Optimal placement of electric vehicle charging infrastructures utilizing deep learning

The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, th...

Full description

Saved in:
Bibliographic Details
Published inIET intelligent transport systems Vol. 18; no. 8; pp. 1529 - 1544
Main Authors Alansari, Mohamad, Al‐Sumaiti, Ameena Saad, Abughali, Ahmed
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2024
Subjects
Online AccessGet full text
ISSN1751-956X
1751-9578
DOI10.1049/itr2.12527

Cover

Abstract The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE). The study pioneers novel AI models to strategically place Charging Stations and Dynamic Wireless Charging, optimizing for the city's projected population growth and other influential factors. By marrying innovation with eco‐conscious planning, we aim to supercharge Electric Vehicle adoption.
AbstractList The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE). The study pioneers novel AI models to strategically place Charging Stations and Dynamic Wireless Charging, optimizing for the city's projected population growth and other influential factors. By marrying innovation with eco‐conscious planning, we aim to supercharge Electric Vehicle adoption.
The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).
Abstract The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).
Author Abughali, Ahmed
Alansari, Mohamad
Al‐Sumaiti, Ameena Saad
Author_xml – sequence: 1
  givenname: Mohamad
  orcidid: 0000-0003-2960-2972
  surname: Alansari
  fullname: Alansari, Mohamad
  organization: Khalifa University
– sequence: 2
  givenname: Ameena Saad
  orcidid: 0000-0002-7742-8596
  surname: Al‐Sumaiti
  fullname: Al‐Sumaiti, Ameena Saad
  email: ameena.alsumaiti@ku.ac.ae
  organization: Khalifa University
– sequence: 3
  givenname: Ahmed
  orcidid: 0009-0002-7393-2477
  surname: Abughali
  fullname: Abughali, Ahmed
  organization: Khalifa University
BookMark eNp9UMtKA0EQHCSC8XHxC_YsJM7MzmP3KMFHIBAQFW9Dp7c3GRl3w-xE0a93Y9SDiKd-VRXVdcgGTdsQY6eCjwVX5blPUY6F1NLusaGwWoxKbYvBT28eD9hh1z1xro2UYsge5uvknyFk6wBIz9SkrK0zCoQpesxeaOUxUIYriEvfLDPf1BG6FDeYNpG6bJN88O_bS0W0zgJBbPrpmO3XEDo6-apH7P7q8m5yM5rNr6eTi9kIlVB2JKrClkVuqFC29ymQy6qfeKVrLbmABdSVWiijyxoLmYvSQCVLCQawyFFjfsSmO92qhSe3jv0r8c214N3noo1LBzFtX3AFol2gqiwpqXQuoKzJoDDAydjcmF6L77Qwtl0XqXboEyTfNimCD05wt83YbTN2nxn3lLNflG8Lf4LFDvzqA739g3TTu1u543wAEmWPzA
CitedBy_id crossref_primary_10_1016_j_epsr_2025_111603
crossref_primary_10_1016_j_nexres_2024_100123
Cites_doi 10.23919/CJEE.2017.8048407
10.1145/3307772.3328313
10.1016/j.egyr.2022.01.180
10.1016/j.trd.2020.102385
10.1109/OJPEL.2021.3054601
10.1016/j.trpro.2019.07.218
10.1109/JESTPE.2021.3058968
10.3390/app9091723
10.3390/en14237833
10.1016/j.trb.2017.01.005
10.1049/iet-its.2018.5136
10.1016/j.apenergy.2022.119295
10.3390/en15176195
10.1049/iet-its.2018.5221
10.1016/j.adapen.2021.100062
10.1016/j.eswa.2023.121761
10.3390/en15186575
10.1016/j.trc.2015.06.022
10.3115/v1/D14-1179
10.3390/en11113207
10.1080/01441647.2016.1217282
10.1007/978-981-16-0878-0_35
10.1109/SyNERGY-MED.2019.8764110
10.1007/978-3-031-37963-5_53
10.1016/j.rser.2022.112730
10.1162/neco.1997.9.8.1735
10.1016/j.tre.2020.102187
10.1016/j.egypro.2015.03.276
10.1145/2939672.2939785
10.1016/j.procs.2014.05.459
10.3390/en12142692
10.1049/iet-gtd.2018.5456
10.1016/B978-0-12-814761-0.00012-5
10.1016/j.apenergy.2021.117651
10.1109/CPE-POWERENG48600.2020.9161463
10.1088/1742-6596/1757/1/012145
10.1016/j.trd.2020.102331
10.1371/journal.pone.0063116
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/itr2.12527
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 1544
ExternalDocumentID oai_doaj_org_article_8cc7bc4d7e424531a9fe6c16a0e67366
10_1049_itr2_12527
ITR212527
Genre article
GrantInformation_xml – fundername: Khalifa University
  funderid: KKJRC‐2019‐Trans 2
GroupedDBID .DC
0R~
1OC
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
L6V
LAI
M43
M7S
MCNEO
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RIG
RNS
ROL
RUI
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c4147-1d879836e8475781c02d36e0d5f5201abafd4b4659fc823196ad292a6ac83c5c3
IEDL.DBID DOA
ISSN 1751-956X
IngestDate Wed Aug 27 01:24:58 EDT 2025
Wed Oct 01 06:40:44 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Wed Jan 22 17:15:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4147-1d879836e8475781c02d36e0d5f5201abafd4b4659fc823196ad292a6ac83c5c3
ORCID 0000-0002-7742-8596
0009-0002-7393-2477
0000-0003-2960-2972
OpenAccessLink https://doaj.org/article/8cc7bc4d7e424531a9fe6c16a0e67366
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_8cc7bc4d7e424531a9fe6c16a0e67366
crossref_citationtrail_10_1049_itr2_12527
crossref_primary_10_1049_itr2_12527
wiley_primary_10_1049_itr2_12527_ITR212527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle IET intelligent transport systems
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2015; 58
2019; 9
2021; 4
2017; 3
2021; 2
2020; 85
2015; 146
2021; 1757
2020; 83
2019; 13
2021; 303
2019; 12
2024
2013; 8
1997; 9
2015; 68
2018; 7
2021; 14
2022; 167
2019; 40
2020; 1
2017; 37
2023
2024; 237
2022
2021
2020
2022; 8
2019
2022; 15
2016
2021; 152
2015
2014
2018; 12
2018; 11
2017; 103
2022; 322
2014; 32
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Bi Z. (e_1_2_10_17_1) 2015; 146
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Li Y. (e_1_2_10_22_1) 2024
Deb S. (e_1_2_10_28_1) 2018; 7
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 322
  year: 2022
  article-title: Electric vehicle market potential and associated energy and emissions reduction benefits
  publication-title: Appl. Energy
– year: 2024
  article-title: Online multi‐objective optimization for electric vehicle charging station operation
  publication-title: IEEE Trans. Transp. Electrif.
– start-page: 395
  year: 2019
  end-page: 445
– volume: 1
  start-page: 523
  year: 2020
  end-page: 529
  article-title: Impact analysis of level 2 ev chargers on residential power distribution grids
– volume: 9
  issue: 9
  year: 2019
  article-title: Short‐term load forecasting for electric vehicle charging stations based on deep learning approaches
  publication-title: Appl. Sci.
– volume: 37
  start-page: 79
  issue: 1
  year: 2017
  end-page: 93
  article-title: Electric vehicles revisited: a review of factors that affect adoption
  publication-title: Transport Rev.
– volume: 13
  start-page: 3
  issue: 1
  year: 2019
  end-page: 12
  article-title: Potential of wireless power transfer for dynamic charging of electric vehicles
  publication-title: IET Intel. Transport Syst.
– start-page: 771
  year: 2023
  end-page: 785
  article-title: A comparison of lstm and gru networks for learning symbolic sequences
– start-page: 1
  year: 2019
  end-page: 5
  article-title: Electric vehicle load forecasting: A comparison between time series and machine learning approaches
– volume: 11
  start-page: 3207
  issue: 11
  year: 2018
  article-title: The application of improved random forest algorithm on the prediction of electric vehicle charging load
  publication-title: Energies
– volume: 1757
  year: 2021
  article-title: Research on load forecasting of charging station based on xgboost and lstm model
  publication-title: J. Phys. Conf. Ser.
– volume: 83
  year: 2020
  article-title: Integrated planning of static and dynamic charging infrastructure for electric vehicles
  publication-title: Transport. Res. Part D: Transp. Environ.
– start-page: 357
  year: 2021
  end-page: 364
– start-page: 139
  year: 2019
  end-page: 149
  article-title: Acn‐data: Analysis and applications of an open ev charging dataset
– volume: 58
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Optimal location of wireless charging facilities for electric vehicles: Flow‐capturing location model with stochastic user equilibrium
  publication-title: Transport. Res. Part C: Emerg. Technolog.
– year: 2016
– volume: 303
  year: 2021
  article-title: Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites
  publication-title: Appl. Energy
– volume: 12
  start-page: 3925
  issue: 17
  year: 2018
  end-page: 3934
  article-title: Economic planning approach for electric vehicle charging stations integrating traffic and power grid constraints
  publication-title: IET Gener. Transm. Distrib.
– volume: 103
  start-page: 30
  year: 2017
  end-page: 55
  article-title: Locating multiple types of charging facilities for battery electric vehicles
  publication-title: Transport. Res. Part B: Methodolog.
– volume: 15
  start-page: 6195
  issue: 17
  year: 2022
  article-title: Using bayesian deep learning for electric vehicle charging station load forecasting
  publication-title: Energies
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– year: 2014
– volume: 12
  start-page: 947
  issue: 8
  year: 2018
  end-page: 957
  article-title: Optimal location and sizing of fast charging stations for electric vehicles by incorporating traffic and power networks
  publication-title: IET Intel. Transport Syst.
– volume: 9
  start-page: 4947
  issue: 4
  year: 2021
  end-page: 4962
  article-title: Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles
  publication-title: IEEE J. Emerg. Sel. Topics Power Electron.
– volume: 85
  year: 2020
  article-title: Optimal positioning of dynamic wireless charging infrastructure in a road network for battery electric vehicles
  publication-title: Transport. Res. Part D: Transp. Environ.
– volume: 152
  year: 2021
  article-title: Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation
  publication-title: Transport. Res. Part E: Log. Transport. Rev.
– volume: 7
  issue: 6
  year: 2018
  article-title: Review of recent trends in charging infrastructure planning for electric vehicles
  publication-title: Wiley Interdiscip. Rev.: Energy Environ.
– volume: 14
  start-page: 7833
  issue: 23
  year: 2021
  article-title: Machine learning for solving charging infrastructure planning problems: A comprehensive review
  publication-title: Energies
– volume: 4
  year: 2021
  article-title: Impact of electric vehicle charging on the power demand of retail buildings
  publication-title: Adv. Appl. Energy
– volume: 2
  start-page: 56
  year: 2021
  end-page: 74
  article-title: Grid impact of electric vehicle fast charging stations: Trends, standards, issues and mitigation measures ‐ an overview
  publication-title: IEEE Open J. Power Electron.
– volume: 237
  year: 2024
  article-title: Hierarchical framework for demand prediction and iterative optimization of ev charging network infrastructure under uncertainty with cost and quality‐of‐service consideration
  publication-title: Expert Syst. Appl.
– volume: 8
  issue: 5
  year: 2013
  article-title: Comparative study of four time series methods in forecasting typhoid fever incidence in china
  publication-title: PloS One
– volume: 167
  year: 2022
  article-title: Wireless charging systems for electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
– volume: 3
  start-page: 1
  issue: 2
  year: 2017
  end-page: 13
  article-title: Development status and trend of electric vehicles in china
  publication-title: Chin. J. Electr. Eng.
– volume: 32
  start-page: 545
  year: 2014
  end-page: 552
  article-title: Infrastructure cost issues related to inductively coupled power transfer for electric vehicles
  publication-title: Procedia Comput. Sci.
– volume: 15
  start-page: 6575
  issue: 18
  year: 2022
  article-title: Charging behavior of electric vehicles: Temporal clustering based on real‐world data
  publication-title: Energies
– volume: 8
  start-page: 2314
  year: 2022
  end-page: 2333
  article-title: Optimal location of electric vehicle charging station and its impact on distribution network: A review
  publication-title: Energy Rep.
– start-page: 785
  year: 2016
  end-page: 794
  article-title: Xgboost: A scalable tree boosting system
– volume: 146
  start-page: 11
  year: 2015
  end-page: 19
  article-title: Plug‐in vs
  publication-title: wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy
– year: 2022
– year: 2020
– year: 2023
– volume: 40
  start-page: 1576
  year: 2019
  end-page: 1582
  article-title: Clustering algorithms applied to usage related segments of electric vehicle charging stations
  publication-title: Transp. Res. Procedia
– volume: 12
  start-page: 2692
  issue: 14
  year: 2019
  article-title: Electric vehicle charging load forecasting: A comparative study of deep learning approaches
  publication-title: Energies
– volume: 68
  start-page: 446
  year: 2015
  end-page: 454
  article-title: Electric vehicle conversion based on distance, speed and cost requirements
  publication-title: Energy Procedia
– year: 2015
– ident: e_1_2_10_5_1
  doi: 10.23919/CJEE.2017.8048407
– ident: e_1_2_10_38_1
  doi: 10.1145/3307772.3328313
– ident: e_1_2_10_29_1
  doi: 10.1016/j.egyr.2022.01.180
– ident: e_1_2_10_24_1
  doi: 10.1016/j.trd.2020.102385
– ident: e_1_2_10_14_1
  doi: 10.1109/OJPEL.2021.3054601
– ident: e_1_2_10_52_1
– ident: e_1_2_10_37_1
  doi: 10.1016/j.trpro.2019.07.218
– ident: e_1_2_10_15_1
  doi: 10.1109/JESTPE.2021.3058968
– ident: e_1_2_10_49_1
– ident: e_1_2_10_21_1
– ident: e_1_2_10_32_1
  doi: 10.3390/app9091723
– ident: e_1_2_10_31_1
  doi: 10.3390/en14237833
– ident: e_1_2_10_19_1
  doi: 10.1016/j.trb.2017.01.005
– ident: e_1_2_10_2_1
  doi: 10.1049/iet-its.2018.5136
– ident: e_1_2_10_4_1
  doi: 10.1016/j.apenergy.2022.119295
– ident: e_1_2_10_33_1
  doi: 10.3390/en15176195
– ident: e_1_2_10_20_1
– ident: e_1_2_10_3_1
  doi: 10.1049/iet-its.2018.5221
– ident: e_1_2_10_7_1
  doi: 10.1016/j.adapen.2021.100062
– volume: 146
  start-page: 11
  year: 2015
  ident: e_1_2_10_17_1
  article-title: Plug‐in vs
  publication-title: wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy
– ident: e_1_2_10_23_1
  doi: 10.1016/j.eswa.2023.121761
– ident: e_1_2_10_36_1
  doi: 10.3390/en15186575
– ident: e_1_2_10_12_1
– ident: e_1_2_10_53_1
– year: 2024
  ident: e_1_2_10_22_1
  article-title: Online multi‐objective optimization for electric vehicle charging station operation
  publication-title: IEEE Trans. Transp. Electrif.
– ident: e_1_2_10_25_1
  doi: 10.1016/j.trc.2015.06.022
– ident: e_1_2_10_50_1
– ident: e_1_2_10_44_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_10_30_1
  doi: 10.3390/en11113207
– volume: 7
  issue: 6
  year: 2018
  ident: e_1_2_10_28_1
  article-title: Review of recent trends in charging infrastructure planning for electric vehicles
  publication-title: Wiley Interdiscip. Rev.: Energy Environ.
– ident: e_1_2_10_8_1
  doi: 10.1080/01441647.2016.1217282
– ident: e_1_2_10_48_1
– ident: e_1_2_10_56_1
– ident: e_1_2_10_41_1
  doi: 10.1007/978-981-16-0878-0_35
– ident: e_1_2_10_10_1
– ident: e_1_2_10_55_1
– ident: e_1_2_10_40_1
  doi: 10.1109/SyNERGY-MED.2019.8764110
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-031-37963-5_53
– ident: e_1_2_10_46_1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.rser.2022.112730
– ident: e_1_2_10_43_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_10_26_1
  doi: 10.1016/j.tre.2020.102187
– ident: e_1_2_10_9_1
  doi: 10.1016/j.egypro.2015.03.276
– ident: e_1_2_10_47_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_10_51_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.procs.2014.05.459
– ident: e_1_2_10_35_1
  doi: 10.3390/en12142692
– ident: e_1_2_10_54_1
– ident: e_1_2_10_13_1
  doi: 10.1049/iet-gtd.2018.5456
– ident: e_1_2_10_39_1
  doi: 10.1016/B978-0-12-814761-0.00012-5
– ident: e_1_2_10_6_1
  doi: 10.1016/j.apenergy.2021.117651
– ident: e_1_2_10_11_1
  doi: 10.1109/CPE-POWERENG48600.2020.9161463
– ident: e_1_2_10_34_1
  doi: 10.1088/1742-6596/1757/1/012145
– ident: e_1_2_10_27_1
  doi: 10.1016/j.trd.2020.102331
– ident: e_1_2_10_42_1
  doi: 10.1371/journal.pone.0063116
SSID ssj0056221
Score 2.3856137
Snippet The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging...
Abstract The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1529
SubjectTerms artificial intelligence
electric vehicle charging
electric vehicles
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5VL3oQn1hfBPSisLrJZpMNeFFRquADaaW3Jc9aqK0U9eCvd5LdVgURvO1jhoWZTL7ZTPINQvuACib3XiaF1GnCjNSJdipLNFUK8mNjMxPWIW9ueavDrrt5t4FOJmdhKn6I6YJbiIw4X4cAV7rqQgJJLTix_zqmRwDPVMygORJgP_A6s_vJPAzAXp26EqGRfM67E3JSJo-_dH_AUWTt_5mlRpi5XEKLdX6ITyuHLqOGG66ghW-sgavo8Q7C_BmE4n6qsLqHRx5X_Wz6Br-7p6CKIwcSKGAYQ2NV8cS-wc81hqE26H-EN9a5F1z3jeitoc7lRfu8ldTtERLDCBMJsYWQRcYdAAzEHTEptXCX2tznAOtKK2-ZZjyX3oRin-TKUkkVV6bITG6ydTQ7HA3dBsLUMseEzwgRiglLCg9KKbFUWEhRiGuig4mVSlNzh4cWFoMy1rCZLINFy2jRJtqbyr5UjBm_Sp0FY08lAst1fDAa98o6aMrCGKENs8KF-mxGlPSOG8JV6sJ2NN5Eh9FVf3ynvGo_0Hi1-R_hLTRPIXupdvpto1nwkduB7ONV78ZB9gmHZ9VR
  priority: 102
  providerName: Wiley-Blackwell
Title Optimal placement of electric vehicle charging infrastructures utilizing deep learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12527
https://doaj.org/article/8cc7bc4d7e424531a9fe6c16a0e67366
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: IDLOA
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: AVUZU
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9ZHCehFYe0mm002RxWLCj6QVnpbsnloQWsp1YO_3kmyLRVEL972MWGXmWS_STL7fQgdAiro3DmZFLJKE6ZllVRWZUlFlYL8WJtM-3XIm1t-2WPX_bw_J_Xla8IiPXB0XLvQWlSaGWH9Hl1GlHSWa8JVan1JUiDbBhibTqbiNxhAPf5xJbyIfM77U2JSJtuDyZieAKx7HZk5KAqM_d8z1AAxnVW0UueG-DS-0xpasMN1tDzHGLiBHu9giL-CUail8it7-M3hqGUz0PjDPvumOPAfQQMM_WesIkfsO0ysMXSzl8Gnv2OsHeFaM-JpE_U6F93zy6SWRkg0I0wkxBRCFhm3AC4w5ohOqYGz1OQuB0hXlXKGVYzn0mm_0Se5MlRSxZUuMp3rbAs1hm9Du40wNcwy4TJChGLCkMJBo5QYKgykJ8Q20dHUS6WuecO9fMVLGfavmSy9R8vg0SY6mNmOIlvGj1Zn3tkzC89wHS5A3Ms67uVfcW-i4xCqX55TXnUfaDja-Y8n7qIlChlNrP7bQw2Ind2HjGRStdAiZfet0AW_AK363eg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZ4HKAHBAVEystSewFpYe312utjWzUKz6IqQbmtvH6kkdIkimgP_HpmvJsUJITEbXc9o5XGM57xePwNIV_AK9g8BJ0UukoTYXWVVN5kScWNgfjYusxiHvLmVnZ64rKf95vaHLwLU-NDLBJuaBlxvUYDx4R0veEUCJI5fJjxM_DPXC2TVSF5ikrNxd18IQbPXl-7UthJPpf9OTqp0Of_eV_4owjb_zJMjX6mvUk2mgCRfq1ndIss-fFH8uEZbOA2uf8Jdv4HiGJBFab36CTQuqHN0NJ__jey0giCBAwUlGhmaqDYv7C7pqBro-Ejjjjvp7RpHDHYIb32j-73TtL0R0isYEIlzBVKF5n04GHA8JhNuYO31OUhB79uKhOcqITMdbB42qelcVxzI40tMpvbbJesjCdjv0cod8ILFTLGlBHKsSIAU8ocVw5iFOZb5GQupdI24OHYw2JUxkNsoUuUaBkl2iKfF7TTGjLjVapvKOwFBcJcxw-T2aBsrKYsrFWVFU55PKDNmNHBS8ukST3Wo8kWOY1T9cZ_yovuLx6fPr2H-Jisdbo31-X1xe3VPlnnEMrUZX8HZAXmyx9CKPJQHUWFewIdmdjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sQqkPorbiqW0D9qXC6iabTTbgS217aD-sFC33tmTzoQd6dxzWh_71zmT3zgpS6Nt-zLDsJJPfZJL8BuAdooIrYzRZZZo8k840WRNskTXCWoyPnS8c5SG_n6rjC_llUA4W4HB2Fqblh5gn3Mgz0nhNDj7xsZ1vSuLIHN5OxT7Cs9DPYEkSZwvxOsuz2TiMwN6eutJUSL5Ugxk5qTQHD7qP4Cix9j-OUhPM9FdhpYsP2Ye2QddgIYzWYfkv1sCX8OsHuvkNCqX9VJTdY-PI2no2Q8fuwhWpssSBhAoM-9DUtjyxv3FyzbCrXQ__0BsfwoR1dSMuX8FF__P5x-OsK4-QOcmlzrivtKkKFRBg8Pe5y4XHu9yXsURYt42NXjZSlSY6WuwzynphhFXWVYUrXbEBi6PxKGwCE14GqWPBubZSe15FVMq5F9pjiMJDD97PrFS7jjucSlhc12kNW5qaLFoni_Zgdy47aRkznpQ6ImPPJYjlOj0YTy_rzmnqyjndOOl1oPXZglsTg3Jc2TzQdjTVg73UVP_4Tn1y_lOkq63_EX4Lz88-9etvJ6dft-GFwECm3fS3A4vYXOE1BiK3zZvU3-4B-_nX8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+placement+of+electric+vehicle+charging+infrastructures+utilizing+deep+learning&rft.jtitle=IET+intelligent+transport+systems&rft.au=Alansari%2C+Mohamad&rft.au=Al%E2%80%90Sumaiti%2C+Ameena+Saad&rft.au=Abughali%2C+Ahmed&rft.date=2024-08-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=18&rft.issue=8&rft.spage=1529&rft.epage=1544&rft_id=info:doi/10.1049%2Fitr2.12527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_itr2_12527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon