Reinforcement learning based mainline dynamic speed limit adjustment of expressway off‐ramp upstream under connected and autonomous vehicles environment
With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and recurrent congestion occurs frequently. In order to solve the problem of traffic jam caused around off‐ramps, various methods have been employed. Among all,...
        Saved in:
      
    
          | Published in | IET intelligent transport systems Vol. 16; no. 12; pp. 1809 - 1819 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Wiley
    
        01.12.2022
     | 
| Online Access | Get full text | 
| ISSN | 1751-956X 1751-9578 1751-9578  | 
| DOI | 10.1049/itr2.12225 | 
Cover
| Abstract | With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and recurrent congestion occurs frequently. In order to solve the problem of traffic jam caused around off‐ramps, various methods have been employed. Among all, mainline variable speed limit (VSL) control accounts for some proportion. In this study, mainline VSL adjustment of off‐ramp upstream is investigated with the reinforcement learning algorithm under the connected vehicles environment to alleviate the traffic congestion. First, the assumptions are made to be suitable for the traffic conditions of mainline VSL control on off‐ramp upstream, and then VSL algorithm based on reinforcement learning is presented, and Q‐learning is chosen as the main algorithm. Next, the state space, action space, and reward function required by Q‐learning are constructed orderly, and the related parameters are labelled. After that, according to the platform based on Python and VISSIM, three schemes, free control (Scheme 0), mainline VSL adjustment of off‐ramp upstream based on rule (Scheme 1), and mainline VSL adjustment of off‐ramp upstream based on Q‐learning algorithm (Scheme 2), are designed, and the three schemes are simulated and compared quantitatively to reflect the off‐ramp travel efficiency. The results indicate that mainline dynamic VSL adjustment of off‐ramp upstream based on Q‐learning algorithm performs the best in terms of general and specific indexes. The results provide potential insights for relieving the traffic congestion and traffic flow control under CAVs environment. | 
    
|---|---|
| AbstractList | With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and recurrent congestion occurs frequently. In order to solve the problem of traffic jam caused around off‐ramps, various methods have been employed. Among all, mainline variable speed limit (VSL) control accounts for some proportion. In this study, mainline VSL adjustment of off‐ramp upstream is investigated with the reinforcement learning algorithm under the connected vehicles environment to alleviate the traffic congestion. First, the assumptions are made to be suitable for the traffic conditions of mainline VSL control on off‐ramp upstream, and then VSL algorithm based on reinforcement learning is presented, and Q‐learning is chosen as the main algorithm. Next, the state space, action space, and reward function required by Q‐learning are constructed orderly, and the related parameters are labelled. After that, according to the platform based on Python and VISSIM, three schemes, free control (Scheme 0), mainline VSL adjustment of off‐ramp upstream based on rule (Scheme 1), and mainline VSL adjustment of off‐ramp upstream based on Q‐learning algorithm (Scheme 2), are designed, and the three schemes are simulated and compared quantitatively to reflect the off‐ramp travel efficiency. The results indicate that mainline dynamic VSL adjustment of off‐ramp upstream based on Q‐learning algorithm performs the best in terms of general and specific indexes. The results provide potential insights for relieving the traffic congestion and traffic flow control under CAVs environment. Abstract With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and recurrent congestion occurs frequently. In order to solve the problem of traffic jam caused around off‐ramps, various methods have been employed. Among all, mainline variable speed limit (VSL) control accounts for some proportion. In this study, mainline VSL adjustment of off‐ramp upstream is investigated with the reinforcement learning algorithm under the connected vehicles environment to alleviate the traffic congestion. First, the assumptions are made to be suitable for the traffic conditions of mainline VSL control on off‐ramp upstream, and then VSL algorithm based on reinforcement learning is presented, and Q‐learning is chosen as the main algorithm. Next, the state space, action space, and reward function required by Q‐learning are constructed orderly, and the related parameters are labelled. After that, according to the platform based on Python and VISSIM, three schemes, free control (Scheme 0), mainline VSL adjustment of off‐ramp upstream based on rule (Scheme 1), and mainline VSL adjustment of off‐ramp upstream based on Q‐learning algorithm (Scheme 2), are designed, and the three schemes are simulated and compared quantitatively to reflect the off‐ramp travel efficiency. The results indicate that mainline dynamic VSL adjustment of off‐ramp upstream based on Q‐learning algorithm performs the best in terms of general and specific indexes. The results provide potential insights for relieving the traffic congestion and traffic flow control under CAVs environment.  | 
    
| Author | Xiao, Daiquan Kang, Shengyang Shen, Zhenwu Xu, Xuecai  | 
    
| Author_xml | – sequence: 1 givenname: Daiquan surname: Xiao fullname: Xiao, Daiquan organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Shengyang surname: Kang fullname: Kang, Shengyang organization: Shenzhen Urban Transport Planning Center Co. Ltd – sequence: 3 givenname: Xuecai orcidid: 0000-0001-5798-8441 surname: Xu fullname: Xu, Xuecai email: xuecai_xu@hust.edu.cn organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology – sequence: 4 givenname: Zhenwu surname: Shen fullname: Shen, Zhenwu organization: Wuhan Huake Quanda Transport Planning & Design Consulting Co. Ltd  | 
    
| BookMark | eNp9kc1u3CAUhVGVSk3SbvoErFtNarDxz7KK-jNSpEppFt1Z13BJGWGwAGfqXR6h6z5eniTMuMqiqrJAwNE5ny6cM3LivENC3rLighVV98GkwC8Y51y8IKesEWzTiaY9eTrXP16Rsxh3RSFqztkp-XONxmkfJI7oErUIwRl3SweIqOgIxlnjkKrFwWgkjRNm2ZrRJApqN8d0jHlN8dcUMMY9LPmmH-5_BxgnOk8xBYSRzk5hoNI7hzJlBLi85uSdH_0c6R3-NNJipOjuTPDuQH1NXmqwEd_83c_J98-fbi6_bq6-fdlefrzayIpVYtPlhze6VQW2XRZYVzYlFI0chKhb3WpZ19ABlPkjJB-KiiN2IBslkMtOlOdku1KVh10_BTNCWHoPpj8KPtz2ENJhuL7h1cDrQXPeqqosVZspCgetNIoWOGTW-5U1uwmWPVj7BGRFfyioPxTUHwvK7nerWwYfY0D9vLn4xyxNgmS8SwGM_X-ErZG9sbg8A--3N9d8zTwCdTu5oA | 
    
| CitedBy_id | crossref_primary_10_1049_itr2_12429 crossref_primary_10_1080_17457300_2023_2239211 crossref_primary_10_1016_j_physa_2024_129734 crossref_primary_10_1016_j_physa_2024_129754 crossref_primary_10_1061_JTEPBS_TEENG_8116 crossref_primary_10_1061_JTEPBS_TEENG_8377  | 
    
| Cites_doi | 10.1109/TITS.2002.806804 10.1139/cjce-2012-0101 10.1016/0191-2615(86)90012-3 10.1109/ACCESS.2017.2649567 10.3390/su14020932 10.1080/15472450.2020.1846125 10.1049/iet-its.2017.0090 10.1016/j.apenergy.2019.114030 10.1109/ITSC.2013.6728542 10.1109/TITS.2011.2156792 10.1109/TITS.2017.2687620 10.1109/TITS.2004.842408 10.1016/j.trc.2015.07.007 10.1179/1942787514Y.0000000053 10.3390/math9233081 10.1016/j.commtr.2021.100018 10.1016/j.commtr.2021.100017 10.1109/MITS.2018.2879164 10.1007/BF00992698 10.1007/s12205-011-0880-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/itr2.12225 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1751-9578 | 
    
| EndPage | 1819 | 
    
| ExternalDocumentID | oai_doaj_org_article_724b26bf228d433d8c7ddebfdfe58a2a 10.1049/itr2.12225 10_1049_itr2_12225 ITR212225  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 72131008  | 
    
| GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN ADTOC PUEGO UNPAY  | 
    
| ID | FETCH-LOGICAL-c4145-91047f8d0e8941419373a07cb5568f8fc66a9aa3957c2b042ee9ac7d5e2c953 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1751-956X 1751-9578  | 
    
| IngestDate | Fri Oct 03 12:53:04 EDT 2025 Sun Sep 07 10:51:32 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Oct 29 21:20:44 EDT 2025 Wed Jan 22 16:26:58 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4145-91047f8d0e8941419373a07cb5568f8fc66a9aa3957c2b042ee9ac7d5e2c953 | 
    
| ORCID | 0000-0001-5798-8441 | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12225 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_724b26bf228d433d8c7ddebfdfe58a2a unpaywall_primary_10_1049_itr2_12225 crossref_primary_10_1049_itr2_12225 crossref_citationtrail_10_1049_itr2_12225 wiley_primary_10_1049_itr2_12225_ITR212225  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2022 2022-12-00 2022-12-01  | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IET intelligent transport systems | 
    
| PublicationYear | 2022 | 
    
| Publisher | Wiley | 
    
| Publisher_xml | – name: Wiley | 
    
| References | 2021; 9 2021; 25 2015; 59 2017; 4 2013; 40 2002; 3 2020; 12 2011; 12 2011; 15 2021; 1 2015; 7 2019; 145 1992; 8 1986; 20 2021 2020 1999; 33 2022; 14 2007; 7 2005; 6 2017 2017; 18 2020; 257 2013 2018; 12 2018; 32 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_20_1 Han J. (e_1_2_10_28_1) 2017 Kita H. (e_1_2_10_4_1) 1999; 33 Yu M. (e_1_2_10_16_1) 2019; 145 e_1_2_10_2_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 Li S. (e_1_2_10_18_1) 2021 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 Tian Z. (e_1_2_10_7_1) 2007; 7 Li S. (e_1_2_10_17_1) 2018; 32 e_1_2_10_29_1 e_1_2_10_27_1 Guo Y. (e_1_2_10_21_1) 2020 e_1_2_10_25_1 e_1_2_10_26_1  | 
    
| References_xml | – volume: 18 start-page: 3204 issue: 11 year: 2017 end-page: 3217 article-title: Reinforcement learning‐based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks publication-title: IEEE T. Intell. Transp. – volume: 32 issue: 6 year: 2018 article-title: Variable speed limit strategies analysis with link transmission model on urban expressway publication-title: Modern Phy. Let. B – volume: 20 start-page: 403 issue: 5 year: 1986 end-page: 414 article-title: A model for the structure of lane‐changing decision publication-title: Transp. Res. Part B – volume: 12 start-page: 1261 issue: 4 year: 2011 end-page: 1276 article-title: Local feedback‐based mainstream traffic flow control on motorway using variable speed limits publication-title: IEEE T. Intell. Transp. – volume: 9 issue: 23 year: 2021 article-title: Spatial‐temporal traffic flow control on motorways using distributed multi‐agent reinforcement learning publication-title: Mathematics – volume: 3 start-page: 282 issue: 4 year: 2002 end-page: 292 article-title: Traffic flow modeling of large‐scale motorway networks using the macroscopic modeling tool METANET publication-title: IEEE T. Intell. Transp. – volume: 4 start-page: 9413 year: 2017 end-page: 9420 article-title: Decentralized cooperative lane‐changing decision‐making for connected autonomous vehicles publication-title: IEEE Access – volume: 12 start-page: 64 issue: 2 year: 2020 end-page: 76 article-title: Variable speed limits for motorway off‐ramp queue protection publication-title: IEEE T. Intell. Transp. Syst. Mag. – year: 2021 article-title: Optimization model and method of variable speed limit for urban expressway publication-title: J. Adv. Transp. – volume: 1 year: 2021 article-title: Connected autonomous vehicles for improving mixed traffic efficiency in unsignalized intersections with deep reinforcement learning publication-title: Comm. Transp. Res. – volume: 15 start-page: 385 issue: 2 year: 2011 end-page: 394 article-title: A signal control model integrating arterial intersections and freeway off‐ramps publication-title: KSCE J. Civil Eng. – volume: 7 start-page: 61 issue: 1 year: 2007 end-page: 69 article-title: Modeling and implementation of an integrated ramp metering‐diamond interchange control system publication-title: J. Transport Sys. Eng. Info. Tech. – volume: 40 start-page: 46 issue: 1 year: 2013 end-page: 56 article-title: Cell transmission model based variable speed limit control for freeways publication-title: Can. J. Civil Eng. – start-page: 2119 year: 2013 end-page: 2125 article-title: Real‐time route diversion control at congested motorway off‐ramp areas‐Part I: User‐optimum route guidance – volume: 7 start-page: 264 issue: 5 year: 2015 end-page: 278 article-title: Variable speed limit: An overview publication-title: Transp. Lett. – year: 2020 article-title: Integrated variable speed limits and lane‐changing control for freeway lane‐drop bottlenecks publication-title: IEEE Access – volume: 12 start-page: 327 issue: 5 year: 2018 end-page: 334 article-title: Hybrid approach for variable speed limit implementation and application to mixed traffic conditions with connected autonomous vehicles publication-title: IET Intell. Transp. Syst. – volume: 1 year: 2021 article-title: Investigating the impacts of urban speed limit reduction through microscopic traffic simulation publication-title: Comm. Transp. Res. – volume: 6 start-page: 102 issue: 1 year: 2005 end-page: 112 article-title: Optimal coordination of variable speed limits to suppress shock waves publication-title: IEEE T. Intell. Transp. – volume: 145 issue: 4 year: 2019 article-title: Optimal variable speed limit control in connected autonomous vehicle environment for relieving freeway congestion publication-title: J. Transp. Eng. Part A – volume: 25 start-page: 122 issue: 1 year: 2021 end-page: 134 article-title: A queue length estimation and prediction model for long freeway off‐ramps publication-title: J. Intell. Transp. S. – volume: 33 start-page: 305 issue: 3–4 year: 1999 end-page: 312 article-title: A merging‐giveway interaction model of cars in a merging section: A game theoretic analysis publication-title: Transp. Res. Part A – volume: 257 year: 2020 article-title: Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach publication-title: Appl. Energy – volume: 14 start-page: 932 issue: 2 year: 2022 article-title: Influence of variable speed limit control on fuel and electric energy consumption, and exhaust gas emissions in mixed traffic flows publication-title: Sustainability – volume: 59 start-page: 216 year: 2015 end-page: 232 article-title: Modeling lane‐changing behavior in a connected environment: A game theory approach publication-title: Transp. Res. Part C – volume: 8 start-page: 279 issue: 3‐4 year: 1992 end-page: 292 article-title: Technical note Q‐learning publication-title: J. Mach. Learn – year: 2017 – ident: e_1_2_10_14_1 doi: 10.1109/TITS.2002.806804 – ident: e_1_2_10_15_1 doi: 10.1139/cjce-2012-0101 – ident: e_1_2_10_2_1 – ident: e_1_2_10_3_1 doi: 10.1016/0191-2615(86)90012-3 – ident: e_1_2_10_6_1 doi: 10.1109/ACCESS.2017.2649567 – ident: e_1_2_10_26_1 doi: 10.3390/su14020932 – ident: e_1_2_10_29_1 doi: 10.1080/15472450.2020.1846125 – volume: 33 start-page: 305 issue: 3 year: 1999 ident: e_1_2_10_4_1 article-title: A merging‐giveway interaction model of cars in a merging section: A game theoretic analysis publication-title: Transp. Res. Part A – ident: e_1_2_10_20_1 doi: 10.1049/iet-its.2017.0090 – volume: 145 issue: 4 year: 2019 ident: e_1_2_10_16_1 article-title: Optimal variable speed limit control in connected autonomous vehicle environment for relieving freeway congestion publication-title: J. Transp. Eng. Part A – volume-title: The Intelligent On‐Ramp Metering at Urban Expressway Weave Area Based on Reinforcement Learning year: 2017 ident: e_1_2_10_28_1 – year: 2020 ident: e_1_2_10_21_1 article-title: Integrated variable speed limits and lane‐changing control for freeway lane‐drop bottlenecks publication-title: IEEE Access – ident: e_1_2_10_22_1 doi: 10.1016/j.apenergy.2019.114030 – ident: e_1_2_10_9_1 doi: 10.1109/ITSC.2013.6728542 – ident: e_1_2_10_13_1 doi: 10.1109/TITS.2011.2156792 – year: 2021 ident: e_1_2_10_18_1 article-title: Optimization model and method of variable speed limit for urban expressway publication-title: J. Adv. Transp. – ident: e_1_2_10_19_1 doi: 10.1109/TITS.2017.2687620 – ident: e_1_2_10_12_1 doi: 10.1109/TITS.2004.842408 – ident: e_1_2_10_5_1 doi: 10.1016/j.trc.2015.07.007 – ident: e_1_2_10_11_1 doi: 10.1179/1942787514Y.0000000053 – ident: e_1_2_10_25_1 doi: 10.3390/math9233081 – volume: 7 start-page: 61 issue: 1 year: 2007 ident: e_1_2_10_7_1 article-title: Modeling and implementation of an integrated ramp metering‐diamond interchange control system publication-title: J. Transport Sys. Eng. Info. Tech. – ident: e_1_2_10_23_1 doi: 10.1016/j.commtr.2021.100018 – ident: e_1_2_10_24_1 doi: 10.1016/j.commtr.2021.100017 – ident: e_1_2_10_10_1 doi: 10.1109/MITS.2018.2879164 – ident: e_1_2_10_27_1 doi: 10.1007/BF00992698 – volume: 32 issue: 6 year: 2018 ident: e_1_2_10_17_1 article-title: Variable speed limit strategies analysis with link transmission model on urban expressway publication-title: Modern Phy. Let. B – ident: e_1_2_10_8_1 doi: 10.1007/s12205-011-0880-y  | 
    
| SSID | ssj0056221 | 
    
| Score | 2.3297653 | 
    
| Snippet | With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and recurrent... Abstract With the rapid progress of urbanization and continuous increasing of automobiles, expressway on‐ and off‐ramp area becomes the bottleneck, and...  | 
    
| SourceID | doaj unpaywall crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 1809 | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzaH0Ffopg8GmksKTixZtuRjW7psC-0hD9ib0bNJ2PWa3XXT3PoTeu7P6y-pRvYuGwjJpQeDLAYsNCPPSJr5PkL2VeqpN14k2gqe8JLKRDuaJd5Jran3wWTwQP_rt2J0xr-M8_EG1RfmhHXwwN3EHQnGNSu0Z0xanmVWGhFWpPbWu1wqFkOjVJarzVT3Dw5Ovau4EkginxfjFTApL48ulnN2SHGbc8MVRcT-bfKwrRt1faUmk5vRanQ3w8dkp48T4X03vifkgaufku0N9MBn5M-xi7CnJp7wQc__8B3QMVmYhi0_hpBgO855WDTBUcEEC5pA2ct2EfPLYebB_YzZsFfqOrz5v79-z9W0gbbBOhI1BSwzm4PBjBgT4lNQdXjaJVZDzNoF_HDnMbUONmrmnpOT4afTj6Okp1pIDKcc2RpTLry0qZNl6AhRnchUKoxGgDIvvSkKVSqFl3qG6bDQnStV0ETumCnzbJds1bPavSAgNWci10hFiqzWQpqM5prmylOrvDEDcrCa88r0KORIhjGp4m04LyvUTxX1MyBv17JNh71xq9QHVN1aAvGyY0ewoqq3ouo-KxqQ_bXi7_zWu2gTd4hUn0-PWWzt_Y-BvSSPGBZcxASaV2RrOW_d6xAGLfWbaPH_AI1jCsY priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QH1wD9iESALegEpy9pxYudYKqqCRIVKKy2naPwHhd1stJtQyolH4Mzj8STY3uzSRWjFIZJjTRLLHmfG9sz3Aezi0FGnnUiUETzhBZWJsjRNnJVKUee8yoQN_TdH-eEpfz3KRlvweJkLs3Z-z4vnZ82MDWhYlFyB7Tzz_nYPtk-P3u69j5mOgSM-y0d_ykIuMUjXHl6zOhGcfweutlWNF-c4Hq87ptGyHFyH_WWbFgElnwdtowb6219wjZsbfQOudY4l2Vtowk3YstUt2LkEN3gbfh7biJOq45Yg6QgjPpBgyQyZ4FlEzSBmQVJP5rW3bGQcMqAImk_tPAakk6kj9msMnz3HC3_nfn3_McNJTdo6JJ7ghIS8tBnRIYRGe4eWYOWvtgnpE9N2Tr7YjzEWj1xKsrsD7w5enuwfJh03Q6I55YHecciFk2ZoZeErvBsoUhwKrQKimZNO5zkWiOEUUDPl_wzWFqiFySzTRZbehV41rew9IFJxJjIVuEsDDbaQOqWZohk6atBp3Yeny5ErdQdbHtgzxmU8PudFGXq7jL3dhycr2XoB1vFPqRdBAVYSAWA7VvghLLv5WgrGFcuVY0wanqZG-rYbq5xxNpPIsA-7K_XZ-K1nUbM2iJSvTo5ZLN3_v3c-gF4za-1D7ww16lE3G34DC9QMGA priority: 102 providerName: Unpaywall  | 
    
| Title | Reinforcement learning based mainline dynamic speed limit adjustment of expressway off‐ramp upstream under connected and autonomous vehicles environment | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12225 https://doi.org/10.1049/itr2.12225 https://doaj.org/article/724b26bf228d433d8c7ddebfdfe58a2a  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-9578 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-9578 databaseCode: IDLOA dateStart: 20130301 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-9578 databaseCode: AVUZU dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056221 issn: 1751-9578 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe4AeUHmJ5bGyRC8gBdaOEzsSl1JRFSSqqrTScorGr9JqNxtlN5Te-Amc-Xn8EjxOdmklVIlDpMSaKI-xPePxzPcRsg0jz7zxMtFWikQUTCXasTTxTmnNvA9dBgP6nw7y_RPxcZyN18jbZS1Mhw-xCrjhyIjzNQ5w0B0LSXBqgxLPFg1_zXC5cotssODIYP_m4nA5DwfD3lVdSSSSz_LxEpxUFG_-3nvNHEXU_k1yu61quLyAyeS6xxpNzt4Wudv7inSnU-49suaq-2TzCoLgA_LryEXoUxOjfLTngDilaJwsnYZlP34otR3vPJ3XwVjRCRY1UbDn7TzmmNOZp-57zIi9gMtw5X__-NnAtKZtjbUkMKVYatZQg1kxJvioFKpwtAusiJi1c_rNfY3pdfRK3dxD8nnv_fHuftLTLSRGMIGMjSMhvbIjp4rQEDw7mcJIGo0gZV55k-dQAODGnuE6DHbnCjDSZo6bIksfkfVqVrnHhCotuMw00pEis7VUJmWZZhl4ZsEbMyAvl_-8ND0SORJiTMq4Iy6KEvVTRv0MyIuVbN3hb_xT6h2qbiWBmNmxYdaclv0QLCUXmufac66sSFOrwrtbp731LlPAYUC2V4q_8VmvYp-4QaT8cHzE49mT_xF-Su5wLK6IyTLPyPqiad3z4PIs9DD27GEMGAzJxsnB4c6XPxybBCM | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQeKp7qUh6W6AWkwNpxYucIiGoLbYXKIu0t8rOAdrNRdkPpjZ_AmZ_HL8HjZJdWQpU4REqsifIYj-fhmW8A9tTQU2-8SLQVPOEFlYl2NE28k1pT78OUwYD-0XE--sTfTbJJn5uDtTAdPsQ64IaSEddrFHAMSHcOJ0eQzC_Lhr2g6K9chxs8pzn6Xox_WC3EQbN3ZVcCO8ln-WSFTsqLl3_vvaSPImz_Fmy2Va3Oz9R0etlkjTpn_xZs98YiedVx9zZcc9Ud2LoAIXgXfp24iH1qYpiP9E0gTglqJ0tmwe_HLyW2azxPFnXQVmSKVU1E2a_tIiaZk7kn7ntMiT1T5-HK__7xs1GzmrQ1FpOoGcFas4YYTIsxwUglqgpHu8SSiHm7IN_c55hfRy4Uzt2Dj_tvx29GSd9vITGccmzZOOTCSzt0sggDwbQTqRoKoxGlzEtv8lwVSuHOnmE6SLtzhTLCZo6ZIkvvw0Y1r9wOEKk5E5nGfqTY2lpIk9JM00x5apU3ZgDPVv-8ND0UOXbEmJZxS5wXJfKnjPwZwNM1bd0BcPyT6jWybk2BoNlxYN6clr0MloJxzXLtGZOWp6mV4d2t0956l0nF1AD21oy_8lnP45y4gqQ8GJ-wePbgf4ifwOZofHRYHh4cv9-FmwwrLWLmzEPYWDatexTsn6V-HGf5H9PwBOo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgJ6QDzF8rRELyCFJo4TO8fyWLU8KlS6aMUl8rOAdrNRdkPpjZ_AmZ_HL8HjZJdWQpU4REqsifIYj2dsz3wfwJaMXeK045EynEWsSESkbJJGzgqlEud8l8EF_Xf7-e6YvZ5kkz43B2thOnyI9YIbWkYYr9HAbW1cN-FkCJL5ZdnQZwnOVy7ChnfkMRvAxs7H8afxaij2vr0rvOLIJZ_lkxU-KSu2_959xiMF4P5NuNxWtTw5ltPp2aA1eJ3RNbjah4tkp9PvdbhgqxuweQpE8Cb8OrAB_VSHhT7S00AcEfRPhsz8zB-_lZiOep4sau-vyBTrmog0X9tFSDMnc0fs95AUeyxP_JX7_eNnI2c1aWssJ5EzgtVmDdGYGKN9mEpk5Y92iUUR83ZBvtnPIcOOnCqduwUfRq8OX-xGPeNCpFnCkLQxZtwJE1tR-AYf3PFUxlwrxClzwuk8l4WUuLenqfL2bm0hNTeZpbrI0tswqOaVvQNEKEZ5ppCRFMmtudBpkqkkky4x0mk9hCerf17qHowcOTGmZdgUZ0WJ-imDfobweC1bdxAc_5R6jqpbSyBsdmiYN0dlb4Ulp0zRXDlKhWFpaoR_d2OVM85mQlI5hK214s991tPQJ84RKfcOD2g4u_s_wo_g0vuXo_Lt3v6be3CFYqlFSJ25D4Nl09oHPgBaqod9N_8DYQYGPg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QH1wD9iESALegEpy9pxYudYKqqCRIVKKy2naPwHhd1stJtQyolH4Mzj8STY3uzSRWjFIZJjTRLLHmfG9sz3Aezi0FGnnUiUETzhBZWJsjRNnJVKUee8yoQN_TdH-eEpfz3KRlvweJkLs3Z-z4vnZ82MDWhYlFyB7Tzz_nYPtk-P3u69j5mOgSM-y0d_ykIuMUjXHl6zOhGcfweutlWNF-c4Hq87ptGyHFyH_WWbFgElnwdtowb6219wjZsbfQOudY4l2Vtowk3YstUt2LkEN3gbfh7biJOq45Yg6QgjPpBgyQyZ4FlEzSBmQVJP5rW3bGQcMqAImk_tPAakk6kj9msMnz3HC3_nfn3_McNJTdo6JJ7ghIS8tBnRIYRGe4eWYOWvtgnpE9N2Tr7YjzEWj1xKsrsD7w5enuwfJh03Q6I55YHecciFk2ZoZeErvBsoUhwKrQKimZNO5zkWiOEUUDPl_wzWFqiFySzTRZbehV41rew9IFJxJjIVuEsDDbaQOqWZohk6atBp3Yeny5ErdQdbHtgzxmU8PudFGXq7jL3dhycr2XoB1vFPqRdBAVYSAWA7VvghLLv5WgrGFcuVY0wanqZG-rYbq5xxNpPIsA-7K_XZ-K1nUbM2iJSvTo5ZLN3_v3c-gF4za-1D7ww16lE3G34DC9QMGA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+based+mainline+dynamic+speed+limit+adjustment+of+expressway+off%E2%80%90ramp+upstream+under+connected+and+autonomous+vehicles+environment&rft.jtitle=IET+intelligent+transport+systems&rft.au=Xiao%2C+Daiquan&rft.au=Kang%2C+Shengyang&rft.au=Xu%2C+Xuecai&rft.au=Shen%2C+Zhenwu&rft.date=2022-12-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=16&rft.issue=12&rft.spage=1809&rft.epage=1819&rft_id=info:doi/10.1049%2Fitr2.12225&rft.externalDBID=10.1049%252Fitr2.12225&rft.externalDocID=ITR212225 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |