Rapid Mental Workload Detection of Air Traffic Controllers with Three EEG Sensors
Air traffic controllers’ mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 14; p. 4577 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
15.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24144577 |
Cover
| Abstract | Air traffic controllers’ mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum features related to gamma waves. The model selects the feature with the highest classification accuracy, β + θ + α + γ, and utilizes the mRMR (Max-Relevance and Min-Redundancy) algorithm for channel selection. Furthermore, the channels that were less affected by ICA processing were identified, and the reliability of this result was demonstrated by artifact analysis brought about by EMG, ECG, etc. Finally, a model for rapid mental workload detection for controllers was developed and the detection rate for the 34 subjects reached 1, and the accuracy for the remaining subjects was as low as 0.986. In conclusion, we validated the usability of the mRMR algorithm in channel selection and proposed a rapid method for detecting mental workload in air traffic controllers using only three EEG channels. By reducing the number of EEG channels and shortening the data processing time, this approach simplifies equipment application and maintains detection accuracy, enhancing practical usability. |
|---|---|
| AbstractList | Air traffic controllers’ mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum features related to gamma waves. The model selects the feature with the highest classification accuracy, β + θ + α + γ, and utilizes the mRMR (Max-Relevance and Min-Redundancy) algorithm for channel selection. Furthermore, the channels that were less affected by ICA processing were identified, and the reliability of this result was demonstrated by artifact analysis brought about by EMG, ECG, etc. Finally, a model for rapid mental workload detection for controllers was developed and the detection rate for the 34 subjects reached 1, and the accuracy for the remaining subjects was as low as 0.986. In conclusion, we validated the usability of the mRMR algorithm in channel selection and proposed a rapid method for detecting mental workload in air traffic controllers using only three EEG channels. By reducing the number of EEG channels and shortening the data processing time, this approach simplifies equipment application and maintains detection accuracy, enhancing practical usability. Air traffic controllers' mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum features related to gamma waves. The model selects the feature with the highest classification accuracy, β + θ + α + γ, and utilizes the mRMR (Max-Relevance and Min-Redundancy) algorithm for channel selection. Furthermore, the channels that were less affected by ICA processing were identified, and the reliability of this result was demonstrated by artifact analysis brought about by EMG, ECG, etc. Finally, a model for rapid mental workload detection for controllers was developed and the detection rate for the 34 subjects reached 1, and the accuracy for the remaining subjects was as low as 0.986. In conclusion, we validated the usability of the mRMR algorithm in channel selection and proposed a rapid method for detecting mental workload in air traffic controllers using only three EEG channels. By reducing the number of EEG channels and shortening the data processing time, this approach simplifies equipment application and maintains detection accuracy, enhancing practical usability.Air traffic controllers' mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum features related to gamma waves. The model selects the feature with the highest classification accuracy, β + θ + α + γ, and utilizes the mRMR (Max-Relevance and Min-Redundancy) algorithm for channel selection. Furthermore, the channels that were less affected by ICA processing were identified, and the reliability of this result was demonstrated by artifact analysis brought about by EMG, ECG, etc. Finally, a model for rapid mental workload detection for controllers was developed and the detection rate for the 34 subjects reached 1, and the accuracy for the remaining subjects was as low as 0.986. In conclusion, we validated the usability of the mRMR algorithm in channel selection and proposed a rapid method for detecting mental workload in air traffic controllers using only three EEG channels. By reducing the number of EEG channels and shortening the data processing time, this approach simplifies equipment application and maintains detection accuracy, enhancing practical usability. |
| Author | Li, Hui Shao, Quan Zhu, Pei |
| Author_xml | – sequence: 1 givenname: Hui surname: Li fullname: Li, Hui – sequence: 2 givenname: Pei surname: Zhu fullname: Zhu, Pei – sequence: 3 givenname: Quan surname: Shao fullname: Shao, Quan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39065975$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kV1rFDEYhYNU7Ide-Ack4I0Ka_M1SeayrNtaqIi64mV4J5OxWbOTNclQ-u-b7dZFil4lhOc9ec85x-hgjKND6CUl7zlvyWlmggrRKPUEHVHBxEwzRg7-uh-i45xXhDDOuX6GDuuQbFrVHKEvX2Hje_zJjQUC_hHTrxChxx9ccbb4OOI44DOf8DLBMHiL53EsKYbgUsY3vlzj5XVyDi8WF_ibG3NM-Tl6OkDI7sXDeYK-ny-W84-zq88Xl_Ozq5mty5aZYo0UeiADAypp27XAdG-JENbx1lLFOOu0kor02jkpqWXQsKYTLbSt4tXICbrc6fYRVmaT_BrSrYngzf1DTD8NpOJtcEb2crBWirZTjWiAaiA1L7CU8I5Q2letdzutadzA7Q2EsBekxGwzNvuMK_xmB29S_D25XMzaZ-tCgNHFKRtOdEMZ0VxX9PUjdBWnNNZY7qlaAqNbJ68eqKlbu37_9Z-WKnC6A2yKOSc3GOsLbOspCXz4545vH038388d5z2r8g |
| CitedBy_id | crossref_primary_10_3390_brainsci14080811 crossref_primary_10_5812_healthscope_158096 crossref_primary_10_1007_s13369_025_10034_y |
| Cites_doi | 10.1088/1741-2552/acc098 10.1016/j.patcog.2020.107393 10.1016/j.snb.2018.08.155 10.1038/srep10113 10.1007/978-3-319-26561-2_19 10.1016/j.eswa.2007.12.043 10.3390/app122010252 10.1016/j.aei.2023.102113 10.5455/medarh.2020.74.39-41 10.1007/s00429-011-0307-z 10.1016/j.ijmedinf.2022.104733 10.1016/j.neucom.2015.04.025 10.1155/2007/74895 10.1007/s10072-007-0831-z 10.1109/10.553713 10.1176/jnp.2006.18.2.199 10.1016/j.ijpsycho.2017.10.004 10.1016/j.commatsci.2022.111476 10.1109/TITS.2013.2275192 10.1016/j.eswa.2016.02.041 10.1016/S0167-8760(99)00005-7 10.3389/fnins.2022.869522 10.1109/LSP.2014.2367091 10.1016/j.ergon.2024.103552 10.14257/ijca.2016.9.3.30 10.1371/journal.pone.0188756 10.1016/j.eswa.2015.04.002 10.1016/j.cma.2023.116194 10.1088/1741-2560/8/2/025028 10.1016/j.eswa.2016.06.042 10.1109/MeMeA54994.2022.9856560 10.1016/j.neulet.2011.11.014 10.1109/TPAMI.2005.159 10.1016/j.neuroimage.2008.12.038 10.1186/s13634-015-0251-9 10.1109/FSKD.2017.8393353 10.1016/j.ergon.2005.04.005 10.1027/0227-5910/a000597 10.1093/cercor/13.4.392 10.1016/j.tics.2010.01.008 10.1007/978-3-319-26561-2_20 10.1037/neu0000962 10.1117/12.822610 10.1088/1741-2560/12/5/056019 10.1016/j.knosys.2016.04.003 10.1016/j.neuroimage.2019.05.026 10.1097/00001756-200009110-00034 10.1016/j.biopsycho.2013.11.010 10.1136/jnnp.2009.173161 10.1016/j.biopsycho.2019.107726 10.1007/s41105-016-0048-8 10.1016/j.neuroimage.2011.09.072 10.1093/bioinformatics/btr274 10.1155/2017/5109530 10.1109/ACCESS.2023.3270310 10.1016/j.neuroimage.2012.05.035 10.1016/B978-0-444-63622-5.00001-2 10.3389/fnhum.2017.00359 10.1109/EMBC.2015.7320063 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s24144577 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_6d6fcc649b7545a18a0144ac103b011d 10.3390/s24144577 39065975 10_3390_s24144577 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China - Civil Aviation Administration of China Civil Aviation Joint Research Fund grantid: U2233208 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c414t-725648f0f2a1619b9a28dc044ce39c17232b87670d8ee661c2a525b49a9973233 |
| IEDL.DBID | UNPAY |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:02:46 EDT 2025 Sun Oct 26 02:38:08 EDT 2025 Fri Sep 05 14:32:03 EDT 2025 Tue Oct 07 07:56:19 EDT 2025 Thu Apr 03 07:04:18 EDT 2025 Thu Oct 16 04:37:58 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | NASA-TXL gamma wave detection of mental workload mRMR algorithm air traffic controller |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-725648f0f2a1619b9a28dc044ce39c17232b87670d8ee661c2a525b49a9973233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/s24144577 |
| PMID | 39065975 |
| PQID | 3085065213 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6d6fcc649b7545a18a0144ac103b011d unpaywall_primary_10_3390_s24144577 proquest_miscellaneous_3085120838 proquest_journals_3085065213 pubmed_primary_39065975 crossref_citationtrail_10_3390_s24144577 crossref_primary_10_3390_s24144577 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jul-15 |
| PublicationDateYYYYMMDD | 2024-07-15 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Miley (ref_3) 2016; 14 Tavakolian (ref_21) 2004; 3 Lan (ref_22) 2007; 2007 Jin (ref_40) 2022; 161 Giovagnoli (ref_51) 2007; 28 ref_56 ref_11 Wang (ref_69) 2018; 31 ref_10 Arik (ref_55) 2015; Volume 9492 ref_53 Li (ref_25) 2012; 506 Lu (ref_28) 2016; 102 ref_19 Makeig (ref_58) 2019; 198 ref_15 Xiong (ref_26) 2016; 9 Taira (ref_45) 2017; 69 Ryu (ref_6) 2005; 35 Jap (ref_16) 2009; 36 Kozakevicius (ref_61) 2016; 55 Hu (ref_27) 2017; 2017 Zhou (ref_13) 2021; 34 Pang (ref_39) 2023; 414 Jung (ref_59) 1997; 44 Beste (ref_2) 2015; 5 Helbig (ref_46) 2012; 60 ref_67 Bhowmik (ref_36) 2015; 42 ref_66 Wolbers (ref_44) 2003; 13 ref_29 Glickstein (ref_47) 2003; 93 Wascher (ref_1) 2014; 96 Minou (ref_35) 2020; 74 Chuang (ref_54) 2012; 62 Riccio (ref_37) 2011; 8 Arik (ref_38) 2015; Volume 9492 Kang (ref_33) 2024; 100 Travieso (ref_64) 2015; 12 Raichle (ref_12) 2010; 14 Zhang (ref_68) 2014; 15 Jin (ref_41) 2020; 41 ref_34 Rath (ref_42) 2022; 210 Peng (ref_31) 2005; 27 Deepika (ref_14) 2010; 1 Alotaiby (ref_20) 2015; 2015 Cheung (ref_48) 2009; 80 Fu (ref_24) 2016; 63 Ishitobi (ref_52) 2000; 11 Groppe (ref_57) 2009; 45 Berlucchi (ref_43) 2018; 151 Sales (ref_30) 2011; 27 Fraschini (ref_65) 2015; 22 Li (ref_8) 2023; 20 Jin (ref_5) 2018; 44 Matton (ref_17) 2018; 123 Pant (ref_4) 2012; 7 Liu (ref_62) 2023; 11 Armstrong (ref_63) 2015; 166 Yoo (ref_50) 2006; 18 Li (ref_9) 2018; 277 ref_49 Dalal (ref_18) 2011; 216 Alyasseri (ref_23) 2020; 105 Pang (ref_32) 2023; 57 ref_7 Wilson (ref_60) 1999; 32 |
| References_xml | – volume: 20 start-page: 26017 year: 2023 ident: ref_8 article-title: Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acc098 – volume: 105 start-page: 107393 year: 2020 ident: ref_23 article-title: Person Identification Using EEG Channel Selection with HybridFlower Pollination Algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107393 – volume: 3 start-page: III537 year: 2004 ident: ref_21 article-title: Selecting better EEG channels for classification of mental tasks publication-title: Proc.-IEEE Int. Symp. Circuits Syst. – volume: 277 start-page: 250 year: 2018 ident: ref_9 article-title: Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.08.155 – volume: 5 start-page: 10113 year: 2015 ident: ref_2 article-title: The Effects of Time on Task in Response Selection-An ERP Study of Mental Fatigue publication-title: Sci. Rep. doi: 10.1038/srep10113 – volume: Volume 9492 start-page: 154 year: 2015 ident: ref_55 article-title: A methodology for synthesizing interdependent multichannel EEG data with a comparison among three blind source separation techniques publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-26561-2_19 – volume: 36 start-page: 2352 year: 2009 ident: ref_16 article-title: Using EEG spectral components to assess algorithms for detecting fatigue publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.043 – volume: 31 start-page: 577 year: 2018 ident: ref_69 article-title: Research Progress of Mental Workload Monitoring Technology Based on EEG publication-title: Space Med. Med. Eng. – ident: ref_67 doi: 10.3390/app122010252 – volume: 57 start-page: 102113 year: 2023 ident: ref_32 article-title: Air traffic controller workload level prediction using conformalized dynamical graph learning publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102113 – volume: 74 start-page: 39 year: 2020 ident: ref_35 article-title: Classification techniques for cardio-vascular diseases using supervised machine learning publication-title: Med. Arch. doi: 10.5455/medarh.2020.74.39-41 – volume: 216 start-page: 77 year: 2011 ident: ref_18 article-title: Spanning the rich spectrum of the human brain: Slow waves to gamma and beyond publication-title: Brain Struct. Funct. doi: 10.1007/s00429-011-0307-z – volume: 161 start-page: 104733 year: 2022 ident: ref_40 article-title: Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2022.104733 – volume: 166 start-page: 59 year: 2015 ident: ref_63 article-title: Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biofeatures publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.025 – volume: 2007 start-page: 74895 year: 2007 ident: ref_22 article-title: Channel selection and feature projection for cognitive load estimation using ambulatory EEG publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/74895 – volume: 28 start-page: 251 year: 2007 ident: ref_51 article-title: Preserved memory in temporal lobe epilepsy patients after surgery for low-grade tumour. A pilot study publication-title: Neurol. Sci. doi: 10.1007/s10072-007-0831-z – volume: 44 start-page: 60 year: 1997 ident: ref_59 article-title: Estimating alertness from the EEG power spectrum publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.553713 – volume: 18 start-page: 199 year: 2006 ident: ref_50 article-title: Compromised memory function in schizophrenia and temporal lobe epilepsy publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.2006.18.2.199 – volume: 123 start-page: 111 year: 2018 ident: ref_17 article-title: Using Theta and Alpha Band Power to Assess Cognitive Workload in Multitasking Environments publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2017.10.004 – volume: 210 start-page: 111476 year: 2022 ident: ref_42 article-title: Discovery of direct band gap perovskites for light harvesting by using machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111476 – volume: 15 start-page: 168 year: 2014 ident: ref_68 article-title: Automated Detection of Driver Fatigue Based on Entropy and Complexity Measures publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2275192 – volume: 55 start-page: 559 year: 2016 ident: ref_61 article-title: Automated drowsiness detection through wavelet packet analysis of a single EEG channel publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.041 – volume: 32 start-page: 107 year: 1999 ident: ref_60 article-title: EEG power changes during a multiple level memory retention task publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(99)00005-7 – ident: ref_10 doi: 10.3389/fnins.2022.869522 – volume: 22 start-page: 666 year: 2015 ident: ref_65 article-title: An EEG-Based Biofeature System Using Eigenvector Centrality in Resting State Brain Networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2367091 – volume: 100 start-page: 103552 year: 2024 ident: ref_33 article-title: Recognizing situation awareness of forklift operators based on eye-movement & EEG features publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2024.103552 – volume: 9 start-page: 329 year: 2016 ident: ref_26 article-title: Classifying driving fatigue based on combined entropy measure using EEG signals publication-title: Int. J. Control. Autom. doi: 10.14257/ijca.2016.9.3.30 – ident: ref_66 doi: 10.1371/journal.pone.0188756 – volume: 42 start-page: 6075 year: 2015 ident: ref_36 article-title: An effective Power Quality classifier using Wavelet Transform and Support Vector Machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.002 – volume: 414 start-page: 116194 year: 2023 ident: ref_39 article-title: Enhanced Kriging leave-one-out cross-validation in improving model estimation and optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116194 – volume: 8 start-page: 025028 year: 2011 ident: ref_37 article-title: Workload measurement in a communication application operated through a P300-based brain-computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025028 – volume: 44 start-page: 2292 year: 2018 ident: ref_5 article-title: Application of HRV in air traffic controllers’ fatigue detection publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 63 start-page: 397 year: 2016 ident: ref_24 article-title: Dynamic driver fatigue detection using hidden Markov model in real driving condition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.042 – ident: ref_53 doi: 10.1109/MeMeA54994.2022.9856560 – volume: 506 start-page: 235 year: 2012 ident: ref_25 article-title: Evaluation of driver fatigue on two channels of EEG data publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.11.014 – volume: 27 start-page: 1226 year: 2005 ident: ref_31 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 69 start-page: 339 year: 2017 ident: ref_45 article-title: Interface Between Brain and Outside publication-title: Brain Nerve – volume: 45 start-page: 1199 year: 2009 ident: ref_57 article-title: Identifying reliable independent components via split-half comparisons publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.038 – volume: 2015 start-page: 66 year: 2015 ident: ref_20 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-015-0251-9 – ident: ref_34 doi: 10.1109/FSKD.2017.8393353 – volume: 35 start-page: 991 year: 2005 ident: ref_6 article-title: Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2005.04.005 – volume: 41 start-page: 15 year: 2020 ident: ref_41 article-title: Physical illnesses and medically serious suicide attempts in rural China publication-title: Crisis J. Crisis Interv. Suicide Prev. doi: 10.1027/0227-5910/a000597 – volume: 13 start-page: 392 year: 2003 ident: ref_44 article-title: Contralateral Coding of Imagined Body Parts in the Superior Parietal Lobe publication-title: Cereb. Cortex doi: 10.1093/cercor/13.4.392 – volume: 14 start-page: 180 year: 2010 ident: ref_12 article-title: Two views of brain function publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.01.008 – volume: 93 start-page: 43 year: 2003 ident: ref_47 article-title: Subcortical projections of the parietal lobes publication-title: Adv. Neurol. – volume: Volume 9492 start-page: 162 year: 2015 ident: ref_38 article-title: Analysing the robust EEG channel set for person authentication publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-26561-2_20 – ident: ref_49 doi: 10.1037/neu0000962 – ident: ref_56 doi: 10.1117/12.822610 – volume: 12 start-page: 056019 year: 2015 ident: ref_64 article-title: EEG biofeature identification: A thorough exploration of the time-frequency domain publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/5/056019 – volume: 102 start-page: 127 year: 2016 ident: ref_28 article-title: Constrained neighborhood preserving concept factorization for data representation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.04.003 – volume: 198 start-page: 181 year: 2019 ident: ref_58 article-title: ICLabel: An automated electroencephalographic independent component classifier, dataset, and website publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.026 – ident: ref_29 – volume: 11 start-page: 2997 year: 2000 ident: ref_52 article-title: Remote discharges in the posterior language area during basal temporal stimulation publication-title: Neuroreport doi: 10.1097/00001756-200009110-00034 – volume: 96 start-page: 57 year: 2014 ident: ref_1 article-title: Frontal theta activity reflects distinct aspects of mental fatigue publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2013.11.010 – volume: 80 start-page: 1099 year: 2009 ident: ref_48 article-title: Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy publication-title: Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2009.173161 – ident: ref_19 doi: 10.1016/j.biopsycho.2019.107726 – volume: 14 start-page: 257 year: 2016 ident: ref_3 article-title: Comparing two versions of the Karolinska Sleepiness Scale (KSS) publication-title: Sleep Biol. Rhythms doi: 10.1007/s41105-016-0048-8 – ident: ref_15 – volume: 60 start-page: 1063 year: 2012 ident: ref_46 article-title: The neural mechanisms of reliability weighted integration of shape information from vision and touch publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.072 – volume: 27 start-page: 1876 year: 2011 ident: ref_30 article-title: A parallel R package for mutual information estimation and gene network reconstruction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr274 – volume: 2017 start-page: 5109530 year: 2017 ident: ref_27 article-title: Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel publication-title: Comput. Math. Methods Med. doi: 10.1155/2017/5109530 – volume: 11 start-page: 42180 year: 2023 ident: ref_62 article-title: Drivers’ Workload Electroencephalogram Characteristics in Cognitive Tasks Based on Improved Multiscale Sample Entropy publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3270310 – volume: 62 start-page: 1469 year: 2012 ident: ref_54 article-title: Co-modulatory spectral changes in independent brain processes are correlated with task performance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.035 – volume: 34 start-page: 339 year: 2021 ident: ref_13 article-title: A Review of Cognitive Workload detection Based on EEG publication-title: Space Med. Med. Eng. – volume: 151 start-page: 3 year: 2018 ident: ref_43 article-title: The history of the neurophysiology and neurology of the parietal lobe publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-63622-5.00001-2 – volume: 7 start-page: 279 year: 2012 ident: ref_4 article-title: Cognitive Workload of Air Traffic Controllers in Area Control Center of Mumbai Enroute Airspace publication-title: J. Psychosoc. Res. – ident: ref_11 doi: 10.3389/fnhum.2017.00359 – volume: 1 start-page: 205 year: 2010 ident: ref_14 article-title: EEG Pattern Analysis for Physiological Indicators of Mental Fatigue in Simulated Air Traffic Control Tasks publication-title: Hum. Factors Ergon. Soc. Annu. Meet. Proc. – ident: ref_7 doi: 10.1109/EMBC.2015.7320063 |
| SSID | ssj0023338 |
| Score | 2.469469 |
| Snippet | Air traffic controllers’ mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately... Air traffic controllers' mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately... |
| SourceID | doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4577 |
| SubjectTerms | Accuracy air traffic controller Air traffic controllers Brain research Classification Cognitive ability Decision making detection of mental workload Fatigue Fourier transforms gamma wave Genetic algorithms Methods mRMR algorithm NASA-TXL Physiology Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KLskeStokrdO0qEkOuZjYlmRLx812t0shgXxBbkaSZQgYe9kPQv59RpbXbGFDL71ac5BmRpr3xuIJ4FwiqyqxUoaMijRkBe45RaMiFFrFmpeUauX6Hdc36fSR_XniTxtPfbk7YV4e2DvuMi3S0piUSZ1hsVexUI4DKBNHVGNuFu70jYRck6mOalFkXl5HiCKpv1xgnWKMZ9lf1acV6d-GLAewu6pn6vVFVdVGtZnsw8cOJpKhn94n-GDrzzDYEA88gNs7NXsuiBfhIa7pXTWqIL_ssr1dVZOmJMPnOcFq5GQiyMhfSq8Q7xHXfSUPGEZLxuPf5B65bDNfHMLjZPwwmobdAwmhwfUswwzxChNlVCYKgZvUUiWiMBFjxlJpEJrQRONpl0WFsBYLsUkUT7hmUkkn0kPpEezUTW2_ApGZVjbmVjJdMkQhItMOzGUljzQViQzgYu243HTq4e4RiypHFuF8nPc-DuC0N515yYxtRlfO-72BU7luP2Ds8y72-b9iH8DJOnZ5t_UWOW1F-BCV0AB-9sO4adyfEFXbZuVtYkwbKgL44mPezwSnmSLL4gGc9Unw_jqO_8c6vsFegljJtYxjfgI7y_nKfkess9Q_2rR-A5pa9q8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9VADLbK6wF6QGUrKS0algOXqMksycwBVW15pULiCUor9RbNFlQpSl7fIsS_x5OtRSpcEx9m7LH92Zl8BnivsKoqMVPGnMks5g59TrPExdLo1IiSMaNDv-PrLDu75F-uxNUGzIZ_YcK1yiEmtoHaNTb0yA9Yy62GyYYdzm_iMDUqfF0dRmjofrSC-9hSjD2ATRqYsSaweTydfTsfSzCGFVnHL8Sw2D9YYv7iXOT5X1mpJe-_D3FuwcN1Pde_f-mqupOFTrfhcQ8fyVFn7yew4eunsHWHVPAZfD_X82tHOnIeEprhVaMd-eRX7a2rmjQlObpeEMxSgT6CnHSX1SvEgSR0ZckFmteT6fQz-YE1brNYPofL0-nFyVncD06ILe5nFeeIY7gsk5JqBHTKKE2lswnn1jNlEbIwajAK5omT3mOCtlQLKgxXWgXyHsZewKRuav8SiMqN9qnwipuSIzqRuQkgLy9FYpikKoIPg-IK27OKh-EWVYHVRdBxMeo4grej6Lyj0rhP6DhofxQI7Nftg2bxs-idqchcVlqbcWVyBIA6lTrUhdqmCTMYr1wEe4Ptit4ll8XtAYrgzfganSl8IdG1b9adTEoRlcoIdjqbjyvBZWZYfYkI3o2H4N_72P3_El7BI4roKDSJU7EHk9Vi7fcR3azM6_7I_gGHtfUW priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeEG8CBZnHgUto4kdiHxAqZUuFVCSgK_UW2Y6DKkXJkt0V9N8zk2SjVlokrslEsmc8nm_GzjcAbwxmVRVGylgKncWyRJ-zIilj7WzqVCWEs1TvOP2anczll3N1vgObHpujApdbUzvqJzXv6nd_fl1-QId_TxknpuwHS4xCUqo8vwE3MUAZ6uBwKqfDBC5E39Ca_umKMR4mA8HQ9U-vhaWevX8b5NyDW-tmYS9_27q-EoaO78KdET-yw8Hg92AnNPdh7wqr4AP49t0uLko2sPMwqobXrS3Zp7Dqr101rK3Y4UXHMEwRfwQ7Gm6r1wgEGZVl2RnaN7DZ7DP7gUlu2y0fwvx4dnZ0Eo-dE2KP81nFOQIZqauk4hYRnXHGcl36REofhPGIWQR3uA3mSalDwAjtuVVcOWmsIfYeIR7BbtM24QkwkzsbUhWMdJVEeKJzRygvr1TihOYmgrcbxRV-pBWn7hZ1gekF6biYdBzBq0l0MXBpbBP6SNqfBIj-un_Qdj-L0ZuKrMwq7zNpXI4I0KbaUmJofZoIhxtWGcH-xnbFZkkVomfnQ7giIng5vUZvoiMS24R2PcikHGGpjuDxYPNpJDjMDNMvFcHraRH8ex5P_2eyz-A2R5BEteJU7cPuqluH5whyVu5Fv4T_Ar5B81o priority: 102 providerName: Scholars Portal |
| Title | Rapid Mental Workload Detection of Air Traffic Controllers with Three EEG Sensors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39065975 https://www.proquest.com/docview/3085065213 https://www.proquest.com/docview/3085120838 https://doi.org/10.3390/s24144577 https://doaj.org/article/6d6fcc649b7545a18a0144ac103b011d |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61uwfoobwhUFYucOCSNomd2D5uy24rpK5K6UrLKbIdR6qIktU-VMGvZ5xkwxYVxCWHZA6T8Yznm7H9GeCDxKoqx0zpMyoSn2UYc4oGmS-0CnWcU6qV63dcTJLzKfs8i2c7cLg5C7O1fk-xHD9eYoZhLOZ8F_pJjHC7B_3p5HL4rT41FDEfE1zQMAbdlb-TZ2o6_vsw5B48WJdz9eNWFcVWXhk_-n06p9lO8v1ovdJH5ucfZI3_VPkx7LeokgwbN3gCO7Z8CntbXIPP4MuVmt9kpOHsIa5HXlQqI5_sqt6MVZIqJ8ObBcHk5VglyGmzh71AeEhcs5Zc46hbMhqdka9Y-laL5XOYjkfXp-d-e5-Cb1Cjlc8R3jCRB3mkEOdJLVUkMhMwZiyVBpEMjTROjjzIhLWYt02k4ijWTCrpOH0ofQG9sirtKyCSa2XD2Eqmc4agRXDtsB_P40BTEUkPPm6sn5qWbNzdeVGkWHQ4K6WdlTx414nOG4aN-4RO3BB2Ao4Uu36Bhk_bGEuTLMmNSZjUHHGhCoVy5aIyYUA1TmOZBwcbB0jbSF2mtObsQxBDPTjsPmOMuYUTVdpq3ciEEYJV4cHLxnE6TVBN9Esee_C-86S__8fr_5J6Aw8jxE6uhRzGB9BbLdb2LWKflR7ALp9xfIrx2QD6J6PJ5dWg7iPg84KJQRsdvwBBP_9K |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VB6QLwJFDAviUvUxHZi-4BQabds6UMCttLegu04qFKULPtQ1T_Fb2ScV4tUuPWa-OAdz8z3zcT7DcBbhVVVgUgZcibTkOcYc5pFeSiNjk1SMGa073ccn6TjU_5lmkzX4Hf_Xxh_rbLPiU2izmvre-TbrNFWQ7BhH2e_Qj81yn9d7UdotG5x6C7OsWRbfDjYw_N9R-n-aLI7DrupAqHlMV-GAkGeyyIqqEa2o4zSVOY24tw6piziOaMGU4SIcukcopelOqGJ4Uorr2zjG6CY8m9xhrkE40dMLws8hvVeq17EmIq2F4iOnCdC_IV5zWiA6_jsJmysqpm-ONdleQXj9u_CnY6ckp3Wm-7Bmqvuw-YVycIH8PWbnp3lpJX-Ib7VXtY6J3tu2dzpqkhdkJ2zOUEM9OIUZLe9Cl8iyyS-50sm6DyOjEafyXesoOv54iGc3ogBH8F6VVfuCRAljHZx4hQ3BUfuI4XxFFIUSWSYpCqA973hMttplvvRGWWGtYu3cTbYOIDXw9JZK9Rx3aJP3vrDAq-t3Tyo5z-zLlSzNE8La1OujEB6qWOpfdWpbRwxg9kwD2CrP7usC_hFdumeAbwaXmOo-u8vunL1ql0TU-S8MoDH7ZkPO8FtpljbJQG8GZzg37_j6f-38BI2xpPjo-zo4OTwGdymyMPaG8ZbsL6cr9xz5FFL86JxXgI_bjpa_gDxUykD |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkNpyQH3StJS6L6mXaBPbieMDqoDdLZQW9QHS3lLbcSqkKNnuQ4i_1l_HOC-oRHvjGvvgjGfm-2YymQF4KzGqyhEpfc6S2OcZ2pxiQeYnWoU6yhnTyuU7vhzHB6f80ySarMCf7l8YV1bZ-cTaUWeVcTnyAat7qyHYsEHelkV8HY4_TH_7boKU-9LajdNoVOTIXpxj-DbfORziXb-jdDw62T_w2wkDvuEhX_gCAZ8neZBThcxHaqlokpmAc2OZNIjtjGp0FyLIEmsRyQxVEY00l0q6LjcuGYruf00wJl05oZhcBXsMY7-mkxEuBoM5IiXnkRB_4V89JuAmbrsOd5flVF2cq6K4hnfj-7DRElWy22jWA1ix5UNYv9a-8BF8-66mZxlp2gARl3YvKpWRoV3U9V0lqXKyezYjiIeuUQXZb8riC2ScxOV_yQkqkiWj0UfyA6PpajZ_DKe3IsAnsFpWpX0KRAqtbBhZyXXOkQclQjs6KfIo0Cyh0oP3neBS0_Yvd2M0ihTjGCfjtJexB6_7rdOmacdNm_ac9PsNrs92_aCa_Upbs03jLM6NibnUAqmmChPlIlBlwoBp9IyZB1vd3aWt8c_TK1X14FW_jGbrvsWo0lbLZk9Ikf8mHmw2d96fBI8ZY5wXefCmV4J_v8ez_x_hJdxBO0k_Hx4fPYd7FCmZy0yH0RasLmZL-wIp1UJv17pL4OdtG8slJTUtSw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF64P0IFOQCBy4piR-xfVzKlgqJikdXKqfIdhypIkpWu1kh-PWMk2zYooK4JnMYj2c834ztzwAvNVZVJWbKmDOVxbzAmDMsKWJlTWpFyZg1od_x4TQ7mfP35-J8Bw42d2G29u8ZluOvV5hhOBdSXoPdTCDcnsDu_PTj9Gt3a4jyGBNc0jMGXZa_lGc6Ov6rMOQeXF_XC_Pju6mqrbxyfOv37Zz-OMm3w3VrD93PP8ga_6nybbg5oEoy7d3gDuz4-i7sbXEN3oNPn83ioiA9Zw8JPfKqMQV569vuMFZNmpJML5YEk1dglSBH_Rn2CuEhCc1acoaz7sls9o58wdK3Wa7uw_x4dnZ0Eg_vKcQONWpjifCGqzIpqUGcp602VBUu4dx5ph0iGUYtLo4yKZT3mLcdNYIKy7XRgdOHsQcwqZvaPwKipTU-FV5zW3IELUragP1kKRLLFNURvNpYP3cD2Xh486LKsegIVspHK0XwfBRd9AwbVwm9CVM4CgRS7O4DGj4fYizPiqx0LuPaSsSFJlUmlIvGpQmzuIwVEexvHCAfInWVs46zD0EMi-Bg_I0xFjZOTO2bdS-TUgSrKoKHveOMmqCa6JdSRPBi9KS_j-Pxf0k9gRsUsVNoIadiHybtcu2fIvZp7bPB-38BuEr6FA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Mental+Workload+Detection+of+Air+Traffic+Controllers+with+Three+EEG+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Hui&rft.au=Zhu%2C+Pei&rft.au=Shao%2C+Quan&rft.date=2024-07-15&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=14&rft.spage=4577&rft_id=info:doi/10.3390%2Fs24144577&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24144577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |