Week‐ahead daily peak load forecasting using genetic algorithm‐based hybrid convolutional neural network
Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategi...
        Saved in:
      
    
          | Published in | IET generation, transmission & distribution Vol. 16; no. 12; pp. 2416 - 2424 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Wiley
    
        01.06.2022
     | 
| Online Access | Get full text | 
| ISSN | 1751-8687 1751-8695 1751-8695  | 
| DOI | 10.1049/gtd2.12460 | 
Cover
| Abstract | Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model. | 
    
|---|---|
| AbstractList | Abstract Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model. Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak load shaving and load management in distribution systems. In power markets, peak load forecasting helps participants develop bidding strategies. This paper proposes a new method, using a hybrid convolutional neural network (CNN) that is cascaded with a fully‐connected network, for making week‐ahead daily peak load forecasts. The proposed method uses three loops to obtain the optimal CNN: The outer loop performs crossover/mutation operations and tournament selection to produce chromosomes to optimize the network topology and hyperparameters (such as kernel size) of the hybrid CNN by genetic algorithms; the middle loop deals with the order of chromosomes; the inner loop optimizes the synaptic weights and parameters (e.g. values of a kernel) using Adam optimizer. Daily peak load data and corresponding meteorological data for Taiwan are explored. Simulation results show that the proposed method outperforms the traditional CNN, multi‐layer neural network, recurrent neural network, support vector regression and vector autoregressive moving average model.  | 
    
| Author | Cheng, Yung‐Han Wang, Shen‐Szu Hong, Ying‐Yi Lee, Yih‐Der Chan, Yu‐Hsuan Jiang, Jheng‐Lun  | 
    
| Author_xml | – sequence: 1 givenname: Ying‐Yi surname: Hong fullname: Hong, Ying‐Yi email: yyhong@ee.cycu.edu.tw organization: Chung Yuan Christian University – sequence: 2 givenname: Yu‐Hsuan surname: Chan fullname: Chan, Yu‐Hsuan organization: Chung Yuan Christian University – sequence: 3 givenname: Yung‐Han surname: Cheng fullname: Cheng, Yung‐Han organization: Chung Yuan Christian University – sequence: 4 givenname: Yih‐Der surname: Lee fullname: Lee, Yih‐Der organization: Institute of Nuclear Energy Research – sequence: 5 givenname: Jheng‐Lun surname: Jiang fullname: Jiang, Jheng‐Lun organization: Institute of Nuclear Energy Research – sequence: 6 givenname: Shen‐Szu surname: Wang fullname: Wang, Shen‐Szu organization: Institute of Nuclear Energy Research  | 
    
| BookMark | eNp9kMFO3DAQhq2KSgXaS58g56JdxrGTOMcKKCAhcaHq0Rrbk6xZE6-cLKvceIQ-Y5-k2U3FoUJcPLb1_5803wk76mJHjH3lsOQg6_N2cPmS57KED-yYVwVfqLIujl7vqvrETvr-EaAoSlkds_CLaP3n5TeuCF3m0Icx2xCusxCndxMTWewH37XZtt-fLXU0eJthaGPyw-pp6hrsyWWr0STvMhu75xi2g48dhqyjbTqMYRfT-jP72GDo6cu_ecp-_rh6uLhZ3N1f3158v1tYySUsOOQF8gpEDaaxtgaQVVGWthGVKC1Jo0ASGCUE5hxQkTNKNSU3xhqrZC5O2e3MdREf9Sb5J0yjjuj14SOmVmOatgiklayoLhRCXTspuFSqQNvUOW-EQwAxsc5m1rbb4LjDEF6BHPReut5L1wfpUxrmtE2x7xM12voB9zKGNLl9u_Ltv8q7fD6Hdz7Q-E5SXz9c5nPnL8egpyA | 
    
| CitedBy_id | crossref_primary_10_1007_s42835_024_01885_w crossref_primary_10_1049_gtd2_13276 crossref_primary_10_1109_ACCESS_2024_3405182 crossref_primary_10_3390_agriculture13081491 crossref_primary_10_3390_su151411123 crossref_primary_10_53759_7669_jmc202303033 crossref_primary_10_3390_app13052998 crossref_primary_10_4018_IJITSA_326757  | 
    
| Cites_doi | 10.1016/j.energy.2011.10.027 10.1049/iet-gtd.2019.0797 10.1109/87.294341 10.1109/APAP47170.2019.9225057 10.1002/eej.22988 10.1016/j.seta.2019.100601 10.1049/iet-gtd.2018.6687 10.1016/j.apenergy.2012.06.009 10.1049/iet-gtd.2017.1745 10.1109/APPEEC45492.2019.8994442 10.1016/j.ijepes.2015.11.046 10.1016/j.segan.2021.100490 10.1109/ICIMCIS48181.2019.8985197 10.1016/j.energy.2018.04.117 10.1016/j.seta.2021.101191 10.1109/TPWRS.2002.800992 10.3390/en11010163 10.1109/ACCESS.2020.3017655 10.1109/ACCESS.2019.2895604 10.1016/j.segan.2020.100406  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/gtd2.12460 | 
    
| DatabaseName | Wiley-Blackwell Open Access Collection CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1751-8695 | 
    
| EndPage | 2424 | 
    
| ExternalDocumentID | oai_doaj_org_article_847e958a099d4314885acf921f3da003 10.1049/gtd2.12460 10_1049_gtd2_12460 GTD212460  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Institute of Nuclear Energy Research funderid: NL1100131 (110A008); NL1110107 (111A010)  | 
    
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 AAYXX AFFHD CITATION IDLOA PHGZM PHGZT PQGLB WIN ADTOC PUEGO UNPAY  | 
    
| ID | FETCH-LOGICAL-c4140-1025a170390bfcc90047566cf3736ce4b804e0b833a210a8edb88f61bbcbc8423 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1751-8687 1751-8695  | 
    
| IngestDate | Fri Oct 03 12:53:26 EDT 2025 Sun Sep 07 10:59:32 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Wed Oct 29 21:26:50 EDT 2025 Wed Jan 22 16:25:46 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial-NoDerivs | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4140-1025a170390bfcc90047566cf3736ce4b804e0b833a210a8edb88f61bbcbc8423 | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12460 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_847e958a099d4314885acf921f3da003 unpaywall_primary_10_1049_gtd2_12460 crossref_citationtrail_10_1049_gtd2_12460 crossref_primary_10_1049_gtd2_12460 wiley_primary_10_1049_gtd2_12460_GTD212460  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2022 2022-06-00 2022-06-01  | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IET generation, transmission & distribution | 
    
| PublicationYear | 2022 | 
    
| Publisher | Wiley | 
    
| Publisher_xml | – name: Wiley | 
    
| References | 2020; 8 2002; 17 2019; 7 2021; 27 2018; 154 2021; 45 2019; 13 2013; 101 2019 2020; 38 1997 2020; 14 2017 2020; 24 2015 2011; 36 2018; 12 2018; 11 2017; 201 1994; 2 2013; 6 2016; 77 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Hope T. (e_1_2_9_22_1) 2017 Simionescu M. (e_1_2_9_27_1) 2013; 6 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Gen M. (e_1_2_9_23_1) 1997 e_1_2_9_20_1 e_1_2_9_24_1 Gulli A. (e_1_2_9_21_1) 2017 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Khanna R. (e_1_2_9_25_1) 2015 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1  | 
    
| References_xml | – volume: 201 start-page: 57 issue: 1 year: 2017 end-page: 65 article-title: Daily peak load forecasting by Taguchi's T method publication-title: Electr. Eng. Jpn. – volume: 45 year: 2021 article-title: Photovoltaic generation power prediction research based on high quality context ontology and gated recurrent neural network publication-title: Sustainable Energy Technol. Assess. – volume: 101 start-page: 489 year: 2013 end-page: 501 article-title: A new hybrid day‐ahead peak load forecasting method for Iran's National Grid publication-title: Appl. Energy – volume: 154 start-page: 383 year: 2018 end-page: 389 article-title: ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand publication-title: Energy – volume: 11 start-page: 163 year: 2018 article-title: Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm publication-title: Energies – volume: 27 year: 2021 article-title: Non‐intrusive load transient identification based on multivariate LSTM neural network and time series data augmentation publication-title: Sustainable Energy Grids Networks – volume: 8 start-page: 158928 year: 2020 end-page: 158940 article-title: Industrial ultra‐short‐term load forecasting with data completion publication-title: IEEE Access – volume: 13 start-page: 3847 issue: 17 year: 2019 end-page: 3854 article-title: Short‐term power load forecasting based on multi‐layer bidirectional recurrent neural network publication-title: IET Gener. Transm. Distrib. – year: 1997 – volume: 7 start-page: 17184 year: 2019 end-page: 17194 article-title: Deep learning for daily peak load forecasting‐ a novel gated recurrent neural network combining dynamic time warping publication-title: IEEE Access – volume: 2 start-page: 135 issue: 2 year: 1994 end-page: 141 article-title: A specification of neural network applications in the load forecasting problem publication-title: IEEE Trans. Control Syst. Technol. – volume: 12 start-page: 3270 issue: 13 year: 2018 end-page: 3278 article-title: Distribution feeder‐level day‐ahead peak load forecasting methods and comparative study publication-title: IET Gener. Transm. Distrib. – volume: 24 year: 2020 article-title: Locational marginal price forecasting in a day‐ahead power market using spatiotemporal deep learning network publication-title: Sustainable Energy Grids Networks – year: 2017 – volume: 36 start-page: 6763 year: 2011 end-page: 6769 article-title: Forecasting of peak electricity demand in Mauritius using the non‐homogeneous Gompertz diffusion process publication-title: Energy – volume: 6( start-page: 94 issue: 2 year: 2013 end-page: 102 article-title: The use of VARMA models in forecasting macroeconomic indicators publication-title: Recent Issues Eco. Dev. – year: 2019 – volume: 38 year: 2020 article-title: Short‐term wind speed forecasting framework based on stacked denoising auto‐encoders with rough ANN publication-title: Sustainable Energy Technol. Assess. – volume: 14 start-page: 845 issue: 5 year: 2020 end-page: 852 article-title: Mid‐term electricity load forecasting by a new composite method based on optimal learning MLP algorithm publication-title: IET Gener. Transm. Distrib. – year: 2015 – volume: 77 start-page: 136 year: 2016 end-page: 144 article-title: Daily peak electricity demand forecasting based on an adaptive hybrid two‐stage methodology publication-title: Electr. Power Energy Syst. – volume: 17 start-page: 907 issue: 3 year: 2002 end-page: 912 article-title: Artificial neural network‐based peak load forecasting using conjugate gradient methods publication-title: IEEE Trans. Power Syst. – ident: e_1_2_9_9_1 doi: 10.1016/j.energy.2011.10.027 – volume-title: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers year: 2015 ident: e_1_2_9_25_1 – ident: e_1_2_9_12_1 doi: 10.1049/iet-gtd.2019.0797 – ident: e_1_2_9_11_1 doi: 10.1109/87.294341 – ident: e_1_2_9_28_1 – ident: e_1_2_9_7_1 doi: 10.1109/APAP47170.2019.9225057 – ident: e_1_2_9_3_1 doi: 10.1002/eej.22988 – volume: 6 start-page: 94 issue: 2 year: 2013 ident: e_1_2_9_27_1 article-title: The use of VARMA models in forecasting macroeconomic indicators publication-title: Recent Issues Eco. Dev. – ident: e_1_2_9_16_1 doi: 10.1016/j.seta.2019.100601 – ident: e_1_2_9_20_1 doi: 10.1049/iet-gtd.2018.6687 – ident: e_1_2_9_8_1 doi: 10.1016/j.apenergy.2012.06.009 – volume-title: Learning TensorFlow year: 2017 ident: e_1_2_9_22_1 – ident: e_1_2_9_4_1 doi: 10.1049/iet-gtd.2017.1745 – volume-title: Genetic Algorithms and Engineering Design. year: 1997 ident: e_1_2_9_23_1 – ident: e_1_2_9_18_1 doi: 10.1109/APPEEC45492.2019.8994442 – ident: e_1_2_9_24_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.ijepes.2015.11.046 – ident: e_1_2_9_13_1 doi: 10.1016/j.segan.2021.100490 – ident: e_1_2_9_19_1 doi: 10.1109/ICIMCIS48181.2019.8985197 – volume-title: Deep Learning with Keras year: 2017 ident: e_1_2_9_21_1 – ident: e_1_2_9_2_1 doi: 10.1016/j.energy.2018.04.117 – ident: e_1_2_9_15_1 doi: 10.1016/j.seta.2021.101191 – ident: e_1_2_9_10_1 doi: 10.1109/TPWRS.2002.800992 – ident: e_1_2_9_5_1 doi: 10.3390/en11010163 – ident: e_1_2_9_26_1 doi: 10.1109/ACCESS.2020.3017655 – ident: e_1_2_9_17_1 doi: 10.1109/ACCESS.2019.2895604 – ident: e_1_2_9_14_1 doi: 10.1016/j.segan.2020.100406  | 
    
| SSID | ssj0055647 | 
    
| Score | 2.4368696 | 
    
| Snippet | Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential for peak... Abstract Daily peak load forecasting is crucial for the operation of bulk power systems, including economic dispatch and unit commitment. It is also essential...  | 
    
| SourceID | doaj unpaywall crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 2416 | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF-1BfGJ9saAXhdg02aS7R99F0FMLvYV9pS3GttSI9OZP8Df6S5zZpLWC6MVTXhN2mZnMN7uZ_ZaQYxFIDbjOvEBz7THjhx7guvAUgGnEhQ2kI_W5f4hbHXbXjboLW31hTVhBD1worg7R04qIS8hkDIAd-FskdSqCRhoaWfJ8-lzMBlNFDI6i2G0tBtjY8HjMmzNiUibqvdwEZ4BqjpTyC4ocY3-VLL8Mx3L6KrPse7bq4OZmjayWeSI9L_q3TpbscINUF9gDN0mGTLsfb-8S4qmhRg6yKR1b-UizEVxDMmq1fMaqZorF7T0KroIrFqnMeqPJIO8_wbsIYob2p7hui2IFeumJ0DQyXbqDqxPfIp2b6_Zlyys3T_A0w5JNSBwi2YDvWfgq1VogLSSkbjoNm2GsLVPcZ9ZXPAwljPokt0ZxnsYNpbTSHJKsbVIZjoZ2h9CwaXUTnkM0UAyG0tJnJlBgUcVjnA2pkZOZHhNdMovjBhdZ4v5wM5GgzhOn8xo5msuOCz6NH6Uu0BxzCeTAdjfAM5LSM5K_PKNGjufG_LWtU2fnX0SS2_ZV4M52_6Nje2QlwEUUbi5nn1TyyYs9gNQmV4fOiz8BEtn0KA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHqQH32JFZVEvCqlpskl3j75FUDxYqKewr7TF2BZNkXryJ_gb_SXObtNiRYqnbJJJdtmdzHybnfkW4IAHQqFfp16gmPKo9kMP_Tr3JDrTiHETCEfqc3sXXzfoTTNqzsHeOBdmav2e8uNWroMq-qAYp-XzcYR4uwTzjbv7k0eX6RjVPBa7XfCKMo_GHKRTD095HUfOX4aFQbcvhm8iy6aBqfMsl0twNm7TKKDkqTrIZVW9_6JrnN3oZVgsgCU5GWnCCsyZ7iqUf9ANrkFmqXm_Pj4FGmBNtOhkQ9I34olkPTxH9GqUeLVh0MRGw7cI6pZNcSQia_VeOnn7GZ-1Xk-T9tAmehEbsl6oLlZtqTHdwQWWr0Pj8uLh7NordlvwFLUxnog0IlFDA8B9mSrFLY8kYj2VhvUwVoZK5lPjSxaGAqeJghktGUvjmpRKKoaobANK3V7XbAIJ60bV8T6aD0lx7i18qgOJKiBZbH-fVOBwPBqJKqjI7Y4YWeKWxClPbA8mrgcrsD-R7Y8IOP6UOrWDOpGwpNnuAg5LUnyDCTpiwyMmEBRrxE1ouiKhUh7U0lALtG4VOJioxMy6jpy2zBBJrh7OA1fa-t87t6GUvwzMDgKcXO4WGv4Ni-n3zA priority: 102 providerName: Unpaywall  | 
    
| Title | Week‐ahead daily peak load forecasting using genetic algorithm‐based hybrid convolutional neural network | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12460 https://doi.org/10.1049/gtd2.12460 https://doaj.org/article/847e958a099d4314885acf921f3da003  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8695 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley-Blackwell Open Access Collection customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0hOLQcUEtbNdBGluDSStvuer0bW-JCCxRVKuJAJHpajT82oG6TKARVufUn8Bv5Jcw4mxQkhNTTfo1lyWPPe_aOnwF2jURHuK4S6bRLlE_zhHDdJJbAtNAmSIyiPj9OyuO--n5enK_A3mIvzFwfYrngxiMjxmse4Gjnp5AQqSUnDqZefiJ0KmnCvpYRkeH-LdXpIg4XRRmPFyN8zBJd6t5CnFSZz__KPoCjqNq_Ds-uh2Oc_cGmechYI-QcvYCNliuK_blzX8JKGG7C-j0FwVfQsNru7d8bpJjqhcfLZibGAX-JZkTPREiDwyvObBac4D4Q1F1416LAZjCaXE4vflNZBjIvLma8d0twFnrbG6lqVruMl5gr_hr6R4dnX4-T9gCFxClO2yTyUGBGY9qktnbOsDQk0TdX5728dEFZnaqQWp3nSDM_1MFbresys9ZZp4lovYHV4WgY3oLIe8H16DtFBKtoOo2p8tKSV60ueUWkAx8W7Vi5Vl2cD7loqviXW5mK27yKbd6BnaXteK6p8ajVF3bH0oJ1sOOL0WRQtcOqImwNptBIPNcTFaJoVKCrjczq3CMFrA7sLp35ZF0fo5-fMKm-nR3IeLf1P8bb8Fzyhom4bvMOVqeT6_CeaMzUdmNv7cZFgC6s9U9O93_eAeMC7-Y | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZQOKQ5IEpbNTyKpXJppW13vV7HPraFEFpAPQSJ28qvXaJukygkQrnxE_iN_SXMOJsUJITEaV-zWsljz_eNd_yZkAPFtAVc5xGz0kbcxWkEuK4iA2CaSeWZDqI-Z-eid8F_XmaXdW0OroVZ6EOsJtxwZIR4jQMcJ6QXCSdHkcxy6tgXgCcBGfs6F4nA3Ivx38tAnGUi7C8GAJlEUsjOUp2Uq6__332ER0G2v0Was-FYz290VT2mrAFzuptkoyaL9NvCu6_Jmh9ukdYDCcE3pEK53X-3dxqCqqNOD6o5HXv9h1YjuAZG6q2-xtJmihXuJYX-gssWqa7K0WQwvfoL7yKSOXo1x8VbFMvQ6-4In0a5y3AIxeJvyUX3qP-jF9U7KESWY90msIdMJzCoVWwKaxVqQwJ_s0XaSYX13MiY-9jINNWQ-mnpnZGyEIkx1lgJTOsdaQxHQ_-e0LTjbQeeQ0gwHPJpHXPHDLjVSIFTIm3yadmOua3lxXGXiyoPv7m5yrHN89DmbfJxZTteiGo8afUd3bGyQCHscGM0KfN6XOUArl5lUgPRdcCFIBxl2haKJUXqNESsNjlYOfPZb30Ofn7GJD_uH7Jwtv0S433S7PXPTvPTk_NfO-QVw9UTYRJnlzSmk5nfA04zNR9Cz70HqvLwrQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6KA019CH2kxE2TCupLC5uud7Vr6Zg0cZ02MTnYIeSy6LW2ycY2rkPxrT-hv7G_pDPy2q0hGHra1wiBRprvk3b0CaAuI2UQ13kQGWECbsM4QFyXgUYwTYR0kfKiPpedtN3jX2-SmzI3h_bCLPQhVgtuNDJ8vKYB7iY2X0w4OYlk9mc2OkJ4SnHGvoVAHvIKbB1f9257y1CcJKk_YQwhshGIVDSX-qRcfvpbeg2RvHB_FbYfRhM1_6GKYp20etRpPYedki6y44V_X8ATN3oJ1X9EBF9BQYK7v3_-UhhWLbNqWMzZxKk7VozxGTmpM-o7JTczynHvM-wxtHGRqaI_ng5ng3ssS1hm2WBO27cYJaKXHRKrJsFLf_Hp4rvQa511P7eD8gyFwHDK3ET-kKgGDmsZ6twYSeqQyOBMHjfj1DiuRchdqEUcK5z8KeGsFiJPG1obbQRyrddQGY1Hbg9Y3HSmid8xKGiOM2oVchtpdKwWKS2K1ODDsh0zUwqM0zkXReZ_dHOZUZtnvs1r8H5lO1nIajxqdULuWFmQFLZ_MZ72s3JkZQivTiZCIdW1yIYwICXK5DJq5LFVGLNqUF85c2NdH72fN5hkX7qnkb978z_G7-Dp1WkruzjvfNuHZxFtn_CrOG-hMps-uAMkNTN9WHbdP_588gE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHqQH32JFZVEvCqlpskl3j75FUDxYqKewr7TF2BZNkXryJ_gb_SXObtNiRYqnbJJJdtmdzHybnfkW4IAHQqFfp16gmPKo9kMP_Tr3JDrTiHETCEfqc3sXXzfoTTNqzsHeOBdmav2e8uNWroMq-qAYp-XzcYR4uwTzjbv7k0eX6RjVPBa7XfCKMo_GHKRTD095HUfOX4aFQbcvhm8iy6aBqfMsl0twNm7TKKDkqTrIZVW9_6JrnN3oZVgsgCU5GWnCCsyZ7iqUf9ANrkFmqXm_Pj4FGmBNtOhkQ9I34olkPTxH9GqUeLVh0MRGw7cI6pZNcSQia_VeOnn7GZ-1Xk-T9tAmehEbsl6oLlZtqTHdwQWWr0Pj8uLh7NordlvwFLUxnog0IlFDA8B9mSrFLY8kYj2VhvUwVoZK5lPjSxaGAqeJghktGUvjmpRKKoaobANK3V7XbAIJ60bV8T6aD0lx7i18qgOJKiBZbH-fVOBwPBqJKqjI7Y4YWeKWxClPbA8mrgcrsD-R7Y8IOP6UOrWDOpGwpNnuAg5LUnyDCTpiwyMmEBRrxE1ouiKhUh7U0lALtG4VOJioxMy6jpy2zBBJrh7OA1fa-t87t6GUvwzMDgKcXO4WGv4Ni-n3zA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Week%E2%80%90ahead+daily+peak+load+forecasting+using+genetic+algorithm%E2%80%90based+hybrid+convolutional+neural+network&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Hong%2C+Ying%E2%80%90Yi&rft.au=Chan%2C+Yu%E2%80%90Hsuan&rft.au=Cheng%2C+Yung%E2%80%90Han&rft.au=Lee%2C+Yih%E2%80%90Der&rft.date=2022-06-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=16&rft.issue=12&rft.spage=2416&rft.epage=2424&rft_id=info:doi/10.1049%2Fgtd2.12460&rft.externalDBID=10.1049%252Fgtd2.12460&rft.externalDocID=GTD212460 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |