Smartphone Based Data Mining for Fall Detection: Analysis and Design
Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone att...
        Saved in:
      
    
          | Published in | Procedia computer science Vol. 105; pp. 46 - 51 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1877-0509 1877-0509  | 
| DOI | 10.1016/j.procs.2017.01.188 | 
Cover
| Abstract | Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone attached to the subject's body with the signals wirelessly transmitted to remote PC for processing. Matlab's mobile and the Smartphone Sensor Support is used to acquire the data from the smartphone which is then analysed to design an algorithm for the detection of fall. Falls in human are usually characterized by large acceleration. However, focusing only on a large value of the acceleration can result in many false positives from fall-like activities such as sitting down quickly and jumping. Thus, in this work, a threshold based fall detection algorithm is implemented while a supervised machine learning algorithm is used to classify activity daily living (ADL). This combination has been found effective in increasing the accuracy of the fall detection. The aim is to develop and verify the high precision detection algorithm using Matlab Simulink, followed by a few real time testing. | 
    
|---|---|
| AbstractList | Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone attached to the subject's body with the signals wirelessly transmitted to remote PC for processing. Matlab's mobile and the Smartphone Sensor Support is used to acquire the data from the smartphone which is then analysed to design an algorithm for the detection of fall. Falls in human are usually characterized by large acceleration. However, focusing only on a large value of the acceleration can result in many false positives from fall-like activities such as sitting down quickly and jumping. Thus, in this work, a threshold based fall detection algorithm is implemented while a supervised machine learning algorithm is used to classify activity daily living (ADL). This combination has been found effective in increasing the accuracy of the fall detection. The aim is to develop and verify the high precision detection algorithm using Matlab Simulink, followed by a few real time testing. | 
    
| Author | Hakim, Abdul Ibrahim, B.S.K.K. Shanta, Shahnoor Huq, M. Saiful  | 
    
| Author_xml | – sequence: 1 givenname: Abdul surname: Hakim fullname: Hakim, Abdul – sequence: 2 givenname: M. Saiful surname: Huq fullname: Huq, M. Saiful – sequence: 3 givenname: Shahnoor surname: Shanta fullname: Shanta, Shahnoor – sequence: 4 givenname: B.S.K.K. surname: Ibrahim fullname: Ibrahim, B.S.K.K.  | 
    
| BookMark | eNqNkMFOwzAMhiM0JMbYE3DJC7TEa7MmSBzGxgBpiANwjtLUHZlKOiUFtLcnZRwQB8AX--Dvl_0dk4FrHRJyCiwFBtOzTbr1rQnphEGRMkhBiAMyBFEUCeNMDr7NR2QcwobFyoSQUAzJ4uFF-277HCPppQ5Y0YXuNL2zzro1rVtPl7pp6AI7NJ1t3TmdOd3sgg1Uu7iMwa7dCTmsdRNw_NVH5Gl59Ti_SVb317fz2SoxOeRdwoEJRCyLEnhVT3nOM9ZPhpeQ6YmUWossL4tJzstaoDFsKoUpGeOZlDmHbETyfe6r2-rdezxMbb2ND-wUMNXLUBv1KUP1MhQDFWVELNtjxrcheKz_SckflLGd7h10XtvmD_Ziz2K08WbRq2AsOoOV9dGjqlr7K_8Br2mOPw | 
    
| CitedBy_id | crossref_primary_10_1007_s12652_017_0592_3 crossref_primary_10_3390_electronics8111354 crossref_primary_10_1111_exsy_12522 crossref_primary_10_3390_s20185208 crossref_primary_10_1088_1742_6596_2406_1_012010 crossref_primary_10_1109_TCE_2020_3000338 crossref_primary_10_3390_s23031323 crossref_primary_10_1016_j_measurement_2020_108258 crossref_primary_10_3390_math12091312 crossref_primary_10_3390_en11112866 crossref_primary_10_1109_JSEN_2020_2976554 crossref_primary_10_3390_s18051350 crossref_primary_10_1016_j_eswa_2019_07_028 crossref_primary_10_1155_2021_1422586 crossref_primary_10_1016_j_eswa_2022_117362 crossref_primary_10_3390_data6080092 crossref_primary_10_1080_09720510_2019_1609185 crossref_primary_10_1016_j_neucom_2019_12_147 crossref_primary_10_1109_ACCESS_2021_3065105 crossref_primary_10_3390_jsan10030039 crossref_primary_10_1007_s12652_018_0724_4 crossref_primary_10_1016_j_neucom_2020_02_133 crossref_primary_10_1007_s13748_019_00190_2 crossref_primary_10_1016_j_measurement_2020_107573 crossref_primary_10_14326_abe_12_214 crossref_primary_10_3233_AIS_180486 crossref_primary_10_1016_j_measurement_2024_114186 crossref_primary_10_3390_s17071487 crossref_primary_10_1177_1550147718803072 crossref_primary_10_4218_etrij_2020_0372 crossref_primary_10_1080_21642583_2018_1547888 crossref_primary_10_3389_frobt_2021_749274 crossref_primary_10_35414_akufemubid_1281350 crossref_primary_10_1016_j_dcan_2021_06_005 crossref_primary_10_3390_app12073276 crossref_primary_10_1109_JSEN_2024_3412397 crossref_primary_10_1145_3529753 crossref_primary_10_1155_2020_2167160 crossref_primary_10_3390_s21134412 crossref_primary_10_3390_s19092164 crossref_primary_10_3390_electronics8101083 crossref_primary_10_1007_s42979_025_03827_3 crossref_primary_10_1039_C7NH00147A crossref_primary_10_3390_s20205948 crossref_primary_10_1093_jigpal_jzaa064 crossref_primary_10_3390_electronics9111780 crossref_primary_10_3390_sym12040649 crossref_primary_10_1016_j_snb_2020_128571 crossref_primary_10_1088_1742_6596_1530_1_012102 crossref_primary_10_1016_j_iot_2019_100124 crossref_primary_10_3390_app14198934  | 
    
| Cites_doi | 10.1109/IEMBS.2003.1280846 10.1109/ICTTA.2006.1684511 10.1258/1357633054068946 10.1109/BSN.2009.46 10.1007/978-3-642-02481-8_120 10.1109/ICSMC.2012.6378165 10.1258/1357633001934483 10.1007/978-3-642-02710-9_32 10.1371/journal.pone.0036556 10.1016/j.neucom.2011.09.037 10.1016/j.gaitpost.2006.09.012 10.1145/1555816.1555835 10.1109/IEMBS.2009.5334912 10.1145/1964897.1964918 10.1186/1475-925X-12-66 10.1007/s11036-008-0112-y 10.1016/j.medengphy.2006.12.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 The Authors | 
    
| Copyright_xml | – notice: 2017 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.procs.2017.01.188 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1877-0509 | 
    
| EndPage | 51 | 
    
| ExternalDocumentID | 10.1016/j.procs.2017.01.188 10_1016_j_procs_2017_01_188 S1877050917302065  | 
    
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c414t-5108eeeb7b15df65453015dfc5b13a299aa834b7245bf8ecc0698cb0053994513 | 
    
| IEDL.DBID | IXB | 
    
| ISSN | 1877-0509 | 
    
| IngestDate | Tue Aug 19 19:25:27 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Oct 01 03:32:00 EDT 2025 Wed May 17 00:58:04 EDT 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | cellular phone smartphone machine learning fall detection supervised learning  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c414t-5108eeeb7b15df65453015dfc5b13a299aa834b7245bf8ecc0698cb0053994513 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050917302065 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2017_01_188 crossref_primary_10_1016_j_procs_2017_01_188 crossref_citationtrail_10_1016_j_procs_2017_01_188 elsevier_sciencedirect_doi_10_1016_j_procs_2017_01_188  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-01-01 | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Procedia computer science | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Győrbíró, N., Fábián, Á. & Hományi, G. (2009) An activity recognition system for mobile phones Sposaro, F. & Tyson, G. (2009). iFall: an Android application for fall monitoring and response. Paper presented at the Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE. Igual, Medrano, Plaza (bib0060) 2013; 12 Kim, J., Kwak, H., Lee, H., Seo, K., Lim, B., Lee, M., Lee, J. & Roh, K. (2012). Balancing control of a biped robot. Paper presented at the Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. Chern, J.-S., Chang, H.-S., Lung, C.-W., Wu, C.-Y. & Tang, S.F. (2013). Static ankle-foot orthosis improves static balance and gait functions in hemiplegic patients after stroke. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. Maenaka, K. (2008). MEMS inertial sensors and their applications. Paper presented at the Networked Sensing Systems, 2008 INSS 2008 5th International Conference on. Mubashir, Shao, Seed (bib0035) 2013; 100 Kamarulzaman, K. (2007) Adult learning for people with disabilities in Malaysia: Provisions and services Prado, M., Roa, L., Reina-Tosina, J. & Sánchez, G. (2004). Preliminary evaluation of a full-time falling monitor for the elderly. Paper presented at the Engineering in Medicine and Biology Society, 2004 IEMBS’04 26th Annual International Conference of the IEEE. Li, Q., Stankovic, J., Hanson, M., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B. & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. Paper presented at the pp. 289-296, Springer. pp. 796-799, Springer. 82-91. Dai, J., Bai, X., Yang, Z., Shen, Z. & Xuan, D. (2010). PerFallD: A pervasive fall detection system using mobile phones. Paper presented at the Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Conference on. Brezmes, T., Gorricho, J.-L. & Cotrina, J. (2009) Activity recognition from accelerometer data on a mobile phone in . Bourke, O’brien, Lyons (bib0085) 2007; 26 Albert, Kording, Herrmann, Jayaraman (bib0095) 2012; 7 Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M. & Rumeau, P. (2003). A smart sensor based on rules and its evaluation in daily routines. Paper presented at the Engineering in medicine and biology society, 2003 Proceedings of the 25th annual international conference of the IEEE. Doughty, Lewis, McIntosh (bib0020) 2000; 6 Lee, Mihailidis (bib0045) 2005; 11 Bourke, Lyons (bib0075) 2008; 30 Kwapisz, J., Weiss, G. & Moore, S. (2013) Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12 (2), 74-82 (2011) in. Bieber, G., Voskamp, J. & Urban, B. (2009) Activity recognition for everyday life on mobile phones in Islam, Cojocaru (bib0010) 2015; 50 Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M. & Felder, R. (2006). A smart and passive floor-vibration based fall detector for elderly. Paper presented at the Information and Communication Technologies, 2006 ICTTA’06 2nd. Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on. 10.1016/j.procs.2017.01.188_bib0100 10.1016/j.procs.2017.01.188_bib0055 10.1016/j.procs.2017.01.188_bib0110 10.1016/j.procs.2017.01.188_bib0065 10.1016/j.procs.2017.01.188_bib0120 Islam (10.1016/j.procs.2017.01.188_bib0010) 2015; 50 Igual (10.1016/j.procs.2017.01.188_bib0060) 2013; 12 10.1016/j.procs.2017.01.188_bib0105 10.1016/j.procs.2017.01.188_bib0005 10.1016/j.procs.2017.01.188_bib0115 10.1016/j.procs.2017.01.188_bib0015 10.1016/j.procs.2017.01.188_bib0025 10.1016/j.procs.2017.01.188_bib0070 10.1016/j.procs.2017.01.188_bib0080 Doughty (10.1016/j.procs.2017.01.188_bib0020) 2000; 6 10.1016/j.procs.2017.01.188_bib0090 10.1016/j.procs.2017.01.188_bib0030 Mubashir (10.1016/j.procs.2017.01.188_bib0035) 2013; 100 10.1016/j.procs.2017.01.188_bib0040 10.1016/j.procs.2017.01.188_bib0050 Bourke (10.1016/j.procs.2017.01.188_bib0075) 2008; 30 Bourke (10.1016/j.procs.2017.01.188_bib0085) 2007; 26 Lee (10.1016/j.procs.2017.01.188_bib0045) 2005; 11 Albert (10.1016/j.procs.2017.01.188_bib0095) 2012; 7  | 
    
| References_xml | – reference: Dai, J., Bai, X., Yang, Z., Shen, Z. & Xuan, D. (2010). PerFallD: A pervasive fall detection system using mobile phones. Paper presented at the Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Conference on. – reference: pp. 796-799, Springer. – volume: 26 start-page: 194 year: 2007 end-page: 199 ident: bib0085 article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm publication-title: Gait & posture. – reference: Sposaro, F. & Tyson, G. (2009). iFall: an Android application for fall monitoring and response. Paper presented at the Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE. – volume: 50 start-page: 38 year: 2015 end-page: 52 ident: bib0010 article-title: Advocacy for Empowerment: A Case of the Learning Disabled People in Malaysia publication-title: Revista de cercetare [i interven] ie social – volume: 7 start-page: e36556 year: 2012 ident: bib0095 article-title: Fall classification by machine learning using mobile phones publication-title: PloS one – reference: Bieber, G., Voskamp, J. & Urban, B. (2009) Activity recognition for everyday life on mobile phones in – volume: 6 start-page: 150 year: 2000 end-page: 154 ident: bib0020 article-title: The design of a practical and reliable fall detector for community and institutional telecare publication-title: Journal of Telemedicine and Telecare – volume: 12 start-page: 1 year: 2013 end-page: 66 ident: bib0060 article-title: Challenges, issues and trends in fall detection systems publication-title: Biomed Eng Online – reference: Brezmes, T., Gorricho, J.-L. & Cotrina, J. (2009) Activity recognition from accelerometer data on a mobile phone in – reference: , 82-91. – volume: 100 start-page: 144 year: 2013 end-page: 152 ident: bib0035 article-title: A survey on fall detection: Principles and approaches publication-title: Neurocomputing. – reference: Győrbíró, N., Fábián, Á. & Hományi, G. (2009) An activity recognition system for mobile phones, – reference: Li, Q., Stankovic, J., Hanson, M., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on. – reference: Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on. – reference: Kamarulzaman, K. (2007) Adult learning for people with disabilities in Malaysia: Provisions and services, – reference: Kim, J., Kwak, H., Lee, H., Seo, K., Lim, B., Lee, M., Lee, J. & Roh, K. (2012). Balancing control of a biped robot. Paper presented at the Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. – reference: Maenaka, K. (2008). MEMS inertial sensors and their applications. Paper presented at the Networked Sensing Systems, 2008 INSS 2008 5th International Conference on. – volume: 11 start-page: 194 year: 2005 end-page: 198 ident: bib0045 article-title: An intelligent emergency response system: preliminary development and testing of automated fall detection publication-title: Journal of telemedicine and telecare – reference: Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M. & Rumeau, P. (2003). A smart sensor based on rules and its evaluation in daily routines. Paper presented at the Engineering in medicine and biology society, 2003 Proceedings of the 25th annual international conference of the IEEE. – reference: Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M. & Felder, R. (2006). A smart and passive floor-vibration based fall detector for elderly. Paper presented at the Information and Communication Technologies, 2006 ICTTA’06 2nd. – reference: . – reference: Kwapisz, J., Weiss, G. & Moore, S. (2013) Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12 (2), 74-82 (2011) in. – reference: Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B. & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. Paper presented at the – volume: 30 start-page: 84 year: 2008 end-page: 90 ident: bib0075 article-title: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor publication-title: Medical engineering & physics. – reference: pp. 289-296, Springer. – reference: Chern, J.-S., Chang, H.-S., Lung, C.-W., Wu, C.-Y. & Tang, S.F. (2013). Static ankle-foot orthosis improves static balance and gait functions in hemiplegic patients after stroke. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. – reference: Prado, M., Roa, L., Reina-Tosina, J. & Sánchez, G. (2004). Preliminary evaluation of a full-time falling monitor for the elderly. Paper presented at the Engineering in Medicine and Biology Society, 2004 IEMBS’04 26th Annual International Conference of the IEEE. – ident: 10.1016/j.procs.2017.01.188_bib0005 – ident: 10.1016/j.procs.2017.01.188_bib0030 doi: 10.1109/IEMBS.2003.1280846 – ident: 10.1016/j.procs.2017.01.188_bib0040 doi: 10.1109/ICTTA.2006.1684511 – ident: 10.1016/j.procs.2017.01.188_bib0025 – volume: 11 start-page: 194 year: 2005 ident: 10.1016/j.procs.2017.01.188_bib0045 article-title: An intelligent emergency response system: preliminary development and testing of automated fall detection publication-title: Journal of telemedicine and telecare doi: 10.1258/1357633054068946 – ident: 10.1016/j.procs.2017.01.188_bib0090 doi: 10.1109/BSN.2009.46 – ident: 10.1016/j.procs.2017.01.188_bib0100 doi: 10.1007/978-3-642-02481-8_120 – ident: 10.1016/j.procs.2017.01.188_bib0070 doi: 10.1109/ICSMC.2012.6378165 – volume: 6 start-page: 150 year: 2000 ident: 10.1016/j.procs.2017.01.188_bib0020 article-title: The design of a practical and reliable fall detector for community and institutional telecare publication-title: Journal of Telemedicine and Telecare doi: 10.1258/1357633001934483 – ident: 10.1016/j.procs.2017.01.188_bib0110 doi: 10.1007/978-3-642-02710-9_32 – volume: 7 start-page: e36556 year: 2012 ident: 10.1016/j.procs.2017.01.188_bib0095 article-title: Fall classification by machine learning using mobile phones publication-title: PloS one doi: 10.1371/journal.pone.0036556 – ident: 10.1016/j.procs.2017.01.188_bib0080 doi: 10.1109/BSN.2009.46 – volume: 100 start-page: 144 year: 2013 ident: 10.1016/j.procs.2017.01.188_bib0035 article-title: A survey on fall detection: Principles and approaches publication-title: Neurocomputing. doi: 10.1016/j.neucom.2011.09.037 – volume: 26 start-page: 194 year: 2007 ident: 10.1016/j.procs.2017.01.188_bib0085 article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm publication-title: Gait & posture. doi: 10.1016/j.gaitpost.2006.09.012 – ident: 10.1016/j.procs.2017.01.188_bib0120 doi: 10.1145/1555816.1555835 – ident: 10.1016/j.procs.2017.01.188_bib0065 – volume: 50 start-page: 38 year: 2015 ident: 10.1016/j.procs.2017.01.188_bib0010 article-title: Advocacy for Empowerment: A Case of the Learning Disabled People in Malaysia publication-title: Revista de cercetare [i interven] ie social – ident: 10.1016/j.procs.2017.01.188_bib0055 doi: 10.1109/IEMBS.2009.5334912 – ident: 10.1016/j.procs.2017.01.188_bib0115 doi: 10.1145/1964897.1964918 – ident: 10.1016/j.procs.2017.01.188_bib0050 – ident: 10.1016/j.procs.2017.01.188_bib0015 – volume: 12 start-page: 1 year: 2013 ident: 10.1016/j.procs.2017.01.188_bib0060 article-title: Challenges, issues and trends in fall detection systems publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-66 – ident: 10.1016/j.procs.2017.01.188_bib0105 doi: 10.1007/s11036-008-0112-y – volume: 30 start-page: 84 year: 2008 ident: 10.1016/j.procs.2017.01.188_bib0075 article-title: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor publication-title: Medical engineering & physics. doi: 10.1016/j.medengphy.2006.12.001  | 
    
| SSID | ssj0000388917 | 
    
| Score | 2.3530636 | 
    
| Snippet | Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 46 | 
    
| SubjectTerms | cellular phone fall detection machine learning smartphone supervised learning  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfTi_MT5RQ4ezVjapMm8TecYgkPQwTyFJM0OWsvQDtG_3pd-DBUd89QWEhrey-v7Jf3l9xA6lTIOQx1xAisvTViHcSKtnRABuZYGgfU1Cz3bYhgNRux6zMelzrY_C_Pt_33Ow_Ifcq-rTYXX16RSrqJ6xAF411B9NLztPvgllRSCeCWTSlfo955_5Z61WTrV7286Sb7kln6jOLT9mksSekrJU2uWmZb9-CHYuOSwN9FGiTFxt5gUW2jFpduoUdVvwGU476De3TNMHE9Od_gCslmMezrT-CavGYEBzeI-DBb3XJbztdJzXEmYYJ1C45z8sYtG_av7ywEpqyoQyyjLCAShdM4ZYSiPJxEgKIhxuLPc0FBDdtJahsyIgHEzkeDhNvjL5tHaAVfScA_VUhjYPsJemy6IA26NtUz40tVwES4Wrh3HoWVNFFT2VraUHPeVLxJVccseVW4n5e2k2lSBnZrobN5pWihuLG4eVY5UJWgowIACnyzuSOZuX-ZFB_9sf4jW_VOxXXOEatnLzB0DgMnMSTlxPwHRyeng priority: 102 providerName: Unpaywall  | 
    
| Title | Smartphone Based Data Mining for Fall Detection: Analysis and Design | 
    
| URI | https://dx.doi.org/10.1016/j.procs.2017.01.188 https://doi.org/10.1016/j.procs.2017.01.188  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 105 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DH_TFuzgvIw8-Gra0aZP5totjOhziHM6nkqYZTGYZ0iH-e89J26EgQ3zqhaRJz8m5NJx-HyGXSiW-r8OAwZeXZqIpAqaMmTIJsZZ7nkHOQqy2GIb9sbibBJMK6ZT_wmBZZeH7c5_uvHVxp15Is76YzeojrqRE9BIOi9SDSAp-2BcK6RtuJ-3VPguinTQd8S62Z9ihBB9yZV4YJxC2m0uE7-SOgeXXALW1TBf680PP598CUG-P7BSZI23lk9snFZsekN2SlYEWRnpIuqM3eAEsObe0DTEqoV2daXrvmCAo5Ki0B0-nXZu5Kqz0mpbAJFSn0NiVdByRce_mqdNnBVcCM4KLjIFpKWttLGMeJNMQ8iKwXDgzQcx9DTFHa-WLWHoiiKcK9NYALRhng01QEPePyUYKEzshFBHnvMQLTGyMkEhIDQdpE2kbSeIbUSVeKaDIFEDiyGcxj8qKsdfISTVCqUYNHoFUq-Rq1WmR42isbx6Wko9-LIcIPP36jmylp78MdPrfgc7INl7luzHnZCN7X9oLyE-yuEY2W4PH50HNLUS4Gg8fWi9ftMnj1Q | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8QH_DFbyN-9sFHG-jWrcM3BQkq8AIkvDVdVxIMLsSMGP9777qNaGKI8WnLtlu7u17v1lx_P0JuoijxfR0GDP68NBMtEbDImBmTEGu55xnkLMRqi2HYm4jnaTCtkHa5FwbLKou5P5_T3WxdXGkU2mws5_PGiEdSInoJh0HqQSTdItsigOwEd_FNH9YLLQh30nLMuyjAUKJEH3J1XhgoELebS8Tv5I6C5dcIVVulS_35oReLbxGou092i9SR3ue9OyAVmx6SvZKWgRZeekQ6ozf4Aqw5t_QBglRCOzrTdOCoICgkqbQLb6cdm7kyrPSOlsgkVKfwsKvpOCaT7uO43WMFWQIzgouMgW9F1tpYxjxIZiEkRuC6cGaCmPsago7WkS9i6YkgnkVguCaYwTgnbIGFuH9Cqil07JRQhJzzEi8wsTFCIiM1HKRNpG0miW9EnXilgpQpkMSR0GKhypKxV-W0qlCrqskVaLVObtdCyxxIY_PjYal59WM8KJjqNwuytZ3-0tDZfxu6JrXeeNBX_afhyznZwTv50swFqWbvK3sJyUoWX7nB-AX3NOOo | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfTi_MT5RQ4ezVjapMm8TecYgkPQwTyFJM0OWsvQDtG_3pd-DBUd89QWEhrey-v7Jf3l9xA6lTIOQx1xAisvTViHcSKtnRABuZYGgfU1Cz3bYhgNRux6zMelzrY_C_Pt_33Ow_Ifcq-rTYXX16RSrqJ6xAF411B9NLztPvgllRSCeCWTSlfo955_5Z61WTrV7286Sb7kln6jOLT9mksSekrJU2uWmZb9-CHYuOSwN9FGiTFxt5gUW2jFpduoUdVvwGU476De3TNMHE9Od_gCslmMezrT-CavGYEBzeI-DBb3XJbztdJzXEmYYJ1C45z8sYtG_av7ywEpqyoQyyjLCAShdM4ZYSiPJxEgKIhxuLPc0FBDdtJahsyIgHEzkeDhNvjL5tHaAVfScA_VUhjYPsJemy6IA26NtUz40tVwES4Wrh3HoWVNFFT2VraUHPeVLxJVccseVW4n5e2k2lSBnZrobN5pWihuLG4eVY5UJWgowIACnyzuSOZuX-ZFB_9sf4jW_VOxXXOEatnLzB0DgMnMSTlxPwHRyeng | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smartphone+Based+Data+Mining+for+Fall+Detection%3A+Analysis+and+Design&rft.jtitle=Procedia+computer+science&rft.au=Hakim%2C+Abdul&rft.au=Huq%2C+M.+Saiful&rft.au=Shanta%2C+Shahnoor&rft.au=Ibrahim%2C+B.S.K.K.&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=105&rft.spage=46&rft.epage=51&rft_id=info:doi/10.1016%2Fj.procs.2017.01.188&rft.externalDocID=S1877050917302065 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |