Graph‐based spectrum sensing algorithm via nonlinear function regulation
To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transfor...
Saved in:
| Published in | IET radar, sonar & navigation Vol. 18; no. 6; pp. 915 - 930 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8784 1751-8792 1751-8792 |
| DOI | 10.1049/rsn2.12538 |
Cover
| Abstract | To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method.
In this study, an improved graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed, which converted the spectrum sensing problem into complete graph detection using nonlinear function adjustment, effectively solved the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions. |
|---|---|
| AbstractList | Abstract To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method. To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method. To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms, a graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed. The idea was to add a specific nonlinear transformation between the normalisation and quantization steps of the existing signal‐to‐graph converter (SGC). If the autocorrelation function of the observed signal selected as the input fed to SGC, the nonlinear function has the ability to adjust the uniformity of its probability distribution, increasing the probability of the observed signal being transformed into a complete graph under the alternative hypothesis, whereas remaining a noncomplete graph under the null hypothesis. Thus transformed the graph‐based spectrum sensing into a complete graph‐detection problem. Based on the theory of dispersive ordering, a theoretical analysis of the mechanism by which nonlinear transformations affect graph connectivity was conducted. The simulation results showed that the detection performance of the proposed algorithm was superior to that of existing graph‐based spectrum sensing algorithms. When SNR was −7 dB, the detection probability of the proposed algorithm exceeded 95%. Moreover, among the existing graph‐based spectrum sensing algorithms, the proposed algorithm exhibited the lowest computational complexity apart from the block range‐based method. In this study, an improved graph‐based spectrum sensing algorithm using nonlinear function regulation was proposed, which converted the spectrum sensing problem into complete graph detection using nonlinear function adjustment, effectively solved the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions. |
| Author | Wu, Shanshan Hu, Guobing |
| Author_xml | – sequence: 1 givenname: Shanshan orcidid: 0009-0007-3683-6351 surname: Wu fullname: Wu, Shanshan organization: Nanjing Vocational College of Information Technology – sequence: 2 givenname: Guobing surname: Hu fullname: Hu, Guobing email: s0304152@jit.edu.cn organization: Jinling Institute of Technology |
| BookMark | eNp9kM9OGzEQh60KpALtpU-w56JQe2Lv2scKlT8VAqnA2ZrY42DkeCN7A8qtj9Bn5EmaZCsOqOI0o9H3-0b6HbK93Gdi7IvgJ4JL863UDCcC1FR_YAeiU2KiOwN7r7uWH9lhrY-cK9VKc8B-nhdcPrz8_jPDSr6pS3JDWS2aSrnGPG8wzfsSh4dF8xSx2XxLMROWJqyyG2Kfm0LzVcLt-ontB0yVPv-bR-z-7Mfd6cXk6ub88vT71cRJIfVk1oZZUDJ41KgcBeIdl15BG0BMjQauhTdgkFoAqQK1ygAHCNo7qQ120yN2OXp9j492WeICy9r2GO3u0Je5xTJEl8gqIIPGtR0JkFNvjCE_8yScBuBt125cx6NrlZe4fsaUXoWC222ldlup3VW6ob-OtCt9rYXC-zB_A7s47IoaCsb0_4gYI88x0foduf11ew1j5i9bvJq3 |
| CitedBy_id | crossref_primary_10_1049_rsn2_12674 |
| Cites_doi | 10.1109/taes.2021.3131400 10.1109/tgrs.2019.2911451 10.1016/j.sigpro.2022.108898 10.1109/jsen.2022.3201006 10.1016/j.dsp.2022.103677 10.1017/CBO9780511754661 10.3390/s23010342 10.1109/DYSPAN.2007.33 10.1109/lcomm.2016.2618871 10.1109/CROWNCOM.2007.4549769 10.1007/bf02669571 10.1109/jiot.2022.3142989 10.1016/s0001‐2998(78)80014‐2 10.1109/lcomm.2012.111612.121964 10.1016/j.dsp.2019.102586 10.2307/3213709 10.1007/978-0-387-34675-5 10.2307/3214465 10.1016/j.sigpro.2019.107443 10.1109/comst.2018.2863681 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/rsn2.12538 |
| DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8792 |
| EndPage | 930 |
| ExternalDocumentID | oai_doaj_org_article_52e9a9c67e1243d999edbde1c8220676 10.1049/rsn2.12538 10_1049_rsn2_12538 RSN212538 |
| Genre | article |
| GrantInformation_xml | – fundername: The Natural Science Foundation of the Jiangsu Higher Education Institutions of China funderid: 20KJA510008 – fundername: The research grant from Nanjing Vocational College of Information Technology funderid: YK20200101 – fundername: The Excellent Scientific and Technological Innovation Team Project of Colleges and Universities in Jiangsu Province in 2021 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB ABJCF ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFAZI AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU DU5 EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IMI IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PTHSS PUEGO QWB RNS ROL RUI S0W U5U UNMZH WIN ZL0 AAYXX AFFHD CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4148-b6fbf54fda8a5cefe0704d526f213982081d929ae62245fe6592022f8dc489a73 |
| IEDL.DBID | 24P |
| ISSN | 1751-8784 1751-8792 |
| IngestDate | Fri Oct 03 12:45:43 EDT 2025 Tue Aug 19 22:02:42 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Wed Oct 29 21:14:51 EDT 2025 Sun Sep 21 06:15:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4148-b6fbf54fda8a5cefe0704d526f213982081d929ae62245fe6592022f8dc489a73 |
| ORCID | 0009-0007-3683-6351 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12538 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_52e9a9c67e1243d999edbde1c8220676 unpaywall_primary_10_1049_rsn2_12538 crossref_primary_10_1049_rsn2_12538 crossref_citationtrail_10_1049_rsn2_12538 wiley_primary_10_1049_rsn2_12538_RSN212538 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | IET radar, sonar & navigation |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2023; 51 2013; 17 2020; 96 2011 2019; 21 2022; 62 2019; 57 1984; 21 1986; 23 2020; 170 2017; 21 2022; 9 2022; 23 2008 2007 2022; 58 2001; 17 2022; 22 2022; 129 2022; 206 1978; 8 1979 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 Digham F.F. (e_1_2_10_6_1) 2007 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 Hu G. (e_1_2_10_17_1) 2023; 51 Brouwer A.E. (e_1_2_10_25_1) 2011 Maeda K. (e_1_2_10_11_1) 2007 Marshall A.W. (e_1_2_10_19_1) 1979 Zhao D. (e_1_2_10_15_1) 2022; 62 e_1_2_10_27_1 e_1_2_10_26_1 |
| References_xml | – volume: 21 start-page: 924 issue: 4 year: 1984 end-page: 929 article-title: Continuous majorization and randomness publication-title: J. Appl. Probab. – year: 2011 – volume: 21 start-page: 20 issue: 1 year: 2017 end-page: 23 article-title: Novel Robust band‐limited signal detection approach using graphs publication-title: IEEE Commun. Lett. – volume: 170 start-page: 107443 year: 2020 end-page: 107453 article-title: MIMO waveform design combined with constellation mapping for the integrated system of radar and communication publication-title: Signal Process. – volume: 129 year: 2022 article-title: Eigen analysis of flipped Toeplitz covariance matrix for very low SNR sinusoidal signals detection and estimation publication-title: Digit. Signal Process. – volume: 22 start-page: 19088 issue: 19 year: 2022 end-page: 19100 article-title: Quick multiband spectrum sensing for delay‐constraint cognitive UAV networks publication-title: IEEE Sensor. J. – volume: 17 start-page: 83 issue: 1 year: 2013 end-page: 86 article-title: Fast and accurate approximations for the analysis of energy detection in Nakagami‐m channels publication-title: IEEE Commun. Lett. – volume: 206 start-page: 108898 issue: 2023 year: 2022 end-page: 108913 article-title: Graph‐based confidence verification for Bpsk signal analysis under low SNRs publication-title: Signal Process. – volume: 62 start-page: 1292 issue: 9 year: 2022 end-page: 1300 article-title: An improved graph‐based spectrum sensing algorithm publication-title: Telecommun. Eng. – year: 2007 – volume: 51 start-page: 1327 issue: 5 year: 2023 end-page: 1333 article-title: Research on spectrum sensing based on graphical feature of the autocorrelation publication-title: Acta Electron. Sin. – year: 2008 – volume: 58 start-page: 2291 issue: 3 year: 2022 end-page: 2303 article-title: Efficient GNSS Jamming Mitigation using the Marcenko‐Pastur law and Karhunen‐Loeve decomposition publication-title: IEEE Trans. Aero. Electron. Syst. – volume: 9 start-page: 13263 issue: 15 year: 2022 end-page: 13278 article-title: A trust‐centric privacy‐preserving blockchain for dynamic spectrum management in IoT networks publication-title: IEEE Internet Things J. – start-page: 202 year: 2007 end-page: 207 – volume: 21 start-page: 238 issue: 1 year: 2019 end-page: 259 article-title: Blind spectrum sensing approaches for interweaved cognitive radio system: a tutorial and short course publication-title: IEEE Commun. Surv. Tutor. – year: 1979 – volume: 23 start-page: 914 issue: 4 year: 1986 end-page: 921 article-title: Concepts of dispersion in distributions: a comparative note publication-title: J. Appl. Probab. – volume: 23 start-page: 342 issue: 1 year: 2022 end-page: 375 article-title: Spectrum sharing in the sky and space: a survey publication-title: Sensors – start-page: 55 issue: 1 year: 2007 article-title: On the energy detection of unknown signals over fading channels publication-title: IEEE Trans. Commun. – volume: 8 start-page: 283 issue: 4 year: 1978 end-page: 298 article-title: Basic principles of ROC analysis publication-title: Semin. Nucl. Med. – volume: 57 start-page: 7093 issue: 9 year: 2019 end-page: 7103 article-title: Robust target detection within sea clutter based on graphs publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 17 start-page: 183 issue: 2 year: 2001 end-page: 190 article-title: On the k‐th largest eigenvalue of the Laplacian matrix of a graph publication-title: Acta Appl. Math. Sin. – volume: 96 start-page: 102568 year: 2020 end-page: 102579 article-title: Graph representation of random signal and its application for sparse signal detection publication-title: Digit. Signal Process. – ident: e_1_2_10_10_1 doi: 10.1109/taes.2021.3131400 – volume: 62 start-page: 1292 issue: 9 year: 2022 ident: e_1_2_10_15_1 article-title: An improved graph‐based spectrum sensing algorithm publication-title: Telecommun. Eng. – volume-title: IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks IEEE year: 2007 ident: e_1_2_10_11_1 – ident: e_1_2_10_14_1 doi: 10.1109/tgrs.2019.2911451 – ident: e_1_2_10_18_1 doi: 10.1016/j.sigpro.2022.108898 – ident: e_1_2_10_4_1 doi: 10.1109/jsen.2022.3201006 – ident: e_1_2_10_9_1 doi: 10.1016/j.dsp.2022.103677 – ident: e_1_2_10_23_1 doi: 10.1017/CBO9780511754661 – ident: e_1_2_10_5_1 doi: 10.3390/s23010342 – ident: e_1_2_10_8_1 doi: 10.1109/DYSPAN.2007.33 – ident: e_1_2_10_16_1 doi: 10.1109/lcomm.2016.2618871 – ident: e_1_2_10_7_1 doi: 10.1109/CROWNCOM.2007.4549769 – ident: e_1_2_10_24_1 doi: 10.1007/bf02669571 – ident: e_1_2_10_2_1 doi: 10.1109/jiot.2022.3142989 – ident: e_1_2_10_26_1 doi: 10.1016/s0001‐2998(78)80014‐2 – volume-title: Inequalities: Theory of Majorization and its Applications year: 1979 ident: e_1_2_10_19_1 – ident: e_1_2_10_27_1 doi: 10.1109/lcomm.2012.111612.121964 – ident: e_1_2_10_13_1 doi: 10.1016/j.dsp.2019.102586 – ident: e_1_2_10_20_1 doi: 10.2307/3213709 – ident: e_1_2_10_21_1 doi: 10.1007/978-0-387-34675-5 – ident: e_1_2_10_22_1 doi: 10.2307/3214465 – ident: e_1_2_10_3_1 doi: 10.1016/j.sigpro.2019.107443 – ident: e_1_2_10_12_1 doi: 10.1109/comst.2018.2863681 – volume: 51 start-page: 1327 issue: 5 year: 2023 ident: e_1_2_10_17_1 article-title: Research on spectrum sensing based on graphical feature of the autocorrelation publication-title: Acta Electron. Sin. – volume-title: “Spectra of Graphs” year: 2011 ident: e_1_2_10_25_1 – start-page: 55 issue: 1 year: 2007 ident: e_1_2_10_6_1 article-title: On the energy detection of unknown signals over fading channels publication-title: IEEE Trans. Commun. |
| SSID | ssj0055649 |
| Score | 2.3919566 |
| Snippet | To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing algorithms,... Abstract To solve the difficulties in threshold selection and poor performance under low signal‐to‐noise ratio (SNR) conditions in existing spectrum sensing... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 915 |
| SubjectTerms | cognitive radio radar signal processing signal detection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SjXYhPrG-CNiNwth5ZDKTpYq1FOxCLXQ3JJOkCtOxTK3izk_wG_0SbzLTUkHqxl0YLkm4N8k5mSTnItQMpGKEBNTxVEodAgDjiMAcOFLhUSE8V7nmofBtj3b6pDsIBwupvsydsFIeuHRcK_QV4yylkQIkCiTwGSWFVF4KyAYrrRXbdmM220yVa3AYUkt8ARs9mO8xmQmTEtYqJrl_DrBuXqQsQJFV7K-j1Wk-5u9vPMt-slULN-0NtF7xRHxR9m8Trah8C9UX1AO3UffGiE1_fXwaJJLYvpkspiM8MXfS8yHm2fAZtv6PI_z6xHFeamLwAhsoM-HARZmHHoo7qN--frjqOFVqBCcl5hegoFrokGjJYx6mSiuYuUSGPtU-UDpAdaChQHy4ogDRoVbm8BTQWscyJTHjUbCLatCu2kOYu67ULOJexFMSQYWuCjiwOuFCRS7VDXQ681KSVrrhJn1Fltjza8IS49HEerSBTua241It41erS-PsuYVRuLYfIO5JFffkr7g3UHMeqqVtndkoLjFJ7u57vi3t_0fHDtAauJqU18kOUQ0ir46AuLyIYztGvwEcj-lA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7R5FBxgD6oSAXIUnMBadN9eL3ZIyBohESEKJHoaeVnGjXZRJukVTnxE_iN_BLG3k2UVBVC4matZm2vx-P51vZ8A9CMlE4pjZgXaMk8ig7GE5E9cGQiYEIEvvZtoPBll3V69OI2vl2J4i_5IZYbbtYy3HptDXyiTLnOl3-dNP1aTPOwhS46ar-BOosRjdeg3uteHf9wcZBxgMbukg5X5TRcMJSuvbzmkxx1_ya8necT_vcPHw7XYavzO-fbwBc9Lq-b_GrNZ6Il7_4hc3zNJ72DrQqUkuNyFr2HDZ1_gM0VqsKPcPHNMls_3j9Yt6eIC9As5iMytRfg8z7hw_64GMx-jsjvASd52RteEOs3re5JUSa9x-IO9M7Pbk47XpWHwZPU7jcKZoSJqVG8zWOpjcZlgqo4ZCZE_IgQAjEvoiyuGeKB2Gh7UovQwLSVpO2UJ9EnqGG7ehcI931l0oQHCZc0wQp9HXGEkMLHinxmGnC40EQmK5JymytjmLnDcppmdnwyNz4N-LKUnZTUHP-VOrEKXUpYOm33YFz0s8o6szjUKU8lSzTCnUghaNZKKB1IhE_ozlkDmsvp8GxbR069z4hk19-7oSt9flmde1BDdep9hD4zcVDN7ifqGgRh priority: 102 providerName: Unpaywall |
| Title | Graph‐based spectrum sensing algorithm via nonlinear function regulation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12538 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12538 https://doaj.org/article/52e9a9c67e1243d999edbde1c8220676 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8792 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qB7EK84LyOgLwrVXtK0BV-meEFwiDrQp5I0yRS6KtUpvvkT_I3-Ek_SbSqI4Fsppwk9Jyffl9sXgM1AqoTSgDmeyphDEWAcEZgFRyY8JoTnKtccFD7rsJMuPb0Orydgb3QWptKHGE-4mcyw_bVJcC6qW0iQ1GIQy8fC30F4DuJJqHtIZEz79un5qB8OQ2bJL-Kjhzkf05E4KU12v779AUdWtb8BU4Pigb--8Dz_yVgt5BzNwsyQK5J2Fdw5mFDFPDS-KQguwOmxEZz-eHs3aCSJPTdZDvrk0exLL3qE5717HP7f9snzHSdF9d-8JAbOTEhIWd1Fj4-L0D06vDo4cYbXIzgZNdOAgmmhQ6olj3mYKa0we6kMfaZ99AYiO1JRJD9cMYTpUCuzgIqIrWOZ0TjhUbAENaxXLQPhrit1EnEv4hmNsEBXBRyZnXCxIJfpJmyNvJRmQ-1wc4VFnto1bJqkxqOp9WgTNsa2D5Vixq9W-8bZYwujcm1f3Je9dJg0aeirhCcZixSykEAil1VSSOVlyGoQZVkTNseh-rOubRvFP0zSi8uOb59W_mO8CtPoUlptHVuDGkZYrSNJeRIt2xZbdojfgnq3c96--QQrt-R- |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7QH2UFEeYlugluBCpUAejpMcAQFbCivUgsQtsmN7QdrNotBtxY2fwG_klzDjZJciISRuVjSxlZmMv8-vzwCbkTYZ55HwAlMIjyPAeCqiBUehAqFU4BufDgqf9kT3gh9fxpfN3hw6C1PrQ0wn3CgzXH9NCU4T0vWAk5NIZnVbhtuIz1E6Ax-5CASNvUJ-NumI41g49osAGWDSp3yiTsqzned3X-CRk-1vw-y4vJF3_-Rg8JKyOsw5nIdPDVlku3V0P8MHUy5A-z8JwUU4PiLF6cf7B4IjzdzByWo8ZLe0Mb3sMznoj3D8fzVkf68lK-sPlxUjPKOYsKq-jB6LS3BxeHC-3_Wa-xG8gtM8oBJW2ZhbLVMZF8YaTF-u41DYEHkdQjtyUWQ_0gjE6dgaWkFFyLapLniaySRahha2a1aASd_XNktkkMiCJ1ihbyKJ1E75WJEvbAe2Jl7Ki0Y8nO6wGORuEZtnOXk0dx7twMbU9qaWzHjVao-cPbUgmWv3YFT18yZr8jg0mcwKkRikIZFGMmu00iYokNYgzIoObE5D9WZb310U3zDJf_3uha705T3G32C2e356kp_86P38CnPoXl7vI1uFFkbbrCFj-aPW3X_5BPlY5UU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bTtwwEB3RRWrhAUFbxHK1VF5aKSUXx0keuS2XwqpquxXiJbJje0FawircxBufwDfyJcw42W2RKqS-WdHYVmYyPie-HAOsR9pknEfCC0whPI4A46mIFhyFCoRSgW98Oih83BX7PX54Ep80e3PoLEytDzGecKPMcOM1JbgZalv_cHISyayuyvAr4nOUvoFJBHKft2By83fvtDcaiuNYOP6LEBlg2qd8pE_Ks40_tV8gkhPun4Z3N-VQ3t_JweAlaXWo05mFmYYuss06vnMwYcr3MP2XiOAHONwjzemnh0cCJM3c0cnq5oJd0db0ss_koH9ZnV-fXbDbc8nK-tVlxQjRKCqsqq-jx-JH6HV2f23ve80NCV7BaSZQCatszK2WqYwLYw0mMNdxKGyIzA7BHdko8h9pBCJ1bA2toSJo21QXPM1kEs1DC_s1C8Ck72ubJTJIZMETbNA3kURyp3xsyBe2DZ9HXsqLRj6cbrEY5G4Zm2c5eTR3Hm3Dp7HtsBbN-KfVFjl7bEFC1-7BZdXPm7zJ49BkMitEYpCIRBrprNFKm6BAYoNAK9qwPg7Vq319cVF8xST_8bMbutLi_xivwdvvO5386KD7bQmm0Lu83ki2DC0MtllBynKtVpsP8xknpeaZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7R5FBxgD6oSAXIUnMBadN9eL3ZIyBohESEKJHoaeVnGjXZRJukVTnxE_iN_BLG3k2UVBVC4matZm2vx-P51vZ8A9CMlE4pjZgXaMk8ig7GE5E9cGQiYEIEvvZtoPBll3V69OI2vl2J4i_5IZYbbtYy3HptDXyiTLnOl3-dNP1aTPOwhS46ar-BOosRjdeg3uteHf9wcZBxgMbukg5X5TRcMJSuvbzmkxx1_ya8necT_vcPHw7XYavzO-fbwBc9Lq-b_GrNZ6Il7_4hc3zNJ72DrQqUkuNyFr2HDZ1_gM0VqsKPcPHNMls_3j9Yt6eIC9As5iMytRfg8z7hw_64GMx-jsjvASd52RteEOs3re5JUSa9x-IO9M7Pbk47XpWHwZPU7jcKZoSJqVG8zWOpjcZlgqo4ZCZE_IgQAjEvoiyuGeKB2Gh7UovQwLSVpO2UJ9EnqGG7ehcI931l0oQHCZc0wQp9HXGEkMLHinxmGnC40EQmK5JymytjmLnDcppmdnwyNz4N-LKUnZTUHP-VOrEKXUpYOm33YFz0s8o6szjUKU8lSzTCnUghaNZKKB1IhE_ozlkDmsvp8GxbR069z4hk19-7oSt9flmde1BDdep9hD4zcVDN7ifqGgRh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph%E2%80%90based+spectrum+sensing+algorithm+via+nonlinear+function+regulation&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Wu%2C+Shanshan&rft.au=Hu%2C+Guobing&rft.date=2024-06-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=6&rft.spage=915&rft.epage=930&rft_id=info:doi/10.1049%2Frsn2.12538&rft.externalDBID=10.1049%252Frsn2.12538&rft.externalDocID=RSN212538 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |