Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network
Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the f...
        Saved in:
      
    
          | Published in | Optics and lasers in engineering Vol. 50; no. 2; pp. 148 - 153 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.02.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0143-8166 1873-0302  | 
| DOI | 10.1016/j.optlaseng.2011.09.015 | 
Cover
| Abstract | Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise.
► A Model reform soft computing recognition algorithm proposed to reach the reliability and robustness of FBG-based sensor system. ► The genetic algorithm-support vector regression (GA-SVR) model is proposed to predict the damage position of the structure. ► The genetic algorithm is used to optimize the parameters of the SVR model. | 
    
|---|---|
| AbstractList | Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise. Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise. ► A Model reform soft computing recognition algorithm proposed to reach the reliability and robustness of FBG-based sensor system. ► The genetic algorithm-support vector regression (GA-SVR) model is proposed to predict the damage position of the structure. ► The genetic algorithm is used to optimize the parameters of the SVR model.  | 
    
| Author | Zhang, XiaoLi Liang, DaKai Zeng, Jie Asundi, Anand  | 
    
| Author_xml | – sequence: 1 givenname: XiaoLi surname: Zhang fullname: Zhang, XiaoLi email: zxli_nuaa@nuaa.edu.cn organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China – sequence: 2 givenname: DaKai surname: Liang fullname: Liang, DaKai organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China – sequence: 3 givenname: Jie surname: Zeng fullname: Zeng, Jie organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China – sequence: 4 givenname: Anand surname: Asundi fullname: Asundi, Anand organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore  | 
    
| BookMark | eNqNkD9PwzAQxS1UJErhM-CRJcHXOP8GhoKgRSpiAGbLcS6pSxoH2wX12-OqiIEFptOd3nt69zslo970SMgFsBgYZFfr2Ay-kw77Np4ygJiVMYP0iIyhyJOIJWw6ImMGPIkKyLITcurcmgUnBxiTdo49eq2o7FpjtV9tIrcdBmM9_UDljaUWW4vOadPTJqwr3a7CrdOy0p32O_q8eKRu5zxuaBVa1DQI72_mNBRyQR_SP419OyPHjewcnn_PCXm9v3u5XUTLp_nD7WwZKQ7cR1wmOZaYhaaFkjx8UGWZylnNeIVVA0lepnlZ81SxJpV1xZKK8RQLxKKus5wnE3J5yB2sed-i82KjncKukz2arROQ5TAtEuBpkF4fpMoa5yw2QmkvfXjUW6k7AUzsAYu1-AEs9oAFK0UAHPz5L_9g9Uba3T-cs4MTA4kPjVY4pbFXWGsboIva6D8zvgA-8p8h | 
    
| CitedBy_id | crossref_primary_10_1109_JSEN_2020_2991960 crossref_primary_10_1177_14759217221091907 crossref_primary_10_3390_app11020821 crossref_primary_10_1016_j_chemolab_2012_11_017 crossref_primary_10_3390_cryst15020197 crossref_primary_10_1007_s10614_015_9528_1 crossref_primary_10_1088_0957_0233_26_4_045104 crossref_primary_10_3390_rs11192252 crossref_primary_10_1016_j_paerosci_2014_03_003 crossref_primary_10_1109_TIM_2021_3091501 crossref_primary_10_1109_JSEN_2014_2362915 crossref_primary_10_3390_sym13030411 crossref_primary_10_1109_JLT_2015_2423685 crossref_primary_10_1109_JLT_2019_2898879 crossref_primary_10_1155_2014_652329 crossref_primary_10_3390_s19051056 crossref_primary_10_1109_TIM_2014_2299528 crossref_primary_10_3390_buildings13092141 crossref_primary_10_1080_17517575_2015_1048830 crossref_primary_10_1016_j_jtice_2014_04_016 crossref_primary_10_1016_j_sna_2020_112338 crossref_primary_10_1061__ASCE_CP_1943_5487_0000289 crossref_primary_10_3390_photonics10070733 crossref_primary_10_3390_photonics9020079  | 
    
| Cites_doi | 10.1049/el:20010120 10.1177/1045389X10375997 10.1088/0957-0233/20/4/043001 10.1016/j.optlaseng.2009.04.002 10.1016/j.jmgm.2010.06.002 10.1016/j.asoc.2007.02.019 10.1016/j.ymssp.2005.09.005 10.1016/j.neunet.2010.09.011 10.1016/j.sna.2008.04.008 10.1016/S1000-9361(08)60082-5 10.1016/j.tourman.2005.12.018 10.1088/0964-1726/19/8/085009 10.1177/1045389X10374163 10.1016/j.compmedimag.2007.10.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2011 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2011 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7SP 7TB 7U5 8FD FR3 H8D L7M  | 
    
| DOI | 10.1016/j.optlaseng.2011.09.015 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1873-0302 | 
    
| EndPage | 153 | 
    
| ExternalDocumentID | 10_1016_j_optlaseng_2011_09_015 S0143816611002739  | 
    
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7TB 7U5 8FD FR3 H8D L7M  | 
    
| ID | FETCH-LOGICAL-c414t-4a37e9e68168ca4187b66c70d04bebf1379579d45c0f5adb03b045e8ee8dd6743 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0143-8166 | 
    
| IngestDate | Sat Sep 27 23:34:40 EDT 2025 Thu Oct 02 04:35:23 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Fri Feb 23 02:23:00 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | FBG sensor network Support vector regression Structural health monitoring Reliability Genetic algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c414t-4a37e9e68168ca4187b66c70d04bebf1379579d45c0f5adb03b045e8ee8dd6743 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1671283145 | 
    
| PQPubID | 23500 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | proquest_miscellaneous_1671283145 crossref_citationtrail_10_1016_j_optlaseng_2011_09_015 crossref_primary_10_1016_j_optlaseng_2011_09_015 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2011_09_015  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-02-01 | 
    
| PublicationDateYYYYMMDD | 2012-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Optics and lasers in engineering | 
    
| PublicationYear | 2012 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Izquierdo, Urquhart, López-Amo (bib8) 2007; 2 Sun, Wei (bib9) 2007; 10 Schroeder, Ecke, Willsch (bib19) 2009; 47 Majumder, Gangopadhyay, Chakraborty, Dasgupta, Bhattacharya (bib1) 2008; 147 Guo, Bai (bib12) 2009; 22 Zhou, Zhou, Zhang (bib2) 2010; 21 Chen, Wang (bib16) 2007; 28 Mieloszyk, Krawczuk, Zak, Ostachowicz (bib3) 2010; 19 Ebrahimzadeh, Ghazalian (bib17) 2010 Xuan Li, Dai Zong, Xiaoyong (bib18) 2010; 29 Xiu, Yong, Harrison (bib11) 2008; 8 Shin, Kim, Kim (bib14) 2011; 24 Peng, Lin, Chi (bib6) 2004; 1 Hoschke, Lewis, Price, Scott, Gerasimov, Wang (bib20) 2008 Shin, Deok Kim, Cho, Shim, Lee (bib7) 2001; 37 Hoschke, Lewis, Price, Scott, Gerasimov, Wang (bib4) 2008 Yeh, Chow, Wang, Shih, Wu, Chi (bib5) 2009; 20 hu, liang, zeng, lu (bib10) 2010; 22 Cheng, Yu, Yang (bib15) 2007; 21 Rahman, Desai, Bhattacharya (bib13) 2008; 32 Chen (10.1016/j.optlaseng.2011.09.015_bib16) 2007; 28 Hoschke (10.1016/j.optlaseng.2011.09.015_bib4) 2008 Shin (10.1016/j.optlaseng.2011.09.015_bib7) 2001; 37 Sun (10.1016/j.optlaseng.2011.09.015_bib9) 2007; 10 Hoschke (10.1016/j.optlaseng.2011.09.015_bib20) 2008 Mieloszyk (10.1016/j.optlaseng.2011.09.015_bib3) 2010; 19 Peng (10.1016/j.optlaseng.2011.09.015_bib6) 2004; 1 Guo (10.1016/j.optlaseng.2011.09.015_bib12) 2009; 22 Ebrahimzadeh (10.1016/j.optlaseng.2011.09.015_bib17) 2010 Xiu (10.1016/j.optlaseng.2011.09.015_bib11) 2008; 8 Zhou (10.1016/j.optlaseng.2011.09.015_bib2) 2010; 21 Xuan Li (10.1016/j.optlaseng.2011.09.015_bib18) 2010; 29 Majumder (10.1016/j.optlaseng.2011.09.015_bib1) 2008; 147 Rahman (10.1016/j.optlaseng.2011.09.015_bib13) 2008; 32 hu (10.1016/j.optlaseng.2011.09.015_bib10) 2010; 22 Cheng (10.1016/j.optlaseng.2011.09.015_bib15) 2007; 21 Shin (10.1016/j.optlaseng.2011.09.015_bib14) 2011; 24 Yeh (10.1016/j.optlaseng.2011.09.015_bib5) 2009; 20 Schroeder (10.1016/j.optlaseng.2011.09.015_bib19) 2009; 47 Izquierdo (10.1016/j.optlaseng.2011.09.015_bib8) 2007; 2  | 
    
| References_xml | – volume: 19 start-page: 1 year: 2010 end-page: 12 ident: bib3 article-title: An adaptive wing for a small-aircraft application with a configuration of fiber Bragg grating sensors publication-title: Smart Mater Struct – volume: 37 start-page: 188 year: 2001 end-page: 190 ident: bib7 article-title: Demonstration of self-healing and automatic retrieval in two-fibre bi-directional WDM ring network publication-title: Electron Lett – volume: 10 year: 2007 ident: bib9 article-title: Using new models to enhance optical-fiber-sensor networks publication-title: SPIE—The International Society for Optical Engineering – volume: 1 start-page: 60 year: 2004 end-page: 63 ident: bib6 article-title: A Self-Healing Architecture for Fiber Bragg Grating Sensor network publication-title: Proc IEEE Sens – volume: 47 start-page: 1018 year: 2009 end-page: 1022 ident: bib19 article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer publication-title: Opt Lasers Eng – volume: 2 start-page: 1 year: 2007 end-page: 18 ident: bib8 article-title: Protection Architectures for WDM Optical Fibre Bus Sensor Arrays publication-title: J Eng – volume: 21 start-page: 1197 year: 2007 end-page: 1211 ident: bib15 article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform publication-title: Mech Syst Signal Process – volume: 24 start-page: 109 year: 2011 end-page: 120 ident: bib14 article-title: Adaptive support vector regression for UAV flight control publication-title: Neural Networks – start-page: 51 year: 2008 end-page: 76 ident: bib4 article-title: A Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles publication-title: Adv Inf Knowl Process Part II – volume: 28 start-page: 215 year: 2007 end-page: 226 ident: bib16 article-title: Support vector regression with genetic algorithms in forecasting tourism demand publication-title: Tourism Manage – volume: 20 year: 2009 ident: bib5 article-title: A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network publication-title: Meas Sci Technol – volume: 22 start-page: 955 year: 2010 end-page: 959 ident: bib10 article-title: A Long Period Grating for Simultaneous Measurement of Temperature and Strain Based on Support Vector Regression publication-title: J Intell Mater Syst Struct – start-page: 1 year: 2010 end-page: 10 ident: bib17 article-title: Blind digital modulation classification in software radio using the optimized classifier and feature subset selection publication-title: Eng Appl Artif Intell – volume: 21 start-page: 1117 year: 2010 end-page: 1122 ident: bib2 article-title: Study on strain transfer characteristics of fiber Bragg grating sensors publication-title: J Intell Mater Syst Struct – start-page: 51 year: 2008 end-page: 76 ident: bib20 article-title: Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles publication-title: Adv Inf Knowl Process Part II – volume: 29 start-page: 188 year: 2010 end-page: 196 ident: bib18 article-title: QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm publication-title: J Mol Graphics Modell – volume: 32 start-page: 95 year: 2008 end-page: 108 ident: bib13 article-title: Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion publication-title: Computerized Med. Imaging and Graphics – volume: 147 start-page: 150 year: 2008 end-page: 164 ident: bib1 article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications publication-title: Sens Actuators, A – volume: 8 start-page: 1222 year: 2008 end-page: 1231 ident: bib11 article-title: Type-2 fuzzy logic-based classifier fusion for support vector machines publication-title: Appl Soft Comput – volume: 22 start-page: 160 year: 2009 end-page: 166 ident: bib12 article-title: Application of least squares support vector machine for regression to reliability analysis publication-title: Chin J Aeronaut – volume: 37 start-page: 188 issue: 3 year: 2001 ident: 10.1016/j.optlaseng.2011.09.015_bib7 article-title: Demonstration of self-healing and automatic retrieval in two-fibre bi-directional WDM ring network publication-title: Electron Lett doi: 10.1049/el:20010120 – volume: 2 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.optlaseng.2011.09.015_bib8 article-title: Protection Architectures for WDM Optical Fibre Bus Sensor Arrays publication-title: J Eng – start-page: 1 year: 2010 ident: 10.1016/j.optlaseng.2011.09.015_bib17 article-title: Blind digital modulation classification in software radio using the optimized classifier and feature subset selection publication-title: Eng Appl Artif Intell – volume: 21 start-page: 1117 year: 2010 ident: 10.1016/j.optlaseng.2011.09.015_bib2 article-title: Study on strain transfer characteristics of fiber Bragg grating sensors publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X10375997 – volume: 20 year: 2009 ident: 10.1016/j.optlaseng.2011.09.015_bib5 article-title: A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network publication-title: Meas Sci Technol doi: 10.1088/0957-0233/20/4/043001 – volume: 10 year: 2007 ident: 10.1016/j.optlaseng.2011.09.015_bib9 article-title: Using new models to enhance optical-fiber-sensor networks publication-title: SPIE—The International Society for Optical Engineering – volume: 47 start-page: 1018 year: 2009 ident: 10.1016/j.optlaseng.2011.09.015_bib19 article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.04.002 – volume: 29 start-page: 188 issue: 2 year: 2010 ident: 10.1016/j.optlaseng.2011.09.015_bib18 article-title: QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm publication-title: J Mol Graphics Modell doi: 10.1016/j.jmgm.2010.06.002 – volume: 8 start-page: 1222 issue: 3 year: 2008 ident: 10.1016/j.optlaseng.2011.09.015_bib11 article-title: Type-2 fuzzy logic-based classifier fusion for support vector machines publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.02.019 – start-page: 51 year: 2008 ident: 10.1016/j.optlaseng.2011.09.015_bib20 article-title: Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles publication-title: Adv Inf Knowl Process Part II – volume: 21 start-page: 1197 year: 2007 ident: 10.1016/j.optlaseng.2011.09.015_bib15 article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.09.005 – start-page: 51 year: 2008 ident: 10.1016/j.optlaseng.2011.09.015_bib4 article-title: A Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles publication-title: Adv Inf Knowl Process Part II – volume: 1 start-page: 60 year: 2004 ident: 10.1016/j.optlaseng.2011.09.015_bib6 article-title: A Self-Healing Architecture for Fiber Bragg Grating Sensor network publication-title: Proc IEEE Sens – volume: 24 start-page: 109 year: 2011 ident: 10.1016/j.optlaseng.2011.09.015_bib14 article-title: Adaptive support vector regression for UAV flight control publication-title: Neural Networks doi: 10.1016/j.neunet.2010.09.011 – volume: 147 start-page: 150 year: 2008 ident: 10.1016/j.optlaseng.2011.09.015_bib1 article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications publication-title: Sens Actuators, A doi: 10.1016/j.sna.2008.04.008 – volume: 22 start-page: 160 issue: 2 year: 2009 ident: 10.1016/j.optlaseng.2011.09.015_bib12 article-title: Application of least squares support vector machine for regression to reliability analysis publication-title: Chin J Aeronaut doi: 10.1016/S1000-9361(08)60082-5 – volume: 28 start-page: 215 year: 2007 ident: 10.1016/j.optlaseng.2011.09.015_bib16 article-title: Support vector regression with genetic algorithms in forecasting tourism demand publication-title: Tourism Manage doi: 10.1016/j.tourman.2005.12.018 – volume: 19 start-page: 1 year: 2010 ident: 10.1016/j.optlaseng.2011.09.015_bib3 article-title: An adaptive wing for a small-aircraft application with a configuration of fiber Bragg grating sensors publication-title: Smart Mater Struct doi: 10.1088/0964-1726/19/8/085009 – volume: 22 start-page: 955 year: 2010 ident: 10.1016/j.optlaseng.2011.09.015_bib10 article-title: A Long Period Grating for Simultaneous Measurement of Temperature and Strain Based on Support Vector Regression publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X10374163 – volume: 32 start-page: 95 issue: 2 year: 2008 ident: 10.1016/j.optlaseng.2011.09.015_bib13 article-title: Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion publication-title: Computerized Med. Imaging and Graphics doi: 10.1016/j.compmedimag.2007.10.001  | 
    
| SSID | ssj0016411 | 
    
| Score | 2.1018076 | 
    
| Snippet | Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 148 | 
    
| SubjectTerms | Algorithms Diagnostic systems Failure FBG sensor network Genetic algorithm Mathematical models Networks Optical fibers Reconstruction Reliability Sensors Structural health monitoring Support vector regression  | 
    
| Title | Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network | 
    
| URI | https://dx.doi.org/10.1016/j.optlaseng.2011.09.015 https://www.proquest.com/docview/1671283145  | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-0302 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AKRWK dateStart: 19800701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQaNL2MAFjGhtDnsSraZxc7GZvDNF1q-BhG4I3K_6RrlOXVrSdtJf97dzFSQUTEg88RbHOSnLn3J3tz98xdiSlz3OdKiEhtQIjdCFKW2kBwQWdOg9FRQv65xdqeAlfr_PrDXbanYUhWGXr-6NPb7x129JrtdmbTyY9giU1u15EeoZBmA7xAWiqYnD8bw3zwNmAjDUJIRMkfQ_jNZsvMUcN9bjl8iyOE6qP-3CE-s9XNwFosM1etpkjP4kvt8M2Qr3LXtzhE9xlzxo8p1u8YmOik0ZBXk7HM5z___wtFqs55dr8T7NOz2_COEJga455KyfaYmybTiJv91_-fXjOI80zp0jnOQoOPn3m-B0LlK8jfHyPXQ7OfpwORVtTQTiQsBRQZjoUQVG5DVeC7GurlNOJT8AGW8lM076dh9wlVV56m2QWk77QD6HvPR1YeM0261kd3jAuUxW8Q4eZQYJKhiKr0sJnLrWg0TOofaY6PRrXEo5T3Yup6ZBlv8zaAIYMYJLCoAH2WbLuOI-cG493-dgZytwbPgYjw-OdP3SmNfhz0Y5JWYfZamGk0hi_Mwn526c84B17jndpBHsfsM3lzSq8x1xmaQ-bwXrItk6-jIYXdB19uxrdAudk9sA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4aQwg4TDBADAYYiavXOHHshhubVgqsu7BJu1nxj3RFJa3aFIkLfzvvxUnFENIOXJ1nJfFz3vdif_4ewDshfJ7rVHEhU8sRoQte2kpzGVzQqfOyqGhBf3Kuxpfy81V-tQMn_VkYolV2sT_G9DZady2DbjQHy9lsQLSkdteLRM8QhIs7cFfmqaY_sKNfW54H_g6IWJRQZpzMb5C8FssGk9RQTzsxz-IooQK5_4aov4J1i0CjR7DXpY7sQ3y6x7AT6n14-Ieg4D7cawmdbv0EpqQnjYasnE8Xq1lz_Z2vN0tKttmPdqGercI0cmBrhokrI91ibJvPonD3T_Z1PGFR55kR1HmGhqPjjwzfY432deSPP4XL0enFyZh3RRW4k0I2XJaZDkVQVG_DlVIMtVXK6cQn0gZbiUzTxp2XuUuqvPQ2ySxmfWEYwtB7OrHwDHbrRR2eAxOpCt5hxMxkgoMsi6xKC5-51EqNoUEdgOrH0bhOcZwKX8xNTy37ZrYOMOQAkxQGHXAAybbjMopu3N7lfe8oc2P-GISG2zu_7V1r8OuiLZOyDovN2gilEcAzIfMX_3ODN3B_fDE5M2efzr-8hAd4JY3M70PYbVab8AoTm8a-bifub-Ob9rI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithm-support+vector+regression+for+high+reliability+SHM+system+based+on+FBG+sensor+network&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Zhang%2C+XiaoLi&rft.au=Liang%2C+DaKai&rft.au=Zeng%2C+Jie&rft.au=Asundi%2C+Anand&rft.date=2012-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=50&rft.issue=2&rft.spage=148&rft.epage=153&rft_id=info:doi/10.1016%2Fj.optlaseng.2011.09.015&rft.externalDocID=S0143816611002739 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |