Detail texture detection based on Yolov4‐tiny combined with attention mechanism and bicubic interpolation

Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A dete...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 15; no. 12; pp. 2736 - 2748
Main Authors Hui, Tian, Xu, YueLei, Jarhinbek, Rasol
Format Journal Article
LanguageEnglish
Published Wiley 01.10.2021
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
1751-9667
DOI10.1049/ipr2.12228

Cover

Abstract Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%.
AbstractList Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%.
Abstract Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4‐tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4‐tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi‐scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding‐boxes in crack areas, the optimized non‐maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4‐tiny by an increase of 12.3%.
Author Hui, Tian
Jarhinbek, Rasol
Xu, YueLei
Author_xml – sequence: 1
  givenname: Tian
  orcidid: 0000-0002-7045-007X
  surname: Hui
  fullname: Hui, Tian
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: YueLei
  surname: Xu
  fullname: Xu, YueLei
  email: xuyuelei@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Rasol
  surname: Jarhinbek
  fullname: Jarhinbek, Rasol
  organization: Northwestern Polytechnical University
BookMark eNp9kMtuGyEUhlGVSM2lmz4B61R2gJnxwLLKpbEUKVGVLLpCBzg0pGOwGBzXuz5CnzFPkrGnyiKqskAcwfd_0vkPyV5MEQn5zNmUs1qdhmUWUy6EkB_IAW8bPlGzWbv3OjfqIzns-0fGGsVkc0B-nWOB0NGCv8sqI3VY0JaQIjXQo6PD8CN16al-_vO3hLihNi1MiMPPOpQHCqVg3OELtA8QQ7-gEB01wa6GQ0MsmJepgy1zTPY9dD1--ncfkfvLi7uzq8n1zbf52dfria15LSeguBeyVuChAuMdMgatnxlrPUOQ0kLjLRPOYOut4Fgx5b1FJR2rlGGiOiLz0esSPOplDgvIG50g6N1Dyj815BJsh7oaJA5cbc2sqoU30KJhTSs9qApljYPry-haxSVs1tB1r0LO9LZzve1c7zofaDbSNqe-z-i1DWW3e8lDy_-PnLyJvOvnI7wOHW7eIfX89rsYMy8Rpqli
CitedBy_id crossref_primary_10_1142_S0219649224500825
crossref_primary_10_3389_fpls_2024_1381367
crossref_primary_10_3390_app132011344
crossref_primary_10_1016_j_cmpb_2022_106888
crossref_primary_10_3389_fpls_2022_911473
crossref_primary_10_1371_journal_pone_0306483
crossref_primary_10_1142_S0218001422500483
crossref_primary_10_1515_jisys_2023_0170
crossref_primary_10_21595_jme_2024_23987
crossref_primary_10_3390_coatings14040501
crossref_primary_10_3390_agriculture11121238
crossref_primary_10_1371_journal_pone_0306250
crossref_primary_10_3390_math11092101
crossref_primary_10_1109_JESTIE_2023_3322111
crossref_primary_10_1007_s11554_022_01199_y
crossref_primary_10_1016_j_asej_2023_102621
crossref_primary_10_1109_ACCESS_2024_3522240
Cites_doi 10.3390/s19214796
10.3390/s19194251
10.1109/CVPR.2016.28
10.1111/j.1467-8667.2011.00736.x
10.1109/TIE.2017.2764844
10.1109/BigData.2018.8622327
10.1111/mice.12263
10.1109/TIP.2018.2878966
10.1111/mice.12141
10.1016/j.tust.2018.04.002
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2017.101
10.1111/mice.12497
10.1016/j.imavis.2016.11.018
10.1109/ACCESS.2019.2916330
10.1109/CVPR.2015.7298594
10.1109/ICCV.2017.330
10.1016/j.conbuildmat.2017.12.010
10.1007/978-3-030-01237-3_30
10.1109/TITS.2012.2208630
10.1109/TPAMI.2018.2878849
10.1109/CVPR.2009.5206848
10.1109/TPAMI.2017.2700300
10.1109/ICASI.2017.7988574
10.1109/COASE.2018.8560423
10.1109/TITS.2016.2552248
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/ipr2.12228
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2748
ExternalDocumentID oai_doaj_org_article_3be7dad4cb6342fba7eb0578fa93e84e
10.1049/ipr2.12228
10_1049_ipr2_12228
IPR212228
Genre article
GrantInformation_xml – fundername: Aeronautical Science Foundation of China
  funderid: 20175896022
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
PUEGO
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c4148-a91f2849afa3abfde00a7f6bccf0ea88ca5fc02dbe7fc21e309ffce98d039b023
IEDL.DBID UNPAY
ISSN 1751-9659
1751-9667
IngestDate Wed Aug 27 01:29:00 EDT 2025
Sun Sep 07 10:48:57 EDT 2025
Wed Oct 01 06:38:55 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:29:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4148-a91f2849afa3abfde00a7f6bccf0ea88ca5fc02dbe7fc21e309ffce98d039b023
ORCID 0000-0002-7045-007X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/ipr2.12228
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_3be7dad4cb6342fba7eb0578fa93e84e
unpaywall_primary_10_1049_ipr2_12228
crossref_citationtrail_10_1049_ipr2_12228
crossref_primary_10_1049_ipr2_12228
wiley_primary_10_1049_ipr2_12228_IPR212228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 7
2013; 14
2018; 162
2019; 41
2017; 39
2020
2017; 32
2017; 57
2009
2019; 28
2018
2019; 19
2017
2016
2020; 35
2015
2018; 40
2012; 27
2018; 77
2016; 17
2018; 65
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Shelhamer E. (e_1_2_8_23_1) 2017; 39
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Woo S. (e_1_2_8_31_1) 2018
Xie S. (e_1_2_8_7_1) 2015
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 27
  start-page: 244
  issue: 4
  year: 2012
  end-page: 259
  article-title: Automatic road defect detection by textural pattern recognition based on adaboost
  publication-title: Comput.‐Aided Civ. Infrastruct. Eng.
– start-page: 889
  year: 2017
  end-page: 897
  article-title: Object detection in videos with tubelet proposal networks
– volume: 17
  start-page: 3434
  issue: 12
  year: 2016
  end-page: 3445
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2009
  article-title: ImageNet: A large‐scale hierarchical image database
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Comput.‐Aided Civ. Infrastruct. Eng.
– start-page: 612
  year: 2018
  end-page: 617
  article-title: Surface defect saliency of magnetic tile
– volume: 7
  start-page: 64186
  year: 2019
  end-page: 64197
  article-title: Real‐time tunnel crack analysis system via deep learning
  publication-title: IEEE Access
– year: 2018
  article-title: Automated road crack detection using deep convolutional neural networks
– year: 2015
  article-title: High‐speed crack detection of structure by computer vision
– year: 2016
– year: 2018
– volume: 19
  start-page: 4251
  issue: 19
  year: 2019
  end-page: 4263
  article-title: Vision‐Based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network
  publication-title: Sensors
– volume: 28(
  start-page: 1498
  issue: 3
  year: 2019
  end-page: 1512
  article-title: DeepCrack: Learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans. Image Process.
– year: 2017
  article-title: Automatic crack detection on concrete images using segmentation via fuzzy cmeans clustering
– year: 2016
  article-title: An edge‐detection method based on adaptive canny algorithm and iterative segmentation threshold
– start-page: 622
  year: 2009
  end-page: 626
  article-title: Automatic road crack segmentation using entropy and image dynamic thresholding
– volume: 39
  start-page: 1
  issue: 4
  year: 2017
  end-page: 10
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Comput. Soc.
– volume: 57
  start-page: 130
  year: 2017
  end-page: 146
  article-title: An efficient and reliable coarse‐to‐fine approach for asphalt pavement crack detection
  publication-title: Image Vision Comput.
– volume: 65
  start-page: 4392
  issue: 99
  year: 2018
  end-page: 4400
  article-title: NB‐CNN: deep learningbased crack detection using convolutional neural network and naïve bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 19
  start-page: 4796
  issue: 21
  year: 2019
  end-page: 4814
  article-title: Learning to detect cracks on damaged concrete surfaces using two‐branched convolutional neural network
  publication-title: Sensors
– volume: 77
  year: 2018
  article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel
  publication-title: Tunnelling Underground Space Technol.
– start-page: 1395
  year: 2015
  end-page: 1403
  article-title: Holistically‐nested edge detection
  publication-title: IEEE International Conference on Computer Vision
– year: 2020
– start-page: 3057
  year: 2017
  end-page: 306
  article-title: Detect to track and track to detect
– start-page: 10778
  year: 2020
  end-page: 10787
– volume: 162
  start-page: 345
  year: 2018
  end-page: 358
  article-title: A method of detecting the cracks of concrete undergo high‐temperature
  publication-title: Constr. Build. Mater.
– volume: 14
  start-page: 155
  issue: 1
  year: 2013
  end-page: 168
  article-title: Automatic road crack detection and characterization
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 41
  start-page: 1939
  issue: 8
  year: 2019
  end-page: 1946
  article-title: Richer convolutional features for edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2015
  article-title: Deepcontour: A deep convolutional feature learned by positive‐sharing loss for contour detection
– year: 2017
– volume: 35
  start-page: 373
  issue: 4
  year: 2020
  end-page: 388
  article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network
  publication-title: Comput.‐Aided Civ. Infrastruct. Eng.
– year: 2016
  article-title: Object contour detection with a fully convolutional encoder‐decoder network
– year: 2015
– volume: 40
  start-page: 819
  issue: 4
  year: 2018
  end-page: 833
  article-title: Convolutional oriented boundaries
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1395
  year: 2015
  ident: e_1_2_8_7_1
  article-title: Holistically‐nested edge detection
  publication-title: IEEE International Conference on Computer Vision
– ident: e_1_2_8_19_1
  doi: 10.3390/s19214796
– ident: e_1_2_8_37_1
– ident: e_1_2_8_21_1
  doi: 10.3390/s19194251
– ident: e_1_2_8_10_1
  doi: 10.1109/CVPR.2016.28
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1467-8667.2011.00736.x
– ident: e_1_2_8_6_1
– ident: e_1_2_8_20_1
  doi: 10.1109/TIE.2017.2764844
– ident: e_1_2_8_27_1
  doi: 10.1109/BigData.2018.8622327
– ident: e_1_2_8_17_1
  doi: 10.1111/mice.12263
– ident: e_1_2_8_24_1
  doi: 10.1109/TIP.2018.2878966
– ident: e_1_2_8_4_1
  doi: 10.1111/mice.12141
– ident: e_1_2_8_22_1
  doi: 10.1016/j.tust.2018.04.002
– ident: e_1_2_8_38_1
  doi: 10.1109/CVPR42600.2020.01079
– ident: e_1_2_8_30_1
  doi: 10.1109/CVPR.2017.101
– ident: e_1_2_8_39_1
  doi: 10.1111/mice.12497
– ident: e_1_2_8_36_1
– volume-title: CBAM: Convolutional block attention module
  year: 2018
  ident: e_1_2_8_31_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.imavis.2016.11.018
– ident: e_1_2_8_5_1
– ident: e_1_2_8_25_1
  doi: 10.1109/ACCESS.2019.2916330
– ident: e_1_2_8_16_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_8_28_1
  doi: 10.1109/ICCV.2017.330
– ident: e_1_2_8_13_1
  doi: 10.1016/j.conbuildmat.2017.12.010
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-030-01237-3_30
– ident: e_1_2_8_14_1
  doi: 10.1109/TITS.2012.2208630
– volume: 39
  start-page: 1
  issue: 4
  year: 2017
  ident: e_1_2_8_23_1
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Comput. Soc.
– ident: e_1_2_8_8_1
  doi: 10.1109/TPAMI.2018.2878849
– ident: e_1_2_8_32_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_8_18_1
– ident: e_1_2_8_11_1
  doi: 10.1109/TPAMI.2017.2700300
– ident: e_1_2_8_3_1
  doi: 10.1109/ICASI.2017.7988574
– ident: e_1_2_8_34_1
  doi: 10.1109/COASE.2018.8560423
– ident: e_1_2_8_12_1
– ident: e_1_2_8_9_1
– ident: e_1_2_8_35_1
  doi: 10.1109/TITS.2016.2552248
– ident: e_1_2_8_29_1
– ident: e_1_2_8_26_1
SSID ssj0059085
Score 2.3643854
Snippet Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random...
Abstract Aero‐engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2736
SubjectTerms Computer vision and image processing techniques
Image recognition
Optical, image and video signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NattAEF5CLkkPbZq21G0SFuJLC6ql1VrWHpO2xg2klFKDexKzfyDiqMa2WnzLI-QZ8ySdWcmmhuJeehAs0iAtM6Od2dGn-Rjr2kSgG9gs0kKJSIKRUW6gH8kk8WAy4qmhesf152w0lleT_uQPqi_ChDXtgRvF9VLtBhasNDpLpfAaBk5jjpF7UKnLpaPVF8PYejPVrMFE5N0Pv0ISiXzWV-vGpFL1ytlcvEuo8LEVikLH_kfsoK5msPoF0-l2thrCzfCIPW7zRH7RzO8p23PVMXvS5oy8fSMXz9jNh4AB5QTgqOeOW7cM4KqKU3yyHAffcX37KR_u7pdlteLoYbgZxitUgeXUXTPgHfmto3-Ay8Uth8pyXZoaD142NFwNYO45Gw8_fns_iloChchIKhSCSjyGHwUeUtDeujiGgc-0MT52kJNRvImFRRV7IxKXxsp741Ru41RpjOYv2H71o3IvGYcs0wAx3sdiBjVwIG3icS8iDJoXU74Oe7PWZWHa7uJEcjEtwlduqQrSexH03mHnG9lZ01Pjr1KXZJKNBPXBDifQO4rWO4p_eUeHdTcG3fmst8HWO0SKT1--ijB69T8m9podCkLHBFjgCdtfzmt3iunNUp8FT_4Nqir7rQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB_a-mB9sGotnlZZsC8VUpPNXi4LvrTq0RZaSrFQn8LsvxK8psf1Trk3P4Kf0U_izCZ3UpCCD4Elmfzbyez8djL7G4Adl0n6DFyRGKllotCqpLTYT1SWBbQF16nheMfJaXF4oY4v-5cr8GGxFqblh1gG3Ngy4njNBo6mrUJCoJaUWI8nci_jAMYqPMjY7TOvszpbjMNczLsfl0NyIfmirxfkpEq__3vuHXcUWfsfwcNZM8b5DxyN7iLW6HKGT-BxhxXFfqvcp7Dim2ew0eFG0Vnl7SZ8-xTzQAUnccwmXjg_jQlWjWAf5QQ1vtIY9139_vlrWjdzQa9KE2I6wlFYwQybMedRXHteB1zfXgtsnDC1ndEm6rYUV5s09xwuhp-_fDxMuiIKiVUcLESdBXJBGgPmaILzaYqDUBhrQ-qxZMUEm0pn_CBYmfk81SFYr0uX5tqQR9-Cteam8S9AYFEYxJSu4whFDTwqlwWaj0hLKibY14PdRV9WtmMY50IXoyr-6Va64n6vYr_34O1SdtzyavxT6oBVspRgLuy442ZyVXWmVeX06A6dsqbIlQwGB94QCi0D6tyXyvdgZ6nQe-_1Lur6HpHq6OxcxtbL_xF-BeuSM2FiCuA2rE0nM_-aoMzUvIlf7B8rlvJf
  priority: 102
  providerName: Wiley-Blackwell
Title Detail texture detection based on Yolov4‐tiny combined with attention mechanism and bicubic interpolation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12228
https://doi.org/10.1049/ipr2.12228
https://doaj.org/article/3be7dad4cb6342fba7eb0578fa93e84e
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61uwfgQHmK5bGyoBeQsk0c14mPS6EqSFQrRFDLJRq_pKjbsNomoHLiJ_Ab-SXYTnalRWjFIdIomTiWZ5wZjz_PAOzrhDo10DySVNCIoWJRrvAwYkliUXFfp8bHOz6c8pOCvT87PNuB56uzMBv790wcVIslnSQ-TLELQ-43kQYwLE5n0_Nw0tHXiOehIlpP82yVg3Tj5Q2rE5Lz34Ibbb3A6-84n286psGyHO_B0apPHaDkYtI2cqJ-_JWucXun78Dt3rEk004T7sKOqe_BXu9kkn4KX92HizcBNEo84qNdGqJNE9BYNfEGTRNHnLsf4jf2--evpqqviVNJt3p2T3zIlvh0nAEgSS6NPzRcXV0SrDWRlWrdRaqubleHsHsAxfHbT0cnUV9xIVLMRxZRJNbZK4EWU5RWmzjGzHKplI0N5l6KVsVUS5NZRROTxsJaZUSu41RIZ_4fwqD-WptHQJBziRi7drRzuTKDTCfWLV6ocvrgfMQRvFxJpFR9OnJfFWNehm1xJko_imUYxRG8WPMuuiQc_-R67QW75vCJs8MNJ5qyn4dl6rquUTMlecqolZgZ6VzW3KJITc7MCPbXarH1W6-CxmxhKd_NPtJAPf6_Np_ATeoBMwEp-BQGzbI1z5zH08gx7FI2G8Nw-rn4UoxD3GDcT4M_sYYCiQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQeeCO2vCzRC0ihieP1xkde1RbaqkKtVE7R-IUitulquwvqjZ_Ab-SXMONkF1VClThEipLJy-PxjCefvwHY8oWkbuB1ZqWRmUKnssrhMFNFEdFprlPD-Y79Az0-Vh9Phic9NofXwnT8EKuEG1tGGq_ZwDkh3U04FZNkNtOZfF1wBuM63FBa5typpTpcDsRczXuY1kNyJXk9NEt2UmW2_157yR8l2v4NWF-0U7z4gZPJ5ZA1-ZydO3CrDxbFm067d-FaaO_B7T5wFL1Znt-Hb-8TEFQwimMxC8KHeUJYtYKdlBe084UGue_q989f86a9EPStNCOmM5yGFUyxmUCP4jTwQuDm_FRg64Vt3II20XS1uDrU3AM43vlw9G6c9VUUMqc4W4imiOSDDEYs0UYf8hxHUVvnYh6wYs1El0tvwyg6WYQyNzG6YCqfl8aSS38Ia-1ZGx6BQK0tYk738RRGjQIqX0SakEhHOqa4bwAvl21Zu55inCtdTOr0q1uZmtu9Tu0-gBcr2WlHrPFPqbeskpUEk2GnA2ezr3VvW3VJr-7RK2d1qWS0OAqWwtAqoilDpcIAtlYKvfJZr5KurxCpdw8_y7S3-T_Cz2F9fLS_V-_tHnx6DDclw2ISHvAJrM1ni_CU4pq5fZZ67x9GA_XO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB7SBHo89C51m7YLzUsLSqXVWtZCXnLUJD2CKQ2kT2L2KqKOYhy7JW_5Cf2N_SWdWckOgRLog2CRRteOZmd29O03ABsuk_QZuCIxUstEoVVJabGfqCwLaAuuU8P5js-Hxf6R-nDcP16BrcVamJYfYplwY8uI4zUb-MSFdr6pmCOznkzlZsYJjBuwppizhXmd1WgxDnMx735cDsmF5Iu-XpCTKv3u8twr7iiy9t-BW_Nmgue_cDy-GrFGlzO8D3e7WFFst8p9ACu-eQj3urhRdFZ59gh-7EUcqGAQx3zqhfOzCLBqBPsoJ6jxjca4n-rPxe9Z3ZwLelWaENMRzsIKZtiMmEdx4nkdcH12IrBxwtR2Tpuo21JcLWjuMRwN33_d3U-6IgqJVZwsRJ0FckEaA-ZogvNpioNQGGtD6rFkxQSbSmf8IFiZ-TzVIVivS5fm2pBHfwKrzWnjn4LAojCIKV3HURQ18KhcFmg-Ii2pmMK-HrxZ9GVlO4ZxLnQxruKfbqUr7vcq9nsPXi9lJy2vxj-ldlglSwnmwo47Tqffq860qpwe3aFT1hS5ksHgwBuKQsuAOvel8j3YWCr02nu9jbq-RqQ6GH2RsfXsf4Rfwc3R3rD6dHD48TnclgyKiWjAdVidTef-BUU1M_Myfrx_AeX29QA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UJ5iecmCXkDKNnFcJz6WQlWQqCrESu0pGr-kqNuw2iagcuIn8Bv5JYyd7EqL0IpDpFEycSzPODMef54B2LUZJzWwMtFc8USgEUlpcD8RWebRyFCnJsQ7Pp3I46n4eLZ_tgUvl2dh1vbvhdqr5ws-yUKY4gZsy7CJNILt6cnpwXk86RhqxMtYEW2gZbHMQbr28prVicn5b8PNrpnj9XeczdYd02hZjnbgcNmnHlByMelaPTE__krXuLnTd-HO4Fiyg14T7sGWa-7DzuBksmEKXz2Ai3cRNMoC4qNbOGZdG9FYDQsGzTIizumH-E38_vmrrZtrRipJq2d6EkK2LKTjjABJdunCoeH66pJhY5muTUcXq_u6XT3C7iFMj95_OTxOhooLiREhsogq82SvFHrMUXvr0hQLL7UxPnVYBil6k3KrXeENz1yeKu-NU6VNc6XJ_D-CUfO1cY-BoZQaMaV2LLlchUNhM0-LF25IH8hHHMPrpUQqM6QjD1UxZlXcFheqCqNYxVEcw6sV77xPwvFPrrdBsCuOkDg73iDRVMM8rHLqukUrjJa54F5j4TS5rKVHlbtSuDHsrtRi47feRI3ZwFJ9OP3MI_Xk_9p8Crd4AMxEpOAzGLWLzj0nj6fVLwaV_wOqqP7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detail+texture+detection+based+on+Yolov4%E2%80%90tiny+combined+with+attention+mechanism+and+bicubic+interpolation&rft.jtitle=IET+image+processing&rft.au=Hui%2C+Tian&rft.au=Xu%2C+YueLei&rft.au=Jarhinbek%2C+Rasol&rft.date=2021-10-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=12&rft.spage=2736&rft.epage=2748&rft_id=info:doi/10.1049%2Fipr2.12228&rft.externalDBID=10.1049%252Fipr2.12228&rft.externalDocID=IPR212228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon