Low sidelobe planar electrically large sparse array antenna with element number reduction based on genetic algorithm
Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe levels. A new scheme of planar EL sparse array antenna based on a genetic algorithm (GA) to achieve low sidelobe with element number reduction is p...
Saved in:
| Published in | IET microwaves, antennas & propagation Vol. 18; no. 6; pp. 447 - 458 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8725 1751-8733 1751-8733 |
| DOI | 10.1049/mia2.12475 |
Cover
| Abstract | Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe levels. A new scheme of planar EL sparse array antenna based on a genetic algorithm (GA) to achieve low sidelobe with element number reduction is proposed. To begin with, EL sparse array antenna optimisation models based on GA for both linear and planar arrays are analysed. Then, an EL slot antenna element based on a 3 × 3 substrate integrated waveguide cavity is designed. An 8‐element linear EL sparse array antenna is designed and compared with a uniform array antenna, demonstrating a reduction in the maximum sidelobe level (MSLL) by nearly 4.6 dB. After that, a 4 × 8 element planar EL sparse array antenna is fabricated and measured. Compared to an 8 × 16 element planar EL uniform array antenna, the number of antenna elements is reduced by 75%, while the MSLL is reduced by approximately 3 dB. The measured −10 dB impedance bandwidth ranges from 25.3 to 27.8 GHz. At the central frequency, the radiation pattern achieves a peak gain of 29.6 dBi, exhibiting low sidelobe levels below −15.0 dB.
The authors comprehensively analysed the electrically larger (EL) property of antenna elements, mutual coupling among elements, the feed network, and the overall design of the antenna, and proposed a planar EL sparse array antenna with elements number reduction based on a genetic algorithm to solve the problems of high sidelobe level, high processing complexity, and high manufacturing cost in the overall array antenna system. |
|---|---|
| AbstractList | Abstract Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe levels. A new scheme of planar EL sparse array antenna based on a genetic algorithm (GA) to achieve low sidelobe with element number reduction is proposed. To begin with, EL sparse array antenna optimisation models based on GA for both linear and planar arrays are analysed. Then, an EL slot antenna element based on a 3 × 3 substrate integrated waveguide cavity is designed. An 8‐element linear EL sparse array antenna is designed and compared with a uniform array antenna, demonstrating a reduction in the maximum sidelobe level (MSLL) by nearly 4.6 dB. After that, a 4 × 8 element planar EL sparse array antenna is fabricated and measured. Compared to an 8 × 16 element planar EL uniform array antenna, the number of antenna elements is reduced by 75%, while the MSLL is reduced by approximately 3 dB. The measured −10 dB impedance bandwidth ranges from 25.3 to 27.8 GHz. At the central frequency, the radiation pattern achieves a peak gain of 29.6 dBi, exhibiting low sidelobe levels below −15.0 dB. Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe levels. A new scheme of planar EL sparse array antenna based on a genetic algorithm (GA) to achieve low sidelobe with element number reduction is proposed. To begin with, EL sparse array antenna optimisation models based on GA for both linear and planar arrays are analysed. Then, an EL slot antenna element based on a 3 × 3 substrate integrated waveguide cavity is designed. An 8‐element linear EL sparse array antenna is designed and compared with a uniform array antenna, demonstrating a reduction in the maximum sidelobe level (MSLL) by nearly 4.6 dB. After that, a 4 × 8 element planar EL sparse array antenna is fabricated and measured. Compared to an 8 × 16 element planar EL uniform array antenna, the number of antenna elements is reduced by 75%, while the MSLL is reduced by approximately 3 dB. The measured −10 dB impedance bandwidth ranges from 25.3 to 27.8 GHz. At the central frequency, the radiation pattern achieves a peak gain of 29.6 dBi, exhibiting low sidelobe levels below −15.0 dB. The authors comprehensively analysed the electrically larger (EL) property of antenna elements, mutual coupling among elements, the feed network, and the overall design of the antenna, and proposed a planar EL sparse array antenna with elements number reduction based on a genetic algorithm to solve the problems of high sidelobe level, high processing complexity, and high manufacturing cost in the overall array antenna system. Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe levels. A new scheme of planar EL sparse array antenna based on a genetic algorithm (GA) to achieve low sidelobe with element number reduction is proposed. To begin with, EL sparse array antenna optimisation models based on GA for both linear and planar arrays are analysed. Then, an EL slot antenna element based on a 3 × 3 substrate integrated waveguide cavity is designed. An 8‐element linear EL sparse array antenna is designed and compared with a uniform array antenna, demonstrating a reduction in the maximum sidelobe level (MSLL) by nearly 4.6 dB. After that, a 4 × 8 element planar EL sparse array antenna is fabricated and measured. Compared to an 8 × 16 element planar EL uniform array antenna, the number of antenna elements is reduced by 75%, while the MSLL is reduced by approximately 3 dB. The measured −10 dB impedance bandwidth ranges from 25.3 to 27.8 GHz. At the central frequency, the radiation pattern achieves a peak gain of 29.6 dBi, exhibiting low sidelobe levels below −15.0 dB. |
| Author | Ma, Wenyu Zhu, Yangkun Cao, Wenquan Wang, Chuang |
| Author_xml | – sequence: 1 givenname: Yangkun orcidid: 0009-0008-1558-6784 surname: Zhu fullname: Zhu, Yangkun organization: Army Engineering University of PLA – sequence: 2 givenname: Wenyu orcidid: 0000-0002-8502-1454 surname: Ma fullname: Ma, Wenyu organization: Army Engineering University of PLA – sequence: 3 givenname: Chuang surname: Wang fullname: Wang, Chuang organization: Army Engineering University of PLA – sequence: 4 givenname: Wenquan orcidid: 0000-0003-2638-7760 surname: Cao fullname: Cao, Wenquan email: cao_wenquan@163.com organization: Army Engineering University of PLA |
| BookMark | eNp9kE1r3DAQhkVJoUmaS36Bzi2b6tOyjyG0zcKWXtqzGFnjrYIsL5KWxf--3rjkEEpOMwzP-zI8V-QiTQkJueXsjjPVfRkDiDsulNHvyCU3mm9aI-XFyy70B3JVyhNjWmtpLkndTSdagsc4OaSHCAkyxYh9zaGHGGcaIe-RlgPkghRyhplCqpgS0FOof87wiKnSdBwdZprRH_sapkQdFPR0WfaYsIaeQtxPeYmMH8n7AWLBm3_zmvz-9vXXw-Nm9_P79uF-t-kVV3rT9IaBAkShAJTzXJuu87LpvNa8Qw3Qdr0UvGuBqUEM6AEaGJzAQUvtnbwm27XXT_BkDzmMkGc7QbDPhynvLeTls4iWgWgHpp1xgik5dK0w2AnXtE3DQRq9dH1eu47pAPNpUfNSyJk9y7dn-fZZ_kJ_Wuk-T6VkHN6G2Su4DxXODmuGEP8f4WvkFCLOb5TbH9t7sWb-Am9NqOw |
| CitedBy_id | crossref_primary_10_1016_j_aeue_2025_155770 |
| Cites_doi | 10.1109/lawp.2019.2896384 10.1109/tap.2021.3090826 10.1109/tap.2021.3118795 10.1109/tap.2021.3069496 10.1109/tap.2022.3209363 10.1109/tap.2016.2543804 10.1109/tap.2022.3140214 10.1109/lawp.2015.2440432 10.1109/lawp.2013.2285073 10.1109/lawp.2022.3216886 10.1109/tap.2012.2228839 10.1109/lawp.2022.3211641 10.1109/tap.2015.2473658 10.1155/2022/8431611 10.1109/jiot.2020.2969247 10.1109/tap.2023.3291813 10.1109/lawp.2021.3103532 10.1109/lawp.2017.2774498 10.1109/tap.2016.2573860 10.1109/lawp.2022.3223932 10.1080/02726340701364233 10.1109/tap.2022.3226343 10.1109/tap.2009.2024570 10.1109/tap.2019.2935100 10.1109/tap.2021.3119111 10.1109/tap.2022.3168738 10.1109/tap.2022.3213422 10.1109/tap.2017.2694466 10.1109/tap.2023.3255401 10.1109/lawp.2011.2178585 10.1109/tap.2022.3209670 10.1109/SAM.2006.1706123 10.1109/lawp.2020.2967431 10.1109/tap.2018.2871205 10.1109/lawp.2022.3220935 10.1109/tap.2007.893375 10.1109/tap.2022.3177417 10.1049/iet‐map.2018.6174 10.1109/lawp.2018.2790907 10.1109/lawp.2016.2613996 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/mia2.12475 |
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8733 |
| EndPage | 458 |
| ExternalDocumentID | oai_doaj_org_article_0a28f05b7b2043f9827e92b68661a375 10.1049/mia2.12475 10_1049_mia2_12475 MIA212475 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61871399 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 6OB 8FE 8FG 8VB 96U AAFWJ AAHJG AAJGR ABJCF ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEGXH AFAZI AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PTHSS PUEGO QWB RNS ROL RUI S0W U5U UNMZH WIN ZL0 AAYXX AFFHD CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4145-6c70a4aee24aa4bd15799d369d5519e5aa89c32198a04f2fedaa6afb2ef535db3 |
| IEDL.DBID | DOA |
| ISSN | 1751-8725 1751-8733 |
| IngestDate | Fri Oct 03 12:39:11 EDT 2025 Sun Sep 07 11:01:04 EDT 2025 Wed Oct 29 21:27:57 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Sep 09 05:09:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4145-6c70a4aee24aa4bd15799d369d5519e5aa89c32198a04f2fedaa6afb2ef535db3 |
| ORCID | 0000-0002-8502-1454 0000-0003-2638-7760 0009-0008-1558-6784 |
| OpenAccessLink | https://doaj.org/article/0a28f05b7b2043f9827e92b68661a375 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0a28f05b7b2043f9827e92b68661a375 unpaywall_primary_10_1049_mia2_12475 crossref_primary_10_1049_mia2_12475 crossref_citationtrail_10_1049_mia2_12475 wiley_primary_10_1049_mia2_12475_MIA212475 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | IET microwaves, antennas & propagation |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 69 2021; 20 2022; 70 2019; 13 2013; 61 2017; 65 2011; 10 2019; 18 2006 2018; 66 2007; 55 2016; 15 2020; 19 2020; 7 2009; 57 2018; 17 2023; 22 2022; 2022 2017; 16 2013; 12 2015; 63 2016; 64 2020; 68 2023; 71 2007; 27 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 66 start-page: 7400 issue: 12 year: 2018 end-page: 7405 article-title: A compact W‐band substrate‐integrated cavity array antenna using high‐order resonating modes publication-title: IEEE Trans. Antenn. Propag. – volume: 7 start-page: 4816 issue: 6 year: 2020 end-page: 4826 article-title: Low‐cost subarrayed sensor array design strategy for IoT and future 6G applications publication-title: IEEE Internet Things J. – volume: 22 start-page: 502 issue: 3 year: 2023 end-page: 506 article-title: Grating lobe suppression and angle estimation based on virtual antennas filling in sparse array publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 69 start-page: 4217 issue: 7 year: 2021 end-page: 4222 article-title: Hierarchical array design strategy composed of irregular and overlapped subarrays in large‐scale planar array publication-title: IEEE Trans. Antenn. Propag. – volume: 2022 start-page: 1 year: 2022 end-page: 9 article-title: Planar high‐gain millimeter‐wave slotted SIW cavity antenna array with low sidelobe and grating lobe levels publication-title: Int. J. Antenn. Propag. – volume: 17 start-page: 70 issue: 1 year: 2018 end-page: 73 article-title: An asymmetric mapping method for the synthesis of sparse planar arrays publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 17 start-page: 377 issue: 3 year: 2018 end-page: 380 article-title: An effective approach for the synthesis of uniformly excited large linear sparse array publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 22 start-page: 739 issue: 4 year: 2023 end-page: 743 article-title: Design of a high‐order 2 × 2 SIW cavity‐backed patch subarray and its application in millimeter‐wave CP filtenna array publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 70 start-page: 8614 issue: 9 year: 2022 end-page: 8619 article-title: Broadband and high‐gain high‐order‐mode fed open‐ended waveguide antenna array for millimeter‐wave applications publication-title: IEEE Trans. Antenn. Propag. – volume: 27 start-page: 287 issue: 5 year: 2007 end-page: 297 article-title: Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm publication-title: Electromagnetics – volume: 70 start-page: 12328 issue: 12 year: 2022 end-page: 12333 article-title: 1λ spaced dual radiating modes based phased array antenna using silicon RFICs with grating lobe cancellation publication-title: IEEE Trans. Antenn. Propag. – volume: 70 start-page: 2459 issue: 4 year: 2022 end-page: 2467 article-title: Wideband circularly polarized stacked patch antenna based on TM and TM publication-title: IEEE Trans. Antenn. Propag. – volume: 71 start-page: 4339 issue: 5 year: 2023 end-page: 4349 article-title: An improved synthesis of sparse planar arrays using density‐weighted method and Chaos sparrow search algorithm publication-title: IEEE Trans. Antenn. Propag. – volume: 18 start-page: 576 issue: 4 year: 2019 end-page: 580 article-title: Bandwidth‐enhanced electrically large microstrip antenna loaded with SRR structures publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 65 start-page: 2899 issue: 6 year: 2017 end-page: 2905 article-title: Microstrip antenna with electrically large property based on metamaterial inclusions publication-title: IEEE Trans. Antenn. Propag. – volume: 63 start-page: 4624 issue: 11 year: 2015 end-page: 4631 article-title: Low‐cost wideband and high‐gain slotted cavity antenna using high‐order modes for millimeter‐wave application publication-title: IEEE Trans. Antenn. Propag. – volume: 10 start-page: 1461 year: 2011 end-page: 1464 article-title: An electrically large metallic cavity antenna with circular polarization for satellite applications publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 71 start-page: 18 issue: 1 year: 2023 end-page: 28 article-title: 220 GHz high‐gain substrate integrated antennas with low fabrication cost based on higher order mode and PCB technology publication-title: IEEE Trans. Antenn. Propag. – volume: 64 start-page: 3310 issue: 8 year: 2016 end-page: 3318 article-title: Gain‐enhanced patch antennas with loading of shorting pins publication-title: IEEE Trans. Antenn. Propag. – volume: 13 start-page: 1491 issue: 9 year: 2019 end-page: 1497 article-title: Synthesis of linear sparse arrays based on dynamic parameters differential evolution algorithm publication-title: IET Microw., Antennas Propag. – volume: 20 start-page: 2225 issue: 12 year: 2021 end-page: 2229 article-title: Planar broadband higher‐order mode millimeter‐wave microstrip patch antenna array with low sidelobe level publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 16 start-page: 896 year: 2017 end-page: 899 article-title: Gain enhancement in circular microstrip antenna via linear superposition of higher zeros publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 70 start-page: 1045 issue: 2 year: 2022 end-page: 1056 article-title: High‐order‐mode cavity fed antenna arrays for diverse polarizations with compact size, high gain, and high efficiency publication-title: IEEE Trans. Antenn. Propag. – volume: 19 start-page: 428 issue: 3 year: 2020 end-page: 432 article-title: Synthesis of sparse linear arrays with reduced excitation control numbers using a hybrid cuckoo search algorithm with convex programming publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 57 start-page: 2491 issue: 8 year: 2009 end-page: 2495 article-title: A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays publication-title: IEEE Trans. Antenn. Propag. – year: 2006 – volume: 55 start-page: 1067 issue: 4 year: 2007 end-page: 1073 article-title: Synthesis of sparse planar arrays using modified real genetic algorithm publication-title: IEEE Trans. Antenn. Propag. – volume: 70 start-page: 9260 issue: 10 year: 2022 end-page: 9269 article-title: A W‐band two‐dimensional monopulse sparse array antenna publication-title: IEEE Trans. Antenn. Propag. – volume: 70 start-page: 4355 issue: 6 year: 2022 end-page: 4368 article-title: Synthesis of mask‐constrained pattern‐reconfigurable nonuniformly spaced linear arrays using artificial neural networks publication-title: IEEE Trans. Antenn. Propag. – volume: 12 start-page: 1323 year: 2013 end-page: 1326 article-title: Grating lobe suppression for distributed digital subarrays using virtual filling publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 61 start-page: 1019 issue: 3 year: 2013 end-page: 1025 article-title: Electrically large dual‐loop antenna for UHF near‐field RFID reader publication-title: IEEE Trans. Antenn. Propag. – volume: 64 start-page: 2115 issue: 6 year: 2016 end-page: 2126 article-title: A high‐gain single‐feed dual‐mode microstrip disc radiator publication-title: IEEE Trans. Antenn. Propag. – volume: 15 start-page: 274 year: 2016 end-page: 277 article-title: Modified real GA for the synthesis of sparse planar circular arrays publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 70 start-page: 11569 issue: 12 year: 2022 end-page: 11581 article-title: Millimeter‐wave array antennas using broadband 3D folded strip elements for B5G/6G communications publication-title: IEEE Trans. Antenn. Propag. – volume: 22 start-page: 631 issue: 3 year: 2023 end-page: 635 article-title: Pattern synthesis for different sparse planar arrays by a hybrid unconstrained‐heuristic approach publication-title: IEEE Antenn. Wireless Propag. Lett. – volume: 71 start-page: 1578 issue: 2 year: 2023 end-page: 1589 article-title: Knowledge‐guided active‐base‐element modeling in machine‐learning‐assisted antenna‐array design publication-title: IEEE Trans. Antenn. Propag. – volume: 68 start-page: 70 issue: 1 year: 2020 end-page: 80 article-title: Limited scan‐angle phased arrays using randomly grouped subarrays and reduced number of phase shifters publication-title: IEEE Trans. Antenn. Propag. – volume: 71 start-page: 7609 issue: 9 year: 2023 end-page: 7614 article-title: Broadband and high‐gain embedded probe‐fed low‐profile high‐order‐mode antennas publication-title: IEEE Trans. Antenn. Propag. – volume: 70 start-page: 6 issue: 1 year: 2022 end-page: 16 article-title: Low‐profile high‐directivity dual‐beam circularly polarized antennas under operation of two odd modes publication-title: IEEE Trans. Antenn. Propag. – volume: 22 start-page: 347 issue: 2 year: 2023 end-page: 351 article-title: Grating lobe suppression for wideband large‐spacing beam scanning array using subarray null adjustable method publication-title: IEEE Antenn. Wireless Propag. Lett. – ident: e_1_2_12_6_1 doi: 10.1109/lawp.2019.2896384 – ident: e_1_2_12_12_1 doi: 10.1109/tap.2021.3090826 – ident: e_1_2_12_17_1 doi: 10.1109/tap.2021.3118795 – ident: e_1_2_12_27_1 doi: 10.1109/tap.2021.3069496 – ident: e_1_2_12_19_1 doi: 10.1109/tap.2022.3209363 – ident: e_1_2_12_7_1 doi: 10.1109/tap.2016.2543804 – ident: e_1_2_12_40_1 doi: 10.1109/tap.2022.3140214 – ident: e_1_2_12_34_1 doi: 10.1109/lawp.2015.2440432 – ident: e_1_2_12_20_1 doi: 10.1109/lawp.2013.2285073 – ident: e_1_2_12_21_1 doi: 10.1109/lawp.2022.3216886 – ident: e_1_2_12_3_1 doi: 10.1109/tap.2012.2228839 – ident: e_1_2_12_23_1 doi: 10.1109/lawp.2022.3211641 – ident: e_1_2_12_16_1 doi: 10.1109/tap.2015.2473658 – ident: e_1_2_12_22_1 doi: 10.1155/2022/8431611 – ident: e_1_2_12_26_1 doi: 10.1109/jiot.2020.2969247 – ident: e_1_2_12_10_1 doi: 10.1109/tap.2023.3291813 – ident: e_1_2_12_11_1 doi: 10.1109/lawp.2021.3103532 – ident: e_1_2_12_36_1 doi: 10.1109/lawp.2017.2774498 – ident: e_1_2_12_4_1 doi: 10.1109/tap.2016.2573860 – ident: e_1_2_12_14_1 doi: 10.1109/lawp.2022.3223932 – ident: e_1_2_12_30_1 doi: 10.1080/02726340701364233 – ident: e_1_2_12_41_1 doi: 10.1109/tap.2022.3226343 – ident: e_1_2_12_31_1 doi: 10.1109/tap.2009.2024570 – ident: e_1_2_12_25_1 doi: 10.1109/tap.2019.2935100 – ident: e_1_2_12_13_1 doi: 10.1109/tap.2021.3119111 – ident: e_1_2_12_18_1 doi: 10.1109/tap.2022.3168738 – ident: e_1_2_12_9_1 doi: 10.1109/tap.2022.3213422 – ident: e_1_2_12_5_1 doi: 10.1109/tap.2017.2694466 – ident: e_1_2_12_38_1 doi: 10.1109/tap.2023.3255401 – ident: e_1_2_12_2_1 doi: 10.1109/lawp.2011.2178585 – ident: e_1_2_12_15_1 doi: 10.1109/tap.2022.3209670 – ident: e_1_2_12_33_1 doi: 10.1109/SAM.2006.1706123 – ident: e_1_2_12_39_1 doi: 10.1109/lawp.2020.2967431 – ident: e_1_2_12_24_1 doi: 10.1109/tap.2018.2871205 – ident: e_1_2_12_35_1 doi: 10.1109/lawp.2022.3220935 – ident: e_1_2_12_28_1 doi: 10.1109/tap.2007.893375 – ident: e_1_2_12_29_1 doi: 10.1109/tap.2022.3177417 – ident: e_1_2_12_32_1 doi: 10.1049/iet‐map.2018.6174 – ident: e_1_2_12_37_1 doi: 10.1109/lawp.2018.2790907 – ident: e_1_2_12_8_1 doi: 10.1109/lawp.2016.2613996 |
| SSID | ssj0055537 |
| Score | 2.4091878 |
| Snippet | Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high sidelobe... Abstract Conventionally, both electrically larger (EL) arrays and sparse arrays offer the advantage of element number reduction but disadvantage of high... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 447 |
| SubjectTerms | antenna arrays antenna radiation patterns millimetre wave antenna arrays |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69GH0Yd9jHdsQW182cObow7Yes9LSlrb0oYHuyZxkaYy5TvASSvbXTyc7YRkl9E2Ikyx0J91Z0v1-AAeW-KuD508wxKOJFJYnKE34S1FOqjw4DYuUjXxxmZ1M5NmNutmBj6tcmI37e6m_3v5EPgw-KFePYDcL3aYD2J1cXo2_x0xHNQrLOTKr9mUhVhikG403vE4E59-Dx4tmhss7rOvNwDR6luOncLgaU_eg5NdwMTdD--c_uMbtg34GT_rAko07S3gOO655AXv_wA2-hPn59I4RPSe9sGCzGhtsWceDQ6qql6ymd-EsbDLtb8ewbXHJaOabBhkd2JIwnSayjkeEtYT7Sppl5AwrFgrBHiktkmH9Y9qGJrevYHJ8dH14kvSsC4mVI6mSzOYpSnSOSwxqq0Yq17oSma5CcKWdQiy0FWGjKzCVnntXIWboDXdeCVUZ8RoGzbRxb4DxjBvkVleF9dI4YSjgM6n12pvcK7kPn1daKW0PSU7MGHUZr8alLmkmyziT-_BpLTvrgDjulfpGyl1LEHh2rAjqKfu1WKbIC58qkxtKDPa64LnT3GRFiFVQUCcHa9PY-q0v0Wq2iJQXp2MeS28f1uc7GMzbhXsfAp25-dBb-l9Yrvqs priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DupBfOKbgF4Uqt00aRvwoqKoqHhQ8FYmaSJC7S51RfbfO5PurgoieAtl0sJMZuZrkvmGsT1L_asx80eAeDSSiRURSIN_KcpJlWHSsEDVyLd36eWjvH5STxPseFQL0_JDjDfcyDNCvCYHB9N2IUFQi0Z8fQFxiNkpU5NsuoNAhta3kPejOKyUCoyZmB876PNCjchJpT76mvsjHQXW_jk28173YPABVfUTsYaUc7HA5odYkZ-0xl1kE65eYnPfGASXWf-m-8Gp4yZdmuC9CmpoeNvahrRfDXhFV705xo3mzXFoGhhwUmZdA6c9WBKmDULetgbhDVG5krE45beS4wCXGFU6cqieuw1OeV1hjxfnD2eX0bCRQmRlR6ootVkMEpwTEtASZUdlWpdJqkvES9opgFzbBGNXDrH0wrsSIAVvhPMqUaVJVtlU3a3dGuMiFQaE1WVuvTQuMYThTGy99ibzSq6z_ZE-CztkGadmF1URTrulLkj3RdD9Otsdy_Zabo1fpU7JLGMJ4sMOD7rNczF0ryIGkftYmcxQra_XucicFibNEX5AQi_ZGxv1z28dBHv_IVLcXp2IMNr4j_AmmxUIh9pLZltsqt-8u22EM32zE1btJ4Ot8Cg priority: 102 providerName: Wiley-Blackwell |
| Title | Low sidelobe planar electrically large sparse array antenna with element number reduction based on genetic algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmia2.12475 https://doi.org/10.1049/mia2.12475 https://doaj.org/article/0a28f05b7b2043f9827e92b68661a375 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1751-8733 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0055537 issn: 1751-8733 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8733 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055537 issn: 1751-8733 databaseCode: IDLOA dateStart: 20130111 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8733 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055537 issn: 1751-8733 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8733 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055537 issn: 1751-8733 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED669mHrw1jXjWVbg2B9WcGrI0u29Zh1K21pSx8W6J7MSZbGwHWCl1Ly73cnJyGD0b3sycKcsbg76zvJd98BHDruX03InyDFo4nKnExQWdqlaK90QaDhkKuRr67zs4m6uNW3G62-OCespwfuFXecoixDqm1huYozmFIW3kiblwQsmBWRvTQtzWoz1a_BWuvIlknYOKLvXeoVMakyx3c_UX4iVOPMwg0oioz9u_D0vp3h4gGb5s9oNcLN6Qt4vowTxbif3x5s-fYl7G6wB-7D_HL6ILjbJidMiFmDLXaib2vDmm8WouE0b0FrRvfLC-w6XAhWZNui4PNXFubDQdG3BREd07iyoQRjWy1oQO7FVY4Cmx_Tjh65ewWT06_fTs6SZROFxKmR0knuihQVei8VkhXqkS6MqbPc1BQrGa8RS-MyWrdKTFWQwdeIOQYrfdCZrm32GrbbaevfgJC5tCidqUsXlPWZ5fjNpi6YYIug1QA-rvRZuSXDODe6aKr4p1uZinVfRd0P4MNadtbzavxV6jObZS3BXNjxBnlItfSQ6l8eMoDDtVEffddRtPcjItXV-VjG0dv_MbF38ExSiNQnnr2H7Xl37w8oxJnbITyR6mYYfXoIO-dfLuN1cn0z_v4btDT6vA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA-ePng-iJ53nN-B80Whd900aZtHFWXVXfFBwbcySRM5qN2lrsj-986k3VXhEO4tlEkLM5mPTGd-w9iBpfnV6PkjwHg0kokVEUiDtxTlpMrQaVigbuThddq_k5f36r6rzaFemBYfYp5wI80I9poUnBLS7YVTEkjm418Qv9E9ZeoLW5JpL6W7l5A3M0OslAqQmegge6j0Qs3QSaX-87b3gz8KsP0rbPm5HsP0BarqY8gafM75GlvtgkV-3Ep3nS24-htbeQchuMEmg9ELp5GbVDXBxxXU0PB2tg2xv5ryimq9ORqO5slxaBqYcuJmXQOnJCwRU4aQt7NBeENYriQtTg6u5LjAM0atjhyqh1GDWx6_s7vzs9vTftRNUois7EkVpTaLQYJzQgKKouypTOsySXWJAZN2CiDXNkHjlUMsvfCuBEjBG-G8SlRpkh9ssR7V7ifjIhUGhNVlbr00LjEUxJnYeu1N5pXcZIczfha2gxmnaRdVEX53S10Q74vA-032a047bsE1_kl1QmKZUxAgdngwah6KTr-KGETuY2UyQ82-Xucic1qYNMf4AxJ6ycFcqJ9-6yjI-xOSYnhxLMJq63-I99ly_3Y4KAYX11fb7KvA2KitONthi5Pm2e1ibDMxe-EEvwJ8qPOU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aDbTNofRJk74EzaUFN15Zsq3j9rEkbRJ66JbQixnJUig43sXZEPbfd0b2bhsogd6EGdkwo5n5JI--Adhz3L-aMn-ChEcTlTmZoLK0S9Fe6YKShkO-jXx8kh_M1JdTfTrU5vBdmJ4fYnPgxp4R4zU7uF_Uod9wKibJPP-F8j2lp0Lfhi1K5Kkawdbkx-znbB2KtdaRNJNS5JjcXuo1P6ky-39mX8tIkbh_G-5etgtcXWHTXAetMetMH8D9AS6KSW_fh3DLt49g-y8SwcewPJpfCW66yXUTYtFgi53ou9uwAZqVaLjaW1Do6C68wK7DlWB9ti0KPoZlYT4jFH13ENExmyvbS3CKqwUNaJXxZUeBzdm8oynnT2A2_fz940Ey9FJInBorneSuSFGh91IhGaMe68KYOstNTZDJeI1YGpdR-CoxVUEGXyPmGKz0QWe6ttlTGLXz1j8DIXNpUTpTly4o6zPLMM6mLphgi6DVDrxd67NyA9E497toqvjDW5mKdV9F3e_Am43soqfX-KfUBzbLRoIpseODeXdWDR5WpSjLkGpbWL7uG0wpC2-kzUtCIJjxS_Y2Rr3xW--ivW8QqY4PJzKOdv9H-DXc-fZpWh0dnnx9DvckgaO-5OwFjJbdpX9J4GZpXw1L-DfZofTo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69GH0Yd9jHdsQW182cObow7Yes9LSlrb0oYHuyZxkaYy5TvASSvbXTyc7YRkl9E2Ikyx0J91Z0v1-AAeW-KuD508wxKOJFJYnKE34S1FOqjw4DYuUjXxxmZ1M5NmNutmBj6tcmI37e6m_3v5EPgw-KFePYDcL3aYD2J1cXo2_x0xHNQrLOTKr9mUhVhikG403vE4E59-Dx4tmhss7rOvNwDR6luOncLgaU_eg5NdwMTdD--c_uMbtg34GT_rAko07S3gOO655AXv_wA2-hPn59I4RPSe9sGCzGhtsWceDQ6qql6ymd-EsbDLtb8ewbXHJaOabBhkd2JIwnSayjkeEtYT7Sppl5AwrFgrBHiktkmH9Y9qGJrevYHJ8dH14kvSsC4mVI6mSzOYpSnSOSwxqq0Yq17oSma5CcKWdQiy0FWGjKzCVnntXIWboDXdeCVUZ8RoGzbRxb4DxjBvkVleF9dI4YSjgM6n12pvcK7kPn1daKW0PSU7MGHUZr8alLmkmyziT-_BpLTvrgDjulfpGyl1LEHh2rAjqKfu1WKbIC58qkxtKDPa64LnT3GRFiFVQUCcHa9PY-q0v0Wq2iJQXp2MeS28f1uc7GMzbhXsfAp25-dBb-l9Yrvqs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+sidelobe+planar+electrically+large+sparse+array+antenna+with+element+number+reduction+based+on+genetic+algorithm&rft.jtitle=IET+microwaves%2C+antennas+%26+propagation&rft.au=Yangkun+Zhu&rft.au=Wenyu+Ma&rft.au=Chuang+Wang&rft.au=Wenquan+Cao&rft.date=2024-06-01&rft.pub=Wiley&rft.issn=1751-8725&rft.eissn=1751-8733&rft.volume=18&rft.issue=6&rft.spage=447&rft.epage=458&rft_id=info:doi/10.1049%2Fmia2.12475&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0a28f05b7b2043f9827e92b68661a375 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8725&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8725&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8725&client=summon |