Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network

Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the f...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 50; no. 2; pp. 148 - 153
Main Authors Zhang, XiaoLi, Liang, DaKai, Zeng, Jie, Asundi, Anand
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2012
Subjects
Online AccessGet full text
ISSN0143-8166
1873-0302
DOI10.1016/j.optlaseng.2011.09.015

Cover

Abstract Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise. ► A Model reform soft computing recognition algorithm proposed to reach the reliability and robustness of FBG-based sensor system. ► The genetic algorithm-support vector regression (GA-SVR) model is proposed to predict the damage position of the structure. ► The genetic algorithm is used to optimize the parameters of the SVR model.
AbstractList Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise.
Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor network is embedded or glued in the structure simply with series or parallel. In this case, if optic fiber sensors or fiber nodes fail, the fiber sensors cannot be sensed behind the failure point. Therefore, for improving the survivability of the FBG-based sensor system in the SHM, it is necessary to build high reliability FBG sensor network for the SHM engineering application. In this study, a model reconstruction soft computing recognition algorithm based on genetic algorithm-support vector regression (GA-SVR) is proposed to achieve the reliability of the FBG-based sensor system. Furthermore, an 8-point FBG sensor system is experimented in an aircraft wing box. The external loading damage position prediction is an important subject for SHM system; as an example, different failure modes are selected to demonstrate the SHM system's survivability of the FBG-based sensor network. Simultaneously, the results are compared with the non-reconstruct model based on GA-SVR in each failure mode. Results show that the proposed model reconstruction algorithm based on GA-SVR can still keep the predicting precision when partial sensors failure in the SHM system; thus a highly reliable sensor network for the SHM system is facilitated without introducing extra component and noise. ► A Model reform soft computing recognition algorithm proposed to reach the reliability and robustness of FBG-based sensor system. ► The genetic algorithm-support vector regression (GA-SVR) model is proposed to predict the damage position of the structure. ► The genetic algorithm is used to optimize the parameters of the SVR model.
Author Zhang, XiaoLi
Liang, DaKai
Zeng, Jie
Asundi, Anand
Author_xml – sequence: 1
  givenname: XiaoLi
  surname: Zhang
  fullname: Zhang, XiaoLi
  email: zxli_nuaa@nuaa.edu.cn
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China
– sequence: 2
  givenname: DaKai
  surname: Liang
  fullname: Liang, DaKai
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China
– sequence: 3
  givenname: Jie
  surname: Zeng
  fullname: Zeng, Jie
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Baixia district, Nanjing 210016, China
– sequence: 4
  givenname: Anand
  surname: Asundi
  fullname: Asundi, Anand
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
BookMark eNqNkD9PwzAQxS1UJErhM-CRJcHXOP8GhoKgRSpiAGbLcS6pSxoH2wX12-OqiIEFptOd3nt69zslo970SMgFsBgYZFfr2Ay-kw77Np4ygJiVMYP0iIyhyJOIJWw6ImMGPIkKyLITcurcmgUnBxiTdo49eq2o7FpjtV9tIrcdBmM9_UDljaUWW4vOadPTJqwr3a7CrdOy0p32O_q8eKRu5zxuaBVa1DQI72_mNBRyQR_SP419OyPHjewcnn_PCXm9v3u5XUTLp_nD7WwZKQ7cR1wmOZaYhaaFkjx8UGWZylnNeIVVA0lepnlZ81SxJpV1xZKK8RQLxKKus5wnE3J5yB2sed-i82KjncKukz2arROQ5TAtEuBpkF4fpMoa5yw2QmkvfXjUW6k7AUzsAYu1-AEs9oAFK0UAHPz5L_9g9Uba3T-cs4MTA4kPjVY4pbFXWGsboIva6D8zvgA-8p8h
CitedBy_id crossref_primary_10_1109_JSEN_2020_2991960
crossref_primary_10_1177_14759217221091907
crossref_primary_10_3390_app11020821
crossref_primary_10_1016_j_chemolab_2012_11_017
crossref_primary_10_3390_cryst15020197
crossref_primary_10_1007_s10614_015_9528_1
crossref_primary_10_1088_0957_0233_26_4_045104
crossref_primary_10_3390_rs11192252
crossref_primary_10_1016_j_paerosci_2014_03_003
crossref_primary_10_1109_TIM_2021_3091501
crossref_primary_10_1109_JSEN_2014_2362915
crossref_primary_10_3390_sym13030411
crossref_primary_10_1109_JLT_2015_2423685
crossref_primary_10_1109_JLT_2019_2898879
crossref_primary_10_1155_2014_652329
crossref_primary_10_3390_s19051056
crossref_primary_10_1109_TIM_2014_2299528
crossref_primary_10_3390_buildings13092141
crossref_primary_10_1080_17517575_2015_1048830
crossref_primary_10_1016_j_jtice_2014_04_016
crossref_primary_10_1016_j_sna_2020_112338
crossref_primary_10_1061__ASCE_CP_1943_5487_0000289
crossref_primary_10_3390_photonics10070733
crossref_primary_10_3390_photonics9020079
Cites_doi 10.1049/el:20010120
10.1177/1045389X10375997
10.1088/0957-0233/20/4/043001
10.1016/j.optlaseng.2009.04.002
10.1016/j.jmgm.2010.06.002
10.1016/j.asoc.2007.02.019
10.1016/j.ymssp.2005.09.005
10.1016/j.neunet.2010.09.011
10.1016/j.sna.2008.04.008
10.1016/S1000-9361(08)60082-5
10.1016/j.tourman.2005.12.018
10.1088/0964-1726/19/8/085009
10.1177/1045389X10374163
10.1016/j.compmedimag.2007.10.001
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
H8D
L7M
DOI 10.1016/j.optlaseng.2011.09.015
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
EndPage 153
ExternalDocumentID 10_1016_j_optlaseng_2011_09_015
S0143816611002739
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TB
7U5
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c414t-4a37e9e68168ca4187b66c70d04bebf1379579d45c0f5adb03b045e8ee8dd6743
IEDL.DBID .~1
ISSN 0143-8166
IngestDate Sat Sep 27 23:34:40 EDT 2025
Thu Oct 02 04:35:23 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Fri Feb 23 02:23:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FBG sensor network
Support vector regression
Structural health monitoring
Reliability
Genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-4a37e9e68168ca4187b66c70d04bebf1379579d45c0f5adb03b045e8ee8dd6743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671283145
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1671283145
crossref_citationtrail_10_1016_j_optlaseng_2011_09_015
crossref_primary_10_1016_j_optlaseng_2011_09_015
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2011_09_015
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Optics and lasers in engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Izquierdo, Urquhart, López-Amo (bib8) 2007; 2
Sun, Wei (bib9) 2007; 10
Schroeder, Ecke, Willsch (bib19) 2009; 47
Majumder, Gangopadhyay, Chakraborty, Dasgupta, Bhattacharya (bib1) 2008; 147
Guo, Bai (bib12) 2009; 22
Zhou, Zhou, Zhang (bib2) 2010; 21
Chen, Wang (bib16) 2007; 28
Mieloszyk, Krawczuk, Zak, Ostachowicz (bib3) 2010; 19
Ebrahimzadeh, Ghazalian (bib17) 2010
Xuan Li, Dai Zong, Xiaoyong (bib18) 2010; 29
Xiu, Yong, Harrison (bib11) 2008; 8
Shin, Kim, Kim (bib14) 2011; 24
Peng, Lin, Chi (bib6) 2004; 1
Hoschke, Lewis, Price, Scott, Gerasimov, Wang (bib20) 2008
Shin, Deok Kim, Cho, Shim, Lee (bib7) 2001; 37
Hoschke, Lewis, Price, Scott, Gerasimov, Wang (bib4) 2008
Yeh, Chow, Wang, Shih, Wu, Chi (bib5) 2009; 20
hu, liang, zeng, lu (bib10) 2010; 22
Cheng, Yu, Yang (bib15) 2007; 21
Rahman, Desai, Bhattacharya (bib13) 2008; 32
Chen (10.1016/j.optlaseng.2011.09.015_bib16) 2007; 28
Hoschke (10.1016/j.optlaseng.2011.09.015_bib4) 2008
Shin (10.1016/j.optlaseng.2011.09.015_bib7) 2001; 37
Sun (10.1016/j.optlaseng.2011.09.015_bib9) 2007; 10
Hoschke (10.1016/j.optlaseng.2011.09.015_bib20) 2008
Mieloszyk (10.1016/j.optlaseng.2011.09.015_bib3) 2010; 19
Peng (10.1016/j.optlaseng.2011.09.015_bib6) 2004; 1
Guo (10.1016/j.optlaseng.2011.09.015_bib12) 2009; 22
Ebrahimzadeh (10.1016/j.optlaseng.2011.09.015_bib17) 2010
Xiu (10.1016/j.optlaseng.2011.09.015_bib11) 2008; 8
Zhou (10.1016/j.optlaseng.2011.09.015_bib2) 2010; 21
Xuan Li (10.1016/j.optlaseng.2011.09.015_bib18) 2010; 29
Majumder (10.1016/j.optlaseng.2011.09.015_bib1) 2008; 147
Rahman (10.1016/j.optlaseng.2011.09.015_bib13) 2008; 32
hu (10.1016/j.optlaseng.2011.09.015_bib10) 2010; 22
Cheng (10.1016/j.optlaseng.2011.09.015_bib15) 2007; 21
Shin (10.1016/j.optlaseng.2011.09.015_bib14) 2011; 24
Yeh (10.1016/j.optlaseng.2011.09.015_bib5) 2009; 20
Schroeder (10.1016/j.optlaseng.2011.09.015_bib19) 2009; 47
Izquierdo (10.1016/j.optlaseng.2011.09.015_bib8) 2007; 2
References_xml – volume: 19
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib3
  article-title: An adaptive wing for a small-aircraft application with a configuration of fiber Bragg grating sensors
  publication-title: Smart Mater Struct
– volume: 37
  start-page: 188
  year: 2001
  end-page: 190
  ident: bib7
  article-title: Demonstration of self-healing and automatic retrieval in two-fibre bi-directional WDM ring network
  publication-title: Electron Lett
– volume: 10
  year: 2007
  ident: bib9
  article-title: Using new models to enhance optical-fiber-sensor networks
  publication-title: SPIE—The International Society for Optical Engineering
– volume: 1
  start-page: 60
  year: 2004
  end-page: 63
  ident: bib6
  article-title: A Self-Healing Architecture for Fiber Bragg Grating Sensor network
  publication-title: Proc IEEE Sens
– volume: 47
  start-page: 1018
  year: 2009
  end-page: 1022
  ident: bib19
  article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
  publication-title: Opt Lasers Eng
– volume: 2
  start-page: 1
  year: 2007
  end-page: 18
  ident: bib8
  article-title: Protection Architectures for WDM Optical Fibre Bus Sensor Arrays
  publication-title: J Eng
– volume: 21
  start-page: 1197
  year: 2007
  end-page: 1211
  ident: bib15
  article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform
  publication-title: Mech Syst Signal Process
– volume: 24
  start-page: 109
  year: 2011
  end-page: 120
  ident: bib14
  article-title: Adaptive support vector regression for UAV flight control
  publication-title: Neural Networks
– start-page: 51
  year: 2008
  end-page: 76
  ident: bib4
  article-title: A Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles
  publication-title: Adv Inf Knowl Process Part II
– volume: 28
  start-page: 215
  year: 2007
  end-page: 226
  ident: bib16
  article-title: Support vector regression with genetic algorithms in forecasting tourism demand
  publication-title: Tourism Manage
– volume: 20
  year: 2009
  ident: bib5
  article-title: A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network
  publication-title: Meas Sci Technol
– volume: 22
  start-page: 955
  year: 2010
  end-page: 959
  ident: bib10
  article-title: A Long Period Grating for Simultaneous Measurement of Temperature and Strain Based on Support Vector Regression
  publication-title: J Intell Mater Syst Struct
– start-page: 1
  year: 2010
  end-page: 10
  ident: bib17
  article-title: Blind digital modulation classification in software radio using the optimized classifier and feature subset selection
  publication-title: Eng Appl Artif Intell
– volume: 21
  start-page: 1117
  year: 2010
  end-page: 1122
  ident: bib2
  article-title: Study on strain transfer characteristics of fiber Bragg grating sensors
  publication-title: J Intell Mater Syst Struct
– start-page: 51
  year: 2008
  end-page: 76
  ident: bib20
  article-title: Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles
  publication-title: Adv Inf Knowl Process Part II
– volume: 29
  start-page: 188
  year: 2010
  end-page: 196
  ident: bib18
  article-title: QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm
  publication-title: J Mol Graphics Modell
– volume: 32
  start-page: 95
  year: 2008
  end-page: 108
  ident: bib13
  article-title: Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion
  publication-title: Computerized Med. Imaging and Graphics
– volume: 147
  start-page: 150
  year: 2008
  end-page: 164
  ident: bib1
  article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications
  publication-title: Sens Actuators, A
– volume: 8
  start-page: 1222
  year: 2008
  end-page: 1231
  ident: bib11
  article-title: Type-2 fuzzy logic-based classifier fusion for support vector machines
  publication-title: Appl Soft Comput
– volume: 22
  start-page: 160
  year: 2009
  end-page: 166
  ident: bib12
  article-title: Application of least squares support vector machine for regression to reliability analysis
  publication-title: Chin J Aeronaut
– volume: 37
  start-page: 188
  issue: 3
  year: 2001
  ident: 10.1016/j.optlaseng.2011.09.015_bib7
  article-title: Demonstration of self-healing and automatic retrieval in two-fibre bi-directional WDM ring network
  publication-title: Electron Lett
  doi: 10.1049/el:20010120
– volume: 2
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.optlaseng.2011.09.015_bib8
  article-title: Protection Architectures for WDM Optical Fibre Bus Sensor Arrays
  publication-title: J Eng
– start-page: 1
  year: 2010
  ident: 10.1016/j.optlaseng.2011.09.015_bib17
  article-title: Blind digital modulation classification in software radio using the optimized classifier and feature subset selection
  publication-title: Eng Appl Artif Intell
– volume: 21
  start-page: 1117
  year: 2010
  ident: 10.1016/j.optlaseng.2011.09.015_bib2
  article-title: Study on strain transfer characteristics of fiber Bragg grating sensors
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X10375997
– volume: 20
  year: 2009
  ident: 10.1016/j.optlaseng.2011.09.015_bib5
  article-title: A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/4/043001
– volume: 10
  year: 2007
  ident: 10.1016/j.optlaseng.2011.09.015_bib9
  article-title: Using new models to enhance optical-fiber-sensor networks
  publication-title: SPIE—The International Society for Optical Engineering
– volume: 47
  start-page: 1018
  year: 2009
  ident: 10.1016/j.optlaseng.2011.09.015_bib19
  article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.04.002
– volume: 29
  start-page: 188
  issue: 2
  year: 2010
  ident: 10.1016/j.optlaseng.2011.09.015_bib18
  article-title: QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm
  publication-title: J Mol Graphics Modell
  doi: 10.1016/j.jmgm.2010.06.002
– volume: 8
  start-page: 1222
  issue: 3
  year: 2008
  ident: 10.1016/j.optlaseng.2011.09.015_bib11
  article-title: Type-2 fuzzy logic-based classifier fusion for support vector machines
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.02.019
– start-page: 51
  year: 2008
  ident: 10.1016/j.optlaseng.2011.09.015_bib20
  article-title: Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles
  publication-title: Adv Inf Knowl Process Part II
– volume: 21
  start-page: 1197
  year: 2007
  ident: 10.1016/j.optlaseng.2011.09.015_bib15
  article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.005
– start-page: 51
  year: 2008
  ident: 10.1016/j.optlaseng.2011.09.015_bib4
  article-title: A Self-organizing Sensing System for Structural Health Monitoring of Aerospace Vehicles
  publication-title: Adv Inf Knowl Process Part II
– volume: 1
  start-page: 60
  year: 2004
  ident: 10.1016/j.optlaseng.2011.09.015_bib6
  article-title: A Self-Healing Architecture for Fiber Bragg Grating Sensor network
  publication-title: Proc IEEE Sens
– volume: 24
  start-page: 109
  year: 2011
  ident: 10.1016/j.optlaseng.2011.09.015_bib14
  article-title: Adaptive support vector regression for UAV flight control
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.09.011
– volume: 147
  start-page: 150
  year: 2008
  ident: 10.1016/j.optlaseng.2011.09.015_bib1
  article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2008.04.008
– volume: 22
  start-page: 160
  issue: 2
  year: 2009
  ident: 10.1016/j.optlaseng.2011.09.015_bib12
  article-title: Application of least squares support vector machine for regression to reliability analysis
  publication-title: Chin J Aeronaut
  doi: 10.1016/S1000-9361(08)60082-5
– volume: 28
  start-page: 215
  year: 2007
  ident: 10.1016/j.optlaseng.2011.09.015_bib16
  article-title: Support vector regression with genetic algorithms in forecasting tourism demand
  publication-title: Tourism Manage
  doi: 10.1016/j.tourman.2005.12.018
– volume: 19
  start-page: 1
  year: 2010
  ident: 10.1016/j.optlaseng.2011.09.015_bib3
  article-title: An adaptive wing for a small-aircraft application with a configuration of fiber Bragg grating sensors
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/19/8/085009
– volume: 22
  start-page: 955
  year: 2010
  ident: 10.1016/j.optlaseng.2011.09.015_bib10
  article-title: A Long Period Grating for Simultaneous Measurement of Temperature and Strain Based on Support Vector Regression
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X10374163
– volume: 32
  start-page: 95
  issue: 2
  year: 2008
  ident: 10.1016/j.optlaseng.2011.09.015_bib13
  article-title: Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion
  publication-title: Computerized Med. Imaging and Graphics
  doi: 10.1016/j.compmedimag.2007.10.001
SSID ssj0016411
Score 2.1018076
Snippet Structural Health Monitoring (SHM) based on fiber Bragg grating (FBG) sensor network has attracted considerable attention in recent years. However, FBG sensor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Algorithms
Diagnostic systems
Failure
FBG sensor network
Genetic algorithm
Mathematical models
Networks
Optical fibers
Reconstruction
Reliability
Sensors
Structural health monitoring
Support vector regression
Title Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network
URI https://dx.doi.org/10.1016/j.optlaseng.2011.09.015
https://www.proquest.com/docview/1671283145
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AKRWK
  dateStart: 19800701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQaNL2MAFjGhtDnsSraZxc7GZvDNF1q-BhG4I3K_6RrlOXVrSdtJf97dzFSQUTEg88RbHOSnLn3J3tz98xdiSlz3OdKiEhtQIjdCFKW2kBwQWdOg9FRQv65xdqeAlfr_PrDXbanYUhWGXr-6NPb7x129JrtdmbTyY9giU1u15EeoZBmA7xAWiqYnD8bw3zwNmAjDUJIRMkfQ_jNZsvMUcN9bjl8iyOE6qP-3CE-s9XNwFosM1etpkjP4kvt8M2Qr3LXtzhE9xlzxo8p1u8YmOik0ZBXk7HM5z___wtFqs55dr8T7NOz2_COEJga455KyfaYmybTiJv91_-fXjOI80zp0jnOQoOPn3m-B0LlK8jfHyPXQ7OfpwORVtTQTiQsBRQZjoUQVG5DVeC7GurlNOJT8AGW8lM076dh9wlVV56m2QWk77QD6HvPR1YeM0261kd3jAuUxW8Q4eZQYJKhiKr0sJnLrWg0TOofaY6PRrXEo5T3Yup6ZBlv8zaAIYMYJLCoAH2WbLuOI-cG493-dgZytwbPgYjw-OdP3SmNfhz0Y5JWYfZamGk0hi_Mwn526c84B17jndpBHsfsM3lzSq8x1xmaQ-bwXrItk6-jIYXdB19uxrdAudk9sA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4aQwg4TDBADAYYiavXOHHshhubVgqsu7BJu1nxj3RFJa3aFIkLfzvvxUnFENIOXJ1nJfFz3vdif_4ewDshfJ7rVHEhU8sRoQte2kpzGVzQqfOyqGhBf3Kuxpfy81V-tQMn_VkYolV2sT_G9DZady2DbjQHy9lsQLSkdteLRM8QhIs7cFfmqaY_sKNfW54H_g6IWJRQZpzMb5C8FssGk9RQTzsxz-IooQK5_4aov4J1i0CjR7DXpY7sQ3y6x7AT6n14-Ieg4D7cawmdbv0EpqQnjYasnE8Xq1lz_Z2vN0tKttmPdqGercI0cmBrhokrI91ibJvPonD3T_Z1PGFR55kR1HmGhqPjjwzfY432deSPP4XL0enFyZh3RRW4k0I2XJaZDkVQVG_DlVIMtVXK6cQn0gZbiUzTxp2XuUuqvPQ2ySxmfWEYwtB7OrHwDHbrRR2eAxOpCt5hxMxkgoMsi6xKC5-51EqNoUEdgOrH0bhOcZwKX8xNTy37ZrYOMOQAkxQGHXAAybbjMopu3N7lfe8oc2P-GISG2zu_7V1r8OuiLZOyDovN2gilEcAzIfMX_3ODN3B_fDE5M2efzr-8hAd4JY3M70PYbVab8AoTm8a-bifub-Ob9rI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithm-support+vector+regression+for+high+reliability+SHM+system+based+on+FBG+sensor+network&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Zhang%2C+XiaoLi&rft.au=Liang%2C+DaKai&rft.au=Zeng%2C+Jie&rft.au=Asundi%2C+Anand&rft.date=2012-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=50&rft.issue=2&rft.spage=148&rft.epage=153&rft_id=info:doi/10.1016%2Fj.optlaseng.2011.09.015&rft.externalDocID=S0143816611002739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon