Optimal placement of electric vehicle charging infrastructures utilizing deep learning
The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, th...
Saved in:
Published in | IET intelligent transport systems Vol. 18; no. 8; pp. 1529 - 1544 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-956X 1751-9578 |
DOI | 10.1049/itr2.12527 |
Cover
Abstract | The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).
The study pioneers novel AI models to strategically place Charging Stations and Dynamic Wireless Charging, optimizing for the city's projected population growth and other influential factors. By marrying innovation with eco‐conscious planning, we aim to supercharge Electric Vehicle adoption. |
---|---|
AbstractList | The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).
The study pioneers novel AI models to strategically place Charging Stations and Dynamic Wireless Charging, optimizing for the city's projected population growth and other influential factors. By marrying innovation with eco‐conscious planning, we aim to supercharge Electric Vehicle adoption. The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE). Abstract The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass‐market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time‐series statistical characteristics, and the deep learning Attention‐based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time‐series data. The model's effectiveness was validated through comparative analyses against state‐of‐the‐art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE). |
Author | Abughali, Ahmed Alansari, Mohamad Al‐Sumaiti, Ameena Saad |
Author_xml | – sequence: 1 givenname: Mohamad orcidid: 0000-0003-2960-2972 surname: Alansari fullname: Alansari, Mohamad organization: Khalifa University – sequence: 2 givenname: Ameena Saad orcidid: 0000-0002-7742-8596 surname: Al‐Sumaiti fullname: Al‐Sumaiti, Ameena Saad email: ameena.alsumaiti@ku.ac.ae organization: Khalifa University – sequence: 3 givenname: Ahmed orcidid: 0009-0002-7393-2477 surname: Abughali fullname: Abughali, Ahmed organization: Khalifa University |
BookMark | eNp9UMtKA0EQHCSC8XHxC_YsJM7MzmP3KMFHIBAQFW9Dp7c3GRl3w-xE0a93Y9SDiKd-VRXVdcgGTdsQY6eCjwVX5blPUY6F1NLusaGwWoxKbYvBT28eD9hh1z1xro2UYsge5uvknyFk6wBIz9SkrK0zCoQpesxeaOUxUIYriEvfLDPf1BG6FDeYNpG6bJN88O_bS0W0zgJBbPrpmO3XEDo6-apH7P7q8m5yM5rNr6eTi9kIlVB2JKrClkVuqFC29ymQy6qfeKVrLbmABdSVWiijyxoLmYvSQCVLCQawyFFjfsSmO92qhSe3jv0r8c214N3noo1LBzFtX3AFol2gqiwpqXQuoKzJoDDAydjcmF6L77Qwtl0XqXboEyTfNimCD05wt83YbTN2nxn3lLNflG8Lf4LFDvzqA739g3TTu1u543wAEmWPzA |
CitedBy_id | crossref_primary_10_1016_j_epsr_2025_111603 crossref_primary_10_1016_j_nexres_2024_100123 |
Cites_doi | 10.23919/CJEE.2017.8048407 10.1145/3307772.3328313 10.1016/j.egyr.2022.01.180 10.1016/j.trd.2020.102385 10.1109/OJPEL.2021.3054601 10.1016/j.trpro.2019.07.218 10.1109/JESTPE.2021.3058968 10.3390/app9091723 10.3390/en14237833 10.1016/j.trb.2017.01.005 10.1049/iet-its.2018.5136 10.1016/j.apenergy.2022.119295 10.3390/en15176195 10.1049/iet-its.2018.5221 10.1016/j.adapen.2021.100062 10.1016/j.eswa.2023.121761 10.3390/en15186575 10.1016/j.trc.2015.06.022 10.3115/v1/D14-1179 10.3390/en11113207 10.1080/01441647.2016.1217282 10.1007/978-981-16-0878-0_35 10.1109/SyNERGY-MED.2019.8764110 10.1007/978-3-031-37963-5_53 10.1016/j.rser.2022.112730 10.1162/neco.1997.9.8.1735 10.1016/j.tre.2020.102187 10.1016/j.egypro.2015.03.276 10.1145/2939672.2939785 10.1016/j.procs.2014.05.459 10.3390/en12142692 10.1049/iet-gtd.2018.5456 10.1016/B978-0-12-814761-0.00012-5 10.1016/j.apenergy.2021.117651 10.1109/CPE-POWERENG48600.2020.9161463 10.1088/1742-6596/1757/1/012145 10.1016/j.trd.2020.102331 10.1371/journal.pone.0063116 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/itr2.12527 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9578 |
EndPage | 1544 |
ExternalDocumentID | oai_doaj_org_article_8cc7bc4d7e424531a9fe6c16a0e67366 10_1049_itr2_12527 ITR212527 |
Genre | article |
GrantInformation_xml | – fundername: Khalifa University funderid: KKJRC‐2019‐Trans 2 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-c4147-1d879836e8475781c02d36e0d5f5201abafd4b4659fc823196ad292a6ac83c5c3 |
IEDL.DBID | DOA |
ISSN | 1751-956X |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Wed Oct 01 06:40:44 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Wed Jan 22 17:15:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4147-1d879836e8475781c02d36e0d5f5201abafd4b4659fc823196ad292a6ac83c5c3 |
ORCID | 0000-0002-7742-8596 0009-0002-7393-2477 0000-0003-2960-2972 |
OpenAccessLink | https://doaj.org/article/8cc7bc4d7e424531a9fe6c16a0e67366 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8cc7bc4d7e424531a9fe6c16a0e67366 crossref_citationtrail_10_1049_itr2_12527 crossref_primary_10_1049_itr2_12527 wiley_primary_10_1049_itr2_12527_ITR212527 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | IET intelligent transport systems |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 9 2015; 58 2019; 9 2021; 4 2017; 3 2021; 2 2020; 85 2015; 146 2021; 1757 2020; 83 2019; 13 2021; 303 2019; 12 2024 2013; 8 1997; 9 2015; 68 2018; 7 2021; 14 2022; 167 2019; 40 2020; 1 2017; 37 2023 2024; 237 2022 2021 2020 2022; 8 2019 2022; 15 2016 2021; 152 2015 2014 2018; 12 2018; 11 2017; 103 2022; 322 2014; 32 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Bi Z. (e_1_2_10_17_1) 2015; 146 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Li Y. (e_1_2_10_22_1) 2024 Deb S. (e_1_2_10_28_1) 2018; 7 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 322 year: 2022 article-title: Electric vehicle market potential and associated energy and emissions reduction benefits publication-title: Appl. Energy – year: 2024 article-title: Online multi‐objective optimization for electric vehicle charging station operation publication-title: IEEE Trans. Transp. Electrif. – start-page: 395 year: 2019 end-page: 445 – volume: 1 start-page: 523 year: 2020 end-page: 529 article-title: Impact analysis of level 2 ev chargers on residential power distribution grids – volume: 9 issue: 9 year: 2019 article-title: Short‐term load forecasting for electric vehicle charging stations based on deep learning approaches publication-title: Appl. Sci. – volume: 37 start-page: 79 issue: 1 year: 2017 end-page: 93 article-title: Electric vehicles revisited: a review of factors that affect adoption publication-title: Transport Rev. – volume: 13 start-page: 3 issue: 1 year: 2019 end-page: 12 article-title: Potential of wireless power transfer for dynamic charging of electric vehicles publication-title: IET Intel. Transport Syst. – start-page: 771 year: 2023 end-page: 785 article-title: A comparison of lstm and gru networks for learning symbolic sequences – start-page: 1 year: 2019 end-page: 5 article-title: Electric vehicle load forecasting: A comparison between time series and machine learning approaches – volume: 11 start-page: 3207 issue: 11 year: 2018 article-title: The application of improved random forest algorithm on the prediction of electric vehicle charging load publication-title: Energies – volume: 1757 year: 2021 article-title: Research on load forecasting of charging station based on xgboost and lstm model publication-title: J. Phys. Conf. Ser. – volume: 83 year: 2020 article-title: Integrated planning of static and dynamic charging infrastructure for electric vehicles publication-title: Transport. Res. Part D: Transp. Environ. – start-page: 357 year: 2021 end-page: 364 – start-page: 139 year: 2019 end-page: 149 article-title: Acn‐data: Analysis and applications of an open ev charging dataset – volume: 58 start-page: 1 year: 2015 end-page: 12 article-title: Optimal location of wireless charging facilities for electric vehicles: Flow‐capturing location model with stochastic user equilibrium publication-title: Transport. Res. Part C: Emerg. Technolog. – year: 2016 – volume: 303 year: 2021 article-title: Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites publication-title: Appl. Energy – volume: 12 start-page: 3925 issue: 17 year: 2018 end-page: 3934 article-title: Economic planning approach for electric vehicle charging stations integrating traffic and power grid constraints publication-title: IET Gener. Transm. Distrib. – volume: 103 start-page: 30 year: 2017 end-page: 55 article-title: Locating multiple types of charging facilities for battery electric vehicles publication-title: Transport. Res. Part B: Methodolog. – volume: 15 start-page: 6195 issue: 17 year: 2022 article-title: Using bayesian deep learning for electric vehicle charging station load forecasting publication-title: Energies – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – year: 2014 – volume: 12 start-page: 947 issue: 8 year: 2018 end-page: 957 article-title: Optimal location and sizing of fast charging stations for electric vehicles by incorporating traffic and power networks publication-title: IET Intel. Transport Syst. – volume: 9 start-page: 4947 issue: 4 year: 2021 end-page: 4962 article-title: Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles publication-title: IEEE J. Emerg. Sel. Topics Power Electron. – volume: 85 year: 2020 article-title: Optimal positioning of dynamic wireless charging infrastructure in a road network for battery electric vehicles publication-title: Transport. Res. Part D: Transp. Environ. – volume: 152 year: 2021 article-title: Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation publication-title: Transport. Res. Part E: Log. Transport. Rev. – volume: 7 issue: 6 year: 2018 article-title: Review of recent trends in charging infrastructure planning for electric vehicles publication-title: Wiley Interdiscip. Rev.: Energy Environ. – volume: 14 start-page: 7833 issue: 23 year: 2021 article-title: Machine learning for solving charging infrastructure planning problems: A comprehensive review publication-title: Energies – volume: 4 year: 2021 article-title: Impact of electric vehicle charging on the power demand of retail buildings publication-title: Adv. Appl. Energy – volume: 2 start-page: 56 year: 2021 end-page: 74 article-title: Grid impact of electric vehicle fast charging stations: Trends, standards, issues and mitigation measures ‐ an overview publication-title: IEEE Open J. Power Electron. – volume: 237 year: 2024 article-title: Hierarchical framework for demand prediction and iterative optimization of ev charging network infrastructure under uncertainty with cost and quality‐of‐service consideration publication-title: Expert Syst. Appl. – volume: 8 issue: 5 year: 2013 article-title: Comparative study of four time series methods in forecasting typhoid fever incidence in china publication-title: PloS One – volume: 167 year: 2022 article-title: Wireless charging systems for electric vehicles publication-title: Renew. Sustain. Energy Rev. – volume: 3 start-page: 1 issue: 2 year: 2017 end-page: 13 article-title: Development status and trend of electric vehicles in china publication-title: Chin. J. Electr. Eng. – volume: 32 start-page: 545 year: 2014 end-page: 552 article-title: Infrastructure cost issues related to inductively coupled power transfer for electric vehicles publication-title: Procedia Comput. Sci. – volume: 15 start-page: 6575 issue: 18 year: 2022 article-title: Charging behavior of electric vehicles: Temporal clustering based on real‐world data publication-title: Energies – volume: 8 start-page: 2314 year: 2022 end-page: 2333 article-title: Optimal location of electric vehicle charging station and its impact on distribution network: A review publication-title: Energy Rep. – start-page: 785 year: 2016 end-page: 794 article-title: Xgboost: A scalable tree boosting system – volume: 146 start-page: 11 year: 2015 end-page: 19 article-title: Plug‐in vs publication-title: wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy – year: 2022 – year: 2020 – year: 2023 – volume: 40 start-page: 1576 year: 2019 end-page: 1582 article-title: Clustering algorithms applied to usage related segments of electric vehicle charging stations publication-title: Transp. Res. Procedia – volume: 12 start-page: 2692 issue: 14 year: 2019 article-title: Electric vehicle charging load forecasting: A comparative study of deep learning approaches publication-title: Energies – volume: 68 start-page: 446 year: 2015 end-page: 454 article-title: Electric vehicle conversion based on distance, speed and cost requirements publication-title: Energy Procedia – year: 2015 – ident: e_1_2_10_5_1 doi: 10.23919/CJEE.2017.8048407 – ident: e_1_2_10_38_1 doi: 10.1145/3307772.3328313 – ident: e_1_2_10_29_1 doi: 10.1016/j.egyr.2022.01.180 – ident: e_1_2_10_24_1 doi: 10.1016/j.trd.2020.102385 – ident: e_1_2_10_14_1 doi: 10.1109/OJPEL.2021.3054601 – ident: e_1_2_10_52_1 – ident: e_1_2_10_37_1 doi: 10.1016/j.trpro.2019.07.218 – ident: e_1_2_10_15_1 doi: 10.1109/JESTPE.2021.3058968 – ident: e_1_2_10_49_1 – ident: e_1_2_10_21_1 – ident: e_1_2_10_32_1 doi: 10.3390/app9091723 – ident: e_1_2_10_31_1 doi: 10.3390/en14237833 – ident: e_1_2_10_19_1 doi: 10.1016/j.trb.2017.01.005 – ident: e_1_2_10_2_1 doi: 10.1049/iet-its.2018.5136 – ident: e_1_2_10_4_1 doi: 10.1016/j.apenergy.2022.119295 – ident: e_1_2_10_33_1 doi: 10.3390/en15176195 – ident: e_1_2_10_20_1 – ident: e_1_2_10_3_1 doi: 10.1049/iet-its.2018.5221 – ident: e_1_2_10_7_1 doi: 10.1016/j.adapen.2021.100062 – volume: 146 start-page: 11 year: 2015 ident: e_1_2_10_17_1 article-title: Plug‐in vs publication-title: wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy – ident: e_1_2_10_23_1 doi: 10.1016/j.eswa.2023.121761 – ident: e_1_2_10_36_1 doi: 10.3390/en15186575 – ident: e_1_2_10_12_1 – ident: e_1_2_10_53_1 – year: 2024 ident: e_1_2_10_22_1 article-title: Online multi‐objective optimization for electric vehicle charging station operation publication-title: IEEE Trans. Transp. Electrif. – ident: e_1_2_10_25_1 doi: 10.1016/j.trc.2015.06.022 – ident: e_1_2_10_50_1 – ident: e_1_2_10_44_1 doi: 10.3115/v1/D14-1179 – ident: e_1_2_10_30_1 doi: 10.3390/en11113207 – volume: 7 issue: 6 year: 2018 ident: e_1_2_10_28_1 article-title: Review of recent trends in charging infrastructure planning for electric vehicles publication-title: Wiley Interdiscip. Rev.: Energy Environ. – ident: e_1_2_10_8_1 doi: 10.1080/01441647.2016.1217282 – ident: e_1_2_10_48_1 – ident: e_1_2_10_56_1 – ident: e_1_2_10_41_1 doi: 10.1007/978-981-16-0878-0_35 – ident: e_1_2_10_10_1 – ident: e_1_2_10_55_1 – ident: e_1_2_10_40_1 doi: 10.1109/SyNERGY-MED.2019.8764110 – ident: e_1_2_10_45_1 doi: 10.1007/978-3-031-37963-5_53 – ident: e_1_2_10_46_1 – ident: e_1_2_10_16_1 doi: 10.1016/j.rser.2022.112730 – ident: e_1_2_10_43_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_10_26_1 doi: 10.1016/j.tre.2020.102187 – ident: e_1_2_10_9_1 doi: 10.1016/j.egypro.2015.03.276 – ident: e_1_2_10_47_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_10_51_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.procs.2014.05.459 – ident: e_1_2_10_35_1 doi: 10.3390/en12142692 – ident: e_1_2_10_54_1 – ident: e_1_2_10_13_1 doi: 10.1049/iet-gtd.2018.5456 – ident: e_1_2_10_39_1 doi: 10.1016/B978-0-12-814761-0.00012-5 – ident: e_1_2_10_6_1 doi: 10.1016/j.apenergy.2021.117651 – ident: e_1_2_10_11_1 doi: 10.1109/CPE-POWERENG48600.2020.9161463 – ident: e_1_2_10_34_1 doi: 10.1088/1742-6596/1757/1/012145 – ident: e_1_2_10_27_1 doi: 10.1016/j.trd.2020.102331 – ident: e_1_2_10_42_1 doi: 10.1371/journal.pone.0063116 |
SSID | ssj0056221 |
Score | 2.3856137 |
Snippet | The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging... Abstract The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1529 |
SubjectTerms | artificial intelligence electric vehicle charging electric vehicles |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5VL3oQn1hfBPSisLrJZpMNeFFRquADaaW3Jc9aqK0U9eCvd5LdVgURvO1jhoWZTL7ZTPINQvuACib3XiaF1GnCjNSJdipLNFUK8mNjMxPWIW9ueavDrrt5t4FOJmdhKn6I6YJbiIw4X4cAV7rqQgJJLTix_zqmRwDPVMygORJgP_A6s_vJPAzAXp26EqGRfM67E3JSJo-_dH_AUWTt_5mlRpi5XEKLdX6ITyuHLqOGG66ghW-sgavo8Q7C_BmE4n6qsLqHRx5X_Wz6Br-7p6CKIwcSKGAYQ2NV8cS-wc81hqE26H-EN9a5F1z3jeitoc7lRfu8ldTtERLDCBMJsYWQRcYdAAzEHTEptXCX2tznAOtKK2-ZZjyX3oRin-TKUkkVV6bITG6ydTQ7HA3dBsLUMseEzwgRiglLCg9KKbFUWEhRiGuig4mVSlNzh4cWFoMy1rCZLINFy2jRJtqbyr5UjBm_Sp0FY08lAst1fDAa98o6aMrCGKENs8KF-mxGlPSOG8JV6sJ2NN5Eh9FVf3ynvGo_0Hi1-R_hLTRPIXupdvpto1nwkduB7ONV78ZB9gmHZ9VR priority: 102 providerName: Wiley-Blackwell |
Title | Optimal placement of electric vehicle charging infrastructures utilizing deep learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12527 https://doaj.org/article/8cc7bc4d7e424531a9fe6c16a0e67366 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: IDLOA dateStart: 20130301 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: AVUZU dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9ZHCehFYe0mm002RxWLCj6QVnpbsnloQWsp1YO_3kmyLRVEL972MWGXmWS_STL7fQgdAiro3DmZFLJKE6ZllVRWZUlFlYL8WJtM-3XIm1t-2WPX_bw_J_Xla8IiPXB0XLvQWlSaGWH9Hl1GlHSWa8JVan1JUiDbBhibTqbiNxhAPf5xJbyIfM77U2JSJtuDyZieAKx7HZk5KAqM_d8z1AAxnVW0UueG-DS-0xpasMN1tDzHGLiBHu9giL-CUail8it7-M3hqGUz0PjDPvumOPAfQQMM_WesIkfsO0ysMXSzl8Gnv2OsHeFaM-JpE_U6F93zy6SWRkg0I0wkxBRCFhm3AC4w5ohOqYGz1OQuB0hXlXKGVYzn0mm_0Se5MlRSxZUuMp3rbAs1hm9Du40wNcwy4TJChGLCkMJBo5QYKgykJ8Q20dHUS6WuecO9fMVLGfavmSy9R8vg0SY6mNmOIlvGj1Zn3tkzC89wHS5A3Ms67uVfcW-i4xCqX55TXnUfaDja-Y8n7qIlChlNrP7bQw2Ind2HjGRStdAiZfet0AW_AK363eg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZ4HKAHBAVEystSewFpYe312utjWzUKz6IqQbmtvH6kkdIkimgP_HpmvJsUJITEbXc9o5XGM57xePwNIV_AK9g8BJ0UukoTYXWVVN5kScWNgfjYusxiHvLmVnZ64rKf95vaHLwLU-NDLBJuaBlxvUYDx4R0veEUCJI5fJjxM_DPXC2TVSF5ikrNxd18IQbPXl-7UthJPpf9OTqp0Of_eV_4owjb_zJMjX6mvUk2mgCRfq1ndIss-fFH8uEZbOA2uf8Jdv4HiGJBFab36CTQuqHN0NJ__jey0giCBAwUlGhmaqDYv7C7pqBro-Ejjjjvp7RpHDHYIb32j-73TtL0R0isYEIlzBVKF5n04GHA8JhNuYO31OUhB79uKhOcqITMdbB42qelcVxzI40tMpvbbJesjCdjv0cod8ILFTLGlBHKsSIAU8ocVw5iFOZb5GQupdI24OHYw2JUxkNsoUuUaBkl2iKfF7TTGjLjVapvKOwFBcJcxw-T2aBsrKYsrFWVFU55PKDNmNHBS8ukST3Wo8kWOY1T9cZ_yovuLx6fPr2H-Jisdbo31-X1xe3VPlnnEMrUZX8HZAXmyx9CKPJQHUWFewIdmdjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sQqkPorbiqW0D9qXC6iabTTbgS217aD-sFC33tmTzoQd6dxzWh_71zmT3zgpS6Nt-zLDsJJPfZJL8BuAdooIrYzRZZZo8k840WRNskTXCWoyPnS8c5SG_n6rjC_llUA4W4HB2Fqblh5gn3Mgz0nhNDj7xsZ1vSuLIHN5OxT7Cs9DPYEkSZwvxOsuz2TiMwN6eutJUSL5Ugxk5qTQHD7qP4Cix9j-OUhPM9FdhpYsP2Ye2QddgIYzWYfkv1sCX8OsHuvkNCqX9VJTdY-PI2no2Q8fuwhWpssSBhAoM-9DUtjyxv3FyzbCrXQ__0BsfwoR1dSMuX8FF__P5x-OsK4-QOcmlzrivtKkKFRBg8Pe5y4XHu9yXsURYt42NXjZSlSY6WuwzynphhFXWVYUrXbEBi6PxKGwCE14GqWPBubZSe15FVMq5F9pjiMJDD97PrFS7jjucSlhc12kNW5qaLFoni_Zgdy47aRkznpQ6ImPPJYjlOj0YTy_rzmnqyjndOOl1oPXZglsTg3Jc2TzQdjTVg73UVP_4Tn1y_lOkq63_EX4Lz88-9etvJ6dft-GFwECm3fS3A4vYXOE1BiK3zZvU3-4B-_nX8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+placement+of+electric+vehicle+charging+infrastructures+utilizing+deep+learning&rft.jtitle=IET+intelligent+transport+systems&rft.au=Alansari%2C+Mohamad&rft.au=Al%E2%80%90Sumaiti%2C+Ameena+Saad&rft.au=Abughali%2C+Ahmed&rft.date=2024-08-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=18&rft.issue=8&rft.spage=1529&rft.epage=1544&rft_id=info:doi/10.1049%2Fitr2.12527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_itr2_12527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |