Improvement of ship target detection algorithm for YOLOv7‐tiny

In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 18; no. 7; pp. 1710 - 1718
Main Authors Zhang, Huixia, Yu, Haishen, Tao, Yadong, Zhu, Wenliang, Zhang, Kaige
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2024
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
1751-9667
DOI10.1049/ipr2.13054

Cover

Abstract In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements. This paper presents an enhanced ship detection algorithm for YOLOv7‐tiny, addressing occlusion challenges in multi‐target ship detection. The modifications include integrating Convolutional Block Attention Module for position emphasis, GSConv in the Neck section, Content‐Aware ReAssembly of Features for up‐sampling, and SIOU Loss for better accuracy. The improved model achieves a precision of 91.2%, mAP@0.5 of 94.5%, and an F1‐score of 90.7%, surpassing the original model by 3.7%, 5.5%, and 4.2%, respectively, significantly boosting detection accuracy.
AbstractList Abstract In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements.
In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements. This paper presents an enhanced ship detection algorithm for YOLOv7‐tiny, addressing occlusion challenges in multi‐target ship detection. The modifications include integrating Convolutional Block Attention Module for position emphasis, GSConv in the Neck section, Content‐Aware ReAssembly of Features for up‐sampling, and SIOU Loss for better accuracy. The improved model achieves a precision of 91.2%, mAP@0.5 of 94.5%, and an F1‐score of 90.7%, surpassing the original model by 3.7%, 5.5%, and 4.2%, respectively, significantly boosting detection accuracy.
In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements.
Author Zhang, Huixia
Yu, Haishen
Tao, Yadong
Zhu, Wenliang
Zhang, Kaige
Author_xml – sequence: 1
  givenname: Huixia
  surname: Zhang
  fullname: Zhang, Huixia
  email: hxzhang@jou.edu.cn
  organization: Jiangsu Ocean University
– sequence: 2
  givenname: Haishen
  orcidid: 0009-0008-0229-4774
  surname: Yu
  fullname: Yu, Haishen
  organization: Jiangsu Ocean University
– sequence: 3
  givenname: Yadong
  surname: Tao
  fullname: Tao, Yadong
  organization: Jiangsu Ocean University
– sequence: 4
  givenname: Wenliang
  surname: Zhu
  fullname: Zhu, Wenliang
  organization: Jiangsu Ocean University
– sequence: 5
  givenname: Kaige
  surname: Zhang
  fullname: Zhang, Kaige
  organization: Jiangsu Ocean University
BookMark eNp9kMtKAzEYRoNUsK1ufIJZK61JJnPJTileBgoV0YWr8E8maVNmJkMmtnTnI_iMPoltR7oQ6So_4Zyz-AaoV9taIXRJ8Jhgxm9M4-iYhDhiJ6hPkoiMeBwnvcMd8TM0aNslxhHHadRHt1nVOLtSlap9YHXQLkwTeHBz5YNCeSW9sXUA5dw64xdVoK0L3mfT2Sr5_vzypt6co1MNZasuft8henu4f508jaazx2xyNx1JRhgb5RBqnUaUJlhRCFMCOS80JRHlSZ7ksYI8zXWoJN3ScQgpTZguaMhjGXG2NYYo67qFhaVonKnAbYQFI_Yf1s0FOG9kqQTOJYWccck5MBrTVIaqCGOVxqmihCfb1nXX-qgb2KyhLA9BgsVuSLEbUuyH3NJXHS2dbVun9HEY_4Gl8bAb0Tsw5f8K6ZS1KdXmSFxkzy-0c34AnJ6Vyw
CitedBy_id crossref_primary_10_3390_electronics13112080
crossref_primary_10_3390_electronics13142774
Cites_doi 10.1109/CVPR52729.2023.00721
10.1109/CVPR.2018.00745
10.1109/ICCV.2019.00310
10.1109/ACCESS.2018.2825376
10.1109/ACCESS.2021.3053956
10.1109/TGRS.2022.3228927
10.1109/CVPR42600.2020.01155
10.3390/s20247263
10.1117/12.2589395
10.3390/rs14112712
10.1109/ICCVW54120.2021.00312
10.3390/rs14071534
10.1109/ICCECE54139.2022.9712768
10.1007/978-3-319-46448-0_2
10.3390/electronics11050739
10.1609/aaai.v34i07.6999
10.1109/CVPR.2017.195
10.1023/B:EDUC.0000049271.01649.dd
10.1080/2150704X.2018.1475770
10.1007/978-3-319-10590-1_54
10.1109/CVPR.2016.91
10.1109/CVPR46437.2021.01350
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/ipr2.13054
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1718
ExternalDocumentID oai_doaj_org_article_0bc2ab49c99a42628c3ed36e868e2197
10.1049/ipr2.13054
10_1049_ipr2_13054
IPR213054
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c4144-ba3ff852270e2a381ab9df215297b7b6eab8bf3ec214463a8274fd2396c5942a3
IEDL.DBID UNPAY
ISSN 1751-9659
1751-9667
IngestDate Fri Oct 03 12:24:50 EDT 2025
Sun Sep 07 11:08:56 EDT 2025
Wed Oct 29 21:13:30 EDT 2025
Thu Apr 24 23:12:18 EDT 2025
Wed Jan 22 17:20:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4144-ba3ff852270e2a381ab9df215297b7b6eab8bf3ec214463a8274fd2396c5942a3
ORCID 0009-0008-0229-4774
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/ipr2.13054
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0bc2ab49c99a42628c3ed36e868e2197
unpaywall_primary_10_1049_ipr2_13054
crossref_primary_10_1049_ipr2_13054
crossref_citationtrail_10_1049_ipr2_13054
wiley_primary_10_1049_ipr2_13054_IPR213054
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2018; 6
2018; 9
2021; 1720
2020; 20
2022; 60
2022
2021
2020
2004; 57
2019
2022; 14
2018
2017
2016
2020; 34
2014
2022; 11
e_1_2_8_28_1
e_1_2_8_29_1
Dai J. (e_1_2_8_9_1) 2016
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
Ning Y. (e_1_2_8_18_1) 2022
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 14
  start-page: 1534
  year: 2022
  article-title: A Complete YOLO‐Based ship detection method for thermal infrared remote sensing images under complex backgrounds
  publication-title: Remote Sens
– start-page: 13713
  year: 2021
  end-page: 13722
  article-title: Coordinate attention for efficient mobile network design
– start-page: 1251
  year: 2017
  end-page: 1258
  article-title: Xception: Deep learning with depthwise separable convolutions
– start-page: 834
  year: 2014
  end-page: 849
  article-title: Part‐based R‐CNNs for fine‐grained category detection
– start-page: 11534
  year: 2020
  end-page: 11542
  article-title: ECA‐Net: Efficient channel attention for deep convolutional neural networks
– volume: 11
  start-page: 739
  issue: 5
  year: 2022
  article-title: Modified YOLOv3 for ship detection with visible and infrared images
  publication-title: Electronics
– start-page: 1
  year: 2022
  end-page: 10
  article-title: STD‐Yolov5: A ship‐type detection model based on improved Yolov5
  publication-title: Ships Offshore Structures
– volume: 14
  start-page: 2712
  year: 2022
  article-title: Deep learning for SAR ship detection: Past, present and future
  publication-title: Remote Sens
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: SRCANet: Stacked residual coordinate attention network for infrared ship detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 7132
  year: 2018
  end-page: 7141
  article-title: Squeeze‐and‐excitation networks
– year: 2018
– volume: 57
  start-page: 157
  year: 2004
  end-page: 176
  article-title: Teachers' concerns regarding the adoption of a new mathematics curriculum: An application of CBAM
  publication-title: Educational Studies in Mathematics
– volume: 1720
  start-page: 102
  year: 2021
  end-page: 106
  article-title: Ship detection in optical sensing images based on YOLOv5
– volume: 9
  start-page: 16692
  year: 2021
  end-page: 16706
  article-title: Enhanced YOLO v3 tiny network for real‐time ship detection from visual image
  publication-title: IEEE Access
– start-page: 2778
  year: 2021
  end-page: 2788
  article-title: TPH‐YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone‐captured scenarios
– start-page: 113
  year: 2022
  end-page: 118
  article-title: YOLO‐Ship: A visible light ship detection method
– volume: 6
  start-page: 20881
  year: 2018
  end-page: 20892
  article-title: A densely connected end‐to‐end neural network for multiscale and multiscene SAR ship detection
  publication-title: IEEE Access
– start-page: 21
  year: 2016
  end-page: 37
  article-title: SSD: Single shot multibox detector
– volume: 20
  start-page: 7263
  issue: 24
  year: 2020
  article-title: Study on visual detection algorithm of sea surface targets based on improved YOLOv3
  publication-title: Sensors
– volume: 9
  start-page: 780
  issue: 8
  year: 2018
  end-page: 788
  article-title: Combining a single shot multibox detector with transfer learning for ship detection using sentinel‐1 SAR images
  publication-title: Remote Sens. Lett.
– year: 2022
– year: 2020
– start-page: 29
  year: 2016
  article-title: R‐FCN: Object detection via region‐based fully convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 779
  year: 2016
  end-page: 788
  article-title: You only look once: Unified, real‐time object detection
– volume: 34
  start-page: 12993
  issue: 07
  year: 2020
  end-page: 13000
  article-title: Distance‐IoU loss: Faster and better learning for bounding box regression
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 3007
  year: 2019
  end-page: 3016
  article-title: Carafe: Content‐aware reassembly of features
– ident: e_1_2_8_21_1
  doi: 10.1109/CVPR52729.2023.00721
– start-page: 1
  year: 2022
  ident: e_1_2_8_18_1
  article-title: STD‐Yolov5: A ship‐type detection model based on improved Yolov5
  publication-title: Ships Offshore Structures
– ident: e_1_2_8_29_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_8_25_1
  doi: 10.1109/ICCV.2019.00310
– ident: e_1_2_8_2_1
  doi: 10.1109/ACCESS.2018.2825376
– ident: e_1_2_8_19_1
  doi: 10.1109/ACCESS.2021.3053956
– ident: e_1_2_8_7_1
  doi: 10.1109/TGRS.2022.3228927
– ident: e_1_2_8_31_1
  doi: 10.1109/CVPR42600.2020.01155
– ident: e_1_2_8_20_1
  doi: 10.3390/s20247263
– ident: e_1_2_8_28_1
– ident: e_1_2_8_6_1
  doi: 10.1117/12.2589395
– ident: e_1_2_8_13_1
– ident: e_1_2_8_27_1
– ident: e_1_2_8_4_1
  doi: 10.3390/rs14112712
– ident: e_1_2_8_24_1
– ident: e_1_2_8_14_1
  doi: 10.1109/ICCVW54120.2021.00312
– ident: e_1_2_8_5_1
  doi: 10.3390/rs14071534
– ident: e_1_2_8_17_1
  doi: 10.1109/ICCECE54139.2022.9712768
– ident: e_1_2_8_15_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_8_16_1
  doi: 10.3390/electronics11050739
– ident: e_1_2_8_26_1
  doi: 10.1609/aaai.v34i07.6999
– start-page: 29
  year: 2016
  ident: e_1_2_8_9_1
  article-title: R‐FCN: Object detection via region‐based fully convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_8_23_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_8_22_1
  doi: 10.1023/B:EDUC.0000049271.01649.dd
– ident: e_1_2_8_12_1
– ident: e_1_2_8_8_1
  doi: 10.1109/ICCECE54139.2022.9712768
– ident: e_1_2_8_3_1
  doi: 10.1080/2150704X.2018.1475770
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-319-10590-1_54
– ident: e_1_2_8_11_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_8_30_1
  doi: 10.1109/CVPR46437.2021.01350
SSID ssj0059085
Score 2.34183
Snippet In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections,...
Abstract In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1710
SubjectTerms image classification
image recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajl26Hrt0PmrUrgvXSgYljS7Lereto6MbWjLFAdjKSLHUBzwmps5Fb_4T-jftL-iQ7oYGRXnoz5hmL9yy978lP30fIMYIMw3jWiwyC-YgJh-sgTxMsVUAJAK57PX9Q-OuluBiyzyM-uif15XvCGnrgxnHdWJtEaQYGQHn2dGlSW6TCSiEtzrZwjjyWsCymmjXYC3nzcBTSi8gLDktiUgbd8XSWeA1kztZSUWDsf0a259VULf6qslxHqyHd9HfJTosT6YdmfHvkia1ekOctZqTtjLx-SU6bXYGwyUcnjvrmK9q0d9PC1qHRqqKqvJrMxvWv3xQxKv05-DL4k_27ua3H1eIVGfbPf3y8iFpVhMgwrH4irVLnJMKmLLaJwoSrNBTOy9NCpjMtrNJSu9SaQIaWKol1pyuSFIThwPCJ12SrmlR2n1DESkbLBKQALEPQjTFgsiqcdUzzLM065GTpoNy0lOFeuaLMw69rBrl3Zh6c2SHvVrbThijjv1Zn3s8rC09uHW5gyPM25PlDIe-Q41WUNr7rfQjgBpP807fvSbh68xgDOyBPE8Q8TT_kIdmqZ3P7FjFLrY_C53kHOmbkgw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DurBt_gm4F4Uirtp0jbgwQeKiroiCuupJGmyLtTusnaVvfkT_I3-EidpuyKI4K2UCS0znZlv0sk3CNUAZCjKwoanAMx7NDAQB5lPoFThIuCcyUbDHhS-vgnOH-hli7XG0EF1FqbghxhtuFnPcPHaOriQxRQSALVgxE6vT-wsY0bH0WQDgIz9vgm9reKwHebN3HFIO0g-YLwiJ6V8_3vtj3TkWPtn0NQg64nhm0jTn4jVpZyzeTRbYkV8VBh3AY3pbBHNlbgRl175soQOi50Bt9GHuwbbBixctHjjROeu2SrDIm13-5386RkDTsWPzavma_j5_pF3suEyejg7vT8598rJCJ6iUAF5UvjGRACdwromApKukDwxdkQtD2UoAy1kJI2vlSNE80UEtadJCOhIMU5hxQqayLqZXkUY8JKSEeFRwKEUIQAgOSSsxGhDJQv9cA3tVgqKVUkbbqdXpLH7fU15bJUZO2WuoZ2RbK8gy_hV6tjqeSRhCa7djW6_HZf-EtelIkJSrjgXljQ_Ur5O_EBHQaQhyMJr1UZW-vNZe86Af4jEF7d3xF2t_0d4A00TwDdF7-Mmmsj7A70F-CSX2-4z_AIl1Nz-
  priority: 102
  providerName: Wiley-Blackwell
Title Improvement of ship target detection algorithm for YOLOv7‐tiny
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13054
https://doi.org/10.1049/ipr2.13054
https://doaj.org/article/0bc2ab49c99a42628c3ed36e868e2197
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BOAAH3gjaElktF5AWEq_Xu77xEAgqChEiEpxWttduo6abKN1Q0VN_Ar-xv4SxdxMpCEXcrNXYa40f8409_gZgF0GGZlHcDDSC-YBxi_tgFFJ0VYTkQkSq2XQPhb9d84s2-3of3c_A59FbmIn7eyYOO_0BdRmLIzYLczxCvF2DufZ16_jBv3R0OeK5z4hWlXk84iCdqDxhdTw5_yLMD_O-fPoju91JYOoty_kynI76VAaU_DwYFupA_31F1zi90yuwVAFLclzOhFWYMfkaLFcgk1RL-Pc6HJXHCP5UkPQscdFapIwHJ5kpfGRWTmT3e2_QKX78IghqycPN1c1j_P_fc9HJnzagfX52d3oRVGkUAs3QXQqUDK1NEGfFDUMlWmipRGZdPlsRq1hxI1WibGi0Z08LZYKOqs1oKLiOBMMam1DLe7nZAoLgSquEioQL9Fsook2B1i2zxjIVxWG8DXsjNae64hh3qS66qb_rZiJ1qkm9arbhy1i2XzJrvCl14kZrLOHYsP0H1HdaLa60oTSVigkthHQM-4kOTRZyk_DE4I6M3dodj_XUf-37aTBFJL1s3VJf-vC-Nj_CAkUYVIZIfoJaMRiaHYQxharDLGWtuj8EqFdz-gXHuOth
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdb95Dtoftb1u6fYHlpwSyWJdl66zZWkjZNymggezKSLGWBzAmp29G3foR-xn6S3clORmEE9mbMCZuT7-5359PvCGkDyLBcpHFkAcxHXHrwgyJhkKooLZUSJo7xoPDpQHZH_Hgsxk1vDp6Fqfkh1gU3tIzgr9HAsSBdJ5wcSTKniyXDYcaCPySPuIwl5l6Mn60cMU7zFuE8JE6Sl0Kt2Em5-vR37b14FGj7n5DWZbnQ17_1bHYfsoaYc_SMbDdgkX6ud_c5eeDKF-RpAxxpY5YXL8lhXRoIlT469xQ7sGjd400LV4Vuq5Lq2WS-nFY_f1EAqvTHsD-8Su9ubqtpef2KjI6-nX_tRs1ohMhySIEioxPvM8BOaccxDVFXG1V4nFGrUpMa6bTJjE-cDYxoic4g-fQFS5S0QnFYsUO2ynnpXhMKgMmajKlMKshFGCBIBRGr8M5zI9Ik3SX7KwXltuENx_EVszz8v-YqR2XmQZm75ONadlGzZfxT6gvqeS2BDNfhxnw5yRuDyTvGMm24skppZM3PbOKKRLpMZg68LLxWe71LG591EDZwg0jeO_vOwtXe_wh_IK3u-Wk_7_cGJ2_IYwZgp26EfEu2quWlewdgpTLvwyf5ByCI4Go
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED9Bkcb2AOyfYMBmabxsUrTWsZ34jb8VMAZoWifgJbIdGyp1adWloL7xEfiMfBLOTlqENCHtLYrOSnSXu_udc_4dwAaCDMN40ooMgvmICYdxkMcUSxWphJRct1r-oPCPY7HfYYdn_KzuzfFnYSp-iOmGm_eMEK-9g9tB7qqCk3mSzO5gSP0wY85mYQ4TeZM1YG7rd-eiMwnFfp43Dyci_Sx5weWEn5TJb4-rn2SkQNz_CuZHxUCNb1Sv9xS0hqzTXoKFGi6Srcq-r2HGFm9gsYaOpHbMv29hs9ocCHt9pO-I78EiVZc3yW0Z-q0KonqX_WG3vPpDEKqS85Ojk-vk_vau7Bbjd9Bp7_3a2Y_q4QiRYVgERVrFzqWInpKmpQrzrtIyd35KrUx0ooVVOtUutiZwosUqxfLT5TSWwnDJcMV7aBT9wi4DQchkdEplKiRWIxQxpMSclTvrmOZJnKzAl4mCMlMzh_sBFr0s_MFmMvPKzIIyV-DzVHZQ8WX8U2rb63kq4Tmuw43-8DKrXSZrakOVZtJIqTxvfmpim8fCpiK1GGfxtTamVnr2WV-DAZ8RyQ5Of9Jw9eF_hD_Bi9PddnZ0cPx9FV5SRDtVJ-QaNMrhyK4jWin1x_qbfABEr-G-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5EKCteMsCLq20lHi93vWNgEC04qWqkeC0sr02RIRNFDYgOPET-I38EsbeTaQgFPVmrcZea_yYb-zxNwBbCDI0i-JGoBHMB4xb3AejkKKrIiQXIlKNhnsofHLKj1rsz0V0MQUbw7cwY_f3TPxq9_rUZSyO2CeY5hHi7RpMt07Pm5f-paPLEc99RrSqzOMhB-lY5TGr48n5Z-DzIO_JxwfZ6YwDU29ZDuuwP-xTGVBysz0o1LZ-ekfXOLnTczBbAUvSLGfCPEyZfAHqFcgk1RK--wq75TGCPxUkXUtctBYp48FJZgofmZUT2bnq9tvF9S1BUEsuz47P7uPX55einT9-g9bhwb_9o6BKoxBohu5SoGRobYI4K94xVKKFlkpk1uWzFbGKFTdSJcqGRnv2tFAm6KjajIaC60gwrPEdank3N4tAEFxplVCRcIF-C0W0KdC6ZdZYpqI4jJfgx1DNqa44xl2qi07q77qZSJ1qUq-aJdgcyfZKZo0PpfbcaI0kHBu2_4D6TqvFle4oTaViQgshHcN-okOThdwkPDG4I2O3tkZjPfFfP_00mCCS_j7_S31p-f_aXIEvFGFQGSK5CrWiPzBrCGMKtV7N4zfQdOmV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+ship+target+detection+algorithm+for+YOLOv7%E2%80%90tiny&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Huixia&rft.au=Yu%2C+Haishen&rft.au=Tao%2C+Yadong&rft.au=Zhu%2C+Wenliang&rft.date=2024-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=7&rft.spage=1710&rft.epage=1718&rft_id=info:doi/10.1049%2Fipr2.13054&rft.externalDBID=10.1049%252Fipr2.13054&rft.externalDocID=IPR213054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon