Smartphone Based Data Mining for Fall Detection: Analysis and Design

Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone att...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 105; pp. 46 - 51
Main Authors Hakim, Abdul, Huq, M. Saiful, Shanta, Shahnoor, Ibrahim, B.S.K.K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2017.01.188

Cover

Abstract Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone attached to the subject's body with the signals wirelessly transmitted to remote PC for processing. Matlab's mobile and the Smartphone Sensor Support is used to acquire the data from the smartphone which is then analysed to design an algorithm for the detection of fall. Falls in human are usually characterized by large acceleration. However, focusing only on a large value of the acceleration can result in many false positives from fall-like activities such as sitting down quickly and jumping. Thus, in this work, a threshold based fall detection algorithm is implemented while a supervised machine learning algorithm is used to classify activity daily living (ADL). This combination has been found effective in increasing the accuracy of the fall detection. The aim is to develop and verify the high precision detection algorithm using Matlab Simulink, followed by a few real time testing.
AbstractList Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in Malaysia and worldwide. This paper aims to detect human fall utilizing the built inertial measurement unit (IMU) sensors of a smartphone attached to the subject's body with the signals wirelessly transmitted to remote PC for processing. Matlab's mobile and the Smartphone Sensor Support is used to acquire the data from the smartphone which is then analysed to design an algorithm for the detection of fall. Falls in human are usually characterized by large acceleration. However, focusing only on a large value of the acceleration can result in many false positives from fall-like activities such as sitting down quickly and jumping. Thus, in this work, a threshold based fall detection algorithm is implemented while a supervised machine learning algorithm is used to classify activity daily living (ADL). This combination has been found effective in increasing the accuracy of the fall detection. The aim is to develop and verify the high precision detection algorithm using Matlab Simulink, followed by a few real time testing.
Author Hakim, Abdul
Ibrahim, B.S.K.K.
Shanta, Shahnoor
Huq, M. Saiful
Author_xml – sequence: 1
  givenname: Abdul
  surname: Hakim
  fullname: Hakim, Abdul
– sequence: 2
  givenname: M. Saiful
  surname: Huq
  fullname: Huq, M. Saiful
– sequence: 3
  givenname: Shahnoor
  surname: Shanta
  fullname: Shanta, Shahnoor
– sequence: 4
  givenname: B.S.K.K.
  surname: Ibrahim
  fullname: Ibrahim, B.S.K.K.
BookMark eNqNkMFOwzAMhiM0JMbYE3DJC7TEa7MmSBzGxgBpiANwjtLUHZlKOiUFtLcnZRwQB8AX--Dvl_0dk4FrHRJyCiwFBtOzTbr1rQnphEGRMkhBiAMyBFEUCeNMDr7NR2QcwobFyoSQUAzJ4uFF-277HCPppQ5Y0YXuNL2zzro1rVtPl7pp6AI7NJ1t3TmdOd3sgg1Uu7iMwa7dCTmsdRNw_NVH5Gl59Ti_SVb317fz2SoxOeRdwoEJRCyLEnhVT3nOM9ZPhpeQ6YmUWossL4tJzstaoDFsKoUpGeOZlDmHbETyfe6r2-rdezxMbb2ND-wUMNXLUBv1KUP1MhQDFWVELNtjxrcheKz_SckflLGd7h10XtvmD_Ziz2K08WbRq2AsOoOV9dGjqlr7K_8Br2mOPw
CitedBy_id crossref_primary_10_1007_s12652_017_0592_3
crossref_primary_10_3390_electronics8111354
crossref_primary_10_1111_exsy_12522
crossref_primary_10_3390_s20185208
crossref_primary_10_1088_1742_6596_2406_1_012010
crossref_primary_10_1109_TCE_2020_3000338
crossref_primary_10_3390_s23031323
crossref_primary_10_1016_j_measurement_2020_108258
crossref_primary_10_3390_math12091312
crossref_primary_10_3390_en11112866
crossref_primary_10_1109_JSEN_2020_2976554
crossref_primary_10_3390_s18051350
crossref_primary_10_1016_j_eswa_2019_07_028
crossref_primary_10_1155_2021_1422586
crossref_primary_10_1016_j_eswa_2022_117362
crossref_primary_10_3390_data6080092
crossref_primary_10_1080_09720510_2019_1609185
crossref_primary_10_1016_j_neucom_2019_12_147
crossref_primary_10_1109_ACCESS_2021_3065105
crossref_primary_10_3390_jsan10030039
crossref_primary_10_1007_s12652_018_0724_4
crossref_primary_10_1016_j_neucom_2020_02_133
crossref_primary_10_1007_s13748_019_00190_2
crossref_primary_10_1016_j_measurement_2020_107573
crossref_primary_10_14326_abe_12_214
crossref_primary_10_3233_AIS_180486
crossref_primary_10_1016_j_measurement_2024_114186
crossref_primary_10_3390_s17071487
crossref_primary_10_1177_1550147718803072
crossref_primary_10_4218_etrij_2020_0372
crossref_primary_10_1080_21642583_2018_1547888
crossref_primary_10_3389_frobt_2021_749274
crossref_primary_10_35414_akufemubid_1281350
crossref_primary_10_1016_j_dcan_2021_06_005
crossref_primary_10_3390_app12073276
crossref_primary_10_1109_JSEN_2024_3412397
crossref_primary_10_1145_3529753
crossref_primary_10_1155_2020_2167160
crossref_primary_10_3390_s21134412
crossref_primary_10_3390_s19092164
crossref_primary_10_3390_electronics8101083
crossref_primary_10_1007_s42979_025_03827_3
crossref_primary_10_1039_C7NH00147A
crossref_primary_10_3390_s20205948
crossref_primary_10_1093_jigpal_jzaa064
crossref_primary_10_3390_electronics9111780
crossref_primary_10_3390_sym12040649
crossref_primary_10_1016_j_snb_2020_128571
crossref_primary_10_1088_1742_6596_1530_1_012102
crossref_primary_10_1016_j_iot_2019_100124
crossref_primary_10_3390_app14198934
Cites_doi 10.1109/IEMBS.2003.1280846
10.1109/ICTTA.2006.1684511
10.1258/1357633054068946
10.1109/BSN.2009.46
10.1007/978-3-642-02481-8_120
10.1109/ICSMC.2012.6378165
10.1258/1357633001934483
10.1007/978-3-642-02710-9_32
10.1371/journal.pone.0036556
10.1016/j.neucom.2011.09.037
10.1016/j.gaitpost.2006.09.012
10.1145/1555816.1555835
10.1109/IEMBS.2009.5334912
10.1145/1964897.1964918
10.1186/1475-925X-12-66
10.1007/s11036-008-0112-y
10.1016/j.medengphy.2006.12.001
ContentType Journal Article
Copyright 2017 The Authors
Copyright_xml – notice: 2017 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2017.01.188
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 51
ExternalDocumentID 10.1016/j.procs.2017.01.188
10_1016_j_procs_2017_01_188
S1877050917302065
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c414t-5108eeeb7b15df65453015dfc5b13a299aa834b7245bf8ecc0698cb0053994513
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Aug 19 19:25:27 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Oct 01 03:32:00 EDT 2025
Wed May 17 00:58:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cellular phone
smartphone
machine learning
fall detection
supervised learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-5108eeeb7b15df65453015dfc5b13a299aa834b7245bf8ecc0698cb0053994513
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050917302065
PageCount 6
ParticipantIDs unpaywall_primary_10_1016_j_procs_2017_01_188
crossref_primary_10_1016_j_procs_2017_01_188
crossref_citationtrail_10_1016_j_procs_2017_01_188
elsevier_sciencedirect_doi_10_1016_j_procs_2017_01_188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Győrbíró, N., Fábián, Á. & Hományi, G. (2009) An activity recognition system for mobile phones
Sposaro, F. & Tyson, G. (2009). iFall: an Android application for fall monitoring and response. Paper presented at the Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE.
Igual, Medrano, Plaza (bib0060) 2013; 12
Kim, J., Kwak, H., Lee, H., Seo, K., Lim, B., Lee, M., Lee, J. & Roh, K. (2012). Balancing control of a biped robot. Paper presented at the Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on.
Chern, J.-S., Chang, H.-S., Lung, C.-W., Wu, C.-Y. & Tang, S.F. (2013). Static ankle-foot orthosis improves static balance and gait functions in hemiplegic patients after stroke. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE.
Maenaka, K. (2008). MEMS inertial sensors and their applications. Paper presented at the Networked Sensing Systems, 2008 INSS 2008 5th International Conference on.
Mubashir, Shao, Seed (bib0035) 2013; 100
Kamarulzaman, K. (2007) Adult learning for people with disabilities in Malaysia: Provisions and services
Prado, M., Roa, L., Reina-Tosina, J. & Sánchez, G. (2004). Preliminary evaluation of a full-time falling monitor for the elderly. Paper presented at the Engineering in Medicine and Biology Society, 2004 IEMBS’04 26th Annual International Conference of the IEEE.
Li, Q., Stankovic, J., Hanson, M., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on.
Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B. & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. Paper presented at the
pp. 289-296, Springer.
pp. 796-799, Springer.
82-91.
Dai, J., Bai, X., Yang, Z., Shen, Z. & Xuan, D. (2010). PerFallD: A pervasive fall detection system using mobile phones. Paper presented at the Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Conference on.
Brezmes, T., Gorricho, J.-L. & Cotrina, J. (2009) Activity recognition from accelerometer data on a mobile phone in
.
Bourke, O’brien, Lyons (bib0085) 2007; 26
Albert, Kording, Herrmann, Jayaraman (bib0095) 2012; 7
Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M. & Rumeau, P. (2003). A smart sensor based on rules and its evaluation in daily routines. Paper presented at the Engineering in medicine and biology society, 2003 Proceedings of the 25th annual international conference of the IEEE.
Doughty, Lewis, McIntosh (bib0020) 2000; 6
Lee, Mihailidis (bib0045) 2005; 11
Bourke, Lyons (bib0075) 2008; 30
Kwapisz, J., Weiss, G. & Moore, S. (2013) Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12 (2), 74-82 (2011) in.
Bieber, G., Voskamp, J. & Urban, B. (2009) Activity recognition for everyday life on mobile phones in
Islam, Cojocaru (bib0010) 2015; 50
Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M. & Felder, R. (2006). A smart and passive floor-vibration based fall detector for elderly. Paper presented at the Information and Communication Technologies, 2006 ICTTA’06 2nd.
Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on.
10.1016/j.procs.2017.01.188_bib0100
10.1016/j.procs.2017.01.188_bib0055
10.1016/j.procs.2017.01.188_bib0110
10.1016/j.procs.2017.01.188_bib0065
10.1016/j.procs.2017.01.188_bib0120
Islam (10.1016/j.procs.2017.01.188_bib0010) 2015; 50
Igual (10.1016/j.procs.2017.01.188_bib0060) 2013; 12
10.1016/j.procs.2017.01.188_bib0105
10.1016/j.procs.2017.01.188_bib0005
10.1016/j.procs.2017.01.188_bib0115
10.1016/j.procs.2017.01.188_bib0015
10.1016/j.procs.2017.01.188_bib0025
10.1016/j.procs.2017.01.188_bib0070
10.1016/j.procs.2017.01.188_bib0080
Doughty (10.1016/j.procs.2017.01.188_bib0020) 2000; 6
10.1016/j.procs.2017.01.188_bib0090
10.1016/j.procs.2017.01.188_bib0030
Mubashir (10.1016/j.procs.2017.01.188_bib0035) 2013; 100
10.1016/j.procs.2017.01.188_bib0040
10.1016/j.procs.2017.01.188_bib0050
Bourke (10.1016/j.procs.2017.01.188_bib0075) 2008; 30
Bourke (10.1016/j.procs.2017.01.188_bib0085) 2007; 26
Lee (10.1016/j.procs.2017.01.188_bib0045) 2005; 11
Albert (10.1016/j.procs.2017.01.188_bib0095) 2012; 7
References_xml – reference: Dai, J., Bai, X., Yang, Z., Shen, Z. & Xuan, D. (2010). PerFallD: A pervasive fall detection system using mobile phones. Paper presented at the Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Conference on.
– reference: pp. 796-799, Springer.
– volume: 26
  start-page: 194
  year: 2007
  end-page: 199
  ident: bib0085
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait & posture.
– reference: Sposaro, F. & Tyson, G. (2009). iFall: an Android application for fall monitoring and response. Paper presented at the Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE.
– volume: 50
  start-page: 38
  year: 2015
  end-page: 52
  ident: bib0010
  article-title: Advocacy for Empowerment: A Case of the Learning Disabled People in Malaysia
  publication-title: Revista de cercetare [i interven] ie social
– volume: 7
  start-page: e36556
  year: 2012
  ident: bib0095
  article-title: Fall classification by machine learning using mobile phones
  publication-title: PloS one
– reference: Bieber, G., Voskamp, J. & Urban, B. (2009) Activity recognition for everyday life on mobile phones in
– volume: 6
  start-page: 150
  year: 2000
  end-page: 154
  ident: bib0020
  article-title: The design of a practical and reliable fall detector for community and institutional telecare
  publication-title: Journal of Telemedicine and Telecare
– volume: 12
  start-page: 1
  year: 2013
  end-page: 66
  ident: bib0060
  article-title: Challenges, issues and trends in fall detection systems
  publication-title: Biomed Eng Online
– reference: Brezmes, T., Gorricho, J.-L. & Cotrina, J. (2009) Activity recognition from accelerometer data on a mobile phone in
– reference: , 82-91.
– volume: 100
  start-page: 144
  year: 2013
  end-page: 152
  ident: bib0035
  article-title: A survey on fall detection: Principles and approaches
  publication-title: Neurocomputing.
– reference: Győrbíró, N., Fábián, Á. & Hományi, G. (2009) An activity recognition system for mobile phones,
– reference: Li, Q., Stankovic, J., Hanson, M., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on.
– reference: Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J. & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Paper presented at the Wearable and Implantable Body Sensor Networks, 2009 BSN 2009 Sixth International Workshop on.
– reference: Kamarulzaman, K. (2007) Adult learning for people with disabilities in Malaysia: Provisions and services,
– reference: Kim, J., Kwak, H., Lee, H., Seo, K., Lim, B., Lee, M., Lee, J. & Roh, K. (2012). Balancing control of a biped robot. Paper presented at the Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on.
– reference: Maenaka, K. (2008). MEMS inertial sensors and their applications. Paper presented at the Networked Sensing Systems, 2008 INSS 2008 5th International Conference on.
– volume: 11
  start-page: 194
  year: 2005
  end-page: 198
  ident: bib0045
  article-title: An intelligent emergency response system: preliminary development and testing of automated fall detection
  publication-title: Journal of telemedicine and telecare
– reference: Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M. & Rumeau, P. (2003). A smart sensor based on rules and its evaluation in daily routines. Paper presented at the Engineering in medicine and biology society, 2003 Proceedings of the 25th annual international conference of the IEEE.
– reference: Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M. & Felder, R. (2006). A smart and passive floor-vibration based fall detector for elderly. Paper presented at the Information and Communication Technologies, 2006 ICTTA’06 2nd.
– reference: .
– reference: Kwapisz, J., Weiss, G. & Moore, S. (2013) Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12 (2), 74-82 (2011) in.
– reference: Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B. & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. Paper presented at the
– volume: 30
  start-page: 84
  year: 2008
  end-page: 90
  ident: bib0075
  article-title: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor
  publication-title: Medical engineering & physics.
– reference: pp. 289-296, Springer.
– reference: Chern, J.-S., Chang, H.-S., Lung, C.-W., Wu, C.-Y. & Tang, S.F. (2013). Static ankle-foot orthosis improves static balance and gait functions in hemiplegic patients after stroke. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE.
– reference: Prado, M., Roa, L., Reina-Tosina, J. & Sánchez, G. (2004). Preliminary evaluation of a full-time falling monitor for the elderly. Paper presented at the Engineering in Medicine and Biology Society, 2004 IEMBS’04 26th Annual International Conference of the IEEE.
– ident: 10.1016/j.procs.2017.01.188_bib0005
– ident: 10.1016/j.procs.2017.01.188_bib0030
  doi: 10.1109/IEMBS.2003.1280846
– ident: 10.1016/j.procs.2017.01.188_bib0040
  doi: 10.1109/ICTTA.2006.1684511
– ident: 10.1016/j.procs.2017.01.188_bib0025
– volume: 11
  start-page: 194
  year: 2005
  ident: 10.1016/j.procs.2017.01.188_bib0045
  article-title: An intelligent emergency response system: preliminary development and testing of automated fall detection
  publication-title: Journal of telemedicine and telecare
  doi: 10.1258/1357633054068946
– ident: 10.1016/j.procs.2017.01.188_bib0090
  doi: 10.1109/BSN.2009.46
– ident: 10.1016/j.procs.2017.01.188_bib0100
  doi: 10.1007/978-3-642-02481-8_120
– ident: 10.1016/j.procs.2017.01.188_bib0070
  doi: 10.1109/ICSMC.2012.6378165
– volume: 6
  start-page: 150
  year: 2000
  ident: 10.1016/j.procs.2017.01.188_bib0020
  article-title: The design of a practical and reliable fall detector for community and institutional telecare
  publication-title: Journal of Telemedicine and Telecare
  doi: 10.1258/1357633001934483
– ident: 10.1016/j.procs.2017.01.188_bib0110
  doi: 10.1007/978-3-642-02710-9_32
– volume: 7
  start-page: e36556
  year: 2012
  ident: 10.1016/j.procs.2017.01.188_bib0095
  article-title: Fall classification by machine learning using mobile phones
  publication-title: PloS one
  doi: 10.1371/journal.pone.0036556
– ident: 10.1016/j.procs.2017.01.188_bib0080
  doi: 10.1109/BSN.2009.46
– volume: 100
  start-page: 144
  year: 2013
  ident: 10.1016/j.procs.2017.01.188_bib0035
  article-title: A survey on fall detection: Principles and approaches
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2011.09.037
– volume: 26
  start-page: 194
  year: 2007
  ident: 10.1016/j.procs.2017.01.188_bib0085
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait & posture.
  doi: 10.1016/j.gaitpost.2006.09.012
– ident: 10.1016/j.procs.2017.01.188_bib0120
  doi: 10.1145/1555816.1555835
– ident: 10.1016/j.procs.2017.01.188_bib0065
– volume: 50
  start-page: 38
  year: 2015
  ident: 10.1016/j.procs.2017.01.188_bib0010
  article-title: Advocacy for Empowerment: A Case of the Learning Disabled People in Malaysia
  publication-title: Revista de cercetare [i interven] ie social
– ident: 10.1016/j.procs.2017.01.188_bib0055
  doi: 10.1109/IEMBS.2009.5334912
– ident: 10.1016/j.procs.2017.01.188_bib0115
  doi: 10.1145/1964897.1964918
– ident: 10.1016/j.procs.2017.01.188_bib0050
– ident: 10.1016/j.procs.2017.01.188_bib0015
– volume: 12
  start-page: 1
  year: 2013
  ident: 10.1016/j.procs.2017.01.188_bib0060
  article-title: Challenges, issues and trends in fall detection systems
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-66
– ident: 10.1016/j.procs.2017.01.188_bib0105
  doi: 10.1007/s11036-008-0112-y
– volume: 30
  start-page: 84
  year: 2008
  ident: 10.1016/j.procs.2017.01.188_bib0075
  article-title: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor
  publication-title: Medical engineering & physics.
  doi: 10.1016/j.medengphy.2006.12.001
SSID ssj0000388917
Score 2.3530636
Snippet Falls can be devastating to the affected individual, yet a common event and hence one of the major causes of injury or disability within the aged population in...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms cellular phone
fall detection
machine learning
smartphone
supervised learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfTi_MT5RQ4ezVjapMm8TecYgkPQwTyFJM0OWsvQDtG_3pd-DBUd89QWEhrey-v7Jf3l9xA6lTIOQx1xAisvTViHcSKtnRABuZYGgfU1Cz3bYhgNRux6zMelzrY_C_Pt_33Ow_Ifcq-rTYXX16RSrqJ6xAF411B9NLztPvgllRSCeCWTSlfo955_5Z61WTrV7286Sb7kln6jOLT9mksSekrJU2uWmZb9-CHYuOSwN9FGiTFxt5gUW2jFpduoUdVvwGU476De3TNMHE9Od_gCslmMezrT-CavGYEBzeI-DBb3XJbztdJzXEmYYJ1C45z8sYtG_av7ywEpqyoQyyjLCAShdM4ZYSiPJxEgKIhxuLPc0FBDdtJahsyIgHEzkeDhNvjL5tHaAVfScA_VUhjYPsJemy6IA26NtUz40tVwES4Wrh3HoWVNFFT2VraUHPeVLxJVccseVW4n5e2k2lSBnZrobN5pWihuLG4eVY5UJWgowIACnyzuSOZuX-ZFB_9sf4jW_VOxXXOEatnLzB0DgMnMSTlxPwHRyeng
  priority: 102
  providerName: Unpaywall
Title Smartphone Based Data Mining for Fall Detection: Analysis and Design
URI https://dx.doi.org/10.1016/j.procs.2017.01.188
https://doi.org/10.1016/j.procs.2017.01.188
UnpaywallVersion publishedVersion
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DH_TFuzgvIw8-Gra0aZP5totjOhziHM6nkqYZTGYZ0iH-e89J26EgQ3zqhaRJz8m5NJx-HyGXSiW-r8OAwZeXZqIpAqaMmTIJsZZ7nkHOQqy2GIb9sbibBJMK6ZT_wmBZZeH7c5_uvHVxp15Is76YzeojrqRE9BIOi9SDSAp-2BcK6RtuJ-3VPguinTQd8S62Z9ihBB9yZV4YJxC2m0uE7-SOgeXXALW1TBf680PP598CUG-P7BSZI23lk9snFZsekN2SlYEWRnpIuqM3eAEsObe0DTEqoV2daXrvmCAo5Ki0B0-nXZu5Kqz0mpbAJFSn0NiVdByRce_mqdNnBVcCM4KLjIFpKWttLGMeJNMQ8iKwXDgzQcx9DTFHa-WLWHoiiKcK9NYALRhng01QEPePyUYKEzshFBHnvMQLTGyMkEhIDQdpE2kbSeIbUSVeKaDIFEDiyGcxj8qKsdfISTVCqUYNHoFUq-Rq1WmR42isbx6Wko9-LIcIPP36jmylp78MdPrfgc7INl7luzHnZCN7X9oLyE-yuEY2W4PH50HNLUS4Gg8fWi9ftMnj1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8QH_DFbyN-9sFHG-jWrcM3BQkq8AIkvDVdVxIMLsSMGP9777qNaGKI8WnLtlu7u17v1lx_P0JuoijxfR0GDP68NBMtEbDImBmTEGu55xnkLMRqi2HYm4jnaTCtkHa5FwbLKou5P5_T3WxdXGkU2mws5_PGiEdSInoJh0HqQSTdItsigOwEd_FNH9YLLQh30nLMuyjAUKJEH3J1XhgoELebS8Tv5I6C5dcIVVulS_35oReLbxGou092i9SR3ue9OyAVmx6SvZKWgRZeekQ6ozf4Aqw5t_QBglRCOzrTdOCoICgkqbQLb6cdm7kyrPSOlsgkVKfwsKvpOCaT7uO43WMFWQIzgouMgW9F1tpYxjxIZiEkRuC6cGaCmPsago7WkS9i6YkgnkVguCaYwTgnbIGFuH9Cqil07JRQhJzzEi8wsTFCIiM1HKRNpG0miW9EnXilgpQpkMSR0GKhypKxV-W0qlCrqskVaLVObtdCyxxIY_PjYal59WM8KJjqNwuytZ3-0tDZfxu6JrXeeNBX_afhyznZwTv50swFqWbvK3sJyUoWX7nB-AX3NOOo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfTi_MT5RQ4ezVjapMm8TecYgkPQwTyFJM0OWsvQDtG_3pd-DBUd89QWEhrey-v7Jf3l9xA6lTIOQx1xAisvTViHcSKtnRABuZYGgfU1Cz3bYhgNRux6zMelzrY_C_Pt_33Ow_Ifcq-rTYXX16RSrqJ6xAF411B9NLztPvgllRSCeCWTSlfo955_5Z61WTrV7286Sb7kln6jOLT9mksSekrJU2uWmZb9-CHYuOSwN9FGiTFxt5gUW2jFpduoUdVvwGU476De3TNMHE9Od_gCslmMezrT-CavGYEBzeI-DBb3XJbztdJzXEmYYJ1C45z8sYtG_av7ywEpqyoQyyjLCAShdM4ZYSiPJxEgKIhxuLPc0FBDdtJahsyIgHEzkeDhNvjL5tHaAVfScA_VUhjYPsJemy6IA26NtUz40tVwES4Wrh3HoWVNFFT2VraUHPeVLxJVccseVW4n5e2k2lSBnZrobN5pWihuLG4eVY5UJWgowIACnyzuSOZuX-ZFB_9sf4jW_VOxXXOEatnLzB0DgMnMSTlxPwHRyeng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smartphone+Based+Data+Mining+for+Fall+Detection%3A+Analysis+and+Design&rft.jtitle=Procedia+computer+science&rft.au=Hakim%2C+Abdul&rft.au=Huq%2C+M.+Saiful&rft.au=Shanta%2C+Shahnoor&rft.au=Ibrahim%2C+B.S.K.K.&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=105&rft.spage=46&rft.epage=51&rft_id=info:doi/10.1016%2Fj.procs.2017.01.188&rft.externalDocID=S1877050917302065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon