Improvement of ship target detection algorithm for YOLOv7‐tiny
In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly...
Saved in:
| Published in | IET image processing Vol. 18; no. 7; pp. 1710 - 1718 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-9659 1751-9667 1751-9667 |
| DOI | 10.1049/ipr2.13054 |
Cover
| Abstract | In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements.
This paper presents an enhanced ship detection algorithm for YOLOv7‐tiny, addressing occlusion challenges in multi‐target ship detection. The modifications include integrating Convolutional Block Attention Module for position emphasis, GSConv in the Neck section, Content‐Aware ReAssembly of Features for up‐sampling, and SIOU Loss for better accuracy. The improved model achieves a precision of 91.2%, mAP@0.5 of 94.5%, and an F1‐score of 90.7%, surpassing the original model by 3.7%, 5.5%, and 4.2%, respectively, significantly boosting detection accuracy. |
|---|---|
| AbstractList | Abstract In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements. In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements. This paper presents an enhanced ship detection algorithm for YOLOv7‐tiny, addressing occlusion challenges in multi‐target ship detection. The modifications include integrating Convolutional Block Attention Module for position emphasis, GSConv in the Neck section, Content‐Aware ReAssembly of Features for up‐sampling, and SIOU Loss for better accuracy. The improved model achieves a precision of 91.2%, mAP@0.5 of 94.5%, and an F1‐score of 90.7%, surpassing the original model by 3.7%, 5.5%, and 4.2%, respectively, significantly boosting detection accuracy. In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections, this paper proposes an enhanced ship detection algorithm for YOLOv7‐tiny. The proposed method incorporates several key modifications. Firstly, it introduces the Convolutional Block Attention Module in the Backbone section of the original model, emphasizing position information while attending to channel features to enhance the network's ability to extract crucial information. Secondly, it replaces standard convolution with GSConv convolution in the Neck section, preserving detailed information and reducing computational load. Subsequently, the lightweight operator Content‐Aware ReAssembly of Features is employed to replace the original nearest‐neighbour interpolation, mitigating the loss of feature information during the up‐sampling process. Finally, the localization loss function, SIOU Loss, is utilized to calculate loss, expedite training convergence, and enhance detection accuracy. The research results indicate that the precision of the improved model is 91.2%, mAP@0.5 is 94.5%, and the F1‐score is 90.7%. These values are 3.7%, 5.5%, and 4.2% higher than those of the original YOLOv7‐tiny model, respectively. The improved model effectively enhances detection accuracy. Additionally, the improved model achieves an FPS of 145.4, meeting real‐time requirements. |
| Author | Zhang, Huixia Yu, Haishen Tao, Yadong Zhu, Wenliang Zhang, Kaige |
| Author_xml | – sequence: 1 givenname: Huixia surname: Zhang fullname: Zhang, Huixia email: hxzhang@jou.edu.cn organization: Jiangsu Ocean University – sequence: 2 givenname: Haishen orcidid: 0009-0008-0229-4774 surname: Yu fullname: Yu, Haishen organization: Jiangsu Ocean University – sequence: 3 givenname: Yadong surname: Tao fullname: Tao, Yadong organization: Jiangsu Ocean University – sequence: 4 givenname: Wenliang surname: Zhu fullname: Zhu, Wenliang organization: Jiangsu Ocean University – sequence: 5 givenname: Kaige surname: Zhang fullname: Zhang, Kaige organization: Jiangsu Ocean University |
| BookMark | eNp9kMtKAzEYRoNUsK1ufIJZK61JJnPJTileBgoV0YWr8E8maVNmJkMmtnTnI_iMPoltR7oQ6So_4Zyz-AaoV9taIXRJ8Jhgxm9M4-iYhDhiJ6hPkoiMeBwnvcMd8TM0aNslxhHHadRHt1nVOLtSlap9YHXQLkwTeHBz5YNCeSW9sXUA5dw64xdVoK0L3mfT2Sr5_vzypt6co1MNZasuft8henu4f508jaazx2xyNx1JRhgb5RBqnUaUJlhRCFMCOS80JRHlSZ7ksYI8zXWoJN3ScQgpTZguaMhjGXG2NYYo67qFhaVonKnAbYQFI_Yf1s0FOG9kqQTOJYWccck5MBrTVIaqCGOVxqmihCfb1nXX-qgb2KyhLA9BgsVuSLEbUuyH3NJXHS2dbVun9HEY_4Gl8bAb0Tsw5f8K6ZS1KdXmSFxkzy-0c34AnJ6Vyw |
| CitedBy_id | crossref_primary_10_3390_electronics13112080 crossref_primary_10_3390_electronics13142774 |
| Cites_doi | 10.1109/CVPR52729.2023.00721 10.1109/CVPR.2018.00745 10.1109/ICCV.2019.00310 10.1109/ACCESS.2018.2825376 10.1109/ACCESS.2021.3053956 10.1109/TGRS.2022.3228927 10.1109/CVPR42600.2020.01155 10.3390/s20247263 10.1117/12.2589395 10.3390/rs14112712 10.1109/ICCVW54120.2021.00312 10.3390/rs14071534 10.1109/ICCECE54139.2022.9712768 10.1007/978-3-319-46448-0_2 10.3390/electronics11050739 10.1609/aaai.v34i07.6999 10.1109/CVPR.2017.195 10.1023/B:EDUC.0000049271.01649.dd 10.1080/2150704X.2018.1475770 10.1007/978-3-319-10590-1_54 10.1109/CVPR.2016.91 10.1109/CVPR46437.2021.01350 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/ipr2.13054 |
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 1718 |
| ExternalDocumentID | oai_doaj_org_article_0bc2ab49c99a42628c3ed36e868e2197 10.1049/ipr2.13054 10_1049_ipr2_13054 IPR213054 |
| Genre | article |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA K1G L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c4144-ba3ff852270e2a381ab9df215297b7b6eab8bf3ec214463a8274fd2396c5942a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1751-9659 1751-9667 |
| IngestDate | Fri Oct 03 12:24:50 EDT 2025 Sun Sep 07 11:08:56 EDT 2025 Wed Oct 29 21:13:30 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Wed Jan 22 17:20:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4144-ba3ff852270e2a381ab9df215297b7b6eab8bf3ec214463a8274fd2396c5942a3 |
| ORCID | 0009-0008-0229-4774 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/ipr2.13054 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0bc2ab49c99a42628c3ed36e868e2197 unpaywall_primary_10_1049_ipr2_13054 crossref_primary_10_1049_ipr2_13054 crossref_citationtrail_10_1049_ipr2_13054 wiley_primary_10_1049_ipr2_13054_IPR213054 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 9 2018; 6 2018; 9 2021; 1720 2020; 20 2022; 60 2022 2021 2020 2004; 57 2019 2022; 14 2018 2017 2016 2020; 34 2014 2022; 11 e_1_2_8_28_1 e_1_2_8_29_1 Dai J. (e_1_2_8_9_1) 2016 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 Ning Y. (e_1_2_8_18_1) 2022 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 14 start-page: 1534 year: 2022 article-title: A Complete YOLO‐Based ship detection method for thermal infrared remote sensing images under complex backgrounds publication-title: Remote Sens – start-page: 13713 year: 2021 end-page: 13722 article-title: Coordinate attention for efficient mobile network design – start-page: 1251 year: 2017 end-page: 1258 article-title: Xception: Deep learning with depthwise separable convolutions – start-page: 834 year: 2014 end-page: 849 article-title: Part‐based R‐CNNs for fine‐grained category detection – start-page: 11534 year: 2020 end-page: 11542 article-title: ECA‐Net: Efficient channel attention for deep convolutional neural networks – volume: 11 start-page: 739 issue: 5 year: 2022 article-title: Modified YOLOv3 for ship detection with visible and infrared images publication-title: Electronics – start-page: 1 year: 2022 end-page: 10 article-title: STD‐Yolov5: A ship‐type detection model based on improved Yolov5 publication-title: Ships Offshore Structures – volume: 14 start-page: 2712 year: 2022 article-title: Deep learning for SAR ship detection: Past, present and future publication-title: Remote Sens – volume: 60 start-page: 1 year: 2022 end-page: 14 article-title: SRCANet: Stacked residual coordinate attention network for infrared ship detection publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 7132 year: 2018 end-page: 7141 article-title: Squeeze‐and‐excitation networks – year: 2018 – volume: 57 start-page: 157 year: 2004 end-page: 176 article-title: Teachers' concerns regarding the adoption of a new mathematics curriculum: An application of CBAM publication-title: Educational Studies in Mathematics – volume: 1720 start-page: 102 year: 2021 end-page: 106 article-title: Ship detection in optical sensing images based on YOLOv5 – volume: 9 start-page: 16692 year: 2021 end-page: 16706 article-title: Enhanced YOLO v3 tiny network for real‐time ship detection from visual image publication-title: IEEE Access – start-page: 2778 year: 2021 end-page: 2788 article-title: TPH‐YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone‐captured scenarios – start-page: 113 year: 2022 end-page: 118 article-title: YOLO‐Ship: A visible light ship detection method – volume: 6 start-page: 20881 year: 2018 end-page: 20892 article-title: A densely connected end‐to‐end neural network for multiscale and multiscene SAR ship detection publication-title: IEEE Access – start-page: 21 year: 2016 end-page: 37 article-title: SSD: Single shot multibox detector – volume: 20 start-page: 7263 issue: 24 year: 2020 article-title: Study on visual detection algorithm of sea surface targets based on improved YOLOv3 publication-title: Sensors – volume: 9 start-page: 780 issue: 8 year: 2018 end-page: 788 article-title: Combining a single shot multibox detector with transfer learning for ship detection using sentinel‐1 SAR images publication-title: Remote Sens. Lett. – year: 2022 – year: 2020 – start-page: 29 year: 2016 article-title: R‐FCN: Object detection via region‐based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 779 year: 2016 end-page: 788 article-title: You only look once: Unified, real‐time object detection – volume: 34 start-page: 12993 issue: 07 year: 2020 end-page: 13000 article-title: Distance‐IoU loss: Faster and better learning for bounding box regression publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 3007 year: 2019 end-page: 3016 article-title: Carafe: Content‐aware reassembly of features – ident: e_1_2_8_21_1 doi: 10.1109/CVPR52729.2023.00721 – start-page: 1 year: 2022 ident: e_1_2_8_18_1 article-title: STD‐Yolov5: A ship‐type detection model based on improved Yolov5 publication-title: Ships Offshore Structures – ident: e_1_2_8_29_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_8_25_1 doi: 10.1109/ICCV.2019.00310 – ident: e_1_2_8_2_1 doi: 10.1109/ACCESS.2018.2825376 – ident: e_1_2_8_19_1 doi: 10.1109/ACCESS.2021.3053956 – ident: e_1_2_8_7_1 doi: 10.1109/TGRS.2022.3228927 – ident: e_1_2_8_31_1 doi: 10.1109/CVPR42600.2020.01155 – ident: e_1_2_8_20_1 doi: 10.3390/s20247263 – ident: e_1_2_8_28_1 – ident: e_1_2_8_6_1 doi: 10.1117/12.2589395 – ident: e_1_2_8_13_1 – ident: e_1_2_8_27_1 – ident: e_1_2_8_4_1 doi: 10.3390/rs14112712 – ident: e_1_2_8_24_1 – ident: e_1_2_8_14_1 doi: 10.1109/ICCVW54120.2021.00312 – ident: e_1_2_8_5_1 doi: 10.3390/rs14071534 – ident: e_1_2_8_17_1 doi: 10.1109/ICCECE54139.2022.9712768 – ident: e_1_2_8_15_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_8_16_1 doi: 10.3390/electronics11050739 – ident: e_1_2_8_26_1 doi: 10.1609/aaai.v34i07.6999 – start-page: 29 year: 2016 ident: e_1_2_8_9_1 article-title: R‐FCN: Object detection via region‐based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_8_23_1 doi: 10.1109/CVPR.2017.195 – ident: e_1_2_8_22_1 doi: 10.1023/B:EDUC.0000049271.01649.dd – ident: e_1_2_8_12_1 – ident: e_1_2_8_8_1 doi: 10.1109/ICCECE54139.2022.9712768 – ident: e_1_2_8_3_1 doi: 10.1080/2150704X.2018.1475770 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-319-10590-1_54 – ident: e_1_2_8_11_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_8_30_1 doi: 10.1109/CVPR46437.2021.01350 |
| SSID | ssj0059085 |
| Score | 2.34183 |
| Snippet | In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false detections,... Abstract In addressing the challenge of ships being prone to occlusion in multi‐target situations during ship target detection, leading to missed and false... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1710 |
| SubjectTerms | image classification image recognition |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajl26Hrt0PmrUrgvXSgYljS7Lereto6MbWjLFAdjKSLHUBzwmps5Fb_4T-jftL-iQ7oYGRXnoz5hmL9yy978lP30fIMYIMw3jWiwyC-YgJh-sgTxMsVUAJAK57PX9Q-OuluBiyzyM-uif15XvCGnrgxnHdWJtEaQYGQHn2dGlSW6TCSiEtzrZwjjyWsCymmjXYC3nzcBTSi8gLDktiUgbd8XSWeA1kztZSUWDsf0a259VULf6qslxHqyHd9HfJTosT6YdmfHvkia1ekOctZqTtjLx-SU6bXYGwyUcnjvrmK9q0d9PC1qHRqqKqvJrMxvWv3xQxKv05-DL4k_27ua3H1eIVGfbPf3y8iFpVhMgwrH4irVLnJMKmLLaJwoSrNBTOy9NCpjMtrNJSu9SaQIaWKol1pyuSFIThwPCJ12SrmlR2n1DESkbLBKQALEPQjTFgsiqcdUzzLM065GTpoNy0lOFeuaLMw69rBrl3Zh6c2SHvVrbThijjv1Zn3s8rC09uHW5gyPM25PlDIe-Q41WUNr7rfQjgBpP807fvSbh68xgDOyBPE8Q8TT_kIdmqZ3P7FjFLrY_C53kHOmbkgw priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DurBt_gm4F4Uirtp0jbgwQeKiroiCuupJGmyLtTusnaVvfkT_I3-EidpuyKI4K2UCS0znZlv0sk3CNUAZCjKwoanAMx7NDAQB5lPoFThIuCcyUbDHhS-vgnOH-hli7XG0EF1FqbghxhtuFnPcPHaOriQxRQSALVgxE6vT-wsY0bH0WQDgIz9vgm9reKwHebN3HFIO0g-YLwiJ6V8_3vtj3TkWPtn0NQg64nhm0jTn4jVpZyzeTRbYkV8VBh3AY3pbBHNlbgRl175soQOi50Bt9GHuwbbBixctHjjROeu2SrDIm13-5386RkDTsWPzavma_j5_pF3suEyejg7vT8598rJCJ6iUAF5UvjGRACdwromApKukDwxdkQtD2UoAy1kJI2vlSNE80UEtadJCOhIMU5hxQqayLqZXkUY8JKSEeFRwKEUIQAgOSSsxGhDJQv9cA3tVgqKVUkbbqdXpLH7fU15bJUZO2WuoZ2RbK8gy_hV6tjqeSRhCa7djW6_HZf-EtelIkJSrjgXljQ_Ur5O_EBHQaQhyMJr1UZW-vNZe86Af4jEF7d3xF2t_0d4A00TwDdF7-Mmmsj7A70F-CSX2-4z_AIl1Nz- priority: 102 providerName: Wiley-Blackwell |
| Title | Improvement of ship target detection algorithm for YOLOv7‐tiny |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13054 https://doi.org/10.1049/ipr2.13054 https://doaj.org/article/0bc2ab49c99a42628c3ed36e868e2197 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BOAAH3gjaElktF5AWEq_Xu77xEAgqChEiEpxWttduo6abKN1Q0VN_Ar-xv4SxdxMpCEXcrNXYa40f8409_gZgF0GGZlHcDDSC-YBxi_tgFFJ0VYTkQkSq2XQPhb9d84s2-3of3c_A59FbmIn7eyYOO_0BdRmLIzYLczxCvF2DufZ16_jBv3R0OeK5z4hWlXk84iCdqDxhdTw5_yLMD_O-fPoju91JYOoty_kynI76VAaU_DwYFupA_31F1zi90yuwVAFLclzOhFWYMfkaLFcgk1RL-Pc6HJXHCP5UkPQscdFapIwHJ5kpfGRWTmT3e2_QKX78IghqycPN1c1j_P_fc9HJnzagfX52d3oRVGkUAs3QXQqUDK1NEGfFDUMlWmipRGZdPlsRq1hxI1WibGi0Z08LZYKOqs1oKLiOBMMam1DLe7nZAoLgSquEioQL9Fsook2B1i2zxjIVxWG8DXsjNae64hh3qS66qb_rZiJ1qkm9arbhy1i2XzJrvCl14kZrLOHYsP0H1HdaLa60oTSVigkthHQM-4kOTRZyk_DE4I6M3dodj_XUf-37aTBFJL1s3VJf-vC-Nj_CAkUYVIZIfoJaMRiaHYQxharDLGWtuj8EqFdz-gXHuOth |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdb95Dtoftb1u6fYHlpwSyWJdl66zZWkjZNymggezKSLGWBzAmp29G3foR-xn6S3clORmEE9mbMCZuT7-5359PvCGkDyLBcpHFkAcxHXHrwgyJhkKooLZUSJo7xoPDpQHZH_Hgsxk1vDp6Fqfkh1gU3tIzgr9HAsSBdJ5wcSTKniyXDYcaCPySPuIwl5l6Mn60cMU7zFuE8JE6Sl0Kt2Em5-vR37b14FGj7n5DWZbnQ17_1bHYfsoaYc_SMbDdgkX6ud_c5eeDKF-RpAxxpY5YXL8lhXRoIlT469xQ7sGjd400LV4Vuq5Lq2WS-nFY_f1EAqvTHsD-8Su9ubqtpef2KjI6-nX_tRs1ohMhySIEioxPvM8BOaccxDVFXG1V4nFGrUpMa6bTJjE-cDYxoic4g-fQFS5S0QnFYsUO2ynnpXhMKgMmajKlMKshFGCBIBRGr8M5zI9Ik3SX7KwXltuENx_EVszz8v-YqR2XmQZm75ONadlGzZfxT6gvqeS2BDNfhxnw5yRuDyTvGMm24skppZM3PbOKKRLpMZg68LLxWe71LG591EDZwg0jeO_vOwtXe_wh_IK3u-Wk_7_cGJ2_IYwZgp26EfEu2quWlewdgpTLvwyf5ByCI4Go |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED9Bkcb2AOyfYMBmabxsUrTWsZ34jb8VMAZoWifgJbIdGyp1adWloL7xEfiMfBLOTlqENCHtLYrOSnSXu_udc_4dwAaCDMN40ooMgvmICYdxkMcUSxWphJRct1r-oPCPY7HfYYdn_KzuzfFnYSp-iOmGm_eMEK-9g9tB7qqCk3mSzO5gSP0wY85mYQ4TeZM1YG7rd-eiMwnFfp43Dyci_Sx5weWEn5TJb4-rn2SkQNz_CuZHxUCNb1Sv9xS0hqzTXoKFGi6Srcq-r2HGFm9gsYaOpHbMv29hs9ocCHt9pO-I78EiVZc3yW0Z-q0KonqX_WG3vPpDEKqS85Ojk-vk_vau7Bbjd9Bp7_3a2Y_q4QiRYVgERVrFzqWInpKmpQrzrtIyd35KrUx0ooVVOtUutiZwosUqxfLT5TSWwnDJcMV7aBT9wi4DQchkdEplKiRWIxQxpMSclTvrmOZJnKzAl4mCMlMzh_sBFr0s_MFmMvPKzIIyV-DzVHZQ8WX8U2rb63kq4Tmuw43-8DKrXSZrakOVZtJIqTxvfmpim8fCpiK1GGfxtTamVnr2WV-DAZ8RyQ5Of9Jw9eF_hD_Bi9PddnZ0cPx9FV5SRDtVJ-QaNMrhyK4jWin1x_qbfABEr-G- |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5EKCteMsCLq20lHi93vWNgEC04qWqkeC0sr02RIRNFDYgOPET-I38EsbeTaQgFPVmrcZea_yYb-zxNwBbCDI0i-JGoBHMB4xb3AejkKKrIiQXIlKNhnsofHLKj1rsz0V0MQUbw7cwY_f3TPxq9_rUZSyO2CeY5hHi7RpMt07Pm5f-paPLEc99RrSqzOMhB-lY5TGr48n5Z-DzIO_JxwfZ6YwDU29ZDuuwP-xTGVBysz0o1LZ-ekfXOLnTczBbAUvSLGfCPEyZfAHqFcgk1RK--wq75TGCPxUkXUtctBYp48FJZgofmZUT2bnq9tvF9S1BUEsuz47P7uPX55einT9-g9bhwb_9o6BKoxBohu5SoGRobYI4K94xVKKFlkpk1uWzFbGKFTdSJcqGRnv2tFAm6KjajIaC60gwrPEdank3N4tAEFxplVCRcIF-C0W0KdC6ZdZYpqI4jJfgx1DNqa44xl2qi07q77qZSJ1qUq-aJdgcyfZKZo0PpfbcaI0kHBu2_4D6TqvFle4oTaViQgshHcN-okOThdwkPDG4I2O3tkZjPfFfP_00mCCS_j7_S31p-f_aXIEvFGFQGSK5CrWiPzBrCGMKtV7N4zfQdOmV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+ship+target+detection+algorithm+for+YOLOv7%E2%80%90tiny&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Huixia&rft.au=Yu%2C+Haishen&rft.au=Tao%2C+Yadong&rft.au=Zhu%2C+Wenliang&rft.date=2024-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=7&rft.spage=1710&rft.epage=1718&rft_id=info:doi/10.1049%2Fipr2.13054&rft.externalDBID=10.1049%252Fipr2.13054&rft.externalDocID=IPR213054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |