTfBGubgdpfyFYJHWmreLttUjP5DtnolYvju-SppRQkEez9oKklusvmsHSSUp3ZSzn762Dq0nTAKO5k-WN1Q8dyOqfFH_DrZTDFovOiWDanMtf0ZmarxBZUF52gaOEsVN7dTGbZ4nY83yPD9s_BRccpD1pwFPf4wkkSg-uPGthUyLQfAySUacqaGhw0kly52ot1GqsgNKGrTNNVLFS8qV1fxglPQn-frOWT3Hwl1NfAECMEOUDsUi4TE3gyclWKEmHs14lbzbBQZRdyPAzjTlTlZr8FKEWgUoTHBCilTs6WItOiBceqwaxSm6j2lkI0FJAgVgnxpdAr4_tI7ATsYvlO2Ki70-oKvAe4wA0BCz14dfKjMhsBnovLMTI3k_u5gNkOmgwgWPTt_55_TDY7g15XdC_7vw7IZ4YbM2xN0SFZA_sy3wEuLZIj6w7PGEISRg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+reconstruction+of+dictionary-based+T2+relaxation+maps+based+on+dictionary+compression+and+gradient+descent+search+algorithms&rft.jtitle=Magnetic+resonance+imaging&rft.au=Shpringer%2C+Guy&rft.au=Bendahan%2C+David&rft.au=Ben-Eliezer%2C+Noam&rft.date=2022-04-01&rft.pub=Elsevier&rft.issn=0730-725X&rft.volume=87&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.mri.2021.12.006&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03606818v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |