Week‐ahead daily peak load forecasting using genetic algorithm‐based hybrid convolutional neural network

Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategi...

Full description

Saved in:
Bibliographic Details
Published inIET generation, transmission & distribution Vol. 16; no. 12; pp. 2416 - 2424
Main Authors Hong, Ying‐Yi, Chan, Yu‐Hsuan, Cheng, Yung‐Han, Lee, Yih‐Der, Jiang, Jheng‐Lun, Wang, Shen‐Szu
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2022
Online AccessGet full text
ISSN1751-8687
1751-8695
1751-8695
DOI10.1049/gtd2.12460

Cover

Abstract Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model.
AbstractList Abstract Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model.
Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model.
Author Cheng, Yung‐Han
Wang, Shen‐Szu
Hong, Ying‐Yi
Lee, Yih‐Der
Chan, Yu‐Hsuan
Jiang, Jheng‐Lun
Author_xml – sequence: 1
  givenname: Ying‐Yi
  surname: Hong
  fullname: Hong, Ying‐Yi
  email: yyhong@ee.cycu.edu.tw
  organization: Chung Yuan Christian University
– sequence: 2
  givenname: Yu‐Hsuan
  surname: Chan
  fullname: Chan, Yu‐Hsuan
  organization: Chung Yuan Christian University
– sequence: 3
  givenname: Yung‐Han
  surname: Cheng
  fullname: Cheng, Yung‐Han
  organization: Chung Yuan Christian University
– sequence: 4
  givenname: Yih‐Der
  surname: Lee
  fullname: Lee, Yih‐Der
  organization: Institute of Nuclear Energy Research
– sequence: 5
  givenname: Jheng‐Lun
  surname: Jiang
  fullname: Jiang, Jheng‐Lun
  organization: Institute of Nuclear Energy Research
– sequence: 6
  givenname: Shen‐Szu
  surname: Wang
  fullname: Wang, Shen‐Szu
  organization: Institute of Nuclear Energy Research
BookMark eNp9kMFO3DAQhq2KSgXaS58g56JdxrGTOMcKKCAhcaHq0Rrbk6xZE6-cLKvceIQ-Y5-k2U3FoUJcPLb1_5803wk76mJHjH3lsOQg6_N2cPmS57KED-yYVwVfqLIujl7vqvrETvr-EaAoSlkds_CLaP3n5TeuCF3m0Icx2xCusxCndxMTWewH37XZtt-fLXU0eJthaGPyw-pp6hrsyWWr0STvMhu75xi2g48dhqyjbTqMYRfT-jP72GDo6cu_ecp-_rh6uLhZ3N1f3158v1tYySUsOOQF8gpEDaaxtgaQVVGWthGVKC1Jo0ASGCUE5hxQkTNKNSU3xhqrZC5O2e3MdREf9Sb5J0yjjuj14SOmVmOatgiklayoLhRCXTspuFSqQNvUOW-EQwAxsc5m1rbb4LjDEF6BHPReut5L1wfpUxrmtE2x7xM12voB9zKGNLl9u_Ltv8q7fD6Hdz7Q-E5SXz9c5nPnL8egpyA
CitedBy_id crossref_primary_10_1007_s42835_024_01885_w
crossref_primary_10_1049_gtd2_13276
crossref_primary_10_1109_ACCESS_2024_3405182
crossref_primary_10_3390_agriculture13081491
crossref_primary_10_3390_su151411123
crossref_primary_10_53759_7669_jmc202303033
crossref_primary_10_3390_app13052998
crossref_primary_10_4018_IJITSA_326757
Cites_doi 10.1016/j.energy.2011.10.027
10.1049/iet-gtd.2019.0797
10.1109/87.294341
10.1109/APAP47170.2019.9225057
10.1002/eej.22988
10.1016/j.seta.2019.100601
10.1049/iet-gtd.2018.6687
10.1016/j.apenergy.2012.06.009
10.1049/iet-gtd.2017.1745
10.1109/APPEEC45492.2019.8994442
10.1016/j.ijepes.2015.11.046
10.1016/j.segan.2021.100490
10.1109/ICIMCIS48181.2019.8985197
10.1016/j.energy.2018.04.117
10.1016/j.seta.2021.101191
10.1109/TPWRS.2002.800992
10.3390/en11010163
10.1109/ACCESS.2020.3017655
10.1109/ACCESS.2019.2895604
10.1016/j.segan.2020.100406
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/gtd2.12460
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 2424
ExternalDocumentID oai_doaj_org_article_847e958a099d4314885acf921f3da003
10.1049/gtd2.12460
10_1049_gtd2_12460
GTD212460
Genre article
GrantInformation_xml – fundername: Institute of Nuclear Energy Research
  funderid: NL1100131 (110A008); NL1110107 (111A010)
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c4140-1025a170390bfcc90047566cf3736ce4b804e0b833a210a8edb88f61bbcbc8423
IEDL.DBID 24P
ISSN 1751-8687
1751-8695
IngestDate Fri Oct 03 12:53:26 EDT 2025
Sun Sep 07 10:59:32 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Wed Oct 29 21:26:50 EDT 2025
Wed Jan 22 16:25:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4140-1025a170390bfcc90047566cf3736ce4b804e0b833a210a8edb88f61bbcbc8423
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12460
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_847e958a099d4314885acf921f3da003
unpaywall_primary_10_1049_gtd2_12460
crossref_citationtrail_10_1049_gtd2_12460
crossref_primary_10_1049_gtd2_12460
wiley_primary_10_1049_gtd2_12460_GTD212460
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2020; 8
2002; 17
2019; 7
2021; 27
2018; 154
2021; 45
2019; 13
2013; 101
2019
2020; 38
1997
2020; 14
2017
2020; 24
2015
2011; 36
2018; 12
2018; 11
2017; 201
1994; 2
2013; 6
2016; 77
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Hope T. (e_1_2_9_22_1) 2017
Simionescu M. (e_1_2_9_27_1) 2013; 6
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Gen M. (e_1_2_9_23_1) 1997
e_1_2_9_20_1
e_1_2_9_24_1
Gulli A. (e_1_2_9_21_1) 2017
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Khanna R. (e_1_2_9_25_1) 2015
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
References_xml – volume: 201
  start-page: 57
  issue: 1
  year: 2017
  end-page: 65
  article-title: Daily peak load forecasting by Taguchi's T method
  publication-title: Electr. Eng. Jpn.
– volume: 45
  year: 2021
  article-title: Photovoltaic generation power prediction research based on high quality context ontology and gated recurrent neural network
  publication-title: Sustainable Energy Technol. Assess.
– volume: 101
  start-page: 489
  year: 2013
  end-page: 501
  article-title: A new hybrid day‐ahead peak load forecasting method for Iran's National Grid
  publication-title: Appl. Energy
– volume: 154
  start-page: 383
  year: 2018
  end-page: 389
  article-title: ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand
  publication-title: Energy
– volume: 11
  start-page: 163
  year: 2018
  article-title: Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm
  publication-title: Energies
– volume: 27
  year: 2021
  article-title: Non‐intrusive load transient identification based on multivariate LSTM neural network and time series data augmentation
  publication-title: Sustainable Energy Grids Networks
– volume: 8
  start-page: 158928
  year: 2020
  end-page: 158940
  article-title: Industrial ultra‐short‐term load forecasting with data completion
  publication-title: IEEE Access
– volume: 13
  start-page: 3847
  issue: 17
  year: 2019
  end-page: 3854
  article-title: Short‐term power load forecasting based on multi‐layer bidirectional recurrent neural network
  publication-title: IET Gener. Transm. Distrib.
– year: 1997
– volume: 7
  start-page: 17184
  year: 2019
  end-page: 17194
  article-title: Deep learning for daily peak load forecasting‐ a novel gated recurrent neural network combining dynamic time warping
  publication-title: IEEE Access
– volume: 2
  start-page: 135
  issue: 2
  year: 1994
  end-page: 141
  article-title: A specification of neural network applications in the load forecasting problem
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 12
  start-page: 3270
  issue: 13
  year: 2018
  end-page: 3278
  article-title: Distribution feeder‐level day‐ahead peak load forecasting methods and comparative study
  publication-title: IET Gener. Transm. Distrib.
– volume: 24
  year: 2020
  article-title: Locational marginal price forecasting in a day‐ahead power market using spatiotemporal deep learning network
  publication-title: Sustainable Energy Grids Networks
– year: 2017
– volume: 36
  start-page: 6763
  year: 2011
  end-page: 6769
  article-title: Forecasting of peak electricity demand in Mauritius using the non‐homogeneous Gompertz diffusion process
  publication-title: Energy
– volume: 6(
  start-page: 94
  issue: 2
  year: 2013
  end-page: 102
  article-title: The use of VARMA models in forecasting macroeconomic indicators
  publication-title: Recent Issues Eco. Dev.
– year: 2019
– volume: 38
  year: 2020
  article-title: Short‐term wind speed forecasting framework based on stacked denoising auto‐encoders with rough ANN
  publication-title: Sustainable Energy Technol. Assess.
– volume: 14
  start-page: 845
  issue: 5
  year: 2020
  end-page: 852
  article-title: Mid‐term electricity load forecasting by a new composite method based on optimal learning MLP algorithm
  publication-title: IET Gener. Transm. Distrib.
– year: 2015
– volume: 77
  start-page: 136
  year: 2016
  end-page: 144
  article-title: Daily peak electricity demand forecasting based on an adaptive hybrid two‐stage methodology
  publication-title: Electr. Power Energy Syst.
– volume: 17
  start-page: 907
  issue: 3
  year: 2002
  end-page: 912
  article-title: Artificial neural network‐based peak load forecasting using conjugate gradient methods
  publication-title: IEEE Trans. Power Syst.
– ident: e_1_2_9_9_1
  doi: 10.1016/j.energy.2011.10.027
– volume-title: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
  year: 2015
  ident: e_1_2_9_25_1
– ident: e_1_2_9_12_1
  doi: 10.1049/iet-gtd.2019.0797
– ident: e_1_2_9_11_1
  doi: 10.1109/87.294341
– ident: e_1_2_9_28_1
– ident: e_1_2_9_7_1
  doi: 10.1109/APAP47170.2019.9225057
– ident: e_1_2_9_3_1
  doi: 10.1002/eej.22988
– volume: 6
  start-page: 94
  issue: 2
  year: 2013
  ident: e_1_2_9_27_1
  article-title: The use of VARMA models in forecasting macroeconomic indicators
  publication-title: Recent Issues Eco. Dev.
– ident: e_1_2_9_16_1
  doi: 10.1016/j.seta.2019.100601
– ident: e_1_2_9_20_1
  doi: 10.1049/iet-gtd.2018.6687
– ident: e_1_2_9_8_1
  doi: 10.1016/j.apenergy.2012.06.009
– volume-title: Learning TensorFlow
  year: 2017
  ident: e_1_2_9_22_1
– ident: e_1_2_9_4_1
  doi: 10.1049/iet-gtd.2017.1745
– volume-title: Genetic Algorithms and Engineering Design.
  year: 1997
  ident: e_1_2_9_23_1
– ident: e_1_2_9_18_1
  doi: 10.1109/APPEEC45492.2019.8994442
– ident: e_1_2_9_24_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ijepes.2015.11.046
– ident: e_1_2_9_13_1
  doi: 10.1016/j.segan.2021.100490
– ident: e_1_2_9_19_1
  doi: 10.1109/ICIMCIS48181.2019.8985197
– volume-title: Deep Learning with Keras
  year: 2017
  ident: e_1_2_9_21_1
– ident: e_1_2_9_2_1
  doi: 10.1016/j.energy.2018.04.117
– ident: e_1_2_9_15_1
  doi: 10.1016/j.seta.2021.101191
– ident: e_1_2_9_10_1
  doi: 10.1109/TPWRS.2002.800992
– ident: e_1_2_9_5_1
  doi: 10.3390/en11010163
– ident: e_1_2_9_26_1
  doi: 10.1109/ACCESS.2020.3017655
– ident: e_1_2_9_17_1
  doi: 10.1109/ACCESS.2019.2895604
– ident: e_1_2_9_14_1
  doi: 10.1016/j.segan.2020.100406
SSID ssj0055647
Score 2.4368696
Snippet Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak...
Abstract Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2416
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF-1BfGJ9saAXhdg02aS7R99F0FMLvYV9pS3GttSI9OZP8Df6S5zZpLWC6MVTXhN2mZnMN7uZ_ZaQYxFIDbjOvEBz7THjhx7guvAUgGnEhQ2kI_W5f4hbHXbXjboLW31hTVhBD1worg7R04qIS8hkDIAd-FskdSqCRhoaWfJ8-lzMBlNFDI6i2G0tBtjY8HjMmzNiUibqvdwEZ4BqjpTyC4ocY3-VLL8Mx3L6KrPse7bq4OZmjayWeSI9L_q3TpbscINUF9gDN0mGTLsfb-8S4qmhRg6yKR1b-UizEVxDMmq1fMaqZorF7T0KroIrFqnMeqPJIO8_wbsIYob2p7hui2IFeumJ0DQyXbqDqxPfIp2b6_Zlyys3T_A0w5JNSBwi2YDvWfgq1VogLSSkbjoNm2GsLVPcZ9ZXPAwljPokt0ZxnsYNpbTSHJKsbVIZjoZ2h9CwaXUTnkM0UAyG0tJnJlBgUcVjnA2pkZOZHhNdMovjBhdZ4v5wM5GgzhOn8xo5msuOCz6NH6Uu0BxzCeTAdjfAM5LSM5K_PKNGjufG_LWtU2fnX0SS2_ZV4M52_6Nje2QlwEUUbi5nn1TyyYs9gNQmV4fOiz8BEtn0KA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHqQH32JFZVEvCqlpskl3j75FUDxYqKewr7TF2BZNkXryJ_gb_SXObtNiRYqnbJJJdtmdzHybnfkW4IAHQqFfp16gmPKo9kMP_Tr3JDrTiHETCEfqc3sXXzfoTTNqzsHeOBdmav2e8uNWroMq-qAYp-XzcYR4uwTzjbv7k0eX6RjVPBa7XfCKMo_GHKRTD095HUfOX4aFQbcvhm8iy6aBqfMsl0twNm7TKKDkqTrIZVW9_6JrnN3oZVgsgCU5GWnCCsyZ7iqUf9ANrkFmqXm_Pj4FGmBNtOhkQ9I34olkPTxH9GqUeLVh0MRGw7cI6pZNcSQia_VeOnn7GZ-1Xk-T9tAmehEbsl6oLlZtqTHdwQWWr0Pj8uLh7NordlvwFLUxnog0IlFDA8B9mSrFLY8kYj2VhvUwVoZK5lPjSxaGAqeJghktGUvjmpRKKoaobANK3V7XbAIJ60bV8T6aD0lx7i18qgOJKiBZbH-fVOBwPBqJKqjI7Y4YWeKWxClPbA8mrgcrsD-R7Y8IOP6UOrWDOpGwpNnuAg5LUnyDCTpiwyMmEBRrxE1ouiKhUh7U0lALtG4VOJioxMy6jpy2zBBJrh7OA1fa-t87t6GUvwzMDgKcXO4WGv4Ni-n3zA
  priority: 102
  providerName: Unpaywall
Title Week‐ahead daily peak load forecasting using genetic algorithm‐based hybrid convolutional neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12460
https://doi.org/10.1049/gtd2.12460
https://doaj.org/article/847e958a099d4314885acf921f3da003
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0hOLQcUEtbNdBGluDSStvuer0bW-JCCxRVKuJAJHpajT82oG6TKARVufUn8Bv5Jcw4mxQkhNTTfo1lyWPPe_aOnwF2jURHuK4S6bRLlE_zhHDdJJbAtNAmSIyiPj9OyuO--n5enK_A3mIvzFwfYrngxiMjxmse4Gjnp5AQqSUnDqZefiJ0KmnCvpYRkeH-LdXpIg4XRRmPFyN8zBJd6t5CnFSZz__KPoCjqNq_Ds-uh2Oc_cGmechYI-QcvYCNliuK_blzX8JKGG7C-j0FwVfQsNru7d8bpJjqhcfLZibGAX-JZkTPREiDwyvObBac4D4Q1F1416LAZjCaXE4vflNZBjIvLma8d0twFnrbG6lqVruMl5gr_hr6R4dnX4-T9gCFxClO2yTyUGBGY9qktnbOsDQk0TdX5728dEFZnaqQWp3nSDM_1MFbresys9ZZp4lovYHV4WgY3oLIe8H16DtFBKtoOo2p8tKSV60ueUWkAx8W7Vi5Vl2cD7loqviXW5mK27yKbd6BnaXteK6p8ajVF3bH0oJ1sOOL0WRQtcOqImwNptBIPNcTFaJoVKCrjczq3CMFrA7sLp35ZF0fo5-fMKm-nR3IeLf1P8bb8Fzyhom4bvMOVqeT6_CeaMzUdmNv7cZFgC6s9U9O93_eAeMC7-Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZQOKQ5IEpbNTyKpXJppW13vV7HPraFEFpAPQSJ28qvXaJukygkQrnxE_iN_SXMOJsUJITEaV-zWsljz_eNd_yZkAPFtAVc5xGz0kbcxWkEuK4iA2CaSeWZDqI-Z-eid8F_XmaXdW0OroVZ6EOsJtxwZIR4jQMcJ6QXCSdHkcxy6tgXgCcBGfs6F4nA3Ivx38tAnGUi7C8GAJlEUsjOUp2Uq6__332ER0G2v0Was-FYz290VT2mrAFzuptkoyaL9NvCu6_Jmh9ukdYDCcE3pEK53X-3dxqCqqNOD6o5HXv9h1YjuAZG6q2-xtJmihXuJYX-gssWqa7K0WQwvfoL7yKSOXo1x8VbFMvQ6-4In0a5y3AIxeJvyUX3qP-jF9U7KESWY90msIdMJzCoVWwKaxVqQwJ_s0XaSYX13MiY-9jINNWQ-mnpnZGyEIkx1lgJTOsdaQxHQ_-e0LTjbQeeQ0gwHPJpHXPHDLjVSIFTIm3yadmOua3lxXGXiyoPv7m5yrHN89DmbfJxZTteiGo8afUd3bGyQCHscGM0KfN6XOUArl5lUgPRdcCFIBxl2haKJUXqNESsNjlYOfPZb30Ofn7GJD_uH7Jwtv0S433S7PXPTvPTk_NfO-QVw9UTYRJnlzSmk5nfA04zNR9Cz70HqvLwrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6KA019CH2kxE2TCupLC5uud7Vr6Zg0cZ02MTnYIeSy6LW2ycY2rkPxrT-hv7G_pDPy2q0hGHra1wiBRprvk3b0CaAuI2UQ13kQGWECbsM4QFyXgUYwTYR0kfKiPpedtN3jX2-SmzI3h_bCLPQhVgtuNDJ8vKYB7iY2X0w4OYlk9mc2OkJ4SnHGvoVAHvIKbB1f9257y1CcJKk_YQwhshGIVDSX-qRcfvpbeg2RvHB_FbYfRhM1_6GKYp20etRpPYedki6y44V_X8ATN3oJ1X9EBF9BQYK7v3_-UhhWLbNqWMzZxKk7VozxGTmpM-o7JTczynHvM-wxtHGRqaI_ng5ng3ssS1hm2WBO27cYJaKXHRKrJsFLf_Hp4rvQa511P7eD8gyFwHDK3ET-kKgGDmsZ6twYSeqQyOBMHjfj1DiuRchdqEUcK5z8KeGsFiJPG1obbQRyrddQGY1Hbg9Y3HSmid8xKGiOM2oVchtpdKwWKS2K1ODDsh0zUwqM0zkXReZ_dHOZUZtnvs1r8H5lO1nIajxqdULuWFmQFLZ_MZ72s3JkZQivTiZCIdW1yIYwICXK5DJq5LFVGLNqUF85c2NdH72fN5hkX7qnkb978z_G7-Dp1WkruzjvfNuHZxFtn_CrOG-hMps-uAMkNTN9WHbdP_588gE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHqQH32JFZVEvCqlpskl3j75FUDxYqKewr7TF2BZNkXryJ_gb_SXObtNiRYqnbJJJdtmdzHybnfkW4IAHQqFfp16gmPKo9kMP_Tr3JDrTiHETCEfqc3sXXzfoTTNqzsHeOBdmav2e8uNWroMq-qAYp-XzcYR4uwTzjbv7k0eX6RjVPBa7XfCKMo_GHKRTD095HUfOX4aFQbcvhm8iy6aBqfMsl0twNm7TKKDkqTrIZVW9_6JrnN3oZVgsgCU5GWnCCsyZ7iqUf9ANrkFmqXm_Pj4FGmBNtOhkQ9I34olkPTxH9GqUeLVh0MRGw7cI6pZNcSQia_VeOnn7GZ-1Xk-T9tAmehEbsl6oLlZtqTHdwQWWr0Pj8uLh7NordlvwFLUxnog0IlFDA8B9mSrFLY8kYj2VhvUwVoZK5lPjSxaGAqeJghktGUvjmpRKKoaobANK3V7XbAIJ60bV8T6aD0lx7i18qgOJKiBZbH-fVOBwPBqJKqjI7Y4YWeKWxClPbA8mrgcrsD-R7Y8IOP6UOrWDOpGwpNnuAg5LUnyDCTpiwyMmEBRrxE1ouiKhUh7U0lALtG4VOJioxMy6jpy2zBBJrh7OA1fa-t87t6GUvwzMDgKcXO4WGv4Ni-n3zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Week%E2%80%90ahead+daily+peak+load+forecasting+using+genetic+algorithm%E2%80%90based+hybrid+convolutional+neural+network&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Hong%2C+Ying%E2%80%90Yi&rft.au=Chan%2C+Yu%E2%80%90Hsuan&rft.au=Cheng%2C+Yung%E2%80%90Han&rft.au=Lee%2C+Yih%E2%80%90Der&rft.date=2022-06-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=16&rft.issue=12&rft.spage=2416&rft.epage=2424&rft_id=info:doi/10.1049%2Fgtd2.12460&rft.externalDBID=10.1049%252Fgtd2.12460&rft.externalDocID=GTD212460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon