Graph‐based spectrum sensing algorithm via nonlinear function regulation

To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transfor...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 18; no. 6; pp. 915 - 930
Main Authors Wu, Shanshan, Hu, Guobing
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2024
Subjects
Online AccessGet full text
ISSN1751-8784
1751-8792
1751-8792
DOI10.1049/rsn2.12538

Cover

Abstract To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method. In this study, an improved graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed, which converted the spectrum sensing problem into complete graph detection using nonlinear function adjustment, effectively solved the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions.
AbstractList Abstract To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method.
To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method.
To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method. In this study, an improved graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed, which converted the spectrum sensing problem into complete graph detection using nonlinear function adjustment, effectively solved the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions.
Author Wu, Shanshan
Hu, Guobing
Author_xml – sequence: 1
  givenname: Shanshan
  orcidid: 0009-0007-3683-6351
  surname: Wu
  fullname: Wu, Shanshan
  organization: Nanjing Vocational College of Information Technology
– sequence: 2
  givenname: Guobing
  surname: Hu
  fullname: Hu, Guobing
  email: s0304152@jit.edu.cn
  organization: Jinling Institute of Technology
BookMark eNp9kM9OGzEQh60KpALtpU-w56JQe2Lv2scKlT8VAqnA2ZrY42DkeCN7A8qtj9Bn5EmaZCsOqOI0o9H3-0b6HbK93Gdi7IvgJ4JL863UDCcC1FR_YAeiU2KiOwN7r7uWH9lhrY-cK9VKc8B-nhdcPrz8_jPDSr6pS3JDWS2aSrnGPG8wzfsSh4dF8xSx2XxLMROWJqyyG2Kfm0LzVcLt-ontB0yVPv-bR-z-7Mfd6cXk6ub88vT71cRJIfVk1oZZUDJ41KgcBeIdl15BG0BMjQauhTdgkFoAqQK1ygAHCNo7qQ120yN2OXp9j492WeICy9r2GO3u0Je5xTJEl8gqIIPGtR0JkFNvjCE_8yScBuBt125cx6NrlZe4fsaUXoWC222ldlup3VW6ob-OtCt9rYXC-zB_A7s47IoaCsb0_4gYI88x0foduf11ew1j5i9bvJq3
CitedBy_id crossref_primary_10_1049_rsn2_12674
Cites_doi 10.1109/taes.2021.3131400
10.1109/tgrs.2019.2911451
10.1016/j.sigpro.2022.108898
10.1109/jsen.2022.3201006
10.1016/j.dsp.2022.103677
10.1017/CBO9780511754661
10.3390/s23010342
10.1109/DYSPAN.2007.33
10.1109/lcomm.2016.2618871
10.1109/CROWNCOM.2007.4549769
10.1007/bf02669571
10.1109/jiot.2022.3142989
10.1016/s0001‐2998(78)80014‐2
10.1109/lcomm.2012.111612.121964
10.1016/j.dsp.2019.102586
10.2307/3213709
10.1007/978-0-387-34675-5
10.2307/3214465
10.1016/j.sigpro.2019.107443
10.1109/comst.2018.2863681
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/rsn2.12538
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 930
ExternalDocumentID oai_doaj_org_article_52e9a9c67e1243d999edbde1c8220676
10.1049/rsn2.12538
10_1049_rsn2_12538
RSN212538
Genre article
GrantInformation_xml – fundername: The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  funderid: 20KJA510008
– fundername: The research grant from Nanjing Vocational College of Information Technology
  funderid: YK20200101
– fundername: The Excellent Scientific and Technological Innovation Team Project of Colleges and Universities in Jiangsu Province in 2021
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFAZI
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IMI
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
QWB
RNS
ROL
RUI
S0W
U5U
UNMZH
WIN
ZL0
AAYXX
AFFHD
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c4148-b6fbf54fda8a5cefe0704d526f213982081d929ae62245fe6592022f8dc489a73
IEDL.DBID 24P
ISSN 1751-8784
1751-8792
IngestDate Fri Oct 03 12:45:43 EDT 2025
Tue Aug 19 22:02:42 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Wed Oct 29 21:14:51 EDT 2025
Sun Sep 21 06:15:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4148-b6fbf54fda8a5cefe0704d526f213982081d929ae62245fe6592022f8dc489a73
ORCID 0009-0007-3683-6351
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12538
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_52e9a9c67e1243d999edbde1c8220676
unpaywall_primary_10_1049_rsn2_12538
crossref_primary_10_1049_rsn2_12538
crossref_citationtrail_10_1049_rsn2_12538
wiley_primary_10_1049_rsn2_12538_RSN212538
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 51
2013; 17
2020; 96
2011
2019; 21
2022; 62
2019; 57
1984; 21
1986; 23
2020; 170
2017; 21
2022; 9
2022; 23
2008
2007
2022; 58
2001; 17
2022; 22
2022; 129
2022; 206
1978; 8
1979
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
Digham F.F. (e_1_2_10_6_1) 2007
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
Hu G. (e_1_2_10_17_1) 2023; 51
Brouwer A.E. (e_1_2_10_25_1) 2011
Maeda K. (e_1_2_10_11_1) 2007
Marshall A.W. (e_1_2_10_19_1) 1979
Zhao D. (e_1_2_10_15_1) 2022; 62
e_1_2_10_27_1
e_1_2_10_26_1
References_xml – volume: 21
  start-page: 924
  issue: 4
  year: 1984
  end-page: 929
  article-title: Continuous majorization and randomness
  publication-title: J. Appl. Probab.
– year: 2011
– volume: 21
  start-page: 20
  issue: 1
  year: 2017
  end-page: 23
  article-title: Novel Robust band‐limited signal detection approach using graphs
  publication-title: IEEE Commun. Lett.
– volume: 170
  start-page: 107443
  year: 2020
  end-page: 107453
  article-title: MIMO waveform design combined with constellation mapping for the integrated system of radar and communication
  publication-title: Signal Process.
– volume: 129
  year: 2022
  article-title: Eigen analysis of flipped Toeplitz covariance matrix for very low SNR sinusoidal signals detection and estimation
  publication-title: Digit. Signal Process.
– volume: 22
  start-page: 19088
  issue: 19
  year: 2022
  end-page: 19100
  article-title: Quick multiband spectrum sensing for delay‐constraint cognitive UAV networks
  publication-title: IEEE Sensor. J.
– volume: 17
  start-page: 83
  issue: 1
  year: 2013
  end-page: 86
  article-title: Fast and accurate approximations for the analysis of energy detection in Nakagami‐m channels
  publication-title: IEEE Commun. Lett.
– volume: 206
  start-page: 108898
  issue: 2023
  year: 2022
  end-page: 108913
  article-title: Graph‐based confidence verification for Bpsk signal analysis under low SNRs
  publication-title: Signal Process.
– volume: 62
  start-page: 1292
  issue: 9
  year: 2022
  end-page: 1300
  article-title: An improved graph‐based spectrum sensing algorithm
  publication-title: Telecommun. Eng.
– year: 2007
– volume: 51
  start-page: 1327
  issue: 5
  year: 2023
  end-page: 1333
  article-title: Research on spectrum sensing based on graphical feature of the autocorrelation
  publication-title: Acta Electron. Sin.
– year: 2008
– volume: 58
  start-page: 2291
  issue: 3
  year: 2022
  end-page: 2303
  article-title: Efficient GNSS Jamming Mitigation using the Marcenko‐Pastur law and Karhunen‐Loeve decomposition
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 9
  start-page: 13263
  issue: 15
  year: 2022
  end-page: 13278
  article-title: A trust‐centric privacy‐preserving blockchain for dynamic spectrum management in IoT networks
  publication-title: IEEE Internet Things J.
– start-page: 202
  year: 2007
  end-page: 207
– volume: 21
  start-page: 238
  issue: 1
  year: 2019
  end-page: 259
  article-title: Blind spectrum sensing approaches for interweaved cognitive radio system: a tutorial and short course
  publication-title: IEEE Commun. Surv. Tutor.
– year: 1979
– volume: 23
  start-page: 914
  issue: 4
  year: 1986
  end-page: 921
  article-title: Concepts of dispersion in distributions: a comparative note
  publication-title: J. Appl. Probab.
– volume: 23
  start-page: 342
  issue: 1
  year: 2022
  end-page: 375
  article-title: Spectrum sharing in the sky and space: a survey
  publication-title: Sensors
– start-page: 55
  issue: 1
  year: 2007
  article-title: On the energy detection of unknown signals over fading channels
  publication-title: IEEE Trans. Commun.
– volume: 8
  start-page: 283
  issue: 4
  year: 1978
  end-page: 298
  article-title: Basic principles of ROC analysis
  publication-title: Semin. Nucl. Med.
– volume: 57
  start-page: 7093
  issue: 9
  year: 2019
  end-page: 7103
  article-title: Robust target detection within sea clutter based on graphs
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 17
  start-page: 183
  issue: 2
  year: 2001
  end-page: 190
  article-title: On the k‐th largest eigenvalue of the Laplacian matrix of a graph
  publication-title: Acta Appl. Math. Sin.
– volume: 96
  start-page: 102568
  year: 2020
  end-page: 102579
  article-title: Graph representation of random signal and its application for sparse signal detection
  publication-title: Digit. Signal Process.
– ident: e_1_2_10_10_1
  doi: 10.1109/taes.2021.3131400
– volume: 62
  start-page: 1292
  issue: 9
  year: 2022
  ident: e_1_2_10_15_1
  article-title: An improved graph‐based spectrum sensing algorithm
  publication-title: Telecommun. Eng.
– volume-title: IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks IEEE
  year: 2007
  ident: e_1_2_10_11_1
– ident: e_1_2_10_14_1
  doi: 10.1109/tgrs.2019.2911451
– ident: e_1_2_10_18_1
  doi: 10.1016/j.sigpro.2022.108898
– ident: e_1_2_10_4_1
  doi: 10.1109/jsen.2022.3201006
– ident: e_1_2_10_9_1
  doi: 10.1016/j.dsp.2022.103677
– ident: e_1_2_10_23_1
  doi: 10.1017/CBO9780511754661
– ident: e_1_2_10_5_1
  doi: 10.3390/s23010342
– ident: e_1_2_10_8_1
  doi: 10.1109/DYSPAN.2007.33
– ident: e_1_2_10_16_1
  doi: 10.1109/lcomm.2016.2618871
– ident: e_1_2_10_7_1
  doi: 10.1109/CROWNCOM.2007.4549769
– ident: e_1_2_10_24_1
  doi: 10.1007/bf02669571
– ident: e_1_2_10_2_1
  doi: 10.1109/jiot.2022.3142989
– ident: e_1_2_10_26_1
  doi: 10.1016/s0001‐2998(78)80014‐2
– volume-title: Inequalities: Theory of Majorization and its Applications
  year: 1979
  ident: e_1_2_10_19_1
– ident: e_1_2_10_27_1
  doi: 10.1109/lcomm.2012.111612.121964
– ident: e_1_2_10_13_1
  doi: 10.1016/j.dsp.2019.102586
– ident: e_1_2_10_20_1
  doi: 10.2307/3213709
– ident: e_1_2_10_21_1
  doi: 10.1007/978-0-387-34675-5
– ident: e_1_2_10_22_1
  doi: 10.2307/3214465
– ident: e_1_2_10_3_1
  doi: 10.1016/j.sigpro.2019.107443
– ident: e_1_2_10_12_1
  doi: 10.1109/comst.2018.2863681
– volume: 51
  start-page: 1327
  issue: 5
  year: 2023
  ident: e_1_2_10_17_1
  article-title: Research on spectrum sensing based on graphical feature of the autocorrelation
  publication-title: Acta Electron. Sin.
– volume-title: “Spectra of Graphs”
  year: 2011
  ident: e_1_2_10_25_1
– start-page: 55
  issue: 1
  year: 2007
  ident: e_1_2_10_6_1
  article-title: On the energy detection of unknown signals over fading channels
  publication-title: IEEE Trans. Commun.
SSID ssj0055649
Score 2.3919566
Snippet To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms,...
Abstract To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 915
SubjectTerms cognitive radio
radar signal processing
signal detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SjXYhPrG-CNiNwth5ZDKTpYq1FOxCLXQ3JJOkCtOxTK3izk_wG_0SbzLTUkHqxl0YLkm4N8k5mSTnItQMpGKEBNTxVEodAgDjiMAcOFLhUSE8V7nmofBtj3b6pDsIBwupvsydsFIeuHRcK_QV4yylkQIkCiTwGSWFVF4KyAYrrRXbdmM220yVa3AYUkt8ARs9mO8xmQmTEtYqJrl_DrBuXqQsQJFV7K-j1Wk-5u9vPMt-slULN-0NtF7xRHxR9m8Trah8C9UX1AO3UffGiE1_fXwaJJLYvpkspiM8MXfS8yHm2fAZtv6PI_z6xHFeamLwAhsoM-HARZmHHoo7qN--frjqOFVqBCcl5hegoFrokGjJYx6mSiuYuUSGPtU-UDpAdaChQHy4ogDRoVbm8BTQWscyJTHjUbCLatCu2kOYu67ULOJexFMSQYWuCjiwOuFCRS7VDXQ681KSVrrhJn1Fltjza8IS49HEerSBTua241It41erS-PsuYVRuLYfIO5JFffkr7g3UHMeqqVtndkoLjFJ7u57vi3t_0fHDtAauJqU18kOUQ0ir46AuLyIYztGvwEcj-lA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7R5FBxgD6oSAXIUnMBadN9eL3ZIyBohESEKJHoaeVnGjXZRJukVTnxE_iN_BLG3k2UVBVC4matZm2vx-P51vZ8A9CMlE4pjZgXaMk8ig7GE5E9cGQiYEIEvvZtoPBll3V69OI2vl2J4i_5IZYbbtYy3HptDXyiTLnOl3-dNP1aTPOwhS46ar-BOosRjdeg3uteHf9wcZBxgMbukg5X5TRcMJSuvbzmkxx1_ya8necT_vcPHw7XYavzO-fbwBc9Lq-b_GrNZ6Il7_4hc3zNJ72DrQqUkuNyFr2HDZ1_gM0VqsKPcPHNMls_3j9Yt6eIC9As5iMytRfg8z7hw_64GMx-jsjvASd52RteEOs3re5JUSa9x-IO9M7Pbk47XpWHwZPU7jcKZoSJqVG8zWOpjcZlgqo4ZCZE_IgQAjEvoiyuGeKB2Gh7UovQwLSVpO2UJ9EnqGG7ehcI931l0oQHCZc0wQp9HXGEkMLHinxmGnC40EQmK5JymytjmLnDcppmdnwyNz4N-LKUnZTUHP-VOrEKXUpYOm33YFz0s8o6szjUKU8lSzTCnUghaNZKKB1IhE_ozlkDmsvp8GxbR069z4hk19-7oSt9flmde1BDdep9hD4zcVDN7ifqGgRh
  priority: 102
  providerName: Unpaywall
Title Graph‐based spectrum sensing algorithm via nonlinear function regulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12538
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12538
https://doaj.org/article/52e9a9c67e1243d999edbde1c8220676
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qB7EK84LyOgLwrVXtK0BV-meEFwiDrQp5I0yRS6KtUpvvkT_I3-Ek_SbSqI4Fsppwk9Jyffl9sXgM1AqoTSgDmeyphDEWAcEZgFRyY8JoTnKtccFD7rsJMuPb0Orydgb3QWptKHGE-4mcyw_bVJcC6qW0iQ1GIQy8fC30F4DuJJqHtIZEz79un5qB8OQ2bJL-Kjhzkf05E4KU12v779AUdWtb8BU4Pigb--8Dz_yVgt5BzNwsyQK5J2Fdw5mFDFPDS-KQguwOmxEZz-eHs3aCSJPTdZDvrk0exLL3qE5717HP7f9snzHSdF9d-8JAbOTEhIWd1Fj4-L0D06vDo4cYbXIzgZNdOAgmmhQ6olj3mYKa0we6kMfaZ99AYiO1JRJD9cMYTpUCuzgIqIrWOZ0TjhUbAENaxXLQPhrit1EnEv4hmNsEBXBRyZnXCxIJfpJmyNvJRmQ-1wc4VFnto1bJqkxqOp9WgTNsa2D5Vixq9W-8bZYwujcm1f3Je9dJg0aeirhCcZixSykEAil1VSSOVlyGoQZVkTNseh-rOubRvFP0zSi8uOb59W_mO8CtPoUlptHVuDGkZYrSNJeRIt2xZbdojfgnq3c96--QQrt-R-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7QH2UFEeYlugluBCpUAejpMcAQFbCivUgsQtsmN7QdrNotBtxY2fwG_klzDjZJciISRuVjSxlZmMv8-vzwCbkTYZ55HwAlMIjyPAeCqiBUehAqFU4BufDgqf9kT3gh9fxpfN3hw6C1PrQ0wn3CgzXH9NCU4T0vWAk5NIZnVbhtuIz1E6Ax-5CASNvUJ-NumI41g49osAGWDSp3yiTsqzned3X-CRk-1vw-y4vJF3_-Rg8JKyOsw5nIdPDVlku3V0P8MHUy5A-z8JwUU4PiLF6cf7B4IjzdzByWo8ZLe0Mb3sMznoj3D8fzVkf68lK-sPlxUjPKOYsKq-jB6LS3BxeHC-3_Wa-xG8gtM8oBJW2ZhbLVMZF8YaTF-u41DYEHkdQjtyUWQ_0gjE6dgaWkFFyLapLniaySRahha2a1aASd_XNktkkMiCJ1ihbyKJ1E75WJEvbAe2Jl7Ki0Y8nO6wGORuEZtnOXk0dx7twMbU9qaWzHjVao-cPbUgmWv3YFT18yZr8jg0mcwKkRikIZFGMmu00iYokNYgzIoObE5D9WZb310U3zDJf_3uha705T3G32C2e356kp_86P38CnPoXl7vI1uFFkbbrCFj-aPW3X_5BPlY5UU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bTtwwEB3RRWrhAUFbxHK1VF5aKSUXx0keuS2XwqpquxXiJbJje0FawircxBufwDfyJcw42W2RKqS-WdHYVmYyPie-HAOsR9pknEfCC0whPI4A46mIFhyFCoRSgW98Oih83BX7PX54Ep80e3PoLEytDzGecKPMcOM1JbgZalv_cHISyayuyvAr4nOUvoFJBHKft2By83fvtDcaiuNYOP6LEBlg2qd8pE_Ks40_tV8gkhPun4Z3N-VQ3t_JweAlaXWo05mFmYYuss06vnMwYcr3MP2XiOAHONwjzemnh0cCJM3c0cnq5oJd0db0ss_koH9ZnV-fXbDbc8nK-tVlxQjRKCqsqq-jx-JH6HV2f23ve80NCV7BaSZQCatszK2WqYwLYw0mMNdxKGyIzA7BHdko8h9pBCJ1bA2toSJo21QXPM1kEs1DC_s1C8Ck72ubJTJIZMETbNA3kURyp3xsyBe2DZ9HXsqLRj6cbrEY5G4Zm2c5eTR3Hm3Dp7HtsBbN-KfVFjl7bEFC1-7BZdXPm7zJ49BkMitEYpCIRBrprNFKm6BAYoNAK9qwPg7Vq319cVF8xST_8bMbutLi_xivwdvvO5386KD7bQmm0Lu83ki2DC0MtllBynKtVpsP8xknpeaZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7R5FBxgD6oSAXIUnMBadN9eL3ZIyBohESEKJHoaeVnGjXZRJukVTnxE_iN_BLG3k2UVBVC4matZm2vx-P51vZ8A9CMlE4pjZgXaMk8ig7GE5E9cGQiYEIEvvZtoPBll3V69OI2vl2J4i_5IZYbbtYy3HptDXyiTLnOl3-dNP1aTPOwhS46ar-BOosRjdeg3uteHf9wcZBxgMbukg5X5TRcMJSuvbzmkxx1_ya8necT_vcPHw7XYavzO-fbwBc9Lq-b_GrNZ6Il7_4hc3zNJ72DrQqUkuNyFr2HDZ1_gM0VqsKPcPHNMls_3j9Yt6eIC9As5iMytRfg8z7hw_64GMx-jsjvASd52RteEOs3re5JUSa9x-IO9M7Pbk47XpWHwZPU7jcKZoSJqVG8zWOpjcZlgqo4ZCZE_IgQAjEvoiyuGeKB2Gh7UovQwLSVpO2UJ9EnqGG7ehcI931l0oQHCZc0wQp9HXGEkMLHinxmGnC40EQmK5JymytjmLnDcppmdnwyNz4N-LKUnZTUHP-VOrEKXUpYOm33YFz0s8o6szjUKU8lSzTCnUghaNZKKB1IhE_ozlkDmsvp8GxbR069z4hk19-7oSt9flmde1BDdep9hD4zcVDN7ifqGgRh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph%E2%80%90based+spectrum+sensing+algorithm+via+nonlinear+function+regulation&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Wu%2C+Shanshan&rft.au=Hu%2C+Guobing&rft.date=2024-06-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=6&rft.spage=915&rft.epage=930&rft_id=info:doi/10.1049%2Frsn2.12538&rft.externalDBID=10.1049%252Frsn2.12538&rft.externalDocID=RSN212538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon