Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling

•The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine. Shield...

Full description

Saved in:
Bibliographic Details
Published inUnderground space (Beijing) Vol. 13; pp. 335 - 350
Main Authors Kang, Qing, Chen, Elton J., Li, Zhong-Chao, Luo, Han-Bin, Liu, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2467-9674
2467-9674
DOI10.1016/j.undsp.2023.05.006

Cover

Abstract •The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine. Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.
AbstractList Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.
•The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention mechanism has advantages in predicting multi-input data set.•An effective method is proposed for the operation adjustment of shield machine. Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory (LSTM) model with attention mechanism. The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method. By adding the attention mechanism into the LSTM model, the proposed model can focus more on parameters with higher weights. Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters. Compared with LSTM model, LSTM-attention model has higher accuracy. The mean value of coefficient of determination (R2) increases from 0.625 to 0.736, and the mean value of root mean square error (RMSE) decreases from 3.31 to 2.24. The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.
Author Luo, Han-Bin
Chen, Elton J.
Liu, Yong
Kang, Qing
Li, Zhong-Chao
Author_xml – sequence: 1
  givenname: Qing
  surname: Kang
  fullname: Kang, Qing
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Elton J.
  surname: Chen
  fullname: Chen, Elton J.
  email: eltonjchen@hust.edu.cn
  organization: School of Civil & Hydraulic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
– sequence: 3
  givenname: Zhong-Chao
  surname: Li
  fullname: Li, Zhong-Chao
  organization: Tunnel Engineering Company, Wuhan Municipal Construction Group Co. Ltd, Wuhan 430023, China
– sequence: 4
  givenname: Han-Bin
  surname: Luo
  fullname: Luo, Han-Bin
  organization: School of Civil & Hydraulic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
– sequence: 5
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
BookMark eNp9kc9q3DAQh0VJoWmaJ-hFL2BXsmR7deghhP4JbMih6VmMR6OsFq-0SNpA3752toXSQw5ihoHvh-ab9-wipkiMfZSilUIOn_btKbpybDvRqVb0rRDDG3bZ6WFszDDqi3_6d-y6lL0QohObcTP2l2y6qZViDSk2ExRyfPvj8Z4fM7mANTwTPyRHM_cp87ojDrWGenJLEx0_phJWkifPyy7Q7PgBcBci8RB5PcVIc4hPH9hbD3Oh6z_1iv38-uXx9nuzffh2d3uzbVBLXRuFowbwgMsbJjCdgkEo6Rx2IBEJDRg5KQc9KvQeR1B-UN2oJ-gNTkJdsbtzrkuwt8ccDpB_2QTBvgxSfrKQa8CZrKYejXdy1LjRCrxxjpQRXTeRc4rWLHPOwpxKyeQthgrrsjVDmK0UdnVv9_bFvV3dW9Hbxf3Cqv_Yv395nfp8pmhR9Bwo24KBIi6HyIR12SG8yv8G9Sykfw
CitedBy_id crossref_primary_10_1007_s00521_024_09891_9
crossref_primary_10_1007_s12665_024_11840_7
crossref_primary_10_1109_TMLCN_2024_3449831
crossref_primary_10_1007_s41060_024_00666_y
crossref_primary_10_1109_ACCESS_2025_3543127
crossref_primary_10_1007_s42979_024_03018_6
crossref_primary_10_1016_j_jrmge_2024_09_042
crossref_primary_10_1016_j_energy_2024_133102
crossref_primary_10_1080_15389588_2024_2399301
crossref_primary_10_1108_ECAM_05_2024_0685
crossref_primary_10_1061_JCCEE5_CPENG_6167
crossref_primary_10_3390_app14125021
crossref_primary_10_3390_ma16247570
crossref_primary_10_1016_j_ces_2024_120059
crossref_primary_10_1088_1361_6501_ad6176
crossref_primary_10_1007_s11431_024_2778_0
crossref_primary_10_1371_journal_pone_0319679
crossref_primary_10_3390_app14104223
crossref_primary_10_1016_j_trgeo_2024_101402
crossref_primary_10_1109_JSEN_2024_3496776
crossref_primary_10_3390_bdcc8060051
crossref_primary_10_3390_en17122844
crossref_primary_10_1088_1361_6501_adb7fa
crossref_primary_10_1007_s00521_024_10732_y
crossref_primary_10_1016_j_cherd_2024_04_045
crossref_primary_10_1016_j_compgeo_2024_106149
crossref_primary_10_1109_ACCESS_2025_3545918
crossref_primary_10_3390_app15052277
crossref_primary_10_3390_s24020518
crossref_primary_10_1002_cjce_25590
crossref_primary_10_1016_j_autcon_2023_105259
crossref_primary_10_1016_j_tust_2025_106398
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126042
crossref_primary_10_1016_j_autcon_2025_105973
crossref_primary_10_3390_geosciences14030055
crossref_primary_10_1016_j_apenergy_2024_122773
crossref_primary_10_1016_j_jrmge_2024_05_042
crossref_primary_10_1016_j_undsp_2024_10_002
crossref_primary_10_1109_TIFS_2024_3468898
crossref_primary_10_46810_tdfd_1525648
crossref_primary_10_3390_buildings14072244
crossref_primary_10_1016_j_engappai_2024_108103
crossref_primary_10_1016_j_engappai_2025_110077
crossref_primary_10_1016_j_tourman_2025_105181
crossref_primary_10_1016_j_compgeo_2024_106418
crossref_primary_10_1002_dac_6125
crossref_primary_10_1016_j_undsp_2023_11_003
crossref_primary_10_1016_j_trgeo_2024_101195
Cites_doi 10.1016/j.physa.2018.08.036
10.1016/j.tust.2007.06.007
10.1109/ACCESS.2020.2984515
10.1109/ACCESS.2021.3100105
10.1007/s43452-020-00172-5
10.1007/s00500-020-05223-w
10.1016/S0886-7798(02)00031-7
10.1016/j.trc.2022.103917
10.1016/j.cma.2019.112790
10.1016/j.gsf.2020.02.011
10.3390/app10030784
10.1007/s10346-021-01699-1
10.1080/14697688.2019.1622287
10.1162/089976600300015015
10.1016/j.autcon.2021.103958
10.3233/IDA-194969
10.1016/j.neucom.2021.03.091
10.1007/s00234-020-02420-0
10.1016/j.eswa.2022.118721
10.1007/s11440-021-01327-1
10.1016/j.dib.2021.107103
10.1016/j.patcog.2021.108275
10.1016/j.engfailanal.2021.105557
10.1016/j.measurement.2021.109700
10.1016/j.engfailanal.2020.104940
10.1016/j.engfracmech.2020.107085
10.3390/s16010115
10.1016/j.engappai.2020.103587
10.1016/j.cose.2021.102400
10.1016/j.ymssp.2020.107386
10.1016/j.tust.2021.103827
10.1007/s43452-022-00463-z
10.1016/j.enggeo.2022.106677
10.1016/j.tust.2022.104728
10.1007/s12145-022-00864-x
10.1142/S0218001418590188
10.1016/j.asoc.2019.105859
10.1007/s11465-022-0676-4
10.1016/j.autcon.2019.102840
10.1016/j.eswa.2022.118303
10.3390/ma14174822
10.1016/j.gsf.2021.101177
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.undsp.2023.05.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2467-9674
EndPage 350
ExternalDocumentID oai_doaj_org_article_4e5c9fd174c843af9dde39022bedd3e0
10_1016_j_undsp_2023_05_006
S2467967423000880
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABDBF
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PIMPY
PTHSS
ID FETCH-LOGICAL-c414t-3c74aafacafa6ba923a6031ddc2a1ccec9a91b3da5c3cffc7a3f63274ba59cb03
IEDL.DBID DOA
ISSN 2467-9674
IngestDate Wed Aug 27 00:27:32 EDT 2025
Tue Jul 01 00:44:48 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
Sat Aug 05 15:52:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shield machine
Attitude and position prediction
Attention mechanism
LSTM
Tunnel excavation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-3c74aafacafa6ba923a6031ddc2a1ccec9a91b3da5c3cffc7a3f63274ba59cb03
OpenAccessLink https://doaj.org/article/4e5c9fd174c843af9dde39022bedd3e0
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4e5c9fd174c843af9dde39022bedd3e0
crossref_citationtrail_10_1016_j_undsp_2023_05_006
crossref_primary_10_1016_j_undsp_2023_05_006
elsevier_sciencedirect_doi_10_1016_j_undsp_2023_05_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Underground space (Beijing)
PublicationYear 2023
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Aslam, Lee, Khang, Hong (b0005) 2021; 9
Luo, Cao, Li, Dong, Zhang, Wei (b0105) 2021; 25
Xiang, Qin, Zhu, Wang, Chen (b0185) 2020; 91
Haack (b0060) 2002; 17
Zhang, Shen, Zhou, Lyu (b0200) 2021; 174
Yang, Hassani, Zhou, Zhang, Wang, Gao, Topa (b0195) 2022; 22
Mahmoodzadeh, Nejati, Mohammadi, Ibrahim, Rashidi, Rashid (b0115) 2022; 209
Fu, Wu, Ponnarasu, Zhang (b0040) 2023; 212
Ordonez, Roggen (b0140) 2016; 16
Ning, Liu, Cui, Xia, Lin, Zhao, Fu (b0130) 2020; 117
Zhou, Xu, Ding, Wei, Zhou (b0220) 2019; 105
Chen, Fu, Liu (b0020) 2022; 304
Zhang, Zhou, Pan, Shen (b0205) 2021; 183
Guo, Li, Jiang, Li, Chen (b0055) 2022; 17
Barash, Guralnik, Tau, Soffer, Levy, Shimon, Klang (b0010) 2020; 62
Nguyen-Le, Tao, Nguyen, Abdel-Wahab, Nguyen-Xuan (b0125) 2020; 235
Shi, Yang, Chen, Ye (b0165) 2022; 15
Qin, Shi, Tao, Yu, Jin, Lei, Liu (b0150) 2021; 151
Chen, Li, Tang, Liu (b0025) 2021; 18
Cheng, Wang, Wang, Li, Hu, Jiang (b0030) 2021; 21
Diao, Lin, Yang, Fan, Chu, Wu, Xu (b0035) 2021; 25
Liu, Yang, Li, Yu (b0095) 2018; 512
Wang, Yuan, Zhang, Yang (b0175) 2022; 145
Zhang (b0210) 2019; 85
Huo, Zhang, Meng, Li, Wu, Jia (b0065) 2021; 127
Li, Zhang, Liu, Su, Guo (b0080) 2021; 14
Mo, Chen (b0120) 2008; 23
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Rabczuk (b0155) 2020; 362
Jian, Kuang, Ren, Ma, Wang (b0070) 2021; 109
Chen, Ge (b0015) 2019; 19
Shan, He, Armaghani, Zhang, Sheng (b0160) 2022; 130
Gao, Zhang, Shen, Zhou (b0045) 2020; 8
Wang, Li, Chen, Liu (b0180) 2021; 132
Liu, Zhou, Li (b0100) 2019; 15
Tang, Kong, Ling, Zhao, Tang, Zhang (b0170) 2022; 17
Zhou, Mao, Huang, Zhang, Zhang (b0225) 2022; 122
Gers, Schmidhuber, Cummins (b0050) 2000; 12
Zhang, Ma (b0215) 2018; 32
Niu, Zhong, Yu (b0135) 2021; 452
Li, Li, Guo, Li, Chen (b0085) 2021; 12
Jin, Zhang, Yuan (b0075) 2021; 110
Lin, Shen, Zhang, Zhou (b0090) 2021; 12
Mahmoodzadeh, Nejati, Ibrahim, Ali, Mohammed, Rashidi, Majeed (b0110) 2022; 30
Qiao, Xu, Liu, Wang (b0145) 2020; 10
Yan, Shen, Zhou, Lyu (b0190) 2021; 36
Gao (10.1016/j.undsp.2023.05.006_b0045) 2020; 8
Wang (10.1016/j.undsp.2023.05.006_b0175) 2022; 145
Fu (10.1016/j.undsp.2023.05.006_b0040) 2023; 212
Tang (10.1016/j.undsp.2023.05.006_b0170) 2022; 17
Li (10.1016/j.undsp.2023.05.006_b0085) 2021; 12
Qin (10.1016/j.undsp.2023.05.006_b0150) 2021; 151
Samaniego (10.1016/j.undsp.2023.05.006_b0155) 2020; 362
Lin (10.1016/j.undsp.2023.05.006_b0090) 2021; 12
Qiao (10.1016/j.undsp.2023.05.006_b0145) 2020; 10
Cheng (10.1016/j.undsp.2023.05.006_b0030) 2021; 21
Yan (10.1016/j.undsp.2023.05.006_b0190) 2021; 36
Luo (10.1016/j.undsp.2023.05.006_b0105) 2021; 25
Chen (10.1016/j.undsp.2023.05.006_b0025) 2021; 18
Wang (10.1016/j.undsp.2023.05.006_b0180) 2021; 132
Zhou (10.1016/j.undsp.2023.05.006_b0220) 2019; 105
Diao (10.1016/j.undsp.2023.05.006_b0035) 2021; 25
Li (10.1016/j.undsp.2023.05.006_b0080) 2021; 14
Mahmoodzadeh (10.1016/j.undsp.2023.05.006_b0115) 2022; 209
Liu (10.1016/j.undsp.2023.05.006_b0100) 2019; 15
Mo (10.1016/j.undsp.2023.05.006_b0120) 2008; 23
Jian (10.1016/j.undsp.2023.05.006_b0070) 2021; 109
Guo (10.1016/j.undsp.2023.05.006_b0055) 2022; 17
Jin (10.1016/j.undsp.2023.05.006_b0075) 2021; 110
Gers (10.1016/j.undsp.2023.05.006_b0050) 2000; 12
Haack (10.1016/j.undsp.2023.05.006_b0060) 2002; 17
Zhou (10.1016/j.undsp.2023.05.006_b0225) 2022; 122
Zhang (10.1016/j.undsp.2023.05.006_b0205) 2021; 183
Chen (10.1016/j.undsp.2023.05.006_b0015) 2019; 19
Liu (10.1016/j.undsp.2023.05.006_b0095) 2018; 512
Shan (10.1016/j.undsp.2023.05.006_b0160) 2022; 130
Huo (10.1016/j.undsp.2023.05.006_b0065) 2021; 127
Yang (10.1016/j.undsp.2023.05.006_b0195) 2022; 22
Zhang (10.1016/j.undsp.2023.05.006_b0210) 2019; 85
Ning (10.1016/j.undsp.2023.05.006_b0130) 2020; 117
Zhang (10.1016/j.undsp.2023.05.006_b0215) 2018; 32
Xiang (10.1016/j.undsp.2023.05.006_b0185) 2020; 91
Mahmoodzadeh (10.1016/j.undsp.2023.05.006_b0110) 2022; 30
Ordonez (10.1016/j.undsp.2023.05.006_b0140) 2016; 16
Niu (10.1016/j.undsp.2023.05.006_b0135) 2021; 452
Chen (10.1016/j.undsp.2023.05.006_b0020) 2022; 304
Zhang (10.1016/j.undsp.2023.05.006_b0200) 2021; 174
Aslam (10.1016/j.undsp.2023.05.006_b0005) 2021; 9
Barash (10.1016/j.undsp.2023.05.006_b0010) 2020; 62
Nguyen-Le (10.1016/j.undsp.2023.05.006_b0125) 2020; 235
Shi (10.1016/j.undsp.2023.05.006_b0165) 2022; 15
References_xml – volume: 105
  year: 2019
  ident: b0220
  article-title: Dynamic prediction for attitude and position in shield tunneling: A deep learning method
  publication-title: Automation in Construction
– volume: 362
  year: 2020
  ident: b0155
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 17
  start-page: 20
  year: 2022
  ident: b0170
  article-title: Deviation correction strategy for the earth pressure balance shield based on shield-soil interactions
  publication-title: Frontiers of Mechanical Engineering
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: b0135
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– volume: 151
  year: 2021
  ident: b0150
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mechanical Systems and Signal Processing
– volume: 145
  year: 2022
  ident: b0175
  article-title: Signalized arterial origin-destination flow estimation using flawed vehicle trajectories: A self-supervised learning approach without ground truth
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 17
  start-page: 1019
  year: 2022
  end-page: 1030
  ident: b0055
  article-title: Intelligent assistant driving method for tunnel boring machine based on big data
  publication-title: Acta Geotechnica
– volume: 174
  start-page: 372
  year: 2021
  end-page: 389
  ident: b0200
  article-title: Challenges of earth pressure balance tunnelling in weathered granite with boulders
  publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering
– volume: 23
  start-page: 281
  year: 2008
  end-page: 291
  ident: b0120
  article-title: Study on inner force and dislocation of segments caused by shield machine attitude
  publication-title: Tunnelling and Underground Space Technology
– volume: 209
  year: 2022
  ident: b0115
  article-title: Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 64310
  year: 2020
  end-page: 64323
  ident: b0045
  article-title: Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling by Integrating GRU Deep Learning Method with GA Optimization
  publication-title: IEEE Access
– volume: 122
  year: 2022
  ident: b0225
  article-title: Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
  publication-title: Pattern Recognition
– volume: 127
  year: 2021
  ident: b0065
  article-title: Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions
  publication-title: Engineering Failure Analysis
– volume: 18
  start-page: 3149
  year: 2021
  end-page: 3162
  ident: b0025
  article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil
  publication-title: Landslides
– volume: 15
  start-page: 1
  year: 2019
  end-page: 23
  ident: b0100
  article-title: AB-LSTM: Attention-based Bidirectional LSTM Model for Scene Text Detection
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
– volume: 110
  year: 2021
  ident: b0075
  article-title: Effect of dynamic cutterhead on face stability in EPB shield tunneling
  publication-title: Tunnelling and Underground Space Technology
– volume: 9
  start-page: 107387
  year: 2021
  end-page: 107398
  ident: b0005
  article-title: Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting
  publication-title: IEEE Access
– volume: 19
  start-page: 1507
  year: 2019
  end-page: 1515
  ident: b0015
  article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction
  publication-title: Quantitative Finance
– volume: 22
  start-page: 147
  year: 2022
  ident: b0195
  article-title: Numerical investigation of TBM disc cutter cutting on microwave-treated basalt with an unrelieved model
  publication-title: Archives of Civil and Mechanical Engineering
– volume: 117
  year: 2020
  ident: b0130
  article-title: Failure analysis of center cutter mount in shield machine under tuff layer
  publication-title: Engineering Failure Analysis
– volume: 183
  year: 2021
  ident: b0205
  article-title: Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning method
  publication-title: Measurement
– volume: 235
  year: 2020
  ident: b0125
  article-title: A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction
  publication-title: Engineering Fracture Mechanics.
– volume: 25
  start-page: 1297
  year: 2021
  end-page: 1307
  ident: b0035
  article-title: Emotion cause detection with enhanced-representation attention convolutional-context network
  publication-title: Soft Computing
– volume: 512
  start-page: 1175
  year: 2018
  end-page: 1182
  ident: b0095
  article-title: A generative model for the collective attention of the Chinese stock market investors
  publication-title: Physica A: Statistical Mechanics and Its Applications
– volume: 10
  start-page: 784
  year: 2020
  ident: b0145
  article-title: Study on the Horizontal Axis Deviation of a Small Radius TBM Tunnel Based on Winkler Foundation Model
  publication-title: Applied Sciences
– volume: 91
  year: 2020
  ident: b0185
  article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 30
  start-page: 75
  year: 2022
  end-page: 91
  ident: b0110
  article-title: Several models for tunnel boring machine performance prediction based on machine learning
  publication-title: Geomechanics and Engineering
– volume: 21
  start-page: 22
  year: 2021
  ident: b0030
  article-title: Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures
  publication-title: Archives of Civil and Mechanical Engineering
– volume: 12
  start-page: 331
  year: 2021
  end-page: 338
  ident: b0085
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geoscience Frontiers
– volume: 12
  year: 2021
  ident: b0090
  article-title: Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms
  publication-title: Geoscience Frontiers
– volume: 130
  year: 2022
  ident: b0160
  article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks
  publication-title: Tunnelling and Underground Space Technology
– volume: 16
  start-page: 115
  year: 2016
  ident: b0140
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: Sensors
– volume: 25
  start-page: 359
  year: 2021
  end-page: 382
  ident: b0105
  article-title: Multi-task prediction model based on ConvLSTM and encoder-decoder
  publication-title: Intelligent Data Analysis
– volume: 109
  year: 2021
  ident: b0070
  article-title: A novel framework for image-based malware detection with a deep neural network
  publication-title: Computers & Security
– volume: 36
  year: 2021
  ident: b0190
  article-title: Data on performance and variation index for shield tunnelling through soft deposit
  publication-title: Data in Brief
– volume: 17
  start-page: 115
  year: 2002
  end-page: 116
  ident: b0060
  article-title: Invited Editorial
  publication-title: Tunnelling and Underground Space Technology
– volume: 62
  start-page: 1247
  year: 2020
  end-page: 1256
  ident: b0010
  article-title: Comparison of deep learning models for natural language processing-based classification of non-English head CT reports
  publication-title: Neuroradiology
– volume: 212
  year: 2023
  ident: b0040
  article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 4822
  year: 2021
  ident: b0080
  article-title: Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead
  publication-title: Materials
– volume: 304
  year: 2022
  ident: b0020
  article-title: Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay
  publication-title: Engineering Geology
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: b0050
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Computation
– volume: 15
  start-page: 2119
  year: 2022
  end-page: 2131
  ident: b0165
  article-title: Logging curve prediction method based on CNN-LSTM-attention
  publication-title: Earth Science Informatics
– volume: 132
  year: 2021
  ident: b0180
  article-title: Dynamic prediction of mechanized shield tunneling performance
  publication-title: Automation in Construction
– volume: 85
  year: 2019
  ident: b0210
  article-title: A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model
  publication-title: Applied Soft Computing
– volume: 32
  start-page: 1859018
  year: 2018
  ident: b0215
  article-title: Attitude Correction System and Cooperative Control of Tunnel Boring Machine
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: 512
  start-page: 1175
  year: 2018
  ident: 10.1016/j.undsp.2023.05.006_b0095
  article-title: A generative model for the collective attention of the Chinese stock market investors
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2018.08.036
– volume: 23
  start-page: 281
  issue: 3
  year: 2008
  ident: 10.1016/j.undsp.2023.05.006_b0120
  article-title: Study on inner force and dislocation of segments caused by shield machine attitude
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2007.06.007
– volume: 8
  start-page: 64310
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0045
  article-title: Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling by Integrating GRU Deep Learning Method with GA Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984515
– volume: 9
  start-page: 107387
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0005
  article-title: Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100105
– volume: 21
  start-page: 22
  issue: 1
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0030
  article-title: Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures
  publication-title: Archives of Civil and Mechanical Engineering
  doi: 10.1007/s43452-020-00172-5
– volume: 25
  start-page: 1297
  issue: 2
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0035
  article-title: Emotion cause detection with enhanced-representation attention convolutional-context network
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05223-w
– volume: 17
  start-page: 115
  issue: 2
  year: 2002
  ident: 10.1016/j.undsp.2023.05.006_b0060
  article-title: Invited Editorial
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/S0886-7798(02)00031-7
– volume: 145
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0175
  article-title: Signalized arterial origin-destination flow estimation using flawed vehicle trajectories: A self-supervised learning approach without ground truth
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2022.103917
– volume: 362
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0155
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– volume: 12
  start-page: 331
  issue: 1
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0085
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2020.02.011
– volume: 10
  start-page: 784
  issue: 3
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0145
  article-title: Study on the Horizontal Axis Deviation of a Small Radius TBM Tunnel Based on Winkler Foundation Model
  publication-title: Applied Sciences
  doi: 10.3390/app10030784
– volume: 18
  start-page: 3149
  issue: 9
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0025
  article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil
  publication-title: Landslides
  doi: 10.1007/s10346-021-01699-1
– volume: 19
  start-page: 1507
  issue: 9
  year: 2019
  ident: 10.1016/j.undsp.2023.05.006_b0015
  article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2019.1622287
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.undsp.2023.05.006_b0050
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Computation
  doi: 10.1162/089976600300015015
– volume: 30
  start-page: 75
  issue: 1
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0110
  article-title: Several models for tunnel boring machine performance prediction based on machine learning
  publication-title: Geomechanics and Engineering
– volume: 132
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0180
  article-title: Dynamic prediction of mechanized shield tunneling performance
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.103958
– volume: 25
  start-page: 359
  issue: 2
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0105
  article-title: Multi-task prediction model based on ConvLSTM and encoder-decoder
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-194969
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0135
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 62
  start-page: 1247
  issue: 2
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0010
  article-title: Comparison of deep learning models for natural language processing-based classification of non-English head CT reports
  publication-title: Neuroradiology
  doi: 10.1007/s00234-020-02420-0
– volume: 212
  year: 2023
  ident: 10.1016/j.undsp.2023.05.006_b0040
  article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118721
– volume: 17
  start-page: 1019
  issue: 4
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0055
  article-title: Intelligent assistant driving method for tunnel boring machine based on big data
  publication-title: Acta Geotechnica
  doi: 10.1007/s11440-021-01327-1
– volume: 36
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0190
  article-title: Data on performance and variation index for shield tunnelling through soft deposit
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2021.107103
– volume: 122
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0225
  article-title: Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108275
– volume: 127
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0065
  article-title: Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2021.105557
– volume: 183
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0205
  article-title: Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109700
– volume: 117
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0130
  article-title: Failure analysis of center cutter mount in shield machine under tuff layer
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2020.104940
– volume: 235
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0125
  article-title: A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction
  publication-title: Engineering Fracture Mechanics.
  doi: 10.1016/j.engfracmech.2020.107085
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.undsp.2023.05.006_b0140
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 91
  year: 2020
  ident: 10.1016/j.undsp.2023.05.006_b0185
  article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103587
– volume: 109
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0070
  article-title: A novel framework for image-based malware detection with a deep neural network
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2021.102400
– volume: 174
  start-page: 372
  issue: 4
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0200
  article-title: Challenges of earth pressure balance tunnelling in weathered granite with boulders
  publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering
– volume: 151
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0150
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107386
– volume: 110
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0075
  article-title: Effect of dynamic cutterhead on face stability in EPB shield tunneling
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2021.103827
– volume: 15
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.undsp.2023.05.006_b0100
  article-title: AB-LSTM: Attention-based Bidirectional LSTM Model for Scene Text Detection
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
– volume: 22
  start-page: 147
  issue: 3
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0195
  article-title: Numerical investigation of TBM disc cutter cutting on microwave-treated basalt with an unrelieved model
  publication-title: Archives of Civil and Mechanical Engineering
  doi: 10.1007/s43452-022-00463-z
– volume: 304
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0020
  article-title: Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2022.106677
– volume: 130
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0160
  article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2022.104728
– volume: 15
  start-page: 2119
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0165
  article-title: Logging curve prediction method based on CNN-LSTM-attention
  publication-title: Earth Science Informatics
  doi: 10.1007/s12145-022-00864-x
– volume: 32
  start-page: 1859018
  issue: 11
  year: 2018
  ident: 10.1016/j.undsp.2023.05.006_b0215
  article-title: Attitude Correction System and Cooperative Control of Tunnel Boring Machine
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001418590188
– volume: 85
  year: 2019
  ident: 10.1016/j.undsp.2023.05.006_b0210
  article-title: A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105859
– volume: 17
  start-page: 20
  issue: 2
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0170
  article-title: Deviation correction strategy for the earth pressure balance shield based on shield-soil interactions
  publication-title: Frontiers of Mechanical Engineering
  doi: 10.1007/s11465-022-0676-4
– volume: 105
  year: 2019
  ident: 10.1016/j.undsp.2023.05.006_b0220
  article-title: Dynamic prediction for attitude and position in shield tunneling: A deep learning method
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2019.102840
– volume: 209
  year: 2022
  ident: 10.1016/j.undsp.2023.05.006_b0115
  article-title: Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118303
– volume: 14
  start-page: 4822
  issue: 17
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0080
  article-title: Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead
  publication-title: Materials
  doi: 10.3390/ma14174822
– volume: 12
  issue: 5
  year: 2021
  ident: 10.1016/j.undsp.2023.05.006_b0090
  article-title: Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2021.101177
SSID ssj0002087875
Score 2.4796534
Snippet •The LSTM-attention model is more effective than the LSTM model.•LSTM-attention model can predict the attitude and position of shield machine.•Attention...
Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation. This study...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Attention mechanism
Attitude and position prediction
LSTM
Shield machine
Tunnel excavation
Title Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling
URI https://dx.doi.org/10.1016/j.undsp.2023.05.006
https://doaj.org/article/4e5c9fd174c843af9dde39022bedd3e0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iFxHET1w_lhw8WmybdHdz3FUXEfWigreQzCS4i3ZFu__fSdpKT-vFQ6EtaVMmk86b5vUNY-eQj5DGViYCyYOlApUQysDEgkf03lHKEn5Ofngc3L7Iu9fitVPqK3DCanng2nCX0hWgPBJwhpEUxiuaj5Sn57l1iMLFbD1VaSeZmsfltRF5YtHKDEVC17LE76BQmYuo1RlqHHVCUVTs70SkTpSZ7rDtBh7ycf1Yu2zNlXtsa9z52r_P7LiqapJiEmIQ8vun5wf--RWWXMLLi8fqNpzQKCd0x00V2ABIOyXylqPFF55_vwX2Gv-IdErHZyWvloH1QsHsgL1Mb56vbpOmVEICMpNVImAojfEGaBtYQ6jNhPLRiJCbDMCBMiqzAk0BAryHoRF-ICgjtaZQYFNxyNbLRemOGKdDr3KfS194SoekHdK8hQxNmjk5QuixvLWahkZHPJSzeNctYWyuo6l1MLVOC02m7rGL34s-axmN1c0nYTh-mwYN7HiCPEM3nqH_8oweG7SDqRs4UcMEutVsVe_H_9H7CdsMt6yZL6dsvfpaujPCL5Xts43x5Hoy7UeX_QH7LvSL
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+LSTM+predictive+model+for+the+attitude+and+position+of+shield+machine+in+tunneling&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Kang%2C+Qing&rft.au=Chen%2C+Elton+J.&rft.au=Li%2C+Zhong-Chao&rft.au=Luo%2C+Han-Bin&rft.date=2023-12-01&rft.issn=2467-9674&rft.eissn=2467-9674&rft.volume=13&rft.spage=335&rft.epage=350&rft_id=info:doi/10.1016%2Fj.undsp.2023.05.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_undsp_2023_05_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon