Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling
•The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine. Shield...
Saved in:
Published in | Underground space (Beijing) Vol. 13; pp. 335 - 350 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2467-9674 2467-9674 |
DOI | 10.1016/j.undsp.2023.05.006 |
Cover
Abstract | •The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine.
Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering. |
---|---|
AbstractList | Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering. •The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine. Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering. |
Author | Luo, Han-Bin Chen, Elton J. Liu, Yong Kang, Qing Li, Zhong-Chao |
Author_xml | – sequence: 1 givenname: Qing surname: Kang fullname: Kang, Qing organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Elton J. surname: Chen fullname: Chen, Elton J. email: eltonjchen@hust.edu.cn organization: School of Civil & Hydraulic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China – sequence: 3 givenname: Zhong-Chao surname: Li fullname: Li, Zhong-Chao organization: Tunnel Engineering Company, Wuhan Municipal Construction Group Co. Ltd, Wuhan 430023, China – sequence: 4 givenname: Han-Bin surname: Luo fullname: Luo, Han-Bin organization: School of Civil & Hydraulic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China – sequence: 5 givenname: Yong surname: Liu fullname: Liu, Yong organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China |
BookMark | eNp9kc9q3DAQh0VJoWmaJ-hFL2BXsmR7deghhP4JbMih6VmMR6OsFq-0SNpA3752toXSQw5ihoHvh-ab9-wipkiMfZSilUIOn_btKbpybDvRqVb0rRDDG3bZ6WFszDDqi3_6d-y6lL0QohObcTP2l2y6qZViDSk2ExRyfPvj8Z4fM7mANTwTPyRHM_cp87ojDrWGenJLEx0_phJWkifPyy7Q7PgBcBci8RB5PcVIc4hPH9hbD3Oh6z_1iv38-uXx9nuzffh2d3uzbVBLXRuFowbwgMsbJjCdgkEo6Rx2IBEJDRg5KQc9KvQeR1B-UN2oJ-gNTkJdsbtzrkuwt8ccDpB_2QTBvgxSfrKQa8CZrKYejXdy1LjRCrxxjpQRXTeRc4rWLHPOwpxKyeQthgrrsjVDmK0UdnVv9_bFvV3dW9Hbxf3Cqv_Yv395nfp8pmhR9Bwo24KBIi6HyIR12SG8yv8G9Sykfw |
CitedBy_id | crossref_primary_10_1007_s00521_024_09891_9 crossref_primary_10_1007_s12665_024_11840_7 crossref_primary_10_1109_TMLCN_2024_3449831 crossref_primary_10_1007_s41060_024_00666_y crossref_primary_10_1109_ACCESS_2025_3543127 crossref_primary_10_1007_s42979_024_03018_6 crossref_primary_10_1016_j_jrmge_2024_09_042 crossref_primary_10_1016_j_energy_2024_133102 crossref_primary_10_1080_15389588_2024_2399301 crossref_primary_10_1108_ECAM_05_2024_0685 crossref_primary_10_1061_JCCEE5_CPENG_6167 crossref_primary_10_3390_app14125021 crossref_primary_10_3390_ma16247570 crossref_primary_10_1016_j_ces_2024_120059 crossref_primary_10_1088_1361_6501_ad6176 crossref_primary_10_1007_s11431_024_2778_0 crossref_primary_10_1371_journal_pone_0319679 crossref_primary_10_3390_app14104223 crossref_primary_10_1016_j_trgeo_2024_101402 crossref_primary_10_1109_JSEN_2024_3496776 crossref_primary_10_3390_bdcc8060051 crossref_primary_10_3390_en17122844 crossref_primary_10_1088_1361_6501_adb7fa crossref_primary_10_1007_s00521_024_10732_y crossref_primary_10_1016_j_cherd_2024_04_045 crossref_primary_10_1016_j_compgeo_2024_106149 crossref_primary_10_1109_ACCESS_2025_3545918 crossref_primary_10_3390_app15052277 crossref_primary_10_3390_s24020518 crossref_primary_10_1002_cjce_25590 crossref_primary_10_1016_j_autcon_2023_105259 crossref_primary_10_1016_j_tust_2025_106398 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126042 crossref_primary_10_1016_j_autcon_2025_105973 crossref_primary_10_3390_geosciences14030055 crossref_primary_10_1016_j_apenergy_2024_122773 crossref_primary_10_1016_j_jrmge_2024_05_042 crossref_primary_10_1016_j_undsp_2024_10_002 crossref_primary_10_1109_TIFS_2024_3468898 crossref_primary_10_46810_tdfd_1525648 crossref_primary_10_3390_buildings14072244 crossref_primary_10_1016_j_engappai_2024_108103 crossref_primary_10_1016_j_engappai_2025_110077 crossref_primary_10_1016_j_tourman_2025_105181 crossref_primary_10_1016_j_compgeo_2024_106418 crossref_primary_10_1002_dac_6125 crossref_primary_10_1016_j_undsp_2023_11_003 crossref_primary_10_1016_j_trgeo_2024_101195 |
Cites_doi | 10.1016/j.physa.2018.08.036 10.1016/j.tust.2007.06.007 10.1109/ACCESS.2020.2984515 10.1109/ACCESS.2021.3100105 10.1007/s43452-020-00172-5 10.1007/s00500-020-05223-w 10.1016/S0886-7798(02)00031-7 10.1016/j.trc.2022.103917 10.1016/j.cma.2019.112790 10.1016/j.gsf.2020.02.011 10.3390/app10030784 10.1007/s10346-021-01699-1 10.1080/14697688.2019.1622287 10.1162/089976600300015015 10.1016/j.autcon.2021.103958 10.3233/IDA-194969 10.1016/j.neucom.2021.03.091 10.1007/s00234-020-02420-0 10.1016/j.eswa.2022.118721 10.1007/s11440-021-01327-1 10.1016/j.dib.2021.107103 10.1016/j.patcog.2021.108275 10.1016/j.engfailanal.2021.105557 10.1016/j.measurement.2021.109700 10.1016/j.engfailanal.2020.104940 10.1016/j.engfracmech.2020.107085 10.3390/s16010115 10.1016/j.engappai.2020.103587 10.1016/j.cose.2021.102400 10.1016/j.ymssp.2020.107386 10.1016/j.tust.2021.103827 10.1007/s43452-022-00463-z 10.1016/j.enggeo.2022.106677 10.1016/j.tust.2022.104728 10.1007/s12145-022-00864-x 10.1142/S0218001418590188 10.1016/j.asoc.2019.105859 10.1007/s11465-022-0676-4 10.1016/j.autcon.2019.102840 10.1016/j.eswa.2022.118303 10.3390/ma14174822 10.1016/j.gsf.2021.101177 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.undsp.2023.05.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture |
EISSN | 2467-9674 |
EndPage | 350 |
ExternalDocumentID | oai_doaj_org_article_4e5c9fd174c843af9dde39022bedd3e0 10_1016_j_undsp_2023_05_006 S2467967423000880 |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABDBF ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ABJCF ACVFH ADCNI ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PIMPY PTHSS |
ID | FETCH-LOGICAL-c414t-3c74aafacafa6ba923a6031ddc2a1ccec9a91b3da5c3cffc7a3f63274ba59cb03 |
IEDL.DBID | DOA |
ISSN | 2467-9674 |
IngestDate | Wed Aug 27 00:27:32 EDT 2025 Tue Jul 01 00:44:48 EDT 2025 Thu Apr 24 22:50:39 EDT 2025 Sat Aug 05 15:52:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shield machine Attitude and position prediction Attention mechanism LSTM Tunnel excavation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-3c74aafacafa6ba923a6031ddc2a1ccec9a91b3da5c3cffc7a3f63274ba59cb03 |
OpenAccessLink | https://doaj.org/article/4e5c9fd174c843af9dde39022bedd3e0 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e5c9fd174c843af9dde39022bedd3e0 crossref_citationtrail_10_1016_j_undsp_2023_05_006 crossref_primary_10_1016_j_undsp_2023_05_006 elsevier_sciencedirect_doi_10_1016_j_undsp_2023_05_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Underground space (Beijing) |
PublicationYear | 2023 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Aslam, Lee, Khang, Hong (b0005) 2021; 9 Luo, Cao, Li, Dong, Zhang, Wei (b0105) 2021; 25 Xiang, Qin, Zhu, Wang, Chen (b0185) 2020; 91 Haack (b0060) 2002; 17 Zhang, Shen, Zhou, Lyu (b0200) 2021; 174 Yang, Hassani, Zhou, Zhang, Wang, Gao, Topa (b0195) 2022; 22 Mahmoodzadeh, Nejati, Mohammadi, Ibrahim, Rashidi, Rashid (b0115) 2022; 209 Fu, Wu, Ponnarasu, Zhang (b0040) 2023; 212 Ordonez, Roggen (b0140) 2016; 16 Ning, Liu, Cui, Xia, Lin, Zhao, Fu (b0130) 2020; 117 Zhou, Xu, Ding, Wei, Zhou (b0220) 2019; 105 Chen, Fu, Liu (b0020) 2022; 304 Zhang, Zhou, Pan, Shen (b0205) 2021; 183 Guo, Li, Jiang, Li, Chen (b0055) 2022; 17 Barash, Guralnik, Tau, Soffer, Levy, Shimon, Klang (b0010) 2020; 62 Nguyen-Le, Tao, Nguyen, Abdel-Wahab, Nguyen-Xuan (b0125) 2020; 235 Shi, Yang, Chen, Ye (b0165) 2022; 15 Qin, Shi, Tao, Yu, Jin, Lei, Liu (b0150) 2021; 151 Chen, Li, Tang, Liu (b0025) 2021; 18 Cheng, Wang, Wang, Li, Hu, Jiang (b0030) 2021; 21 Diao, Lin, Yang, Fan, Chu, Wu, Xu (b0035) 2021; 25 Liu, Yang, Li, Yu (b0095) 2018; 512 Wang, Yuan, Zhang, Yang (b0175) 2022; 145 Zhang (b0210) 2019; 85 Huo, Zhang, Meng, Li, Wu, Jia (b0065) 2021; 127 Li, Zhang, Liu, Su, Guo (b0080) 2021; 14 Mo, Chen (b0120) 2008; 23 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Rabczuk (b0155) 2020; 362 Jian, Kuang, Ren, Ma, Wang (b0070) 2021; 109 Chen, Ge (b0015) 2019; 19 Shan, He, Armaghani, Zhang, Sheng (b0160) 2022; 130 Gao, Zhang, Shen, Zhou (b0045) 2020; 8 Wang, Li, Chen, Liu (b0180) 2021; 132 Liu, Zhou, Li (b0100) 2019; 15 Tang, Kong, Ling, Zhao, Tang, Zhang (b0170) 2022; 17 Zhou, Mao, Huang, Zhang, Zhang (b0225) 2022; 122 Gers, Schmidhuber, Cummins (b0050) 2000; 12 Zhang, Ma (b0215) 2018; 32 Niu, Zhong, Yu (b0135) 2021; 452 Li, Li, Guo, Li, Chen (b0085) 2021; 12 Jin, Zhang, Yuan (b0075) 2021; 110 Lin, Shen, Zhang, Zhou (b0090) 2021; 12 Mahmoodzadeh, Nejati, Ibrahim, Ali, Mohammed, Rashidi, Majeed (b0110) 2022; 30 Qiao, Xu, Liu, Wang (b0145) 2020; 10 Yan, Shen, Zhou, Lyu (b0190) 2021; 36 Gao (10.1016/j.undsp.2023.05.006_b0045) 2020; 8 Wang (10.1016/j.undsp.2023.05.006_b0175) 2022; 145 Fu (10.1016/j.undsp.2023.05.006_b0040) 2023; 212 Tang (10.1016/j.undsp.2023.05.006_b0170) 2022; 17 Li (10.1016/j.undsp.2023.05.006_b0085) 2021; 12 Qin (10.1016/j.undsp.2023.05.006_b0150) 2021; 151 Samaniego (10.1016/j.undsp.2023.05.006_b0155) 2020; 362 Lin (10.1016/j.undsp.2023.05.006_b0090) 2021; 12 Qiao (10.1016/j.undsp.2023.05.006_b0145) 2020; 10 Cheng (10.1016/j.undsp.2023.05.006_b0030) 2021; 21 Yan (10.1016/j.undsp.2023.05.006_b0190) 2021; 36 Luo (10.1016/j.undsp.2023.05.006_b0105) 2021; 25 Chen (10.1016/j.undsp.2023.05.006_b0025) 2021; 18 Wang (10.1016/j.undsp.2023.05.006_b0180) 2021; 132 Zhou (10.1016/j.undsp.2023.05.006_b0220) 2019; 105 Diao (10.1016/j.undsp.2023.05.006_b0035) 2021; 25 Li (10.1016/j.undsp.2023.05.006_b0080) 2021; 14 Mahmoodzadeh (10.1016/j.undsp.2023.05.006_b0115) 2022; 209 Liu (10.1016/j.undsp.2023.05.006_b0100) 2019; 15 Mo (10.1016/j.undsp.2023.05.006_b0120) 2008; 23 Jian (10.1016/j.undsp.2023.05.006_b0070) 2021; 109 Guo (10.1016/j.undsp.2023.05.006_b0055) 2022; 17 Jin (10.1016/j.undsp.2023.05.006_b0075) 2021; 110 Gers (10.1016/j.undsp.2023.05.006_b0050) 2000; 12 Haack (10.1016/j.undsp.2023.05.006_b0060) 2002; 17 Zhou (10.1016/j.undsp.2023.05.006_b0225) 2022; 122 Zhang (10.1016/j.undsp.2023.05.006_b0205) 2021; 183 Chen (10.1016/j.undsp.2023.05.006_b0015) 2019; 19 Liu (10.1016/j.undsp.2023.05.006_b0095) 2018; 512 Shan (10.1016/j.undsp.2023.05.006_b0160) 2022; 130 Huo (10.1016/j.undsp.2023.05.006_b0065) 2021; 127 Yang (10.1016/j.undsp.2023.05.006_b0195) 2022; 22 Zhang (10.1016/j.undsp.2023.05.006_b0210) 2019; 85 Ning (10.1016/j.undsp.2023.05.006_b0130) 2020; 117 Zhang (10.1016/j.undsp.2023.05.006_b0215) 2018; 32 Xiang (10.1016/j.undsp.2023.05.006_b0185) 2020; 91 Mahmoodzadeh (10.1016/j.undsp.2023.05.006_b0110) 2022; 30 Ordonez (10.1016/j.undsp.2023.05.006_b0140) 2016; 16 Niu (10.1016/j.undsp.2023.05.006_b0135) 2021; 452 Chen (10.1016/j.undsp.2023.05.006_b0020) 2022; 304 Zhang (10.1016/j.undsp.2023.05.006_b0200) 2021; 174 Aslam (10.1016/j.undsp.2023.05.006_b0005) 2021; 9 Barash (10.1016/j.undsp.2023.05.006_b0010) 2020; 62 Nguyen-Le (10.1016/j.undsp.2023.05.006_b0125) 2020; 235 Shi (10.1016/j.undsp.2023.05.006_b0165) 2022; 15 |
References_xml | – volume: 105 year: 2019 ident: b0220 article-title: Dynamic prediction for attitude and position in shield tunneling: A deep learning method publication-title: Automation in Construction – volume: 362 year: 2020 ident: b0155 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 17 start-page: 20 year: 2022 ident: b0170 article-title: Deviation correction strategy for the earth pressure balance shield based on shield-soil interactions publication-title: Frontiers of Mechanical Engineering – volume: 452 start-page: 48 year: 2021 end-page: 62 ident: b0135 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing – volume: 151 year: 2021 ident: b0150 article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network publication-title: Mechanical Systems and Signal Processing – volume: 145 year: 2022 ident: b0175 article-title: Signalized arterial origin-destination flow estimation using flawed vehicle trajectories: A self-supervised learning approach without ground truth publication-title: Transportation Research Part C: Emerging Technologies – volume: 17 start-page: 1019 year: 2022 end-page: 1030 ident: b0055 article-title: Intelligent assistant driving method for tunnel boring machine based on big data publication-title: Acta Geotechnica – volume: 174 start-page: 372 year: 2021 end-page: 389 ident: b0200 article-title: Challenges of earth pressure balance tunnelling in weathered granite with boulders publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering – volume: 23 start-page: 281 year: 2008 end-page: 291 ident: b0120 article-title: Study on inner force and dislocation of segments caused by shield machine attitude publication-title: Tunnelling and Underground Space Technology – volume: 209 year: 2022 ident: b0115 article-title: Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm publication-title: Expert Systems with Applications – volume: 8 start-page: 64310 year: 2020 end-page: 64323 ident: b0045 article-title: Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling by Integrating GRU Deep Learning Method with GA Optimization publication-title: IEEE Access – volume: 122 year: 2022 ident: b0225 article-title: Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition publication-title: Pattern Recognition – volume: 127 year: 2021 ident: b0065 article-title: Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions publication-title: Engineering Failure Analysis – volume: 18 start-page: 3149 year: 2021 end-page: 3162 ident: b0025 article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil publication-title: Landslides – volume: 15 start-page: 1 year: 2019 end-page: 23 ident: b0100 article-title: AB-LSTM: Attention-based Bidirectional LSTM Model for Scene Text Detection publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications – volume: 110 year: 2021 ident: b0075 article-title: Effect of dynamic cutterhead on face stability in EPB shield tunneling publication-title: Tunnelling and Underground Space Technology – volume: 9 start-page: 107387 year: 2021 end-page: 107398 ident: b0005 article-title: Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting publication-title: IEEE Access – volume: 19 start-page: 1507 year: 2019 end-page: 1515 ident: b0015 article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction publication-title: Quantitative Finance – volume: 22 start-page: 147 year: 2022 ident: b0195 article-title: Numerical investigation of TBM disc cutter cutting on microwave-treated basalt with an unrelieved model publication-title: Archives of Civil and Mechanical Engineering – volume: 117 year: 2020 ident: b0130 article-title: Failure analysis of center cutter mount in shield machine under tuff layer publication-title: Engineering Failure Analysis – volume: 183 year: 2021 ident: b0205 article-title: Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning method publication-title: Measurement – volume: 235 year: 2020 ident: b0125 article-title: A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction publication-title: Engineering Fracture Mechanics. – volume: 25 start-page: 1297 year: 2021 end-page: 1307 ident: b0035 article-title: Emotion cause detection with enhanced-representation attention convolutional-context network publication-title: Soft Computing – volume: 512 start-page: 1175 year: 2018 end-page: 1182 ident: b0095 article-title: A generative model for the collective attention of the Chinese stock market investors publication-title: Physica A: Statistical Mechanics and Its Applications – volume: 10 start-page: 784 year: 2020 ident: b0145 article-title: Study on the Horizontal Axis Deviation of a Small Radius TBM Tunnel Based on Winkler Foundation Model publication-title: Applied Sciences – volume: 91 year: 2020 ident: b0185 article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction publication-title: Engineering Applications of Artificial Intelligence – volume: 30 start-page: 75 year: 2022 end-page: 91 ident: b0110 article-title: Several models for tunnel boring machine performance prediction based on machine learning publication-title: Geomechanics and Engineering – volume: 21 start-page: 22 year: 2021 ident: b0030 article-title: Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures publication-title: Archives of Civil and Mechanical Engineering – volume: 12 start-page: 331 year: 2021 end-page: 338 ident: b0085 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geoscience Frontiers – volume: 12 year: 2021 ident: b0090 article-title: Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms publication-title: Geoscience Frontiers – volume: 130 year: 2022 ident: b0160 article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks publication-title: Tunnelling and Underground Space Technology – volume: 16 start-page: 115 year: 2016 ident: b0140 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition publication-title: Sensors – volume: 25 start-page: 359 year: 2021 end-page: 382 ident: b0105 article-title: Multi-task prediction model based on ConvLSTM and encoder-decoder publication-title: Intelligent Data Analysis – volume: 109 year: 2021 ident: b0070 article-title: A novel framework for image-based malware detection with a deep neural network publication-title: Computers & Security – volume: 36 year: 2021 ident: b0190 article-title: Data on performance and variation index for shield tunnelling through soft deposit publication-title: Data in Brief – volume: 17 start-page: 115 year: 2002 end-page: 116 ident: b0060 article-title: Invited Editorial publication-title: Tunnelling and Underground Space Technology – volume: 62 start-page: 1247 year: 2020 end-page: 1256 ident: b0010 article-title: Comparison of deep learning models for natural language processing-based classification of non-English head CT reports publication-title: Neuroradiology – volume: 212 year: 2023 ident: b0040 article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns publication-title: Expert Systems with Applications – volume: 14 start-page: 4822 year: 2021 ident: b0080 article-title: Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead publication-title: Materials – volume: 304 year: 2022 ident: b0020 article-title: Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay publication-title: Engineering Geology – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: b0050 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Computation – volume: 15 start-page: 2119 year: 2022 end-page: 2131 ident: b0165 article-title: Logging curve prediction method based on CNN-LSTM-attention publication-title: Earth Science Informatics – volume: 132 year: 2021 ident: b0180 article-title: Dynamic prediction of mechanized shield tunneling performance publication-title: Automation in Construction – volume: 85 year: 2019 ident: b0210 article-title: A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model publication-title: Applied Soft Computing – volume: 32 start-page: 1859018 year: 2018 ident: b0215 article-title: Attitude Correction System and Cooperative Control of Tunnel Boring Machine publication-title: International Journal of Pattern Recognition and Artificial Intelligence – volume: 512 start-page: 1175 year: 2018 ident: 10.1016/j.undsp.2023.05.006_b0095 article-title: A generative model for the collective attention of the Chinese stock market investors publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2018.08.036 – volume: 23 start-page: 281 issue: 3 year: 2008 ident: 10.1016/j.undsp.2023.05.006_b0120 article-title: Study on inner force and dislocation of segments caused by shield machine attitude publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2007.06.007 – volume: 8 start-page: 64310 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0045 article-title: Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling by Integrating GRU Deep Learning Method with GA Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984515 – volume: 9 start-page: 107387 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0005 article-title: Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100105 – volume: 21 start-page: 22 issue: 1 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0030 article-title: Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures publication-title: Archives of Civil and Mechanical Engineering doi: 10.1007/s43452-020-00172-5 – volume: 25 start-page: 1297 issue: 2 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0035 article-title: Emotion cause detection with enhanced-representation attention convolutional-context network publication-title: Soft Computing doi: 10.1007/s00500-020-05223-w – volume: 17 start-page: 115 issue: 2 year: 2002 ident: 10.1016/j.undsp.2023.05.006_b0060 article-title: Invited Editorial publication-title: Tunnelling and Underground Space Technology doi: 10.1016/S0886-7798(02)00031-7 – volume: 145 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0175 article-title: Signalized arterial origin-destination flow estimation using flawed vehicle trajectories: A self-supervised learning approach without ground truth publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2022.103917 – volume: 362 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0155 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – volume: 12 start-page: 331 issue: 1 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0085 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2020.02.011 – volume: 10 start-page: 784 issue: 3 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0145 article-title: Study on the Horizontal Axis Deviation of a Small Radius TBM Tunnel Based on Winkler Foundation Model publication-title: Applied Sciences doi: 10.3390/app10030784 – volume: 18 start-page: 3149 issue: 9 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0025 article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil publication-title: Landslides doi: 10.1007/s10346-021-01699-1 – volume: 19 start-page: 1507 issue: 9 year: 2019 ident: 10.1016/j.undsp.2023.05.006_b0015 article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction publication-title: Quantitative Finance doi: 10.1080/14697688.2019.1622287 – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.undsp.2023.05.006_b0050 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Computation doi: 10.1162/089976600300015015 – volume: 30 start-page: 75 issue: 1 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0110 article-title: Several models for tunnel boring machine performance prediction based on machine learning publication-title: Geomechanics and Engineering – volume: 132 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0180 article-title: Dynamic prediction of mechanized shield tunneling performance publication-title: Automation in Construction doi: 10.1016/j.autcon.2021.103958 – volume: 25 start-page: 359 issue: 2 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0105 article-title: Multi-task prediction model based on ConvLSTM and encoder-decoder publication-title: Intelligent Data Analysis doi: 10.3233/IDA-194969 – volume: 452 start-page: 48 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0135 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 62 start-page: 1247 issue: 2 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0010 article-title: Comparison of deep learning models for natural language processing-based classification of non-English head CT reports publication-title: Neuroradiology doi: 10.1007/s00234-020-02420-0 – volume: 212 year: 2023 ident: 10.1016/j.undsp.2023.05.006_b0040 article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118721 – volume: 17 start-page: 1019 issue: 4 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0055 article-title: Intelligent assistant driving method for tunnel boring machine based on big data publication-title: Acta Geotechnica doi: 10.1007/s11440-021-01327-1 – volume: 36 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0190 article-title: Data on performance and variation index for shield tunnelling through soft deposit publication-title: Data in Brief doi: 10.1016/j.dib.2021.107103 – volume: 122 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0225 article-title: Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108275 – volume: 127 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0065 article-title: Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2021.105557 – volume: 183 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0205 article-title: Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning method publication-title: Measurement doi: 10.1016/j.measurement.2021.109700 – volume: 117 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0130 article-title: Failure analysis of center cutter mount in shield machine under tuff layer publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2020.104940 – volume: 235 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0125 article-title: A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction publication-title: Engineering Fracture Mechanics. doi: 10.1016/j.engfracmech.2020.107085 – volume: 16 start-page: 115 issue: 1 year: 2016 ident: 10.1016/j.undsp.2023.05.006_b0140 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition publication-title: Sensors doi: 10.3390/s16010115 – volume: 91 year: 2020 ident: 10.1016/j.undsp.2023.05.006_b0185 article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103587 – volume: 109 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0070 article-title: A novel framework for image-based malware detection with a deep neural network publication-title: Computers & Security doi: 10.1016/j.cose.2021.102400 – volume: 174 start-page: 372 issue: 4 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0200 article-title: Challenges of earth pressure balance tunnelling in weathered granite with boulders publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering – volume: 151 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0150 article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107386 – volume: 110 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0075 article-title: Effect of dynamic cutterhead on face stability in EPB shield tunneling publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2021.103827 – volume: 15 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.undsp.2023.05.006_b0100 article-title: AB-LSTM: Attention-based Bidirectional LSTM Model for Scene Text Detection publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications – volume: 22 start-page: 147 issue: 3 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0195 article-title: Numerical investigation of TBM disc cutter cutting on microwave-treated basalt with an unrelieved model publication-title: Archives of Civil and Mechanical Engineering doi: 10.1007/s43452-022-00463-z – volume: 304 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0020 article-title: Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay publication-title: Engineering Geology doi: 10.1016/j.enggeo.2022.106677 – volume: 130 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0160 article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2022.104728 – volume: 15 start-page: 2119 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0165 article-title: Logging curve prediction method based on CNN-LSTM-attention publication-title: Earth Science Informatics doi: 10.1007/s12145-022-00864-x – volume: 32 start-page: 1859018 issue: 11 year: 2018 ident: 10.1016/j.undsp.2023.05.006_b0215 article-title: Attitude Correction System and Cooperative Control of Tunnel Boring Machine publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001418590188 – volume: 85 year: 2019 ident: 10.1016/j.undsp.2023.05.006_b0210 article-title: A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105859 – volume: 17 start-page: 20 issue: 2 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0170 article-title: Deviation correction strategy for the earth pressure balance shield based on shield-soil interactions publication-title: Frontiers of Mechanical Engineering doi: 10.1007/s11465-022-0676-4 – volume: 105 year: 2019 ident: 10.1016/j.undsp.2023.05.006_b0220 article-title: Dynamic prediction for attitude and position in shield tunneling: A deep learning method publication-title: Automation in Construction doi: 10.1016/j.autcon.2019.102840 – volume: 209 year: 2022 ident: 10.1016/j.undsp.2023.05.006_b0115 article-title: Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118303 – volume: 14 start-page: 4822 issue: 17 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0080 article-title: Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead publication-title: Materials doi: 10.3390/ma14174822 – volume: 12 issue: 5 year: 2021 ident: 10.1016/j.undsp.2023.05.006_b0090 article-title: Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2021.101177 |
SSID | ssj0002087875 |
Score | 2.4796534 |
Snippet | •The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention... Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 335 |
SubjectTerms | Attention mechanism Attitude and position prediction LSTM Shield machine Tunnel excavation |
Title | Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling |
URI | https://dx.doi.org/10.1016/j.undsp.2023.05.006 https://doaj.org/article/4e5c9fd174c843af9dde39022bedd3e0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iFxHET1w_lhw8WmybdHdz3FUXEfWigreQzCS4i3ZFu__fSdpKT-vFQ6EtaVMmk86b5vUNY-eQj5DGViYCyYOlApUQysDEgkf03lHKEn5Ofngc3L7Iu9fitVPqK3DCanng2nCX0hWgPBJwhpEUxiuaj5Sn57l1iMLFbD1VaSeZmsfltRF5YtHKDEVC17LE76BQmYuo1RlqHHVCUVTs70SkTpSZ7rDtBh7ycf1Yu2zNlXtsa9z52r_P7LiqapJiEmIQ8vun5wf--RWWXMLLi8fqNpzQKCd0x00V2ABIOyXylqPFF55_vwX2Gv-IdErHZyWvloH1QsHsgL1Mb56vbpOmVEICMpNVImAojfEGaBtYQ6jNhPLRiJCbDMCBMiqzAk0BAryHoRF-ICgjtaZQYFNxyNbLRemOGKdDr3KfS194SoekHdK8hQxNmjk5QuixvLWahkZHPJSzeNctYWyuo6l1MLVOC02m7rGL34s-axmN1c0nYTh-mwYN7HiCPEM3nqH_8oweG7SDqRs4UcMEutVsVe_H_9H7CdsMt6yZL6dsvfpaujPCL5Xts43x5Hoy7UeX_QH7LvSL |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+LSTM+predictive+model+for+the+attitude+and+position+of+shield+machine+in+tunneling&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Kang%2C+Qing&rft.au=Chen%2C+Elton+J.&rft.au=Li%2C+Zhong-Chao&rft.au=Luo%2C+Han-Bin&rft.date=2023-12-01&rft.issn=2467-9674&rft.eissn=2467-9674&rft.volume=13&rft.spage=335&rft.epage=350&rft_id=info:doi/10.1016%2Fj.undsp.2023.05.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_undsp_2023_05_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon |