Unsupervised radar signal recognition based on multi‐block – Multi‐view Low‐Rank Sparse Subspace Clustering

In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals and estimating signal parameters. For untagged signals, a new unsupervised recognition method based on the time‐frequency (TF) analysis and Multi‐view...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 16; no. 3; pp. 542 - 551
Main Authors Liu, Lutao, Xu, Shuai
Format Journal Article
LanguageEnglish
Published Wiley 01.03.2022
Subjects
Online AccessGet full text
ISSN1751-8784
1751-8792
1751-8792
DOI10.1049/rsn2.12201

Cover

Abstract In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals and estimating signal parameters. For untagged signals, a new unsupervised recognition method based on the time‐frequency (TF) analysis and Multi‐view Low‐Rank Sparse Subspace Clustering (MLRSSC) is proposed. Specifically, the authors use image wavelet decomposition to create four views for TF images (TFIs), which introduces the concept of multi‐view subspace clustering into radar signal recognition. Compared with other advanced clustering algorithms, the authors' algorithm pays more attention to combining the inherent properties of TFIs. Aiming at the unique ridgeline distribution phenomenon of TFI, a multi‐block technology capable of robustly distributing TFIs subspaces is proposed. Then, Multi‐block and MLRSSC are combined to propose the Multi‐block Joint Multi‐view Subspace Clustering (M‐MLRSSC). The simulation shows that in the TFIs data set with a certain signal‐to‐noise ratio, M‐MLRSSC has obtained superior results, which is better than a variety of advanced subspace clustering algorithms.
AbstractList In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals and estimating signal parameters. For untagged signals, a new unsupervised recognition method based on the time‐frequency (TF) analysis and Multi‐view Low‐Rank Sparse Subspace Clustering (MLRSSC) is proposed. Specifically, the authors use image wavelet decomposition to create four views for TF images (TFIs), which introduces the concept of multi‐view subspace clustering into radar signal recognition. Compared with other advanced clustering algorithms, the authors' algorithm pays more attention to combining the inherent properties of TFIs. Aiming at the unique ridgeline distribution phenomenon of TFI, a multi‐block technology capable of robustly distributing TFIs subspaces is proposed. Then, Multi‐block and MLRSSC are combined to propose the Multi‐block Joint Multi‐view Subspace Clustering (M‐MLRSSC). The simulation shows that in the TFIs data set with a certain signal‐to‐noise ratio, M‐MLRSSC has obtained superior results, which is better than a variety of advanced subspace clustering algorithms.
Abstract In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals and estimating signal parameters. For untagged signals, a new unsupervised recognition method based on the time‐frequency (TF) analysis and Multi‐view Low‐Rank Sparse Subspace Clustering (MLRSSC) is proposed. Specifically, the authors use image wavelet decomposition to create four views for TF images (TFIs), which introduces the concept of multi‐view subspace clustering into radar signal recognition. Compared with other advanced clustering algorithms, the authors' algorithm pays more attention to combining the inherent properties of TFIs. Aiming at the unique ridgeline distribution phenomenon of TFI, a multi‐block technology capable of robustly distributing TFIs subspaces is proposed. Then, Multi‐block and MLRSSC are combined to propose the Multi‐block Joint Multi‐view Subspace Clustering (M‐MLRSSC). The simulation shows that in the TFIs data set with a certain signal‐to‐noise ratio, M‐MLRSSC has obtained superior results, which is better than a variety of advanced subspace clustering algorithms.
Author Xu, Shuai
Liu, Lutao
Author_xml – sequence: 1
  givenname: Lutao
  surname: Liu
  fullname: Liu, Lutao
  organization: Harbin Engineering University
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0003-4847-1066
  surname: Xu
  fullname: Xu, Shuai
  email: 2014080423@hrbeu.edu.cn
  organization: Harbin Engineering University
BookMark eNp9kMFO3DAURa2KSgXaTb_A61YDtidOnGU1ainSABJT1taz8zIyGDuyE0azm0-oxB_yJUwIYlFVrHz1fO5Z3CNyEGJAQr5ydsJZUZ-mHMQJF4LxD-SQV5LPVFWLg7esik_kKOdbxqQsi_qQ5JuQhw7Tg8vY0AQNJJrdOoCnCW1cB9e7GKiB8Xsf7gffu6fdX-OjvaNPu0d68Xp5cLihy7jZx2sId3TVQcpIV4PJHVikCz_kHpML68_kYws-45fX95jc_Pr5Z_F7trw6O1_8WM5swQs-a-esqiWUaLjkpaxQgalV1bBKKGMtIDLBhGjnQki0EoyZM0QLtlbtnijnx-R88jYRbnWX3D2krY7g9MshprWG1DvrUVvTQMmKlnEji5qjUqbhyjDGrUJoR9f3yTWEDrYb8P5NyJket9fj9vpl-z39baJtijknbN-H2T-wdT2Ms_cJnP9_hU-VjfO4fUeur1eXYuo8A9r6rOE
CitedBy_id crossref_primary_10_1109_TCCN_2023_3280949
crossref_primary_10_1109_LCOMM_2024_3356619
crossref_primary_10_32604_csse_2023_034543
crossref_primary_10_1016_j_dsp_2024_104552
Cites_doi 10.1007/s00521-019-04494-1
10.1109/TPAMI.2013.57
10.1016/j.sigpro.2003.10.019
10.1016/j.patrec.2013.08.006
10.1109/TPAMI.2012.57
10.1038/nature14539
10.1088/1742‐6596/1634/1/012116
10.1109/TCSET.2018.8336160
10.1109/ACCESS.2020.2980363
10.1109/ACCESS.2017.2716191
10.1109/TGRS.2016.2524557
10.1049/iet‐rsn.2019.0436
10.1016/0165-1684(94)00150-X
10.1561/2200000016
10.1007/978-3-642-33786-4_26
10.1016/j.knosys.2019.105102
10.1109/34.868688
10.1109/CVPR.2014.134
10.1016/j.inffus.2010.03.002
10.1109/TIP.2018.2848470
10.1016/j.patcog.2019.107175
10.1109/WACV.2014.6836065
10.1109/TNNLS.2019.2958324
10.1016/j.neucom.2019.10.074
10.1007/BF01908075
10.1145/1390156.1390294
10.1049/iet-rsn.2013.0088
10.1016/j.patcog.2017.08.024
10.1109/MSP.2010.939739
10.3390/sym9050075
10.1109/ICSAI.2014.7009379
10.1109/TPAMI.2012.88
10.1016/j.patcog.2007.05.018
10.3390/electronics8040463
10.1109/CVPR.2011.5995365
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/rsn2.12201
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 551
ExternalDocumentID oai_doaj_org_article_cbda604f01b5491e88bd18b001c8eaf6
10.1049/rsn2.12201
10_1049_rsn2_12201
RSN212201
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62071137
– fundername: Key Laboratory of Advanced Marine Communication and Information Technology, Harbin Engineering University
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 3072020CF0815
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IMI
PHGZM
PHGZT
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c4141-f30795a6eb151657e8ab987d0728bccaee02022f3225ec5abb30eecac98f28b63
IEDL.DBID 24P
ISSN 1751-8784
1751-8792
IngestDate Fri Oct 03 12:51:12 EDT 2025
Sun Sep 07 11:25:21 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed Oct 29 21:21:42 EDT 2025
Wed Jan 22 16:27:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4141-f30795a6eb151657e8ab987d0728bccaee02022f3225ec5abb30eecac98f28b63
ORCID 0000-0003-4847-1066
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12201
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cbda604f01b5491e88bd18b001c8eaf6
unpaywall_primary_10_1049_rsn2_12201
crossref_primary_10_1049_rsn2_12201
crossref_citationtrail_10_1049_rsn2_12201
wiley_primary_10_1049_rsn2_12201_RSN212201
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 5
2019; 8
2004; 84
2012
2011
2015; 521
2010
2010; 17
1985; 2
2000; 22
2008
2020; 105
1996
2020; 14
2011; 12
2020; 189
2020; 32
2013; 8
2011; 3
2012; 34
2018; 27
2017; 9
2020; 1634
2014; 43
2016; 56
2018; 46
2020; 8
2020; 31
2001
2013; 35
1995; 43
2020; 379
2018
2017
2018; 73
2014
2008; 41
2011; 28
1967
e_1_2_10_23_1
Pan J. (e_1_2_10_42_1)
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Macqueen J. (e_1_2_10_17_1) 1967
Liu W. (e_1_2_10_10_1) 2018; 46
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
Ng A.Y. (e_1_2_10_35_1) 2001
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Ji P. (e_1_2_10_38_1) 2014
Ester M. (e_1_2_10_18_1) 1996
Liu G. (e_1_2_10_25_1) 2010
Szmajda M. (e_1_2_10_32_1) 2010; 17
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
Finn C. (e_1_2_10_13_1) 2017
e_1_2_10_26_1
References_xml – volume: 31
  start-page: 4857
  issue: 11
  year: 2020
  end-page: 4868
  article-title: Deep clustering with sample‐assignment invariance prior
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
– start-page: 1126
  year: 2017
  end-page: 1135
– volume: 84
  start-page: 351
  year: 2004
  end-page: 365
  article-title: Automatic digital modulation recognition using artificial neural network and genetic algorithm
  publication-title: Signal Process
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 28
  start-page: 52
  issue: 2
  year: 2011
  end-page: 68
  article-title: Subspace clustering
  publication-title: IEEE Signal Process. Mag
– start-page: 663
  year: 2010
  end-page: 670
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 84
  article-title: Performance comparison of different multi‐resolution transforms for image fusion
  publication-title: Inf. Fusion
– volume: 1634
  year: 2020
  article-title: Prototypical Network for Radar Image Recognition with Few Samples
  publication-title: J. Phys. Conf. Series.
– volume: 189
  year: 2020
  article-title: Multi‐graph fusion for multi‐view spectral clustering
  publication-title: Knowledge‐Based Syst
– volume: 35
  start-page: 171
  issue: 1
  year: 2013
  end-page: 184
  article-title: Robust recovery of subspace structures by low‐rank representation
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell
– start-page: 281
  year: 1967
  end-page: 297
– year: 1996
– volume: 17
  start-page: 383
  issue: 3
  year: 2010
  end-page: 396
  article-title: Gabor transform, SPWVD, Gabor‐Wigner transform and wavelet transform – tools for power quality monitoring
  publication-title: Metrology Meas. Syst
– volume: 41
  start-page: 176
  issue: 1
  year: 2008
  end-page: 190
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern Recognit
– volume: 56
  start-page: 3672
  issue: 6
  year: 2016
  end-page: 3684
  article-title: Spectral‐spatial sparse subspace clustering for hyperspectral remote sensing images
  publication-title: IEEE Trans. Geoscience Remote Sens
– volume: 46
  start-page: 92
  issue: 2
  year: 2018
  end-page: 96
  article-title: Automatic radar waveform recognition based on neural network
  publication-title: Mechatron. Syst. Control
– volume: 34
  start-page: 1227
  issue: 6
  year: 2012
  end-page: 1233
  article-title: Ensemble manifold regularization
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell
– start-page: 347
  year: 2012
  end-page: 360
– volume: 8
  start-page: 290
  issue: 4
  year: 2013
  end-page: 296
  article-title: Robust radar waveform recognition algorithm based on random projections and sparse classification
  publication-title: IET Radar Sonar Navig
– start-page: 718
  year: 2014
  end-page: 723
– start-page: 1801
  year: 2011
  end-page: 1807
– volume: 14
  start-page: 803
  issue: 6
  year: 2020
  end-page: 810
  article-title: Intra‐pulse modulation radar signal recognition based on CLDN network
  publication-title: IET Radar Sonar Navig
– volume: 8
  start-page: 49125
  year: 2020
  end-page: 49136
  article-title: Radar signal intra‐pulse modulation recognition based on convolutional neural network and deep Q‐learning network
  publication-title: IEEE Access
– volume: 43
  start-page: 47
  year: 2014
  end-page: 61
  article-title: Low rank subspace clustering
  publication-title: Pattern Recognit. Lett
– volume: 27
  start-page: 5076
  issue: 10
  year: 2018
  end-page: 5086
  article-title: Structured auto encoders for subspace clustering
  publication-title: IEEE Trans. Image Process
– volume: 8
  issue: 4
  year: 2019
  article-title: A rapid accurate recognition system for radar emitter signals
  publication-title: Electronics
– volume: 32
  start-page: 1959
  issue: 7
  year: 2020
  end-page: 1969
  article-title: Research on radar signal recognition based on automatic machine learning
  publication-title: Neural Comput. Appl
– volume: 105
  year: 2020
  article-title: Spectral rotation for deep one‐step clustering
  publication-title: Pattern Recognit
– volume: 43
  start-page: 149
  issue: 2
  year: 1995
  end-page: 168
  article-title: Smoothed pseudo‐Wigner distribution, Choi‐Williams distribution, and cone‐kernel representation: ambiguity‐domain analysis and experimental comparison
  publication-title: Signal Process
– volume: 73
  start-page: 247
  year: 2018
  end-page: 258
  article-title: Multi‐view low‐rank sparse subspace clustering
  publication-title: Pattern Recognit
– start-page: 79
  year: 2018
  end-page: 83
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell
– start-page: 1019
  year: 2014
  end-page: 1026
– start-page: 849
  year: 2001
  end-page: 856
– volume: 5
  start-page: 11074
  year: 2017
  end-page: 11082
  article-title: Convolutional neural networks for automatic cognitive radio waveform recognition
  publication-title: IEEE Access
– start-page: 461
  year: 2014
  end-page: 468
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn
– volume: 9
  start-page: 1
  issue: 5
  year: 2017
  end-page: 20
  article-title: Neural networks for radar waveform recognition
  publication-title: Symmetry
– volume: 2
  start-page: 193
  issue: 2–3
  year: 1985
  end-page: 218
  article-title: Comparing partitions
  publication-title: J. Classif
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 379
  start-page: 89
  year: 2020
  end-page: 102
  article-title: Feature concatenation multi‐view subspace clustering
  publication-title: Neurocomputing
– volume: 35
  start-page: 2765
  issue: 11
  year: 2013
  end-page: 2781
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Analysis Mach. Intell
– ident: e_1_2_10_12_1
  doi: 10.1007/s00521-019-04494-1
– ident: e_1_2_10_24_1
  doi: 10.1109/TPAMI.2013.57
– ident: e_1_2_10_4_1
  doi: 10.1016/j.sigpro.2003.10.019
– ident: e_1_2_10_28_1
  doi: 10.1016/j.patrec.2013.08.006
– ident: e_1_2_10_16_1
  doi: 10.1109/TPAMI.2012.57
– ident: e_1_2_10_7_1
  doi: 10.1038/nature14539
– volume-title: Adaptive low‐rank kernel subspace clustering
  ident: e_1_2_10_42_1
– ident: e_1_2_10_14_1
  doi: 10.1088/1742‐6596/1634/1/012116
– ident: e_1_2_10_9_1
  doi: 10.1109/TCSET.2018.8336160
– ident: e_1_2_10_3_1
  doi: 10.1109/ACCESS.2020.2980363
– ident: e_1_2_10_5_1
  doi: 10.1109/ACCESS.2017.2716191
– ident: e_1_2_10_29_1
  doi: 10.1109/TGRS.2016.2524557
– ident: e_1_2_10_2_1
  doi: 10.1049/iet‐rsn.2019.0436
– volume-title: A Density‐Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
  year: 1996
  ident: e_1_2_10_18_1
– start-page: 1126
  volume-title: 34th International Conference on Machine Learning (ICML)
  year: 2017
  ident: e_1_2_10_13_1
– start-page: 281
  volume-title: 5th Berkeley Symposium on Mathematical Statistics and Probability
  year: 1967
  ident: e_1_2_10_17_1
– ident: e_1_2_10_33_1
  doi: 10.1016/0165-1684(94)00150-X
– ident: e_1_2_10_37_1
  doi: 10.1561/2200000016
– ident: e_1_2_10_43_1
  doi: 10.1007/978-3-642-33786-4_26
– volume: 17
  start-page: 383
  issue: 3
  year: 2010
  ident: e_1_2_10_32_1
  article-title: Gabor transform, SPWVD, Gabor‐Wigner transform and wavelet transform – tools for power quality monitoring
  publication-title: Metrology Meas. Syst
– ident: e_1_2_10_40_1
  doi: 10.1016/j.knosys.2019.105102
– volume: 46
  start-page: 92
  issue: 2
  year: 2018
  ident: e_1_2_10_10_1
  article-title: Automatic radar waveform recognition based on neural network
  publication-title: Mechatron. Syst. Control
– ident: e_1_2_10_19_1
  doi: 10.1109/34.868688
– ident: e_1_2_10_30_1
  doi: 10.1109/CVPR.2014.134
– ident: e_1_2_10_34_1
  doi: 10.1016/j.inffus.2010.03.002
– start-page: 849
  volume-title: 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (NeurIPS), Vancouver, BC, 03–08 December
  year: 2001
  ident: e_1_2_10_35_1
– ident: e_1_2_10_21_1
  doi: 10.1109/TIP.2018.2848470
– ident: e_1_2_10_22_1
  doi: 10.1016/j.patcog.2019.107175
– start-page: 461
  volume-title: IEEE Winter Conference on Applications of Computer Vision (WACV), Steamboat Springs
  year: 2014
  ident: e_1_2_10_38_1
  doi: 10.1109/WACV.2014.6836065
– ident: e_1_2_10_20_1
  doi: 10.1109/TNNLS.2019.2958324
– ident: e_1_2_10_41_1
  doi: 10.1016/j.neucom.2019.10.074
– ident: e_1_2_10_44_1
  doi: 10.1007/BF01908075
– ident: e_1_2_10_15_1
  doi: 10.1145/1390156.1390294
– start-page: 663
  volume-title: Proceedings of the 27th International Conference on International Conference on Machine Learning
  year: 2010
  ident: e_1_2_10_25_1
– ident: e_1_2_10_8_1
  doi: 10.1049/iet-rsn.2013.0088
– ident: e_1_2_10_31_1
  doi: 10.1016/j.patcog.2017.08.024
– ident: e_1_2_10_23_1
  doi: 10.1109/MSP.2010.939739
– ident: e_1_2_10_39_1
  doi: 10.3390/sym9050075
– ident: e_1_2_10_11_1
  doi: 10.1109/ICSAI.2014.7009379
– ident: e_1_2_10_26_1
  doi: 10.1109/TPAMI.2012.88
– ident: e_1_2_10_36_1
  doi: 10.1016/j.patcog.2007.05.018
– ident: e_1_2_10_6_1
  doi: 10.3390/electronics8040463
– ident: e_1_2_10_27_1
  doi: 10.1109/CVPR.2011.5995365
SSID ssj0055649
Score 2.3604949
Snippet In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals and...
Abstract In the field of radar reconnaissance, unsupervised recognition of radar signals is a particularly important method for classifying different signals...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 542
SubjectTerms multi‐block
multi‐view subspace clustering
TFIs
unsupervised recognition of radar signals
untagged signals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xfBPSiUG3StE2Ourgsoh7UBW8lSacXl-6yDxZv-xME_-H-Eidpd1EQvXgLYUrCvIdMvyHkFLjSUZyqQAlrsUBRNjDc_QgsjWImB0xxfbfFQ9LuiNuX-OXLqC_XE1bBA1eMu7Qm10koipAZLGUYSGlyJl2stxJ04cG2Q6nmxVTlg-M48YkvxkaG9i7FHJhUqMvBsOQXjPN6DMw8FHnE_jWyMi77-m2iu93v2aoPN60Nsl7nifSqut8mWYJyi6x9QQ_cJsNOORz3na0PIacDnesBde0Y-NmiLahXUhencooL3zs4m74bjF-vdDb9oPf1jnseoHe9CS4fdflKn_pY7gJ1TgVLaqDN7tjhKeCpO6TTunlutoN6hkJgBRMsKNCGVawTdMkxS-IUpDZKpnmYcmlQegCYL3JeOLsGG2tjohDAaqtkgRRJtEuWy14Je4RGUmLuxyMULwimU6SVSlpu0AWkqggb5GzOzszWAONuzkU38w_dQmWO9ZlnfYOcLGj7FazGj1TXTioLCgeF7TdQQbJaQbK_FKRBThcy_fWscy_uX0iyx6cH7lf7_3GxA7LqWF81tB2S5dFgDEeY4YzMsVfmT1qu-_M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NihsxDBYheyg59H_ZlG0xbS4tTDr2_NnHbegSShvKpoH0NNgezSVhEpIMoT3tIyz0DfdJKjuT0JQSehNGHg-WLH3CkgzQQ6F0lGQqULG1FKAoGxjhCoGlUdwUSBDXZ1uM0uEk_jRNpi14va-FObq_j9X71boSfS6EK9E6SxPC2204m4y-Xn33lY4Jp-PsnxVuaCX2PUiPJh95Hd-cvwMP6mqpf2z1fH4MTL1nuX4Eg_0_7RJKZv16Y_r251_tGk__9GN42ABLdrXThCfQwuopdP5oN_gM1pNqXS-dcVhjwVa60Cvm8jdo2iGPaFEx59gKRoRPNry_vTPk8Gbs_vYX-9KMuPsE9nmxJfJGVzM2XlJ8jMxZIYrBkQ3mtWvAQKs-h8n1x2-DYdA8uhDYmMc8KOnQq0SnZMMTniYZSm2UzIowE9KQuBEJYApROkOANtHGRCGi1VbJkjjS6Bza1aLCC2CRlAQWRUT6gDHXGfFKJa0wZDMyVYZdeLsXSm6bjuTuYYx57m_GY5W7jcz9RnbhzYF3uevD8U-uD062Bw7XO9sPkHTy5ijm1hQ6DeMy5IaCY45SmoJLhx6tRF2mXegdNOPkWu-80pxgyW_GI-GpF__3zUtob1Y1viScszGvGkX_DfIB_g8
  priority: 102
  providerName: Unpaywall
Title Unsupervised radar signal recognition based on multi‐block – Multi‐view Low‐Rank Sparse Subspace Clustering
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12201
https://doi.org/10.1049/rsn2.12201
https://doaj.org/article/cbda604f01b5491e88bd18b001c8eaf6
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RSxwxEA6iD9YHsdbSq-0R0JcWtt1ks7sJ9MVKRUQPUQ_s05JkZ_vgsXfseUjf_AmF_kN_iTPZvW2FIvQthAmBTGbmm2TyhbF9kMYmaW4io7zHBMX4yEl6CKydEa4EhLih2mKUHY_VyXV6vcK-LN_CtPwQ_YEbWUbw12Tg1rW_kCCoRSU281p-ElLS4601gUCG9rdU50s_nKZZAL8YHwXavFZLclJlPv8Z-yQcBdb-Dba-qGf2552dTJ4i1hByjrbYZocV-UGr3JdsBepttvEXg-ArNh_X88WM7H0OJW9saRtOJRk4rC8NmtacYlXJsRHqBx_ufzmMYTf84f43P-t66IqAn07vsHlh6xt-OcOUFzg5FkyrgR9OFsSpgLPusPHRt6vD46j7RyHySigRVWjHJrUZuuVUZGkO2jqj8zLOpXaoQQDEjFJWZNvgU-tcEgN4642uUCJLXrPVelrDG8YTrRH_yQRVDErYHGW10V46dAO5qeIB-7BczsJ3JOP018WkCJfdyhS09EVY-gHb62VnLbXGP6W-klZ6CaLDDh3T5kfRWVfhXWmzWFWxcJjvCtDalUITIPQabJUN2H6v02fn-hjU_YxIcXE5kqH19n-Ed9kLWuK2eO0dW71tFvAe0cytG4ZNOwxnAUO2Nh6dH3x_BIh09io
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBYlPaQ5lP7S7a-gubTg1pJlWTq2oWHbbpaSZCE3I8njHrJ4F2-WkFseIdA3zJN0Rva6DZRAb0KMEMx4Zr6RR58Y2wVpXZYXNrEqBCxQbEi8pIvAxlvhK0CIG7stpno8U99O8pO-N4fuwnT8EMOBG3lGjNfk4HQg3RWcikgy21UjPwgp6fbWXaWFptpLqh-bQJznOqJfTJACnd6oDTupsh__rL2RjyJt_w7bXjdLd3Hu5vObkDXmnP0H7H4PFvmnzroP2R1oHrGdvygEH7PVrFmtl-TwK6h46yrXcurJwGVDb9Ci4ZSsKo6D2EB4fXnlMYmd8uvLX_ygn6F_BHyyOMfhoWtO-dESa17gFFmwrga-N18TqQLu-oTN9r8c742T_iGFJCihRFKjI9vcaYzLudB5AcZ5a4oqLaTxaEIABI1S1uTcEHLnfZYCBBesqVFCZ0_ZVrNo4BnjmTEIAGWGNgYlXIGyxpogPcaBwtbpiL3bqLMMPcs4PXYxL-PfbmVLUn0ZVT9ibwfZZcet8U-pz2SVQYL4sOPEov1Z9u5VBl85nao6FR4LXgHG-EoYQoTBgKv1iO0ONr11r_fR3LeIlIdHUxlHz_9H-A3bHh8fTMrJ1-n3F-weqbvrZHvJts7aNbxCaHPmX8cP-DdH-_bx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEA9yBbUPxb_0rH8C9kVhdZPN7iaPtXpUrYe0rhRfliQ760OPveWuR_GtH0HwG_aTOJPdWy1IwbcQJgRmdmZ-s5n8wtguSGOTNDeRUd5jgWJ85CRdBNbOCFcBQtzQbTHNDgr14SQ96Xtz6C5Mxw8x_HAjzwjxmhwc2qruCk5FJJmLZSNfCSnp9tYGJvJYjdjG3tfiW7EOxWmaBfyLKVKg22u15idV5vWf1VcyUiDu32S3Vk1rf5zb2ewqaA1ZZ3KHbfVwke919r3LbkBzj23-RSJ4ny2LZrlqyeWXUPGFreyCU1cGLhu6g-YNp3RVcRyEFsLLi58O09gpv7z4xT_1M3RKwA_n5zg8ss0pP26x6gVOsQUra-D7sxXRKuCuD1gxefdl_yDqn1KIvBJKRDW6sklthpE5FVmag7bO6LyKc6kdGhEAYaOUNbk3-NQ6l8QA3nqja5TIkods1Mwb2GY80RohoEzQyqCEzVFWG-2lw0iQmzoesxdrdZa-5xmn5y5mZTjvVqYk1ZdB9WP2fJBtO3aNf0q9IasMEsSIHSbmi-9l72Cld5XNYlXHwmHJK0BrVwlNmNBrsHU2ZruDTa_d62Uw9zUi5dHxVIbRo_8RfsZufn47KQ_fTz_usNuk7a6V7TEbnS1W8ASxzZl72n_BvwGoOfhF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NihsxDBYheyg59H_ZlG0xbS4tTDr2_NnHbegSShvKpoH0NNgezSVhEpIMoT3tIyz0DfdJKjuT0JQSehNGHg-WLH3CkgzQQ6F0lGQqULG1FKAoGxjhCoGlUdwUSBDXZ1uM0uEk_jRNpi14va-FObq_j9X71boSfS6EK9E6SxPC2204m4y-Xn33lY4Jp-PsnxVuaCX2PUiPJh95Hd-cvwMP6mqpf2z1fH4MTL1nuX4Eg_0_7RJKZv16Y_r251_tGk__9GN42ABLdrXThCfQwuopdP5oN_gM1pNqXS-dcVhjwVa60Cvm8jdo2iGPaFEx59gKRoRPNry_vTPk8Gbs_vYX-9KMuPsE9nmxJfJGVzM2XlJ8jMxZIYrBkQ3mtWvAQKs-h8n1x2-DYdA8uhDYmMc8KOnQq0SnZMMTniYZSm2UzIowE9KQuBEJYApROkOANtHGRCGi1VbJkjjS6Bza1aLCC2CRlAQWRUT6gDHXGfFKJa0wZDMyVYZdeLsXSm6bjuTuYYx57m_GY5W7jcz9RnbhzYF3uevD8U-uD062Bw7XO9sPkHTy5ijm1hQ6DeMy5IaCY45SmoJLhx6tRF2mXegdNOPkWu-80pxgyW_GI-GpF__3zUtob1Y1viScszGvGkX_DfIB_g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+radar+signal+recognition+based+on+multi%E2%80%90block+%E2%80%93+Multi%E2%80%90view+Low%E2%80%90Rank+Sparse+Subspace+Clustering&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Liu%2C+Lutao&rft.au=Xu%2C+Shuai&rft.date=2022-03-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=16&rft.issue=3&rft.spage=542&rft.epage=551&rft_id=info:doi/10.1049%2Frsn2.12201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rsn2_12201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon