Detail texture detection based on Yolov4‐tiny combined with attention mechanism and bicubic interpolation
Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A dete...
Saved in:
Published in | IET image processing Vol. 15; no. 12; pp. 2736 - 2748 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 1751-9667 |
DOI | 10.1049/ipr2.12228 |
Cover
Abstract | Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%. |
---|---|
AbstractList | Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%. Abstract Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%. |
Author | Hui, Tian Jarhinbek, Rasol Xu, YueLei |
Author_xml | – sequence: 1 givenname: Tian orcidid: 0000-0002-7045-007X surname: Hui fullname: Hui, Tian organization: Northwestern Polytechnical University – sequence: 2 givenname: YueLei surname: Xu fullname: Xu, YueLei email: xuyuelei@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 3 givenname: Rasol surname: Jarhinbek fullname: Jarhinbek, Rasol organization: Northwestern Polytechnical University |
BookMark | eNp9kMtuGyEUhlGVSM2lmz4B61R2gJnxwLLKpbEUKVGVLLpCBzg0pGOwGBzXuz5CnzFPkrGnyiKqskAcwfd_0vkPyV5MEQn5zNmUs1qdhmUWUy6EkB_IAW8bPlGzWbv3OjfqIzns-0fGGsVkc0B-nWOB0NGCv8sqI3VY0JaQIjXQo6PD8CN16al-_vO3hLihNi1MiMPPOpQHCqVg3OELtA8QQ7-gEB01wa6GQ0MsmJepgy1zTPY9dD1--ncfkfvLi7uzq8n1zbf52dfria15LSeguBeyVuChAuMdMgatnxlrPUOQ0kLjLRPOYOut4Fgx5b1FJR2rlGGiOiLz0esSPOplDgvIG50g6N1Dyj815BJsh7oaJA5cbc2sqoU30KJhTSs9qApljYPry-haxSVs1tB1r0LO9LZzve1c7zofaDbSNqe-z-i1DWW3e8lDy_-PnLyJvOvnI7wOHW7eIfX89rsYMy8Rpqli |
CitedBy_id | crossref_primary_10_1142_S0219649224500825 crossref_primary_10_3389_fpls_2024_1381367 crossref_primary_10_3390_app132011344 crossref_primary_10_1016_j_cmpb_2022_106888 crossref_primary_10_3389_fpls_2022_911473 crossref_primary_10_1371_journal_pone_0306483 crossref_primary_10_1142_S0218001422500483 crossref_primary_10_1515_jisys_2023_0170 crossref_primary_10_21595_jme_2024_23987 crossref_primary_10_3390_coatings14040501 crossref_primary_10_3390_agriculture11121238 crossref_primary_10_1371_journal_pone_0306250 crossref_primary_10_3390_math11092101 crossref_primary_10_1109_JESTIE_2023_3322111 crossref_primary_10_1007_s11554_022_01199_y crossref_primary_10_1016_j_asej_2023_102621 crossref_primary_10_1109_ACCESS_2024_3522240 |
Cites_doi | 10.3390/s19214796 10.3390/s19194251 10.1109/CVPR.2016.28 10.1111/j.1467-8667.2011.00736.x 10.1109/TIE.2017.2764844 10.1109/BigData.2018.8622327 10.1111/mice.12263 10.1109/TIP.2018.2878966 10.1111/mice.12141 10.1016/j.tust.2018.04.002 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2017.101 10.1111/mice.12497 10.1016/j.imavis.2016.11.018 10.1109/ACCESS.2019.2916330 10.1109/CVPR.2015.7298594 10.1109/ICCV.2017.330 10.1016/j.conbuildmat.2017.12.010 10.1007/978-3-030-01237-3_30 10.1109/TITS.2012.2208630 10.1109/TPAMI.2018.2878849 10.1109/CVPR.2009.5206848 10.1109/TPAMI.2017.2700300 10.1109/ICASI.2017.7988574 10.1109/COASE.2018.8560423 10.1109/TITS.2016.2552248 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.1049/ipr2.12228 |
DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 2748 |
ExternalDocumentID | oai_doaj_org_article_3be7dad4cb6342fba7eb0578fa93e84e 10.1049/ipr2.12228 10_1049_ipr2_12228 IPR212228 |
Genre | article |
GrantInformation_xml | – fundername: Aeronautical Science Foundation of China funderid: 20175896022 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ O9- OCL OK1 P2P P62 PTHSS QWB RIE RNS ROL RUI S0W ZL0 AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB PUEGO WIN ADTOC UNPAY |
ID | FETCH-LOGICAL-c4148-a91f2849afa3abfde00a7f6bccf0ea88ca5fc02dbe7fc21e309ffce98d039b023 |
IEDL.DBID | UNPAY |
ISSN | 1751-9659 1751-9667 |
IngestDate | Wed Aug 27 01:29:00 EDT 2025 Sun Sep 07 10:48:57 EDT 2025 Wed Oct 01 06:38:55 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:29:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4148-a91f2849afa3abfde00a7f6bccf0ea88ca5fc02dbe7fc21e309ffce98d039b023 |
ORCID | 0000-0002-7045-007X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/ipr2.12228 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3be7dad4cb6342fba7eb0578fa93e84e unpaywall_primary_10_1049_ipr2_12228 crossref_citationtrail_10_1049_ipr2_12228 crossref_primary_10_1049_ipr2_12228 wiley_primary_10_1049_ipr2_12228_IPR212228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2019; 7 2013; 14 2018; 162 2019; 41 2017; 39 2020 2017; 32 2017; 57 2009 2019; 28 2018 2019; 19 2017 2016 2020; 35 2015 2018; 40 2012; 27 2018; 77 2016; 17 2018; 65 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Shelhamer E. (e_1_2_8_23_1) 2017; 39 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Woo S. (e_1_2_8_31_1) 2018 Xie S. (e_1_2_8_7_1) 2015 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 27 start-page: 244 issue: 4 year: 2012 end-page: 259 article-title: Automatic road defect detection by textural pattern recognition based on adaboost publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – start-page: 889 year: 2017 end-page: 897 article-title: Object detection in videos with tubelet proposal networks – volume: 17 start-page: 3434 issue: 12 year: 2016 end-page: 3445 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2009 article-title: ImageNet: A large‐scale hierarchical image database – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – start-page: 612 year: 2018 end-page: 617 article-title: Surface defect saliency of magnetic tile – volume: 7 start-page: 64186 year: 2019 end-page: 64197 article-title: Real‐time tunnel crack analysis system via deep learning publication-title: IEEE Access – year: 2018 article-title: Automated road crack detection using deep convolutional neural networks – year: 2015 article-title: High‐speed crack detection of structure by computer vision – year: 2016 – year: 2018 – volume: 19 start-page: 4251 issue: 19 year: 2019 end-page: 4263 article-title: Vision‐Based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network publication-title: Sensors – volume: 28( start-page: 1498 issue: 3 year: 2019 end-page: 1512 article-title: DeepCrack: Learning hierarchical convolutional features for crack detection publication-title: IEEE Trans. Image Process. – year: 2017 article-title: Automatic crack detection on concrete images using segmentation via fuzzy cmeans clustering – year: 2016 article-title: An edge‐detection method based on adaptive canny algorithm and iterative segmentation threshold – start-page: 622 year: 2009 end-page: 626 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding – volume: 39 start-page: 1 issue: 4 year: 2017 end-page: 10 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Comput. Soc. – volume: 57 start-page: 130 year: 2017 end-page: 146 article-title: An efficient and reliable coarse‐to‐fine approach for asphalt pavement crack detection publication-title: Image Vision Comput. – volume: 65 start-page: 4392 issue: 99 year: 2018 end-page: 4400 article-title: NB‐CNN: deep learningbased crack detection using convolutional neural network and naïve bayes data fusion publication-title: IEEE Trans. Ind. Electron. – volume: 19 start-page: 4796 issue: 21 year: 2019 end-page: 4814 article-title: Learning to detect cracks on damaged concrete surfaces using two‐branched convolutional neural network publication-title: Sensors – volume: 77 year: 2018 article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel publication-title: Tunnelling Underground Space Technol. – start-page: 1395 year: 2015 end-page: 1403 article-title: Holistically‐nested edge detection publication-title: IEEE International Conference on Computer Vision – year: 2020 – start-page: 3057 year: 2017 end-page: 306 article-title: Detect to track and track to detect – start-page: 10778 year: 2020 end-page: 10787 – volume: 162 start-page: 345 year: 2018 end-page: 358 article-title: A method of detecting the cracks of concrete undergo high‐temperature publication-title: Constr. Build. Mater. – volume: 14 start-page: 155 issue: 1 year: 2013 end-page: 168 article-title: Automatic road crack detection and characterization publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 41 start-page: 1939 issue: 8 year: 2019 end-page: 1946 article-title: Richer convolutional features for edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2015 article-title: Deepcontour: A deep convolutional feature learned by positive‐sharing loss for contour detection – year: 2017 – volume: 35 start-page: 373 issue: 4 year: 2020 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Comput.‐Aided Civ. Infrastruct. Eng. – year: 2016 article-title: Object contour detection with a fully convolutional encoder‐decoder network – year: 2015 – volume: 40 start-page: 819 issue: 4 year: 2018 end-page: 833 article-title: Convolutional oriented boundaries publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1395 year: 2015 ident: e_1_2_8_7_1 article-title: Holistically‐nested edge detection publication-title: IEEE International Conference on Computer Vision – ident: e_1_2_8_19_1 doi: 10.3390/s19214796 – ident: e_1_2_8_37_1 – ident: e_1_2_8_21_1 doi: 10.3390/s19194251 – ident: e_1_2_8_10_1 doi: 10.1109/CVPR.2016.28 – ident: e_1_2_8_15_1 doi: 10.1111/j.1467-8667.2011.00736.x – ident: e_1_2_8_6_1 – ident: e_1_2_8_20_1 doi: 10.1109/TIE.2017.2764844 – ident: e_1_2_8_27_1 doi: 10.1109/BigData.2018.8622327 – ident: e_1_2_8_17_1 doi: 10.1111/mice.12263 – ident: e_1_2_8_24_1 doi: 10.1109/TIP.2018.2878966 – ident: e_1_2_8_4_1 doi: 10.1111/mice.12141 – ident: e_1_2_8_22_1 doi: 10.1016/j.tust.2018.04.002 – ident: e_1_2_8_38_1 doi: 10.1109/CVPR42600.2020.01079 – ident: e_1_2_8_30_1 doi: 10.1109/CVPR.2017.101 – ident: e_1_2_8_39_1 doi: 10.1111/mice.12497 – ident: e_1_2_8_36_1 – volume-title: CBAM: Convolutional block attention module year: 2018 ident: e_1_2_8_31_1 – ident: e_1_2_8_2_1 doi: 10.1016/j.imavis.2016.11.018 – ident: e_1_2_8_5_1 – ident: e_1_2_8_25_1 doi: 10.1109/ACCESS.2019.2916330 – ident: e_1_2_8_16_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_8_28_1 doi: 10.1109/ICCV.2017.330 – ident: e_1_2_8_13_1 doi: 10.1016/j.conbuildmat.2017.12.010 – ident: e_1_2_8_33_1 doi: 10.1007/978-3-030-01237-3_30 – ident: e_1_2_8_14_1 doi: 10.1109/TITS.2012.2208630 – volume: 39 start-page: 1 issue: 4 year: 2017 ident: e_1_2_8_23_1 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Comput. Soc. – ident: e_1_2_8_8_1 doi: 10.1109/TPAMI.2018.2878849 – ident: e_1_2_8_32_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_8_18_1 – ident: e_1_2_8_11_1 doi: 10.1109/TPAMI.2017.2700300 – ident: e_1_2_8_3_1 doi: 10.1109/ICASI.2017.7988574 – ident: e_1_2_8_34_1 doi: 10.1109/COASE.2018.8560423 – ident: e_1_2_8_12_1 – ident: e_1_2_8_9_1 – ident: e_1_2_8_35_1 doi: 10.1109/TITS.2016.2552248 – ident: e_1_2_8_29_1 – ident: e_1_2_8_26_1 |
SSID | ssj0059085 |
Score | 2.3643854 |
Snippet | Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random... Abstract Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random... |
SourceID | doaj unpaywall crossref wiley |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 2736 |
SubjectTerms | Computer vision and image processing techniques Image recognition Optical, image and video signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NattAEF5CLkkPbZq21G0SFuJLC6ql1VrWHpO2xg2klFKDexKzfyDiqMa2WnzLI-QZ8ySdWcmmhuJeehAs0iAtM6Od2dGn-Rjr2kSgG9gs0kKJSIKRUW6gH8kk8WAy4qmhesf152w0lleT_uQPqi_ChDXtgRvF9VLtBhasNDpLpfAaBk5jjpF7UKnLpaPVF8PYejPVrMFE5N0Pv0ISiXzWV-vGpFL1ytlcvEuo8LEVikLH_kfsoK5msPoF0-l2thrCzfCIPW7zRH7RzO8p23PVMXvS5oy8fSMXz9jNh4AB5QTgqOeOW7cM4KqKU3yyHAffcX37KR_u7pdlteLoYbgZxitUgeXUXTPgHfmto3-Ay8Uth8pyXZoaD142NFwNYO45Gw8_fns_iloChchIKhSCSjyGHwUeUtDeujiGgc-0MT52kJNRvImFRRV7IxKXxsp741Ru41RpjOYv2H71o3IvGYcs0wAx3sdiBjVwIG3icS8iDJoXU74Oe7PWZWHa7uJEcjEtwlduqQrSexH03mHnG9lZ01Pjr1KXZJKNBPXBDifQO4rWO4p_eUeHdTcG3fmst8HWO0SKT1--ijB69T8m9podCkLHBFjgCdtfzmt3iunNUp8FT_4Nqir7rQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB_a-mB9sGotnlZZsC8VUpPNXi4LvrTq0RZaSrFQn8LsvxK8psf1Trk3P4Kf0U_izCZ3UpCCD4Elmfzbyez8djL7G4Adl0n6DFyRGKllotCqpLTYT1SWBbQF16nheMfJaXF4oY4v-5cr8GGxFqblh1gG3Ngy4njNBo6mrUJCoJaUWI8nci_jAMYqPMjY7TOvszpbjMNczLsfl0NyIfmirxfkpEq__3vuHXcUWfsfwcNZM8b5DxyN7iLW6HKGT-BxhxXFfqvcp7Dim2ew0eFG0Vnl7SZ8-xTzQAUnccwmXjg_jQlWjWAf5QQ1vtIY9139_vlrWjdzQa9KE2I6wlFYwQybMedRXHteB1zfXgtsnDC1ndEm6rYUV5s09xwuhp-_fDxMuiIKiVUcLESdBXJBGgPmaILzaYqDUBhrQ-qxZMUEm0pn_CBYmfk81SFYr0uX5tqQR9-Cteam8S9AYFEYxJSu4whFDTwqlwWaj0hLKibY14PdRV9WtmMY50IXoyr-6Va64n6vYr_34O1SdtzyavxT6oBVspRgLuy442ZyVXWmVeX06A6dsqbIlQwGB94QCi0D6tyXyvdgZ6nQe-_1Lur6HpHq6OxcxtbL_xF-BeuSM2FiCuA2rE0nM_-aoMzUvIlf7B8rlvJf priority: 102 providerName: Wiley-Blackwell |
Title | Detail texture detection based on Yolov4‐tiny combined with attention mechanism and bicubic interpolation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12228 https://doi.org/10.1049/ipr2.12228 https://doaj.org/article/3be7dad4cb6342fba7eb0578fa93e84e |
UnpaywallVersion | publishedVersion |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61uwfgQHmK5bGyoBeQsk0c14mPS6EqSFQrRFDLJRq_pKjbsNomoHLiJ_Ab-SXYTnalRWjFIdIomTiWZ5wZjz_PAOzrhDo10DySVNCIoWJRrvAwYkliUXFfp8bHOz6c8pOCvT87PNuB56uzMBv790wcVIslnSQ-TLELQ-43kQYwLE5n0_Nw0tHXiOehIlpP82yVg3Tj5Q2rE5Lz34Ibbb3A6-84n286psGyHO_B0apPHaDkYtI2cqJ-_JWucXun78Dt3rEk004T7sKOqe_BXu9kkn4KX92HizcBNEo84qNdGqJNE9BYNfEGTRNHnLsf4jf2--evpqqviVNJt3p2T3zIlvh0nAEgSS6NPzRcXV0SrDWRlWrdRaqubleHsHsAxfHbT0cnUV9xIVLMRxZRJNbZK4EWU5RWmzjGzHKplI0N5l6KVsVUS5NZRROTxsJaZUSu41RIZ_4fwqD-WptHQJBziRi7drRzuTKDTCfWLV6ocvrgfMQRvFxJpFR9OnJfFWNehm1xJko_imUYxRG8WPMuuiQc_-R67QW75vCJs8MNJ5qyn4dl6rquUTMlecqolZgZ6VzW3KJITc7MCPbXarH1W6-CxmxhKd_NPtJAPf6_Np_ATeoBMwEp-BQGzbI1z5zH08gx7FI2G8Nw-rn4UoxD3GDcT4M_sYYCiQ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQeeCO2vCzRC0ihieP1xkde1RbaqkKtVE7R-IUitulquwvqjZ_Ab-SXMONkF1VClThEipLJy-PxjCefvwHY8oWkbuB1ZqWRmUKnssrhMFNFEdFprlPD-Y79Az0-Vh9Phic9NofXwnT8EKuEG1tGGq_ZwDkh3U04FZNkNtOZfF1wBuM63FBa5typpTpcDsRczXuY1kNyJXk9NEt2UmW2_157yR8l2v4NWF-0U7z4gZPJ5ZA1-ZydO3CrDxbFm067d-FaaO_B7T5wFL1Znt-Hb-8TEFQwimMxC8KHeUJYtYKdlBe084UGue_q989f86a9EPStNCOmM5yGFUyxmUCP4jTwQuDm_FRg64Vt3II20XS1uDrU3AM43vlw9G6c9VUUMqc4W4imiOSDDEYs0UYf8hxHUVvnYh6wYs1El0tvwyg6WYQyNzG6YCqfl8aSS38Ia-1ZGx6BQK0tYk738RRGjQIqX0SakEhHOqa4bwAvl21Zu55inCtdTOr0q1uZmtu9Tu0-gBcr2WlHrPFPqbeskpUEk2GnA2ezr3VvW3VJr-7RK2d1qWS0OAqWwtAqoilDpcIAtlYKvfJZr5KurxCpdw8_y7S3-T_Cz2F9fLS_V-_tHnx6DDclw2ISHvAJrM1ni_CU4pq5fZZ67x9GA_XO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB7SBHo89C51m7YLzUsLSqXVWtZCXnLUJD2CKQ2kT2L2KqKOYhy7JW_5Cf2N_SWdWckOgRLog2CRRteOZmd29O03ABsuk_QZuCIxUstEoVVJabGfqCwLaAuuU8P5js-Hxf6R-nDcP16BrcVamJYfYplwY8uI4zUb-MSFdr6pmCOznkzlZsYJjBuwppizhXmd1WgxDnMx735cDsmF5Iu-XpCTKv3u8twr7iiy9t-BW_Nmgue_cDy-GrFGlzO8D3e7WFFst8p9ACu-eQj3urhRdFZ59gh-7EUcqGAQx3zqhfOzCLBqBPsoJ6jxjca4n-rPxe9Z3ZwLelWaENMRzsIKZtiMmEdx4nkdcH12IrBxwtR2Tpuo21JcLWjuMRwN33_d3U-6IgqJVZwsRJ0FckEaA-ZogvNpioNQGGtD6rFkxQSbSmf8IFiZ-TzVIVivS5fm2pBHfwKrzWnjn4LAojCIKV3HURQ18KhcFmg-Ii2pmMK-HrxZ9GVlO4ZxLnQxruKfbqUr7vcq9nsPXi9lJy2vxj-ldlglSwnmwo47Tqffq860qpwe3aFT1hS5ksHgwBuKQsuAOvel8j3YWCr02nu9jbq-RqQ6GH2RsfXsf4Rfwc3R3rD6dHD48TnclgyKiWjAdVidTef-BUU1M_Myfrx_AeX29QA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UJ5iecmCXkDKNnFcJz6WQlWQqCrESu0pGr-kqNuw2iagcuIn8Bv5JYyd7EqL0IpDpFEycSzPODMef54B2LUZJzWwMtFc8USgEUlpcD8RWebRyFCnJsQ7Pp3I46n4eLZ_tgUvl2dh1vbvhdqr5ws-yUKY4gZsy7CJNILt6cnpwXk86RhqxMtYEW2gZbHMQbr28prVicn5b8PNrpnj9XeczdYd02hZjnbgcNmnHlByMelaPTE__krXuLnTd-HO4Fiyg14T7sGWa-7DzuBksmEKXz2Ai3cRNMoC4qNbOGZdG9FYDQsGzTIizumH-E38_vmrrZtrRipJq2d6EkK2LKTjjABJdunCoeH66pJhY5muTUcXq_u6XT3C7iFMj95_OTxOhooLiREhsogq82SvFHrMUXvr0hQLL7UxPnVYBil6k3KrXeENz1yeKu-NU6VNc6XJ_D-CUfO1cY-BoZQaMaV2LLlchUNhM0-LF25IH8hHHMPrpUQqM6QjD1UxZlXcFheqCqNYxVEcw6sV77xPwvFPrrdBsCuOkDg73iDRVMM8rHLqukUrjJa54F5j4TS5rKVHlbtSuDHsrtRi47feRI3ZwFJ9OP3MI_Xk_9p8Crd4AMxEpOAzGLWLzj0nj6fVLwaV_wOqqP7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detail+texture+detection+based+on+Yolov4%E2%80%90tiny+combined+with+attention+mechanism+and+bicubic+interpolation&rft.jtitle=IET+image+processing&rft.au=Hui%2C+Tian&rft.au=Xu%2C+YueLei&rft.au=Jarhinbek%2C+Rasol&rft.date=2021-10-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=12&rft.spage=2736&rft.epage=2748&rft_id=info:doi/10.1049%2Fipr2.12228&rft.externalDBID=10.1049%252Fipr2.12228&rft.externalDocID=IPR212228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |