Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic path...
Saved in:
Published in | Journal of lipid research Vol. 65; no. 9; p. 100615 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2275 1539-7262 1539-7262 |
DOI | 10.1016/j.jlr.2024.100615 |
Cover
Abstract | Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
[Display omitted] |
---|---|
AbstractList | Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus. Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus. Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus. [Display omitted] |
ArticleNumber | 100615 |
Author | Rouzer, Carol A. Marnett, Lawrence J. Kingsley, Philip J. Aleem, Ansari M. Mitchener, Michelle M. |
Author_xml | – sequence: 1 givenname: Ansari M. orcidid: 0000-0002-4250-4667 surname: Aleem fullname: Aleem, Ansari M. – sequence: 2 givenname: Michelle M. orcidid: 0000-0001-5036-2286 surname: Mitchener fullname: Mitchener, Michelle M. – sequence: 3 givenname: Philip J. orcidid: 0000-0002-5470-4340 surname: Kingsley fullname: Kingsley, Philip J. – sequence: 4 givenname: Carol A. orcidid: 0000-0001-6827-1534 surname: Rouzer fullname: Rouzer, Carol A. – sequence: 5 givenname: Lawrence J. surname: Marnett fullname: Marnett, Lawrence J. email: larry.marnett@vanderbilt.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39098584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuFDEQtFAQ2QQ-gAvykcssfo9HnKIVhEiRIqEguFl-9Gy8mhkv9mzQ_j1OJuyRUz9UVa2uukBnU5oAofeUrCmh6tNuvRvymhEm6kwUla_QikreNS1T7AytCGGsYayV5-iilB0hVAhF36Bz3pFOSy1W6M89jPuU7YBDLCX5aOeYJpx6vLn71bAmwB6mANOMbbb-IYY0RY-tjwHbKWDWnNbpOGyHo4ecBjzCbF0aYhlxnPD3q59MiXWLR-tz2j_YLZS36HVvhwLvXuol-vH1y_3mW3N7d32zubptvKBibqRSrOe9Eo446cC7NnAGLde0c22rZF8bzXwvlFW10a123FnhO9qDBpD8Et0suiHZndnnONp8NMlG87xIeWtsnqMfwFDGQDouVBD1eO-00IqxTisONihJq9bHRWuf0-8DlNmMsXgYBjtBOhTDidZS8laKCv3wAj24EcLp8D_jK4AugOpIKRn6E4QS8xSu2ZkarnkK1yzhVs7nhQPVsMcI2RQfYfIQYgY_14_if9h_AaFrqnA |
Cites_doi | 10.1038/newbio231237a0 10.1038/384644a0 10.1021/tx1002194 10.1073/pnas.1314017110 10.1074/jbc.M114.582353 10.1146/annurev.pharmtox.39.1.175 10.1073/pnas.81.5.1317 10.1038/367243a0 10.1021/jm061131z 10.1016/0005-2760(68)90168-9 10.1016/j.cellsig.2012.01.009 10.1038/nchembio.1105 10.1182/blood-2018-11-884346 10.1146/annurev.bi.47.070178.005025 10.1016/j.plipres.2018.05.002 10.1074/jbc.M407111200 10.1073/pnas.1507307112 10.3389/fendo.2020.591819 10.1016/0092-8674(78)90101-0 10.1016/j.plipres.2013.10.001 10.1002/mco2.363 10.1021/acs.chemrev.0c00215 10.1096/fj.03-0645rev 10.1074/jbc.M110.182915 10.1016/j.bbalip.2018.08.009 10.1042/BJ20060615 10.1016/0090-6980(77)90285-4 10.1074/jbc.M501021200 10.1096/fj.201701205R 10.1016/j.prostaglandins.2010.01.003 10.1124/mol.114.094284 10.1074/jbc.M701831200 10.1016/0005-2760(91)90119-3 10.1074/jbc.272.34.21181 10.1074/jbc.273.19.11650 10.1038/newbio231235a0 10.1096/fj.201902916R 10.1074/jbc.M206788200 10.1016/S0021-9258(18)42284-3 10.1016/j.bbalip.2018.08.010 10.1016/S0009-3084(02)00068-3 10.1002/JLB.3A0919-049RRR 10.1016/S0021-9258(17)44287-6 10.1016/S0022-2275(20)31526-1 10.1016/S1388-1981(99)00059-1 10.1073/pnas.0303950101 10.1074/jbc.M007088200 10.1523/JNEUROSCI.2392-05.2005 10.1098/rstb.2011.0387 10.1016/j.jbior.2014.09.014 10.1038/s41598-017-02414-8 10.1073/pnas.2112971118 10.1016/j.pharmthera.2004.06.003 10.1016/0006-291X(90)92035-X 10.1021/bi00024a004 10.1016/j.plipres.2020.101065 10.1016/0092-8674(95)90194-9 10.1074/jbc.M105854200 10.1194/jlr.M600027-JLR200 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.jlr.2024.100615 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1539-7262 |
ExternalDocumentID | oai_doaj_org_article_122e5b346d4c41fb8486229863ead651 39098584 10_1016_j_jlr_2024_100615 S0022227524001202 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA089450 |
GroupedDBID | --- -~X .55 .GJ 0R~ 0SF 0VX 18M 29K 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAXUO AAYOK ABCQX ABOCM ACCCW ACGFO ACKIV ACNCT ACPRK ADBBV ADVLN AENEX AEXQZ AFFNX AFOSN AFPKN AI. AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CS3 D-I DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE H~9 J5H KQ8 L7B MVM OK1 P2P RHF RHI ROL RPM TBC TR2 TWZ VH1 W8F WH7 WOQ X7M YHG YKV ZGI ZXP ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c414t-5662f3f64b0b5becb7d32e73819b7765f81982cf46a6982878b3ba4c91fe8ee53 |
IEDL.DBID | DOA |
ISSN | 0022-2275 1539-7262 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Fri Sep 05 10:37:35 EDT 2025 Mon Jul 21 06:01:37 EDT 2025 Tue Jul 01 01:31:54 EDT 2025 Sat Sep 28 16:11:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | KLA 15d-PGJ2 PLC PLD Kdo2-lipid A LPS RPM PGE2-G-d5 DAG lipase macrophages 15d-PGD2 qPCR PGs arachidonic acid AA prostaglandin glyceryl esters cPLA2 PG-Gs DAG COX 2-arachidonoylglycerol TXA2 2-AG prostaglandins TLR4 lipidomics PIP2 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-5662f3f64b0b5becb7d32e73819b7765f81982cf46a6982878b3ba4c91fe8ee53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5470-4340 0000-0001-6827-1534 0000-0001-5036-2286 0000-0002-4250-4667 |
OpenAccessLink | https://doaj.org/article/122e5b346d4c41fb8486229863ead651 |
PMID | 39098584 |
PQID | 3088553754 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_122e5b346d4c41fb8486229863ead651 proquest_miscellaneous_3088553754 pubmed_primary_39098584 crossref_primary_10_1016_j_jlr_2024_100615 elsevier_sciencedirect_doi_10_1016_j_jlr_2024_100615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 2024-Sep 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of lipid research |
PublicationTitleAlternate | J Lipid Res |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Lee, Deonarine, Kienetz, Zhu, Skrzypczak, Chan, Choy (bib55) 2001; 42 Fitzpatrick, Wynalda (bib7) 1983; 258 Sang, Zhang, Marcheselli, Bazan, Chen (bib17) 2005; 25 Hajeyah, Griffiths, Wang, Finch, O'Donnell (bib1) 2020; 11 Kozak, Rowlinson, Marnett (bib13) 2000; 275 Warner, Mitchell (bib28) 2004; 18 Raschke, Baird, Ralph, Nakoinz (bib32) 1978; 15 Yamashita, Hayashi, Nemoto-Sasaki, Ito, Oka, Tanikawa (bib39) 2014; 53 Kozak, Crews, Ray, Tai, Morrow, Marnett (bib41) 2001; 276 Alhouayek, Masquelier, Cani, Lambert, Muccioli (bib19) 2013; 110 Balsinde, Balboa, Insel, Dennis (bib45) 1999; 39 Yu, Ives, Ramesha (bib12) 1997; 272 Khasabova, Uhelski, Khasabov, Gupta, Seybold, Simone (bib21) 2019; 133 Nikolaou, Kokotou, Vasilakaki, Kokotos (bib46) 2019; 1864 Nirodi, Crews, Kozak, Morrow, Marnett (bib16) 2004; 101 Picot, Loll, Garavito (bib26) 1994; 367 Smith, Marnett (bib3) 1991; 1083 Sugimoto, Yamashita (bib57) 1999; 1438 Kliewer, Lenhard, Willson, Patel, Morris, Lehmann (bib9) 1995; 83 Turcotte, Dumais, Archambault, Martin, Blanchet, Bissonnette (bib44) 2019; 106 Hanel, Gelb (bib56) 1995; 34 Zhang, Liu, Sun, Zhang, Guo, Ma (bib2) 2023; 4 Richie-Jannetta, Nirodi, Crews, Woodward, Wang, Duff, Marnett (bib18) 2010; 92 Xie, Borazjani, Hatfield, Edwards, Potter, Ross (bib42) 2010; 23 Seifert, Wing, Snyder, Gershburg, Sondek, Harden (bib53) 2004; 279 Baggelaar, Maccarrone, van der Stelt (bib23) 2018; 71 Katan, Cockcroft (bib49) 2020; 80 Kikawa, Narumiya, Fukushima, Wakatsuka, Hayaishi (bib8) 1984; 81 Rhee, Choi (bib51) 1992; 267 Rouzer, Ghebreselasie, Marnett (bib59) 2002; 119 Rouzer, Marnett (bib29) 2020; 120 Samuelsson, Goldyne, Granström, Hamberg, Hammarström, Malmsten (bib5) 1978; 47 Buczynski, Stephens, Bowers-Gentry, Grkovich, Deems, Dennis (bib33) 2007; 282 Banno, Yu, Nakashima, Homma, Takenawa, Nozawa (bib50) 1990; 167 Reisenberg, Singh, Williams, Doherty (bib38) 2012; 367 Savinainen, Kansanen, Pantsar, Navia-Paldanius, Parkkari, Lehtonen (bib35) 2014; 86 Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak (bib27) 1996; 384 Dusaban, Brown (bib48) 2015; 57 Lands, Samuelsson (bib10) 1968; 164 Raetz, Garrett, Reynolds, Shaw, Moore, Smith (bib34) 2006; 47 Ferreira, Moncada, Vane (bib24) 1971; 231 Dennis, Deems, Harkewicz, Quehenberger, Brown, Milne (bib40) 2010; 285 Ellis, James, Perisic, Downes, Williams, Katan (bib52) 1998; 273 Lee, Foley, Chen, Behnke, Lovering, Kirincich (bib37) 2007; 50 Alhouayek, Buisseret, Paquot, Guillemot-Legris, Muccioli (bib20) 2018; 32 Bruser, Zimmermann, Crews, Sliwoski, Meiler, König (bib22) 2017; 7 Kozak, Crews, Morrow, Wang, Ma, Weinander (bib15) 2002; 277 Hsu, Tsuboi, Adibekian, Pugh, Masuda, Cravatt (bib58) 2012; 8 Sun, Chapman, McGuire (bib4) 1977; 14 Smrcka, Brown, Holz (bib14) 2012; 24 Smith, Willis (bib25) 1971; 231 Mitchener, Hermanson, Shockley, Brown, Lindsley, Reese (bib36) 2015; 112 Jing, Reed, Ulanovskaya, Grigoleit, Herbst, Henry (bib47) 2021; 118 Rouzer, Tranguch, Wang, Zhang, Dey, Marnett (bib31) 2006; 399 Manna, Wepy, Hsu, Chang, Cravatt, Marnett (bib43) 2014; 289 Hata, Breyer (bib6) 2004; 103 Rouzer, Marnett (bib30) 2005; 280 Mouchlis, Dennis (bib11) 2019; 1864 Turcotte, Archambault, Dumais, Martin, Blanchet, Bissonnette (bib54) 2020; 34 Lands (10.1016/j.jlr.2024.100615_bib10) 1968; 164 Nirodi (10.1016/j.jlr.2024.100615_bib16) 2004; 101 Rouzer (10.1016/j.jlr.2024.100615_bib31) 2006; 399 Turcotte (10.1016/j.jlr.2024.100615_bib54) 2020; 34 Kozak (10.1016/j.jlr.2024.100615_bib15) 2002; 277 Jing (10.1016/j.jlr.2024.100615_bib47) 2021; 118 Zhang (10.1016/j.jlr.2024.100615_bib2) 2023; 4 Xie (10.1016/j.jlr.2024.100615_bib42) 2010; 23 Richie-Jannetta (10.1016/j.jlr.2024.100615_bib18) 2010; 92 Lee (10.1016/j.jlr.2024.100615_bib37) 2007; 50 Banno (10.1016/j.jlr.2024.100615_bib50) 1990; 167 Picot (10.1016/j.jlr.2024.100615_bib26) 1994; 367 Rouzer (10.1016/j.jlr.2024.100615_bib30) 2005; 280 Raetz (10.1016/j.jlr.2024.100615_bib34) 2006; 47 Smith (10.1016/j.jlr.2024.100615_bib25) 1971; 231 Turcotte (10.1016/j.jlr.2024.100615_bib44) 2019; 106 Manna (10.1016/j.jlr.2024.100615_bib43) 2014; 289 Alhouayek (10.1016/j.jlr.2024.100615_bib20) 2018; 32 Katan (10.1016/j.jlr.2024.100615_bib49) 2020; 80 Rhee (10.1016/j.jlr.2024.100615_bib51) 1992; 267 Buczynski (10.1016/j.jlr.2024.100615_bib33) 2007; 282 Kliewer (10.1016/j.jlr.2024.100615_bib9) 1995; 83 Baggelaar (10.1016/j.jlr.2024.100615_bib23) 2018; 71 Sugimoto (10.1016/j.jlr.2024.100615_bib57) 1999; 1438 Sun (10.1016/j.jlr.2024.100615_bib4) 1977; 14 Nikolaou (10.1016/j.jlr.2024.100615_bib46) 2019; 1864 Yamashita (10.1016/j.jlr.2024.100615_bib39) 2014; 53 Mitchener (10.1016/j.jlr.2024.100615_bib36) 2015; 112 Kozak (10.1016/j.jlr.2024.100615_bib13) 2000; 275 Mouchlis (10.1016/j.jlr.2024.100615_bib11) 2019; 1864 Khasabova (10.1016/j.jlr.2024.100615_bib21) 2019; 133 Lee (10.1016/j.jlr.2024.100615_bib55) 2001; 42 Balsinde (10.1016/j.jlr.2024.100615_bib45) 1999; 39 Kikawa (10.1016/j.jlr.2024.100615_bib8) 1984; 81 Rouzer (10.1016/j.jlr.2024.100615_bib59) 2002; 119 Sang (10.1016/j.jlr.2024.100615_bib17) 2005; 25 Warner (10.1016/j.jlr.2024.100615_bib28) 2004; 18 Bruser (10.1016/j.jlr.2024.100615_bib22) 2017; 7 Savinainen (10.1016/j.jlr.2024.100615_bib35) 2014; 86 Dennis (10.1016/j.jlr.2024.100615_bib40) 2010; 285 Seifert (10.1016/j.jlr.2024.100615_bib53) 2004; 279 Hajeyah (10.1016/j.jlr.2024.100615_bib1) 2020; 11 Smith (10.1016/j.jlr.2024.100615_bib3) 1991; 1083 Smrcka (10.1016/j.jlr.2024.100615_bib14) 2012; 24 Rouzer (10.1016/j.jlr.2024.100615_bib29) 2020; 120 Dusaban (10.1016/j.jlr.2024.100615_bib48) 2015; 57 Yu (10.1016/j.jlr.2024.100615_bib12) 1997; 272 Samuelsson (10.1016/j.jlr.2024.100615_bib5) 1978; 47 Kurumbail (10.1016/j.jlr.2024.100615_bib27) 1996; 384 Raschke (10.1016/j.jlr.2024.100615_bib32) 1978; 15 Ellis (10.1016/j.jlr.2024.100615_bib52) 1998; 273 Alhouayek (10.1016/j.jlr.2024.100615_bib19) 2013; 110 Hata (10.1016/j.jlr.2024.100615_bib6) 2004; 103 Ferreira (10.1016/j.jlr.2024.100615_bib24) 1971; 231 Hsu (10.1016/j.jlr.2024.100615_bib58) 2012; 8 Reisenberg (10.1016/j.jlr.2024.100615_bib38) 2012; 367 Kozak (10.1016/j.jlr.2024.100615_bib41) 2001; 276 Fitzpatrick (10.1016/j.jlr.2024.100615_bib7) 1983; 258 Hanel (10.1016/j.jlr.2024.100615_bib56) 1995; 34 |
References_xml | – volume: 231 start-page: 237 year: 1971 end-page: 239 ident: bib24 article-title: Indomethacin and aspirin abolish prostaglandin release from the spleen publication-title: Nat. New Biol. – volume: 118 year: 2021 ident: bib47 article-title: Phospholipase Cgamma2 regulates endocannabinoid and eicosanoid networks in innate immune cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 86 start-page: 522 year: 2014 end-page: 535 ident: bib35 article-title: Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL) publication-title: Mol. Pharmacol. – volume: 277 start-page: 44877 year: 2002 end-page: 44885 ident: bib15 article-title: Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides publication-title: J. Biol. Chem. – volume: 1864 start-page: 941 year: 2019 end-page: 956 ident: bib46 article-title: Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A(2) publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 399 start-page: 91 year: 2006 end-page: 99 ident: bib31 article-title: Zymosan-induced glycerylprostaglandin and prostaglandin synthesis in resident peritoneal macrophages: roles of cyclo-oxygenase-1 and -2 publication-title: Biochem. J. – volume: 275 start-page: 33744 year: 2000 end-page: 33749 ident: bib13 article-title: Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2 publication-title: J. Biol. Chem. – volume: 167 start-page: 396 year: 1990 end-page: 401 ident: bib50 article-title: Purification and characterization of a cytosolic phosphoinositide-phospholipase C (gamma 2-type) from human platelets publication-title: Biochem. Biophys. Res. Commun. – volume: 71 start-page: 1 year: 2018 end-page: 17 ident: bib23 article-title: 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain publication-title: Prog. Lipid Res. – volume: 25 start-page: 9858 year: 2005 end-page: 9870 ident: bib17 article-title: Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor publication-title: J. Neurosci. – volume: 39 start-page: 175 year: 1999 end-page: 189 ident: bib45 article-title: Regulation and inhibition of phospholipase A2 publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 4 start-page: e363 year: 2023 ident: bib2 article-title: Arachidonic acid metabolism in health and disease publication-title: MedComm (2020) – volume: 282 start-page: 22834 year: 2007 end-page: 22847 ident: bib33 article-title: TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells publication-title: J. Biol. Chem. – volume: 81 start-page: 1317 year: 1984 end-page: 1321 ident: bib8 article-title: 9-Deoxy-delta 9, delta 12-13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 1890 year: 2010 end-page: 1904 ident: bib42 article-title: Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2 publication-title: Chem. Res. Toxicol. – volume: 11 start-page: 591819 year: 2020 ident: bib1 article-title: The biosynthesis of enzymatically oxidized lipids publication-title: Front. Endocrinol. (Lausanne) – volume: 285 start-page: 39976 year: 2010 end-page: 39985 ident: bib40 article-title: A mouse macrophage lipidome publication-title: J. Biol. Chem. – volume: 231 start-page: 235 year: 1971 end-page: 237 ident: bib25 article-title: Aspirin selectively inhibits prostaglandin production in human platelets publication-title: Nat. New Biol. – volume: 276 start-page: 36993 year: 2001 end-page: 36998 ident: bib41 article-title: Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo publication-title: J. Biol. Chem. – volume: 289 start-page: 33741 year: 2014 end-page: 33753 ident: bib43 article-title: Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells publication-title: J. Biol. Chem. – volume: 106 start-page: 1337 year: 2019 end-page: 1347 ident: bib44 article-title: Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways publication-title: J. Leukoc. Biol. – volume: 80 start-page: 101065 year: 2020 ident: bib49 article-title: Phospholipase C families: common themes and versatility in physiology and pathology publication-title: Prog. Lipid Res. – volume: 267 start-page: 12393 year: 1992 end-page: 12396 ident: bib51 article-title: Regulation of inositol phospholipid-specific phospholipase C isozymes publication-title: J. Biol. Chem. – volume: 279 start-page: 47992 year: 2004 end-page: 47997 ident: bib53 article-title: RhoA activates purified phospholipase C-epsilon by a guanine nucleotide-dependent mechanism publication-title: J. Biol. Chem. – volume: 18 start-page: 790 year: 2004 end-page: 804 ident: bib28 article-title: Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic publication-title: FASEB J. – volume: 50 start-page: 1380 year: 2007 end-page: 1400 ident: bib37 article-title: Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha publication-title: J. Med. Chem. – volume: 1438 start-page: 264 year: 1999 end-page: 272 ident: bib57 article-title: Characterization of the transacylase activity of rat liver 60-kDa lysophospholipase-transacylase. Acyl transfer from the sn-2 to the sn-1 position publication-title: Biochim. Biophys. Acta – volume: 258 start-page: 11713 year: 1983 end-page: 11718 ident: bib7 article-title: Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro publication-title: J. Biol. Chem. – volume: 53 start-page: 18 year: 2014 end-page: 81 ident: bib39 article-title: Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms publication-title: Prog. Lipid Res. – volume: 57 start-page: 17 year: 2015 end-page: 23 ident: bib48 article-title: PLCepsilon mediated sustained signaling pathways publication-title: Adv. Biol. Regul. – volume: 14 start-page: 1055 year: 1977 end-page: 1074 ident: bib4 article-title: Metabolism of prostaglandin endoperoxide in animal tissues publication-title: Prostaglandins – volume: 7 start-page: 2380 year: 2017 ident: bib22 article-title: Prostaglandin E(2) glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y(6) publication-title: Sci. Rep. – volume: 273 start-page: 11650 year: 1998 end-page: 11659 ident: bib52 article-title: Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1 publication-title: J. Biol. Chem. – volume: 32 start-page: 5000 year: 2018 end-page: 5011 ident: bib20 article-title: The endogenous bioactive lipid prostaglandin D(2)-glycerol ester reduces murine colitis via DP1 and PPARgamma receptors publication-title: FASEB J. – volume: 83 start-page: 813 year: 1995 end-page: 819 ident: bib9 article-title: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation publication-title: Cell – volume: 120 start-page: 7592 year: 2020 end-page: 7641 ident: bib29 article-title: Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs publication-title: Chem. Rev. – volume: 112 start-page: 12366 year: 2015 end-page: 12371 ident: bib36 article-title: Competition and allostery govern substrate selectivity of cyclooxygenase-2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 280 start-page: 26690 year: 2005 end-page: 26700 ident: bib30 article-title: Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus publication-title: J. Biol. Chem. – volume: 1864 start-page: 766 year: 2019 end-page: 771 ident: bib11 article-title: Phospholipase A(2) catalysis and lipid mediator lipidomics publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 164 start-page: 426 year: 1968 end-page: 429 ident: bib10 article-title: Phospholipid precursors of prostaglandins publication-title: Biochim. Biophys. Acta – volume: 24 start-page: 1333 year: 2012 end-page: 1343 ident: bib14 article-title: Role of phospholipase Cepsilon in physiological phosphoinositide signaling networks publication-title: Cell Signal. – volume: 367 start-page: 243 year: 1994 end-page: 249 ident: bib26 article-title: The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 publication-title: Nature – volume: 1083 start-page: 1 year: 1991 end-page: 17 ident: bib3 article-title: Prostaglandin endoperoxide synthase: structure and catalysis publication-title: Biochim. Biophys. Acta – volume: 367 start-page: 3264 year: 2012 end-page: 3275 ident: bib38 article-title: The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 47 start-page: 1097 year: 2006 end-page: 1111 ident: bib34 article-title: Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4 publication-title: J. Lipid Res. – volume: 8 start-page: 999 year: 2012 end-page: 1007 ident: bib58 article-title: DAGLbeta inhibition perturbs a lipid network involved in macrophage inflammatory responses publication-title: Nat. Chem. Biol. – volume: 47 start-page: 997 year: 1978 end-page: 1029 ident: bib5 article-title: Prostaglandins and thromboxanes publication-title: Annu. Rev. Biochem. – volume: 272 start-page: 21181 year: 1997 end-page: 21186 ident: bib12 article-title: Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2 publication-title: J. Biol. Chem. – volume: 34 start-page: 7807 year: 1995 end-page: 7818 ident: bib56 article-title: Multiple enzymatic activities of the human cytosolic 85-kDa phospholipase A2: hydrolytic reactions and acyl transfer to glycerol publication-title: Biochemistry – volume: 15 start-page: 261 year: 1978 end-page: 267 ident: bib32 article-title: Functional macrophage cell lines transformed by Abelson leukemia virus publication-title: Cell – volume: 34 start-page: 4253 year: 2020 end-page: 4265 ident: bib54 article-title: Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes publication-title: FASEB J. – volume: 110 start-page: 17558 year: 2013 end-page: 17563 ident: bib19 article-title: Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 119 start-page: 69 year: 2002 end-page: 82 ident: bib59 article-title: Chemical stability of 2-arachidonoylglycerol under biological conditions publication-title: Chem. Phys. Lipids – volume: 103 start-page: 147 year: 2004 end-page: 166 ident: bib6 article-title: Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation publication-title: Pharmacol. Ther. – volume: 42 start-page: 1979 year: 2001 end-page: 1986 ident: bib55 article-title: A novel pathway for lipid biosynthesis: the direct acylation of glycerol publication-title: J. Lipid Res. – volume: 101 start-page: 1840 year: 2004 end-page: 1845 ident: bib16 article-title: The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 92 start-page: 19 year: 2010 end-page: 24 ident: bib18 article-title: Structural determinants for calcium mobilization by prostaglandin E2 and prostaglandin F2alpha glyceryl esters in RAW 264.7 cells and H1819 cells publication-title: Prostaglandins Other Lipid Mediat. – volume: 133 start-page: 1989 year: 2019 end-page: 1998 ident: bib21 article-title: Sensitization of nociceptors by prostaglandin E(2)-glycerol contributes to hyperalgesia in mice with sickle cell disease publication-title: Blood – volume: 384 start-page: 644 year: 1996 end-page: 648 ident: bib27 article-title: Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents publication-title: Nature – volume: 231 start-page: 237 year: 1971 ident: 10.1016/j.jlr.2024.100615_bib24 article-title: Indomethacin and aspirin abolish prostaglandin release from the spleen publication-title: Nat. New Biol. doi: 10.1038/newbio231237a0 – volume: 384 start-page: 644 year: 1996 ident: 10.1016/j.jlr.2024.100615_bib27 article-title: Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents publication-title: Nature doi: 10.1038/384644a0 – volume: 23 start-page: 1890 year: 2010 ident: 10.1016/j.jlr.2024.100615_bib42 article-title: Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx1002194 – volume: 110 start-page: 17558 year: 2013 ident: 10.1016/j.jlr.2024.100615_bib19 article-title: Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1314017110 – volume: 289 start-page: 33741 year: 2014 ident: 10.1016/j.jlr.2024.100615_bib43 article-title: Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.582353 – volume: 39 start-page: 175 year: 1999 ident: 10.1016/j.jlr.2024.100615_bib45 article-title: Regulation and inhibition of phospholipase A2 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.39.1.175 – volume: 81 start-page: 1317 year: 1984 ident: 10.1016/j.jlr.2024.100615_bib8 article-title: 9-Deoxy-delta 9, delta 12-13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.81.5.1317 – volume: 367 start-page: 243 year: 1994 ident: 10.1016/j.jlr.2024.100615_bib26 article-title: The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 publication-title: Nature doi: 10.1038/367243a0 – volume: 50 start-page: 1380 year: 2007 ident: 10.1016/j.jlr.2024.100615_bib37 article-title: Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha publication-title: J. Med. Chem. doi: 10.1021/jm061131z – volume: 164 start-page: 426 year: 1968 ident: 10.1016/j.jlr.2024.100615_bib10 article-title: Phospholipid precursors of prostaglandins publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(68)90168-9 – volume: 24 start-page: 1333 year: 2012 ident: 10.1016/j.jlr.2024.100615_bib14 article-title: Role of phospholipase Cepsilon in physiological phosphoinositide signaling networks publication-title: Cell Signal. doi: 10.1016/j.cellsig.2012.01.009 – volume: 8 start-page: 999 year: 2012 ident: 10.1016/j.jlr.2024.100615_bib58 article-title: DAGLbeta inhibition perturbs a lipid network involved in macrophage inflammatory responses publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1105 – volume: 133 start-page: 1989 year: 2019 ident: 10.1016/j.jlr.2024.100615_bib21 article-title: Sensitization of nociceptors by prostaglandin E(2)-glycerol contributes to hyperalgesia in mice with sickle cell disease publication-title: Blood doi: 10.1182/blood-2018-11-884346 – volume: 47 start-page: 997 year: 1978 ident: 10.1016/j.jlr.2024.100615_bib5 article-title: Prostaglandins and thromboxanes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.47.070178.005025 – volume: 71 start-page: 1 year: 2018 ident: 10.1016/j.jlr.2024.100615_bib23 article-title: 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2018.05.002 – volume: 279 start-page: 47992 year: 2004 ident: 10.1016/j.jlr.2024.100615_bib53 article-title: RhoA activates purified phospholipase C-epsilon by a guanine nucleotide-dependent mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407111200 – volume: 112 start-page: 12366 year: 2015 ident: 10.1016/j.jlr.2024.100615_bib36 article-title: Competition and allostery govern substrate selectivity of cyclooxygenase-2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1507307112 – volume: 11 start-page: 591819 year: 2020 ident: 10.1016/j.jlr.2024.100615_bib1 article-title: The biosynthesis of enzymatically oxidized lipids publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2020.591819 – volume: 15 start-page: 261 year: 1978 ident: 10.1016/j.jlr.2024.100615_bib32 article-title: Functional macrophage cell lines transformed by Abelson leukemia virus publication-title: Cell doi: 10.1016/0092-8674(78)90101-0 – volume: 53 start-page: 18 year: 2014 ident: 10.1016/j.jlr.2024.100615_bib39 article-title: Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.10.001 – volume: 4 start-page: e363 year: 2023 ident: 10.1016/j.jlr.2024.100615_bib2 article-title: Arachidonic acid metabolism in health and disease publication-title: MedComm (2020) doi: 10.1002/mco2.363 – volume: 120 start-page: 7592 year: 2020 ident: 10.1016/j.jlr.2024.100615_bib29 article-title: Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00215 – volume: 18 start-page: 790 year: 2004 ident: 10.1016/j.jlr.2024.100615_bib28 article-title: Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic publication-title: FASEB J. doi: 10.1096/fj.03-0645rev – volume: 285 start-page: 39976 year: 2010 ident: 10.1016/j.jlr.2024.100615_bib40 article-title: A mouse macrophage lipidome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.182915 – volume: 1864 start-page: 941 year: 2019 ident: 10.1016/j.jlr.2024.100615_bib46 article-title: Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A(2) publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2018.08.009 – volume: 399 start-page: 91 year: 2006 ident: 10.1016/j.jlr.2024.100615_bib31 article-title: Zymosan-induced glycerylprostaglandin and prostaglandin synthesis in resident peritoneal macrophages: roles of cyclo-oxygenase-1 and -2 publication-title: Biochem. J. doi: 10.1042/BJ20060615 – volume: 14 start-page: 1055 year: 1977 ident: 10.1016/j.jlr.2024.100615_bib4 article-title: Metabolism of prostaglandin endoperoxide in animal tissues publication-title: Prostaglandins doi: 10.1016/0090-6980(77)90285-4 – volume: 280 start-page: 26690 year: 2005 ident: 10.1016/j.jlr.2024.100615_bib30 article-title: Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501021200 – volume: 32 start-page: 5000 year: 2018 ident: 10.1016/j.jlr.2024.100615_bib20 article-title: The endogenous bioactive lipid prostaglandin D(2)-glycerol ester reduces murine colitis via DP1 and PPARgamma receptors publication-title: FASEB J. doi: 10.1096/fj.201701205R – volume: 92 start-page: 19 year: 2010 ident: 10.1016/j.jlr.2024.100615_bib18 article-title: Structural determinants for calcium mobilization by prostaglandin E2 and prostaglandin F2alpha glyceryl esters in RAW 264.7 cells and H1819 cells publication-title: Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2010.01.003 – volume: 86 start-page: 522 year: 2014 ident: 10.1016/j.jlr.2024.100615_bib35 article-title: Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL) publication-title: Mol. Pharmacol. doi: 10.1124/mol.114.094284 – volume: 282 start-page: 22834 year: 2007 ident: 10.1016/j.jlr.2024.100615_bib33 article-title: TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M701831200 – volume: 1083 start-page: 1 year: 1991 ident: 10.1016/j.jlr.2024.100615_bib3 article-title: Prostaglandin endoperoxide synthase: structure and catalysis publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(91)90119-3 – volume: 272 start-page: 21181 year: 1997 ident: 10.1016/j.jlr.2024.100615_bib12 article-title: Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.34.21181 – volume: 273 start-page: 11650 year: 1998 ident: 10.1016/j.jlr.2024.100615_bib52 article-title: Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.19.11650 – volume: 231 start-page: 235 year: 1971 ident: 10.1016/j.jlr.2024.100615_bib25 article-title: Aspirin selectively inhibits prostaglandin production in human platelets publication-title: Nat. New Biol. doi: 10.1038/newbio231235a0 – volume: 34 start-page: 4253 year: 2020 ident: 10.1016/j.jlr.2024.100615_bib54 article-title: Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes publication-title: FASEB J. doi: 10.1096/fj.201902916R – volume: 277 start-page: 44877 year: 2002 ident: 10.1016/j.jlr.2024.100615_bib15 article-title: Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206788200 – volume: 267 start-page: 12393 year: 1992 ident: 10.1016/j.jlr.2024.100615_bib51 article-title: Regulation of inositol phospholipid-specific phospholipase C isozymes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42284-3 – volume: 1864 start-page: 766 year: 2019 ident: 10.1016/j.jlr.2024.100615_bib11 article-title: Phospholipase A(2) catalysis and lipid mediator lipidomics publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2018.08.010 – volume: 119 start-page: 69 year: 2002 ident: 10.1016/j.jlr.2024.100615_bib59 article-title: Chemical stability of 2-arachidonoylglycerol under biological conditions publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(02)00068-3 – volume: 106 start-page: 1337 year: 2019 ident: 10.1016/j.jlr.2024.100615_bib44 article-title: Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3A0919-049RRR – volume: 258 start-page: 11713 year: 1983 ident: 10.1016/j.jlr.2024.100615_bib7 article-title: Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44287-6 – volume: 42 start-page: 1979 year: 2001 ident: 10.1016/j.jlr.2024.100615_bib55 article-title: A novel pathway for lipid biosynthesis: the direct acylation of glycerol publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31526-1 – volume: 1438 start-page: 264 year: 1999 ident: 10.1016/j.jlr.2024.100615_bib57 article-title: Characterization of the transacylase activity of rat liver 60-kDa lysophospholipase-transacylase. Acyl transfer from the sn-2 to the sn-1 position publication-title: Biochim. Biophys. Acta doi: 10.1016/S1388-1981(99)00059-1 – volume: 101 start-page: 1840 year: 2004 ident: 10.1016/j.jlr.2024.100615_bib16 article-title: The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0303950101 – volume: 275 start-page: 33744 year: 2000 ident: 10.1016/j.jlr.2024.100615_bib13 article-title: Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007088200 – volume: 25 start-page: 9858 year: 2005 ident: 10.1016/j.jlr.2024.100615_bib17 article-title: Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2392-05.2005 – volume: 367 start-page: 3264 year: 2012 ident: 10.1016/j.jlr.2024.100615_bib38 article-title: The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2011.0387 – volume: 57 start-page: 17 year: 2015 ident: 10.1016/j.jlr.2024.100615_bib48 article-title: PLCepsilon mediated sustained signaling pathways publication-title: Adv. Biol. Regul. doi: 10.1016/j.jbior.2014.09.014 – volume: 7 start-page: 2380 year: 2017 ident: 10.1016/j.jlr.2024.100615_bib22 article-title: Prostaglandin E(2) glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y(6) publication-title: Sci. Rep. doi: 10.1038/s41598-017-02414-8 – volume: 118 year: 2021 ident: 10.1016/j.jlr.2024.100615_bib47 article-title: Phospholipase Cgamma2 regulates endocannabinoid and eicosanoid networks in innate immune cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2112971118 – volume: 103 start-page: 147 year: 2004 ident: 10.1016/j.jlr.2024.100615_bib6 article-title: Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2004.06.003 – volume: 167 start-page: 396 year: 1990 ident: 10.1016/j.jlr.2024.100615_bib50 article-title: Purification and characterization of a cytosolic phosphoinositide-phospholipase C (gamma 2-type) from human platelets publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(90)92035-X – volume: 34 start-page: 7807 year: 1995 ident: 10.1016/j.jlr.2024.100615_bib56 article-title: Multiple enzymatic activities of the human cytosolic 85-kDa phospholipase A2: hydrolytic reactions and acyl transfer to glycerol publication-title: Biochemistry doi: 10.1021/bi00024a004 – volume: 80 start-page: 101065 year: 2020 ident: 10.1016/j.jlr.2024.100615_bib49 article-title: Phospholipase C families: common themes and versatility in physiology and pathology publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2020.101065 – volume: 83 start-page: 813 year: 1995 ident: 10.1016/j.jlr.2024.100615_bib9 article-title: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation publication-title: Cell doi: 10.1016/0092-8674(95)90194-9 – volume: 276 start-page: 36993 year: 2001 ident: 10.1016/j.jlr.2024.100615_bib41 article-title: Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105854200 – volume: 47 start-page: 1097 year: 2006 ident: 10.1016/j.jlr.2024.100615_bib34 article-title: Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4 publication-title: J. Lipid Res. doi: 10.1194/jlr.M600027-JLR200 |
SSID | ssj0014461 |
Score | 2.453827 |
Snippet | Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 100615 |
SubjectTerms | 2-arachidonoylglycerol Animals arachidonic acid Arachidonic Acid - metabolism Arachidonic Acids - metabolism Cyclooxygenase 2 - metabolism DAG lipase Endocannabinoids - metabolism Glycerides - metabolism Kdo2-lipid A lipidomics Lipopolysaccharides macrophages Macrophages - metabolism Mice prostaglandin glyceryl esters prostaglandins RAW 264.7 Cells Time Factors TLR4 |
Title | Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages |
URI | https://dx.doi.org/10.1016/j.jlr.2024.100615 https://www.ncbi.nlm.nih.gov/pubmed/39098584 https://www.proquest.com/docview/3088553754 https://doaj.org/article/122e5b346d4c41fb8486229863ead651 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlPbSX0iZ9bB9BhdJDwa2tl-XjdkkICbQQErI3IclS4-C1Q9ah7L_vSLaW9NDmkosxwtjDfIP1jWf8DUKfcm65rcs88zSXGSOlD_VdnVlrJdHCc2djt8UPcXTOjpd8eWfUV-gJG-WBR8d9Kwhx3FAmamZZ4Y1kwMFJJQUFH4j48zTJqzwlU1P9AJKcIumEE1LyVM-MnV1XbRACJSx0CIgwD_fOjhSF-__amP5FPOMGdPgcPZuYI56PFr9Aj1y3i_bmHWTNqw3-jGMvZ_xIvoueLNIctz30-2xUn2pxqL0nLHDv8eLnMiNZGoM74CDdfNnUQSwXa9vUWHc1Jtl2ud-0v9qNdTd9i1dugPBpm_UKNx0-nV8A5fla4pUOI8Eu4SW1fonODw_OFkfZNG4hA8eyIQNiRzz1gpnccIDWlDUlrgwpnSlLwT2cSGI9E1pUQSdfGmo0s1XhnXSO01dop-s79wbhwhUFlV4azX2Q-JPeWF4IZ-CgdVnM0JfkcnU9qmqo1G52pQAfFfBRIz4z9D2Asr0wCGLHBQgTNYWJui9MZoglSNXELUbOALdq_vfsjwl-BbCFYoruXH-7VhDakvMwQHiGXo9xsbWQVnklgdm9fQjL36GnwaCxr-092hlubt0HIEKD2UeP5yenFyf7Mfb_ANQaAvw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+dissociation+of+COX-2-dependent+arachidonic+acid+and+2-arachidonoylglycerol+metabolism+in+RAW264.7+macrophages&rft.jtitle=Journal+of+lipid+research&rft.au=Aleem%2C+Ansari+M.&rft.au=Mitchener%2C+Michelle+M.&rft.au=Kingsley%2C+Philip+J.&rft.au=Rouzer%2C+Carol+A.&rft.date=2024-09-01&rft.issn=0022-2275&rft.volume=65&rft.issue=9&rft.spage=100615&rft_id=info:doi/10.1016%2Fj.jlr.2024.100615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlr_2024_100615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon |