Design of building construction safety prediction model based on optimized BP neural network algorithm

In order to solve the safety problem of the construction industry, the construction safety prediction model based on the optimized BP neural network algorithm is designed in this study. First, the characteristics of the construction industry were analyzed. As a labor-intensive industry, the construc...

Full description

Saved in:
Bibliographic Details
Published inSoft Computing Vol. 24; no. 11; pp. 7839 - 7850
Main Authors Shen, Tao, Nagai, Yukari, Gao, Chan
Format Journal Article
LanguageEnglish
Japanese
Published Berlin/Heidelberg Springer Science and Business Media LLC 01.06.2020
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-019-03917-4

Cover

Abstract In order to solve the safety problem of the construction industry, the construction safety prediction model based on the optimized BP neural network algorithm is designed in this study. First, the characteristics of the construction industry were analyzed. As a labor-intensive industry, the construction industry is characterized by numerous factors such as large investment, long construction period and complicated construction environment. Due to the increasingly serious security problem, widespread concern over such problem has been aroused in society. Second, the problem of building construction safety management was summarized, six influencing factors were explored and a building construction safety prediction model based on rough set-genetic-BP neural network was established. Finally, the model was validated by a combination of multiparty consultation, empirical analysis and model comparison. The results showed that the model accurately predicted the risk factors during the construction process and effectively reduced casualties. Therefore, the model is feasible, effective and accurate.
AbstractList In order to solve the safety problem of the construction industry, the construction safety prediction model based on the optimized BP neural network algorithm is designed in this study. First, the characteristics of the construction industry were analyzed. As a labor-intensive industry, the construction industry is characterized by numerous factors such as large investment, long construction period and complicated construction environment. Due to the increasingly serious security problem, widespread concern over such problem has been aroused in society. Second, the problem of building construction safety management was summarized, six influencing factors were explored and a building construction safety prediction model based on rough set-genetic-BP neural network was established. Finally, the model was validated by a combination of multiparty consultation, empirical analysis and model comparison. The results showed that the model accurately predicted the risk factors during the construction process and effectively reduced casualties. Therefore, the model is feasible, effective and accurate.
Author Yukari Nagai
Chan Gao
Tao Shen
Author_xml – sequence: 1
  givenname: Tao
  surname: Shen
  fullname: Shen, Tao
  email: shentao@jaist.ac.jp
  organization: Knowledge Science, Japan Advanced Institute of Science and Technology
– sequence: 2
  givenname: Yukari
  surname: Nagai
  fullname: Nagai, Yukari
  organization: Knowledge Science, Japan Advanced Institute of Science and Technology
– sequence: 3
  givenname: Chan
  surname: Gao
  fullname: Gao, Chan
  organization: Architecture Department, Huzhou University
BackLink https://cir.nii.ac.jp/crid/1871146593167722368$$DView record in CiNii
BookMark eNp9kEtv1TAQhS1UJErpH2BlCbaBGduJ4yWUV6VKsIC15STjiyHXvtiOUPn1JA0SUhfdzMM6n318nrKzmCIx9hzhFQLo1wWgBWgATQPSoG7UI3aOSspGK23O7mbR6E7JJ-yylDAAiB4MaHXO_Dsq4RB58nxYwjyFeOBjiqXmZawhRV6cp3rLT5mmsJ8c00QzH1yhia9rOtVwDH_W5e0XHmnJbl5b_Z3yT-7mQ8qhfj8-Y4-9mwtd_usX7NuH91-vPjU3nz9eX725aUaFqja9N8MgwG_miUgrgaMgL6VHI5zSXgjRUS9AtjS0E03aQG86SSNOQzuAvGAv9ntPOf1aqFT7Iy05rk9aYbBHBGPUqup31ZhTKZm8HUN12-dqdmG2CHYL1u7B2jVYexes3VBxDz3lcHT59mFI7lBZxfFA-b-rB6mXOxVDWA1uFXuNqLrWSOy0FkJ2vfwLbMCYAQ
CitedBy_id crossref_primary_10_1016_j_autcon_2022_104391
crossref_primary_10_1007_s10614_021_10134_5
crossref_primary_10_1016_j_heliyon_2023_e18752
crossref_primary_10_1155_2022_6558512
crossref_primary_10_3390_su151511803
crossref_primary_10_3390_su141912046
crossref_primary_10_1007_s00500_020_04939_z
crossref_primary_10_1016_j_aej_2024_11_059
crossref_primary_10_1007_s00521_022_08170_9
crossref_primary_10_1155_2021_9973377
crossref_primary_10_1007_s00500_020_04977_7
crossref_primary_10_3390_app12115712
crossref_primary_10_1155_2020_6682296
crossref_primary_10_1155_2022_7307741
crossref_primary_10_1109_JSEN_2024_3429384
crossref_primary_10_1108_IJICC_10_2020_0142
crossref_primary_10_1002_er_6300
crossref_primary_10_1007_s13198_021_01226_4
crossref_primary_10_1061__ASCE_CO_1943_7862_0002246
crossref_primary_10_1016_j_techfore_2022_121939
crossref_primary_10_1108_CI_02_2021_0027
crossref_primary_10_1061__ASCE_CP_1943_5487_0001010
crossref_primary_10_3233_JIFS_210619
crossref_primary_10_1108_JEIM_07_2022_0247
crossref_primary_10_1186_s12889_025_21583_0
crossref_primary_10_1016_j_is_2022_102124
crossref_primary_10_3390_su142214738
crossref_primary_10_1108_ECAM_03_2024_0313
crossref_primary_10_1108_ECAM_12_2020_1050
crossref_primary_10_2139_ssrn_3982323
crossref_primary_10_1155_2022_9402472
crossref_primary_10_1016_j_autcon_2024_105429
crossref_primary_10_1002_eng2_12773
crossref_primary_10_1007_s10845_021_01771_6
crossref_primary_10_3390_buildings12050598
crossref_primary_10_7717_peerj_cs_2351
crossref_primary_10_1002_ldr_4273
Cites_doi 10.1016/j.autcon.2016.09.003
10.1007/s00521-016-2190-2
10.1061/(ASCE)EI.1943-5541.0000278
10.1016/j.advengsoft.2014.11.003
10.1007/s00366-015-0400-7
10.1016/j.resourpol.2014.10.011
10.1016/j.neucom.2016.09.027
10.1016/j.media.2014.10.007
10.1016/j.autcon.2015.11.003
10.1007/s00366-015-0415-0
10.1016/j.knosys.2015.05.017
10.1016/j.enconman.2016.02.013
10.1007/s12665-015-4274-1
10.1016/j.enconman.2014.12.053
10.1016/j.resconrec.2017.10.020
10.1016/j.tourman.2015.10.001
10.1007/s10064-014-0657-x
10.1111/coin.12061
10.1016/j.enbuild.2014.11.063
10.1007/s13278-017-0484-8
10.1007/s10346-015-0557-6
10.1007/s11042-016-4319-9
10.1504/IJCSYSE.2016.079000
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID RYH
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-03917-4
DatabaseName CiNii Complete
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1433-7479
EndPage 7850
ExternalDocumentID 10_1007_s00500_019_03917_4
GeographicLocations United Kingdom--UK
United States--US
China
Japan
GeographicLocations_xml – name: China
– name: United Kingdom--UK
– name: United States--US
– name: Japan
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PHGZM
PHGZT
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
RYH
S16
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
-5B
-5G
-BR
-EM
-Y2
1SB
2P1
2VQ
AARHV
ABQSL
ABULA
ACBXY
ADINQ
AEBTG
AEKMD
AFGCZ
AGGDS
AHSBF
AJBLW
CAG
COF
GQ6
H13
N2Q
O9-
RIG
RNI
RZK
S1Z
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
AAYXX
ABRTQ
ADHKG
AGQPQ
CITATION
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c414t-8f9bb20f1433eee7421c2ef33f192a47f2226e82035eb5ded7908963ec1db5b03
IEDL.DBID BENPR
ISSN 1432-7643
IngestDate Fri Jul 25 23:38:30 EDT 2025
Wed Oct 01 03:00:02 EDT 2025
Thu Apr 24 22:49:10 EDT 2025
Fri Feb 21 02:33:23 EST 2025
Fri Jun 27 00:40:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords BP network
Genetic algorithm
Safety prediction
Risk factors
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-8f9bb20f1433eee7421c2ef33f192a47f2226e82035eb5ded7908963ec1db5b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8476-8038
PQID 2918110994
PQPubID 2043697
PageCount 12
ParticipantIDs proquest_journals_2918110994
crossref_citationtrail_10_1007_s00500_019_03917_4
crossref_primary_10_1007_s00500_019_03917_4
springer_journals_10_1007_s00500_019_03917_4
nii_cinii_1871146593167722368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft Computing
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Science and Business Media LLC
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Chen, Tsai (CR3) 2016; 53
Yu, Li, Jia (CR25) 2015; 88
Wang, Kim, Shi (CR21) 2015; 20
Dutta, Ghatak, Dey, Das, Ghosh (CR4) 2018; 8
Hajihassani, Armaghani, Marto (CR7) 2015; 74
Liu, Huo, Liang, Sun, Hu (CR17) 2016; 142
Gordan, Armaghani, Hajihassani (CR6) 2016; 32
Leu, Liu (CR13) 2016; 24
Meng, Ge, Yin (CR18) 2016; 114
Jia, Shang, Zhou, Yao (CR10) 2016; 91
Li, Ruan, Shen, Hermans, Wets (CR14) 2016; 32
Kusi-Sarpong, Bai, Sarkis, Wang (CR12) 2015; 46
Hu, Wen, Zeng, Huang (CR9) 2017; 221
Yi, Chan, Wang (CR24) 2016; 62
Liu, Tian, Li (CR16) 2015; 92
Hajihassani, Armaghani, Monjezi (CR8) 2015; 74
Roy, Viswanatham, Krishna (CR19) 2016; 2
Bui, Tuan, Klempe (CR1) 2016; 13
Liou, Chuang, Hsu (CR15) 2016; 33
Zhang, Wu, Zhu, AbouRizk (CR26) 2017; 73
Chatterjee, Sarkar, Hore, Dey, Ashour, Balas (CR2) 2017; 28
Kuang, Singh, Singh, Singh (CR11) 2017; 76
Saghatforoush, Monjezi, Faradonbeh (CR20) 2016; 32
Gholizadeh (CR5) 2015; 81
Waziri, Bala, Bustani (CR22) 2017; 6
Ye, Ren, Hu, Lin, Shi, Zhang, Li (CR23) 2018; 129
Q Wang (3917_CR21) 2015; 20
SS Roy (3917_CR19) 2016; 2
M Hajihassani (3917_CR7) 2015; 74
X Jia (3917_CR10) 2016; 91
W Yu (3917_CR25) 2015; 88
Y Kuang (3917_CR11) 2017; 76
A Meng (3917_CR18) 2016; 114
L Zhang (3917_CR26) 2017; 73
S Dutta (3917_CR4) 2018; 8
S Kusi-Sarpong (3917_CR12) 2015; 46
S Gholizadeh (3917_CR5) 2015; 81
H Liu (3917_CR16) 2015; 92
W Yi (3917_CR24) 2016; 62
H Ye (3917_CR23) 2018; 129
B Liu (3917_CR17) 2016; 142
BS Waziri (3917_CR22) 2017; 6
SS Leu (3917_CR13) 2016; 24
M Hajihassani (3917_CR8) 2015; 74
T Li (3917_CR14) 2016; 32
S Chatterjee (3917_CR2) 2017; 28
A Saghatforoush (3917_CR20) 2016; 32
B Gordan (3917_CR6) 2016; 32
JJ Liou (3917_CR15) 2016; 33
DT Bui (3917_CR1) 2016; 13
LF Chen (3917_CR3) 2016; 53
R Hu (3917_CR9) 2017; 221
References_xml – volume: 73
  start-page: 88
  year: 2017
  end-page: 101
  ident: CR26
  article-title: Perceiving safety risk of buildings adjacent to tunneling excavation: an information fusion approach
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2016.09.003
– volume: 28
  start-page: 2005
  issue: 8
  year: 2017
  end-page: 2016
  ident: CR2
  article-title: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2190-2
– volume: 142
  start-page: 05016003
  issue: 4
  year: 2016
  ident: CR17
  article-title: Key factors of project characteristics affecting project delivery system decision making in the Chinese construction industry: case study using Chinese data based on rough set theory
  publication-title: J Prof Issues Eng Educ Pract
  doi: 10.1061/(ASCE)EI.1943-5541.0000278
– volume: 81
  start-page: 50
  year: 2015
  end-page: 65
  ident: CR5
  article-title: Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.11.003
– volume: 32
  start-page: 85
  issue: 1
  year: 2016
  end-page: 97
  ident: CR6
  article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0400-7
– volume: 46
  start-page: 86
  year: 2015
  end-page: 100
  ident: CR12
  article-title: Green supply chain practices evaluation in the mining industry using a joint rough sets and fuzzy TOPSIS methodology
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2014.10.011
– volume: 221
  start-page: 24
  year: 2017
  end-page: 31
  ident: CR9
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.027
– volume: 24
  start-page: 82
  issue: 2
  year: 2016
  end-page: 90
  ident: CR13
  article-title: Using principal component analysis with a back-propagation neural network to predict industrial building construction duration
  publication-title: J Mar Sci Technol
– volume: 20
  start-page: 61
  issue: 1
  year: 2015
  end-page: 75
  ident: CR21
  article-title: Predict brain MR image registration via sparse learning of appearance and transformation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.10.007
– volume: 62
  start-page: 101
  year: 2016
  end-page: 113
  ident: CR24
  article-title: Development of an early-warning system for site work in hot and humid environments: a case study
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2015.11.003
– volume: 32
  start-page: 255
  issue: 2
  year: 2016
  end-page: 266
  ident: CR20
  article-title: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0415-0
– volume: 91
  start-page: 204
  year: 2016
  end-page: 218
  ident: CR10
  article-title: Generalized attribute reduct in rough set theory
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.05.017
– volume: 114
  start-page: 75
  year: 2016
  end-page: 88
  ident: CR18
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.02.013
– volume: 74
  start-page: 2799
  issue: 4
  year: 2015
  end-page: 2817
  ident: CR8
  article-title: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4274-1
– volume: 92
  start-page: 67
  year: 2015
  end-page: 81
  ident: CR16
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.053
– volume: 129
  start-page: 168
  year: 2018
  end-page: 174
  ident: CR23
  article-title: Modeling energy-related CO 2 emissions from office buildings using general regression neural network
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2017.10.020
– volume: 53
  start-page: 197
  year: 2016
  end-page: 206
  ident: CR3
  article-title: Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2015.10.001
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  end-page: 886
  ident: CR7
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-014-0657-x
– volume: 32
  start-page: 517
  issue: 4
  year: 2016
  end-page: 534
  ident: CR14
  article-title: A new weighting approach based on rough set theory and granular computing for road safety indicator analysis
  publication-title: Comput Intell
  doi: 10.1111/coin.12061
– volume: 88
  start-page: 135
  year: 2015
  end-page: 143
  ident: CR25
  article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.11.063
– volume: 8
  start-page: 7
  issue: 1
  year: 2018
  ident: CR4
  article-title: Attribute selection for improving spam classification in online social networks: a rough set theory-based approach
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-017-0484-8
– volume: 6
  start-page: 50
  issue: 1
  year: 2017
  end-page: 60
  ident: CR22
  article-title: Artificial neural networks in construction engineering and management
  publication-title: Int J Arch Eng Constr
– volume: 33
  start-page: 123
  issue: 2
  year: 2016
  end-page: 133
  ident: CR15
  article-title: Improving airline service quality based on rough set theory and flow graphs
  publication-title: J Ind Prod Eng
– volume: 13
  start-page: 361
  issue: 2
  year: 2016
  end-page: 378
  ident: CR1
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 76
  start-page: 18749
  issue: 18
  year: 2017
  end-page: 18770
  ident: CR11
  article-title: A novel macroeconomic forecasting model based on revised multimedia assisted BP neural network model and ant Colony algorithm
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-4319-9
– volume: 2
  start-page: 139
  issue: 3
  year: 2016
  end-page: 147
  ident: CR19
  article-title: Spam detection using hybrid model of rough set and decorate ensemble
  publication-title: Int J Comput Syst Eng
  doi: 10.1504/IJCSYSE.2016.079000
– volume: 74
  start-page: 2799
  issue: 4
  year: 2015
  ident: 3917_CR8
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4274-1
– volume: 88
  start-page: 135
  year: 2015
  ident: 3917_CR25
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.11.063
– volume: 91
  start-page: 204
  year: 2016
  ident: 3917_CR10
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.05.017
– volume: 62
  start-page: 101
  year: 2016
  ident: 3917_CR24
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2015.11.003
– volume: 76
  start-page: 18749
  issue: 18
  year: 2017
  ident: 3917_CR11
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-4319-9
– volume: 28
  start-page: 2005
  issue: 8
  year: 2017
  ident: 3917_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2190-2
– volume: 8
  start-page: 7
  issue: 1
  year: 2018
  ident: 3917_CR4
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-017-0484-8
– volume: 24
  start-page: 82
  issue: 2
  year: 2016
  ident: 3917_CR13
  publication-title: J Mar Sci Technol
– volume: 53
  start-page: 197
  year: 2016
  ident: 3917_CR3
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2015.10.001
– volume: 32
  start-page: 517
  issue: 4
  year: 2016
  ident: 3917_CR14
  publication-title: Comput Intell
  doi: 10.1111/coin.12061
– volume: 129
  start-page: 168
  year: 2018
  ident: 3917_CR23
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2017.10.020
– volume: 13
  start-page: 361
  issue: 2
  year: 2016
  ident: 3917_CR1
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 32
  start-page: 85
  issue: 1
  year: 2016
  ident: 3917_CR6
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0400-7
– volume: 73
  start-page: 88
  year: 2017
  ident: 3917_CR26
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2016.09.003
– volume: 20
  start-page: 61
  issue: 1
  year: 2015
  ident: 3917_CR21
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.10.007
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  ident: 3917_CR7
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-014-0657-x
– volume: 142
  start-page: 05016003
  issue: 4
  year: 2016
  ident: 3917_CR17
  publication-title: J Prof Issues Eng Educ Pract
  doi: 10.1061/(ASCE)EI.1943-5541.0000278
– volume: 114
  start-page: 75
  year: 2016
  ident: 3917_CR18
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.02.013
– volume: 221
  start-page: 24
  year: 2017
  ident: 3917_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.027
– volume: 2
  start-page: 139
  issue: 3
  year: 2016
  ident: 3917_CR19
  publication-title: Int J Comput Syst Eng
  doi: 10.1504/IJCSYSE.2016.079000
– volume: 46
  start-page: 86
  year: 2015
  ident: 3917_CR12
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2014.10.011
– volume: 81
  start-page: 50
  year: 2015
  ident: 3917_CR5
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.11.003
– volume: 33
  start-page: 123
  issue: 2
  year: 2016
  ident: 3917_CR15
  publication-title: J Ind Prod Eng
– volume: 6
  start-page: 50
  issue: 1
  year: 2017
  ident: 3917_CR22
  publication-title: Int J Arch Eng Constr
– volume: 92
  start-page: 67
  year: 2015
  ident: 3917_CR16
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.053
– volume: 32
  start-page: 255
  issue: 2
  year: 2016
  ident: 3917_CR20
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0415-0
SSID ssib002809074
ssib005901461
ssib003055115
ssib056438046
ssj0021753
Score 2.4427607
Snippet In order to solve the safety problem of the construction industry, the construction safety prediction model based on the optimized BP neural network algorithm...
SourceID proquest
crossref
springer
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7839
SubjectTerms Algorithms
Artificial Intelligence
Back propagation networks
Casualties
Computational Intelligence
Construction accidents & safety
Construction industry
Control
Emergency communications systems
Empirical analysis
Engineering
Focus
GNP
Gross National Product
Industrialized nations
Macroeconomics
Management of crises
Management theory
Mathematical Logic and Foundations
Mechatronics
Neural networks
Occupational safety
Prediction models
Robotics
Safety management
Security management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoWWDgUUAUWuSBDSIlcZzHWB5VhQRioFK3yHZsiNQmVZsFfj1n10kpAiSWSE4cJ_Lnx53v7juELiMAlfmJ50hGFCgornSgyHUSAaUoiTgV-rzj8SkcjYOHCZ3YoLBl7e1emyTNSt0Eu2mqEu1ElTia1TxyghbapprOC0bx2B80apblngRBAGRH2HBtqMzPbWxsR60izzckzW_GUbPnDA_QnhUW8WCF7iHakkUH7deJGLCdlx20-4VV8AipO-OVgUuFuU16jUW5ZorFS6Zk9Y7nC22kMXdMPhysd7QMQ7GEdWSWf0Dh5hlrxkv4iWLlL47Z9LVc5NXb7BiNh_cvtyPHplNwROAFlROrhHPfVdAxREoJOrEnfKkIUdCJLIgUiAqhBImAUMlpJrNI2wRDIoWXccpdcoLaRVnIU4SDWHhMEE-6ggSuZEkch0RF0BSjmfJ5F3l1r6bCco3rlBfTtGFJNkikgERqkEiDLrpq3pmvmDb-rN0HsKBxffVA64MVnyY6rD8CgSeMu6hXw5jaWblMYUzGmmE1gdeva2jXj3__2tn_qp-jHV-r5eawpofagK_sg-xS8QszVD8BcRjhfg
  priority: 102
  providerName: Springer Nature
Title Design of building construction safety prediction model based on optimized BP neural network algorithm
URI https://cir.nii.ac.jp/crid/1871146593167722368
https://link.springer.com/article/10.1007/s00500-019-03917-4
https://www.proquest.com/docview/2918110994
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssib003055115
  issn: 1432-7643
  databaseCode: ADMLS
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-i7WWXAfvQOqDyYbctWhI7XweECrQgGBXaVomdItuxWSVICvQCfz3vuU4rJo1LIseJLb3n2L_nj98P4EuGTpVxEQVGcosBSmgCTCoSEbA24ZlKNM13XEzS06k4u0quNmDSnoWhbZVtn-g66qrRNEf-HcvLiR2zEAfzu4BUo2h1tZXQkF5aodp3FGMd6MXEjNWF3uFocvlzFYJ5XkoECYgrcTD2x2jcYTqiQqFNWkVArOlZIF4MVZ16NnuBQv9ZOHXj0XgL3nogyYZLz2_DhqnfwWYr0sD8P_se7LHbo8Eay5SXwGa6WfPGsgdpzeKRze9pycY9ceo4jMa3imGywV7ldvaEicNLRvyXWG293D3O5M01Gmnx9_YDTMej30engRdXCLSIxCLIbaFUHFo0BTfGYIQc6dhYzi1iPikyi8AhNYgPeGJUUpkqoxXClBsdVSpRIf8I3bqpzSdgIteR1DwyoeYiNLLI85TbDIuSSWVj1YeotWOpPfM4CWDclCvOZGf7Em1fOtuXog9fV9_Ml7wbr769h-7BwukaYQyI_X9S0CH_DOFPmvdht3Vc6f_Rh3LdovrwrXXmOvv_tX1-vbQdeBNTUO6manahi_40e4hcFmoAnXx8MoDe8Pjixy-6n_w5Hw18I8XcaTx8BlsN65g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cYALb8SWFnyAE0QksfM6VIjSVlvarirUSr0F2xnDSm2yZVdC5cfx25jxOrsqEr31Esl5jKUZZx5-fB_Am4KMqtMqiVBLRwVKjBE1DZMIOJfJwmSW5zuOR_nwTH05z85X4E9_Foa3VfY-0TvqprM8R_6B5JWMjlmpj5OriFmjeHW1p9DQgVqh2fYQY-FgxyFe_6ISbrp9sEv2fpum-3unn4dRYBmIrErULCpdZUwaO0ocJCJSqZjYFJ2UjpIfrQpHETRHCpQyQ5M12BS8VJZLtEljMhNLkrsK60qqioq_9Z290cnXRckXcDBJNuWxFPzDsR1_eI-hV3hTWBUxSnsRqRuhcbUdj29kvf8s1Pr4t_8IHoTEVXyaj7THsILtE3jYk0KI4COegtv1e0JE54QJlNvCdkucWjHVDmfXYvKTl4j8Hc_GIzieNoKaHXmxy_FvauycCMbbpG7b-W51oS--k1FmPy6fwdmdqPk5rLVdiy9AqNIm2soEYytVjLoqy1y6gkTprHGpGUDS67G2AemcCTcu6gVGs9d9Tbqvve5rNYB3i28mc5yPW9_eIvOQcL4mVHNSvMkqBhUoKN3KywFs9oarg0-Y1ssRPID3vTGXj__f28bt0l7DveHp8VF9dDA6fAn3U54Q8NNEm7BGtsUtyppm5lUYmgK-3fXf8Bfr1iNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgOLAVEgYIP3CAiiZ3tCJSKXRyoxC2KHRsitUnV5gJfz9hNuiBA4hLJie1Efnb8xva8ATgJENTEjRxLJlShgWJLC5NcBxFQyqMB94Re73h88m-67O7Ve53x4jen3estybFPg1ZpysvzQarOJ45vWrZEH6iKLK1wHlhsEZaZFkrAHt11LyYmV6VDiaQAeSROvpXbzM91zE1Ni3mWzbHObxulZv7pbMJ6RRzJxRjpLViQeQM26qAMpBqjDVibURjcBtU2JzRIoQivAmATUUxVY8koUbL8IIOh3rAxd0xsHKJnt5RgssB_Sj_7xMTlM9Hql_gR-fjsOEl6b8UwK9_7O9DtXL9c3VhVaAVLMIeVVqgizl1bYcNQKSXax45wpaJUIeNLWKCQNvgS2QH1JPdSmQZ6f9CnUjgp97hNd2EpL3K5B4SFwkkEdaQtKLNlEoWhT1WAVSVeqlzeBKdu1VhUuuM6_EUvnigmGyRiRCI2SMSsCaeTMoOx6safuVsIFlaurw5agPj39yLt4h8g-fHDJhzWMMbVCB3F2D9DrbYaYfGzGtrp49_ftv-_7Mew8tzuxA-3T_cHsOpqa92s4RzCEkItW0hpSn5keu0Xma3opg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+building+construction+safety+prediction+model+based+on+optimized+BP+neural+network+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Shen%2C+Tao&rft.au=Nagai%2C+Yukari&rft.au=Gao%2C+Chan&rft.date=2020-06-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=11&rft.spage=7839&rft.epage=7850&rft_id=info:doi/10.1007%2Fs00500-019-03917-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_03917_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon