Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions
As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and po...
        Saved in:
      
    
          | Published in | Chinese journal of mechanical engineering Vol. 27; no. 6; pp. 1099 - 1111 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          Chinese Mechanical Engineering Society
    
        01.11.2014
     Springer Nature B.V Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China  | 
| Edition | English ed. | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-9345 2192-8258  | 
| DOI | 10.3901/CJME.2014.0820.138 | 
Cover
| Abstract | As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. | 
    
|---|---|
| AbstractList | As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of the material volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems.  | 
    
| Author | PENG Lei LIU Li LONG Teng GUO Xiaosong | 
    
| AuthorAffiliation | Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China | 
    
| AuthorAffiliation_xml | – name: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China | 
    
| Author_xml | – sequence: 1 givenname: Lei surname: Peng fullname: Peng, Lei organization: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology – sequence: 2 givenname: Li surname: Liu fullname: Liu, Li organization: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology – sequence: 3 givenname: Teng surname: Long fullname: Long, Teng email: bitryu@gmail.com, tenglong@bit.edu.cn organization: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology – sequence: 4 givenname: Xiaosong surname: Guo fullname: Guo, Xiaosong organization: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology  | 
    
| BookMark | eNp9kUtv1DAUhSNUJKaFP8DKgg0sMvjaeThLZjrDQ62KKKwtJ7nOeMjYqZ2hAxv-Og5TFamLrixL3znn6pzT5MQ6i0nyEuicVxTeLT9fruaMQjangtE5cPEkmTGoWCpYLk6SGVBK04pn-bPkNIRt_BUAYpb8ucabPdrRqJ58XazJ9d5716kR01oFbMlKa9OYCJCrYTQ781uNxllyiePGtUQ7T1a2MxbRG9uRcwyms-SLd3WPu0Buzbghq8OANpifSBa9an6kC3cg671tJqPwPHmqVR_wxd17lnxfr74tP6YXVx8-Ld9fpE0GfEx1kwNgCXlbY4uqhroAnVOl64prjbTQTLEMEEC1ecUqjlSLkgsoMyryhvOz5O3R91ZZrWwnt27vbUyU20PXHGqJU3u0oJRF9s2RHbyL5YRR7kxosO-VRbcPEoqICV5AHtHXD9B7X8byipcxfwpnR6rxLgSPWg7e7JT_JYHKaT857SenC-S0n4z7RZF4IGrM-K_90SvTPy7lR2kYplnQ_7_qUdWru8CNs91NFN6fWRScirLKSv4XkRS9mg | 
    
| CitedBy_id | crossref_primary_10_2514_1_J054832 crossref_primary_10_1007_s00158_019_02217_7 crossref_primary_10_1080_00207543_2020_1790686 crossref_primary_10_1007_s00158_020_02592_6 crossref_primary_10_1016_j_ast_2019_105496  | 
    
| Cites_doi | 10.1016/j.paerosci.2005.02.001 10.3901/CJME.2012.04.768 10.1115/1.2803251 10.1115/1.1561044 10.1080/10556788.2011.623162 10.1080/00401706.2000.10485979 10.1016/j.cor.2012.08.022 10.1007/s00158-006-0025-y 10.3901/CJME.2013.05.928 10.1016/j.jspi.2004.02.014 10.1023/A:1011255519438 10.1080/03052150500422294 10.1007/s00158-001-0160-4 10.1115/1.2429697 10.1007/s00158-014-1050-x 10.1007/s10898-005-3693-z 10.1002/nme.899 10.2514/1.9114 10.1007/s11081-010-9118-y 10.1080/03052150108940940 10.1080/03052150310001639911 10.1137/0907043 10.1080/03052150903386674 10.1080/03052150410001686486 10.1016/0378-3758(90)90122-B 10.2514/1.27969 10.2514/3.10768 10.1007/s00158-008-0295-7 10.1080/03052150211751 10.1007/BF01197433 10.2514/2.1234 10.1016/S0278-6125(03)80041-9 10.1016/j.paerosci.2008.11.001 10.1166/asl.2012.1847 10.1115/1.4003035 10.1016/0378-3758(94)00035-T 10.1007/BF00892986 10.1023/A:1008306431147 10.1090/S0025-5718-00-01281-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014 Chinese Journal of Mechanical Engineering is a copyright of Springer, (2014). All Rights Reserved. Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014 – notice: Chinese Journal of Mechanical Engineering is a copyright of Springer, (2014). All Rights Reserved. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7TB 8FD FR3 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.3901/CJME.2014.0820.138 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database  | 
    
| DatabaseTitleList | Technology Research Database Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitleAlternate | Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions | 
    
| EISSN | 2192-8258 | 
    
| Edition | English ed. | 
    
| EndPage | 1111 | 
    
| ExternalDocumentID | jxgcxb_e201406002 10_3901_CJME_2014_0820_138 663087947  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; Aeronautical Science Foundation of China; Excellent Young Scholars Research Fund of Beijing Institute of Technology; Foundation Research Fund of Beijing Institute of Technology funderid: (Grant .51105040,11372036); (Grant .2011ZA72003,2009ZA72002); (Grant 2010Y0102); (Grant 20130142008)  | 
    
| GroupedDBID | -03 -0C -SC -S~ 06D 0R~ 0VY 29B 29~ 2B. 2C0 2RA 30V 4.4 5VR 8FE 8FG 92H 92I 92L 92M 96X 9D9 9DC AAIAL AAJKR AAKKN AARHV AARTL AAWCG AAYIU AAYQN AAYTO AAYZJ AAZMS ABFTD ABJCF ABJOX ABTHY ABTMW ACACY ACCUX ACGFS ACKNC ADBBV ADHIR ADINQ AEBTG AEGNC AEJHL AENEX AEOHA AEPYU AETCA AFGXO AFKRA AFLOW AFNRJ AFUIB AFWTZ AFZKB AGAYW AGQMX AGWZB AGYKE AHAVH AHBXF AHBYD AHKAY AHSBF AIIXL AJBLW AJRNO AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP ANMIH AUKKA BAPOH BCNDV BENPR BGLVJ BGNMA C24 C6C CAJUS CCEZO CCPQU CEKLB CHBEP CQIGP CS3 CW9 DU5 EBS EJD ESBYG FA0 FIGPU FRRFC FYJPI GGRSB GQ6 GQ7 GROUPED_DOAJ HCIFZ HF~ HMJXF HRMNR HZ~ I0C JBSCW JUIAU KOV L6V M4Y M7S NU0 O9- OK1 PIMPY PROAC PTHSS Q-- Q-2 R-C RLLFE RSV RT3 SCL SDH SEG SHX SNX SOJ T8S TCJ TGT U1F U1G U2A U5C U5M UG4 VC2 W48 W92 ~A9 ~M1 ~WA AAXDM ABEEZ ACULB ADMLS AFBBN CAJEC AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION FDB PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7TB 8FD FR3 4A8 93N PMFND PSX  | 
    
| ID | FETCH-LOGICAL-c413t-fc511e715dbedeab1b61f50afb93ffe06f2a241e11ad59293e0f8738174085c33 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1000-9345 | 
    
| IngestDate | Thu May 29 04:10:08 EDT 2025 Thu Sep 04 20:32:48 EDT 2025 Wed Oct 08 14:21:05 EDT 2025 Wed Oct 01 02:25:09 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Fri Feb 21 02:29:05 EST 2025 Wed Feb 14 10:33:31 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | surrogate-based optimization adaptive surrogate radial basis function significant sampling space global optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c413t-fc511e715dbedeab1b61f50afb93ffe06f2a241e11ad59293e0f8738174085c33 | 
    
| Notes | As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. 11-2737/TH surrogate-based optimization, global optimization, significant sampling space, adaptive surrogate, radial basis function ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2259377403?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2259377403 | 
    
| PQPubID | 4406321 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | wanfang_journals_jxgcxb_e201406002 proquest_miscellaneous_1660083615 proquest_journals_2259377403 crossref_primary_10_3901_CJME_2014_0820_138 crossref_citationtrail_10_3901_CJME_2014_0820_138 springer_journals_10_3901_CJME_2014_0820_138 chongqing_primary_663087947  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-11-01 | 
    
| PublicationDateYYYYMMDD | 2014-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing – name: Heidelberg  | 
    
| PublicationTitle | Chinese journal of mechanical engineering | 
    
| PublicationTitleAbbrev | Chin. J. Mech. Eng | 
    
| PublicationTitleAlternate | Chinese Journal of Mechanical Engineering | 
    
| PublicationTitle_FL | Chinese Journal of Mechanical Engineering | 
    
| PublicationYear | 2014 | 
    
| Publisher | Chinese Mechanical Engineering Society Springer Nature B.V Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China  | 
    
| Publisher_xml | – name: Chinese Mechanical Engineering Society – name: Springer Nature B.V – name: Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China  | 
    
| References | Morris, Mitchell (CR39) 1995; 43 Long, Liu, Peng (CR29) 2012; 5 Viana, Haftka (CR43) 2010 Leary, Bhaskar, Keane (CR10) 2004; 42 Gano, Renaud, Martin (CR17) 2006; 32 Jin, Chen, Sudjianto (CR36) 2005; 134 Dyn, Levin, Rippa (CR4) 1986; 7 Peng, Liu, Long (CR42) 2012 Jones, Schonlau, Welch (CR14) 1998; 13 Viana, Haftka, Watson (CR44) 2010 Young, Cao, Patel (CR11) 2007; 30 Zhu, Liu, Long (CR31) 2011; 25 Long, Liu, Peng (CR30) 2012 Simpson, Mistree (CR13) 2001; 39 Queipo, Haftka, Shyy (CR34) 2005; 41 Conn, Le (CR28) 2013; 28 Lemonge, Barbosa (CR1) 2004; 59 Peng, Liu, Long (CR33) 2014; 50 Hedar, Fukushima (CR2) 2006; 35 Haftka (CR18) 1991; 29 Gutmann (CR9) 2001; 19 Panayi, Diaz, Schock (CR22) 2009; 38 Cressie (CR6) 1988; 20 Alexandrov, Dennis, Lewis (CR16) 1998; 15 Johnson, Moore, Ylvisaker (CR37) 1990; 26 Kazemi, Wang, Rahnamayan (CR41) 2011; 133 Jin, Chen, Simpson (CR8) 2001; 23 Fang, Horstemeyer (CR5) 2006; 38 Wang, Dong, Aitchison (CR19) 2001; 33 Wang (CR20) 2003; 125 Younis, Dong (CR7) 2010; 42 Booker (CR12) 1998 Muller, Shoemaker, Piche (CR26) 2013; 40 Mckay, Beckman, Conover (CR38) 2000; 42 Wang, Shan (CR3) 2007; 129 Sasena, Papalambros, Goovaerts (CR15) 2002; 34 Wong, Wang (CR21) 2003; 22 Wang, Shan, Wang (CR24) 2004; 36 Fang, Ma, Winker (CR40) 2002; 71 Li, Liu, Long (CR32) 2013; 26 Forrester, Keane (CR35) 2009; 45 Sharif, Wang, Elmekkawy (CR25) 2008; 130 Kitayama, Arakawa, Yamazaki (CR27) 2011; 12 Wang, Simpson (CR23) 2004; 36 M J Sasena (820_CR15) 2002; 34 L Q Wang (820_CR24) 2004; 36 R Jin (820_CR8) 2001; 23 A Younis (820_CR7) 2010; 42 S J Leary (820_CR10) 2004; 42 G G Wang (820_CR19) 2001; 33 H B Fang (820_CR5) 2006; 38 D R Jones (820_CR14) 1998; 13 A C C Lemonge (820_CR1) 2004; 59 H M Gutmann (820_CR9) 2001; 19 G G Wang (820_CR3) 2007; 129 M Kazemi (820_CR41) 2011; 133 A P Panayi (820_CR22) 2009; 38 A R Hedar (820_CR2) 2006; 35 T W Simpson (820_CR13) 2001; 39 N M Alexandrov (820_CR16) 1998; 15 F Viana (820_CR43) 2010 N Dyn (820_CR4) 1986; 7 M E Johnson (820_CR37) 1990; 26 G G Wang (820_CR20) 2003; 125 M D Morris (820_CR39) 1995; 43 L Peng (820_CR33) 2014; 50 R T Haftka (820_CR18) 1991; 29 G G Wang (820_CR23) 2004; 36 A R Conn (820_CR28) 2013; 28 T Long (820_CR30) 2012 T Long (820_CR29) 2012; 5 L M Wong (820_CR21) 2003; 22 L Peng (820_CR42) 2012 N V Queipo (820_CR34) 2005; 41 S Kitayama (820_CR27) 2011; 12 Y L Li (820_CR32) 2013; 26 R C Jin (820_CR36) 2005; 134 M D Mckay (820_CR38) 2000; 42 S E Gano (820_CR17) 2006; 32 H G Zhu (820_CR31) 2011; 25 A Young (820_CR11) 2007; 30 F Viana (820_CR44) 2010 N Cressie (820_CR6) 1988; 20 A J Booker (820_CR12) 1998 K T Fang (820_CR40) 2002; 71 J Muller (820_CR26) 2013; 40 B Sharif (820_CR25) 2008; 130 A I J Forrester (820_CR35) 2009; 45  | 
    
| References_xml | – volume: 41 start-page: 1 issue: 1 year: 2005 end-page: 28 ident: CR34 article-title: Surrogate-based analysis and optimization[J] publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2005.02.001 – volume: 25 start-page: 768 issue: 4 year: 2011 end-page: 775 ident: CR31 article-title: Global optimization method using SLE and adaptive RBF based on fuzzy clustering[J] publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/CJME.2012.04.768 – volume: 130 start-page: 1 issue: 2 year: 2008 end-page: 11 ident: CR25 article-title: Mode pursuing sampling method for discrete variable optimization on expensive black-box functions[J] publication-title: Journal of Mechanical Design doi: 10.1115/1.2803251 – year: 2010 ident: CR43 article-title: Surrogate-based optimization with parallel simulations using the probability of improvement[C] publication-title: , Fort Worth, TX, USA – volume: 125 start-page: 210 issue: 2 year: 2003 end-page: 220 ident: CR20 article-title: Adaptive response surface method using inherited latin hypercube design points[J] publication-title: Journal of Mechanical Design doi: 10.1115/1.1561044 – volume: 28 start-page: 139 issue: 1 year: 2013 end-page: 158 ident: CR28 article-title: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization[J] publication-title: Optimization Methods & Software doi: 10.1080/10556788.2011.623162 – volume: 42 start-page: 55 issue: 1 year: 2000 end-page: 61 ident: CR38 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J] publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – year: 2012 ident: CR42 article-title: Study of sequential radial basis function for computation-intensive design optimization problem[C] publication-title: , Indianapolis, Indiana – volume: 40 start-page: 1383 issue: 5 year: 2013 end-page: 1400 ident: CR26 article-title: SO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems[J] publication-title: Computers & Operations Research doi: 10.1016/j.cor.2012.08.022 – volume: 32 start-page: 287 issue: 4 year: 2006 end-page: 298 ident: CR17 article-title: Update strategies for kriging models used in variable fidelity optimization[J] publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-006-0025-y – volume: 26 start-page: 928 issue: 5 year: 2013 end-page: 939 ident: CR32 article-title: Metamodel-based global optimization using fuzzy clustering for design space reduction[J] publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/CJME.2013.05.928 – volume: 134 start-page: 268 issue: 1 year: 2005 end-page: 287 ident: CR36 article-title: An efficient algorithm constrcting optimal design of computer experiment[J] publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2004.02.014 – volume: 19 start-page: 201 issue: 3 year: 2001 end-page: 227 ident: CR9 article-title: A radial basis function method for global optimization[J] publication-title: Journal of Global Optimization doi: 10.1023/A:1011255519438 – volume: 38 start-page: 407 issue: 4 year: 2006 end-page: 424 ident: CR5 article-title: Global response approximation with radial basis functions[J] publication-title: Engineering Optimization doi: 10.1080/03052150500422294 – volume: 23 start-page: 1 issue: 1 year: 2001 end-page: 13 ident: CR8 article-title: Comparative studies of metamodeling techniques under multiple modeling critieria[J] publication-title: Structure and Multidisciplinary Optimization doi: 10.1007/s00158-001-0160-4 – volume: 129 start-page: 370 issue: 4 year: 2007 end-page: 380 ident: CR3 article-title: Review of metamodeling techniques in support of engineering design optimization[J] publication-title: Journal of Mechanical Design doi: 10.1115/1.2429697 – volume: 50 start-page: 329 issue: 2 year: 2014 end-page: 346 ident: CR33 article-title: An efficient truss structure optimization framework based on CAD/CAE integration and sequential radial basis function metamodel[J] publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-014-1050-x – year: 2010 ident: CR44 article-title: Why not run the efficient global optimization algorithm with multiple surrogates?[C] publication-title: , Orlando, FL, USA – volume: 35 start-page: 521 issue: 4 year: 2006 end-page: 549 ident: CR2 article-title: Derivative-free filter simulated annealing method for constrained continuous global optimization[J] publication-title: Journal of Global Optimization doi: 10.1007/s10898-005-3693-z – volume: 59 start-page: 703 issue: 5 year: 2004 end-page: 736 ident: CR1 article-title: An adaptive penalty scheme for genetic algorithms in structural optimization[J] publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.899 – volume: 42 start-page: 631 issue: 3 year: 2004 end-page: 641 ident: CR10 article-title: Global approximation and optimization using adjoint computational fluid dynamics codes[J] publication-title: AIAA Journal doi: 10.2514/1.9114 – volume: 12 start-page: 535 issue: 4 year: 2011 end-page: 557 ident: CR27 article-title: Sequential approximate optimization using radial basis function network for engineering optimization[J] publication-title: Optimization and Engineering doi: 10.1007/s11081-010-9118-y – volume: 33 start-page: 707 issue: 6 year: 2001 end-page: 733 ident: CR19 article-title: Adaptive response surface method a global optimization scheme for approximation-based design problems[J] publication-title: Engineering Optimization doi: 10.1080/03052150108940940 – volume: 36 start-page: 313 issue: 3 year: 2004 end-page: 335 ident: CR23 article-title: Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization[J] publication-title: Engineering Optimization doi: 10.1080/03052150310001639911 – volume: 7 start-page: 639 issue: 2 year: 1986 end-page: 659 ident: CR4 article-title: Numerical procedures for surface fitting of scattered data by radial functions[J] publication-title: Siam Journal on Scientific and Statistical Computing doi: 10.1137/0907043 – volume: 42 start-page: 691 issue: 8 year: 2010 end-page: 718 ident: CR7 article-title: Trends, features, and tests of common and recently introduced global optimization methods[J] publication-title: Engineering Optimization doi: 10.1080/03052150903386674 – volume: 36 start-page: 419 issue: 4 year: 2004 end-page: 438 ident: CR24 article-title: Mode-pursuing sampling method for global optimization on expensive black-box functions[J] publication-title: Engineering Optimization doi: 10.1080/03052150410001686486 – volume: 26 start-page: 131 issue: 2 year: 1990 end-page: 148 ident: CR37 article-title: Minmax and maximin distance design[J] publication-title: Journal of Statistical Planning and Inference doi: 10.1016/0378-3758(90)90122-B – volume: 30 start-page: 1770 issue: 6 year: 2007 end-page: 1782 ident: CR11 article-title: Adaptive control design methodology for nonlinearin control systems in aircraft applications[J] publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.27969 – volume: 29 start-page: 1523 issue: 9 year: 1991 end-page: 1525 ident: CR18 article-title: Combining global and local approximations[J] publication-title: AIAA Journal doi: 10.2514/3.10768 – volume: 38 start-page: 317 issue: 3 year: 2009 end-page: 330 ident: CR22 article-title: On the optimization of piston skirt profiles using a pseudo-adaptive response surface method[J] publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0295-7 – year: 1998 ident: CR12 article-title: Design and analysis of computer experiments[C] publication-title: , Chicago, Illinois, USA – volume: 34 start-page: 263 issue: 3 year: 2002 end-page: 278 ident: CR15 article-title: Exploration of metamodeling sampling criteria for constrained global optimization[J] publication-title: Engineering Optimization doi: 10.1080/03052150211751 – volume: 15 start-page: 16 issue: 1 year: 1998 end-page: 23 ident: CR16 article-title: A trust-region framework for managing the use of approximation models in optimization[J] publication-title: Structrual Optimization doi: 10.1007/BF01197433 – year: 2012 ident: CR30 article-title: Aero-structure coupled optimization of high aspect ratio wing using enhanced adaptive response surface method[C] publication-title: , Indianapolis, Indiana – volume: 39 start-page: 2233 issue: 12 year: 2001 end-page: 2241 ident: CR13 article-title: Kriging models for global approximation in simulation-based multidisciplinary design optimization[J] publication-title: AIAA Journal doi: 10.2514/2.1234 – volume: 22 start-page: 327 issue: 4 year: 2003 end-page: 339 ident: CR21 article-title: Development of an automatic design and optimization system for industrial silencers[J] publication-title: Journal of Manufacturing Systems doi: 10.1016/S0278-6125(03)80041-9 – volume: 45 start-page: 50 issue: 1–3 year: 2009 end-page: 79 ident: CR35 article-title: Recent advances in surrogate-based optimization[J] publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2008.11.001 – volume: 5 start-page: 881 issue: 2 year: 2012 end-page: 887 ident: CR29 article-title: Global optimization method with enhanced adaptive response surface method for computation-intensive design problems[J] publication-title: Advanced Science Letters doi: 10.1166/asl.2012.1847 – volume: 133 start-page: 1 issue: 1 year: 2011 end-page: 7 ident: CR41 article-title: Metamodel-based optimization for problems with expensive objective and constraint functions[J] publication-title: Journal of Mechanical Design doi: 10.1115/1.4003035 – volume: 43 start-page: 381 issue: 3 year: 1995 end-page: 402 ident: CR39 article-title: Exploratory designs for computational experiments[J] publication-title: Journal of Statistical Planning and Inference doi: 10.1016/0378-3758(94)00035-T – volume: 20 start-page: 405 issue: 4 year: 1988 end-page: 421 ident: CR6 article-title: Spatial prediction and ordinary kriging[J] publication-title: Mathematical Geology doi: 10.1007/BF00892986 – volume: 13 start-page: 455 issue: 4 year: 1998 end-page: 492 ident: CR14 article-title: Efficient global optimization of expensive black-box functions[J] publication-title: Journal of Global Optimization doi: 10.1023/A:1008306431147 – volume: 71 start-page: 275 issue: 237 year: 2002 end-page: 296 ident: CR40 article-title: Centered L-2-discrepancy of random sampling and latin hypercube design, and construction of uniform designs[J] publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-00-01281-3 – volume: 41 start-page: 1 issue: 1 year: 2005 ident: 820_CR34 publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2005.02.001 – volume: 26 start-page: 131 issue: 2 year: 1990 ident: 820_CR37 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/0378-3758(90)90122-B – volume-title: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM, Indianapolis, Indiana year: 2012 ident: 820_CR30 – volume-title: 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth, TX, USA year: 2010 ident: 820_CR43 – volume: 28 start-page: 139 issue: 1 year: 2013 ident: 820_CR28 publication-title: Optimization Methods & Software doi: 10.1080/10556788.2011.623162 – volume: 50 start-page: 329 issue: 2 year: 2014 ident: 820_CR33 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-014-1050-x – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 820_CR14 publication-title: Journal of Global Optimization doi: 10.1023/A:1008306431147 – volume: 33 start-page: 707 issue: 6 year: 2001 ident: 820_CR19 publication-title: Engineering Optimization doi: 10.1080/03052150108940940 – volume: 30 start-page: 1770 issue: 6 year: 2007 ident: 820_CR11 publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.27969 – volume: 20 start-page: 405 issue: 4 year: 1988 ident: 820_CR6 publication-title: Mathematical Geology doi: 10.1007/BF00892986 – volume: 36 start-page: 419 issue: 4 year: 2004 ident: 820_CR24 publication-title: Engineering Optimization doi: 10.1080/03052150410001686486 – volume: 12 start-page: 535 issue: 4 year: 2011 ident: 820_CR27 publication-title: Optimization and Engineering doi: 10.1007/s11081-010-9118-y – volume: 34 start-page: 263 issue: 3 year: 2002 ident: 820_CR15 publication-title: Engineering Optimization doi: 10.1080/03052150211751 – volume: 26 start-page: 928 issue: 5 year: 2013 ident: 820_CR32 publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/CJME.2013.05.928 – volume: 38 start-page: 407 issue: 4 year: 2006 ident: 820_CR5 publication-title: Engineering Optimization doi: 10.1080/03052150500422294 – volume: 22 start-page: 327 issue: 4 year: 2003 ident: 820_CR21 publication-title: Journal of Manufacturing Systems doi: 10.1016/S0278-6125(03)80041-9 – volume: 32 start-page: 287 issue: 4 year: 2006 ident: 820_CR17 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-006-0025-y – volume-title: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA year: 2010 ident: 820_CR44 – volume: 42 start-page: 55 issue: 1 year: 2000 ident: 820_CR38 publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – volume: 125 start-page: 210 issue: 2 year: 2003 ident: 820_CR20 publication-title: Journal of Mechanical Design doi: 10.1115/1.1561044 – volume: 25 start-page: 768 issue: 4 year: 2011 ident: 820_CR31 publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/CJME.2012.04.768 – volume: 129 start-page: 370 issue: 4 year: 2007 ident: 820_CR3 publication-title: Journal of Mechanical Design doi: 10.1115/1.2429697 – volume: 39 start-page: 2233 issue: 12 year: 2001 ident: 820_CR13 publication-title: AIAA Journal doi: 10.2514/2.1234 – volume-title: 14th AIAA/ISSM Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana year: 2012 ident: 820_CR42 – volume: 45 start-page: 50 issue: 1–3 year: 2009 ident: 820_CR35 publication-title: Progress in Aerospace Sciences doi: 10.1016/j.paerosci.2008.11.001 – volume: 7 start-page: 639 issue: 2 year: 1986 ident: 820_CR4 publication-title: Siam Journal on Scientific and Statistical Computing doi: 10.1137/0907043 – volume: 134 start-page: 268 issue: 1 year: 2005 ident: 820_CR36 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2004.02.014 – volume: 5 start-page: 881 issue: 2 year: 2012 ident: 820_CR29 publication-title: Advanced Science Letters doi: 10.1166/asl.2012.1847 – volume: 40 start-page: 1383 issue: 5 year: 2013 ident: 820_CR26 publication-title: Computers & Operations Research doi: 10.1016/j.cor.2012.08.022 – volume: 15 start-page: 16 issue: 1 year: 1998 ident: 820_CR16 publication-title: Structrual Optimization doi: 10.1007/BF01197433 – volume: 130 start-page: 1 issue: 2 year: 2008 ident: 820_CR25 publication-title: Journal of Mechanical Design doi: 10.1115/1.2803251 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: 820_CR9 publication-title: Journal of Global Optimization doi: 10.1023/A:1011255519438 – volume: 38 start-page: 317 issue: 3 year: 2009 ident: 820_CR22 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0295-7 – volume: 36 start-page: 313 issue: 3 year: 2004 ident: 820_CR23 publication-title: Engineering Optimization doi: 10.1080/03052150310001639911 – volume: 133 start-page: 1 issue: 1 year: 2011 ident: 820_CR41 publication-title: Journal of Mechanical Design doi: 10.1115/1.4003035 – volume: 42 start-page: 691 issue: 8 year: 2010 ident: 820_CR7 publication-title: Engineering Optimization doi: 10.1080/03052150903386674 – volume: 42 start-page: 631 issue: 3 year: 2004 ident: 820_CR10 publication-title: AIAA Journal doi: 10.2514/1.9114 – volume-title: Proccedings of the 7th AIAA/USAF/NASA ISSMO Symposium on Multidisciplinary Analysis and Optimization, Chicago, Illinois, USA year: 1998 ident: 820_CR12 – volume: 59 start-page: 703 issue: 5 year: 2004 ident: 820_CR1 publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.899 – volume: 35 start-page: 521 issue: 4 year: 2006 ident: 820_CR2 publication-title: Journal of Global Optimization doi: 10.1007/s10898-005-3693-z – volume: 23 start-page: 1 issue: 1 year: 2001 ident: 820_CR8 publication-title: Structure and Multidisciplinary Optimization doi: 10.1007/s00158-001-0160-4 – volume: 43 start-page: 381 issue: 3 year: 1995 ident: 820_CR39 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/0378-3758(94)00035-T – volume: 29 start-page: 1523 issue: 9 year: 1991 ident: 820_CR18 publication-title: AIAA Journal doi: 10.2514/3.10768 – volume: 71 start-page: 275 issue: 237 year: 2002 ident: 820_CR40 publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-00-01281-3  | 
    
| SSID | ssj0006118 | 
    
| Score | 2.0358117 | 
    
| Snippet | As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static... As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static...  | 
    
| SourceID | wanfang proquest crossref springer chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1099 | 
    
| SubjectTerms | Algorithms Computer simulation Constraints Design engineering Design optimization Efficiency Electrical Machines and Networks Electronics and Microelectronics Engineering Engineering design Engineering Thermodynamics Finite element method Heat and Mass Transfer Instrumentation Machines Manufacturing Mathematical analysis Mathematical models Mechanical Engineering Methods Optimization Power Electronics Processes Radial basis function RBF Theoretical and Applied Mechanics 拉格朗日乘子法 搜索引擎 现代工程 约束优化问题 设计优化 设计问题 黑盒  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOBQ8RShBRnEDVziOHGyx1J1VVUqB2Cl3iw_xouqksBmV9pb_zozeW05UIljFGeseOyZz_Nk7D2EPGibgoi20iJXAMJqL4XGu4rV1Krck0H_4os-W-Tnl8XlkBTWjtHuo0uyk9R0r0Sl9enk_OKUQrHyI9JaR1JV99mDgsp54S5eZMeT_NVS9glwaSpmKi_6VJl_0KCSCj-aevkbJ_xbNe3w5uQi7RJ76mjr5S0dNH_M9gfwyI97bj9h96B-yh7dKin4jN1862Kj8dxe86-f57zdrFYNmcoE6avAoSsZgQN4g8Li55CFyftG0hwRLIcdOR66-A4-dJ1pOVltOTUF6KLeuSPrn3DNlpN67Hbwc7aYn34_ORNDkwXhUX-tRfQIuaCURXAQwDrptIxFaqObqRgh1TGzqOVBShsKxFIK0liVVNePaqN5pV6wvbqp4SXjtiqR9eR69FUewFtES34WdARVZpnLEnYwrbX51RfTMIh40gqFQpkwOa6-8UN9cmqTcW3wnkLcM8Q9Q9wzxD2D3EvYh-mbkeBdow9HpprhpLYG5RkiNPwZlbC302s8Y-Q4sTU0m9ZIrQmq4u8k7OO4GXYk7prx3bBhdqOvtku_dQZoYEpe0Vf_R_OAPaTnPh_ykO2tVxt4jcBo7d505-APuccFig priority: 102 providerName: Springer Nature  | 
    
| Title | Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions | 
    
| URI | http://lib.cqvip.com/qk/85891X/201406/663087947.html https://link.springer.com/article/10.3901/CJME.2014.0820.138 https://www.proquest.com/docview/2259377403 https://www.proquest.com/docview/1660083615 https://d.wanfangdata.com.cn/periodical/jxgcxb-e201406002  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2192-8258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: ADMLS dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2192-8258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: AFBBN dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2192-8258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2192-8258 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2192-8258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: AGYKE dateStart: 20120101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2192-8258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006118 issn: 1000-9345 databaseCode: U2A dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yQE4VDzFtiUyiBu4Xe_DuzkglFZJq6JGqBCpnCyv7Y2Eym6bh5Qbf52ZfaVcct1MnI1nPPN5ngAfnY2s1L7juU4lj0LnuJZGcIl3FS1pVLkhh_71VF7Ooqvb-HYPpm0tDKVVtjqxUtS2NOQjP0W5Q0uaRH749f6B09Qoiq62IzR0M1rBfqlajO1DP6DOWD3on42n32863SyFqIvjfJ8Pwyiuy2jo3n96fnU9plSv6ISs4omgipUnqIKK-QMakf_N1haLduHTquinyHUxf2SfJs_hoAGWbFRLwgvYc8VLePao3eAr-PujypvGM33Hbs4mbLleLEpyo3GyZZa5qp0EErASFcmfpkKT1UOmGaJb5rbLMVvlfrBmIs2SkUeX0cCAKiOeZeQZ5Fm5YWQ6K-l-DbPJ-Of5JW8GMHCDtm3Fc4NwzCUitpmzTmcikyKPfZ1nwzDPnS_zQCMCcEJoGyPOCp2fpwn1_KO-aSYM30CvKAv3FphOExQLCkuaNLLOaERSZmhl7sIkCLLAg6Nur9V93WhDIRryU1QYiQei3X1lmt7lNELjTuEdhriniHuKuKeIewq558Gn7jvtgruoj1umquYUL9VW5jx4332M54-CKrpw5XqphJQEY_HvePC5FYbtErt-8UMjMFvq35u52WTKEaFPEdPD3a91BE-JtK6NPIbearF27xAkrbIB7KeTiwH0Rxe_vo0HzTnAp7Ng9A9RwRJk | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9lA4oPISSwsYBCdwu96HNzlUiJZE6SMRKq3Um_H6EQm1u202EeHEP-O3MbPPcsmt53idZGc833heHyHvrYmMUL5lTvUEi0JrmRKaMwF3FSWQqlxjQH88EaOL6Pgyvlwjf5teGCyrbGxiaahNrjFGvgd6B0iaRH74-eaWIWsUZlcbCg1VUyuY_XLEWN3YcWJ__4IrXLF_9BXk_SEIhoPzwxGrWQaYBgM-Z06Dz2ETHpvUGqtSngruYl-5tB86Z33hAgUwZzlXJgZnIrS-6yU42A6Hg2kMiAIEbERh1IfL38bBYPLtrMUCwXnVjOf7rB9GcdW2g3GGvcPj8QBLy6JdROFdjh0ym2DysuktgNb_MNn5vm26tmwyypzKpnfwcLhFHtWOLP1Sad5jsmazJ-ThnfGGT8mf72WdNtiQK3p2MKTFYjbLMWzHEDsNteX4ClhAczBc13VHKK1IrSl409R221FT1prQmgGnoBhBpkhQUFbg0xQjkSzNlxShujxNz8jFvYjiOVnP8sy-IFT1ElBDTIPqXmSsVuC56b4RzoZJEKSBR7bbdy1vqsEeErwvvwcGKvEIb96-1PWsdKTsuJJwZ0LpSZSeROlJlJ4E6XnkY_tMs-Gq1TuNUGVtNQrZ6bhH3rYfw3nHJI7KbL4oJBcC3Wb4Ox751ChDt8Wqb3xXK0y3-udyqpeptLjQxwzty9U_6w3ZHJ2PT-Xp0eRkmzzAx6q-zB2yPp8t7Ctw0Obp6_oUUPLjvg_eP5FTTFk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeEE81tIBB3MBtHCdO9lhKV6XQCgEr9WY59ngRapOyD2lv_HVm8trlQCXOccayZ8bz2fNi7A341Gsbgwi20CJVAMJqJ4XGu4rV1Krc0YP-2bk-maSnF9nFRhZ_E-3euyTbnAaq0lQtDq59IBWnO_rB0enZMYVlpftkwfalKm6zOykVSkCJniSHw1mspWyT4eJYjFSatWkz_6BB5RV-1NX0F07-t5laY8_BXdok-VTBVtMNezR-wO53QJIftpx_yG5B9Yhtb5QXfMx-f2vipFGHL_nX92M-X85mNT2bCbJdnkNTPgIH8BoPjqsuI5O3TaU5olkOa3LcN7EevOtAM-f0gsupQUATAc9LegkUZb3iZCobaX7CJuPj70cnomu4IBzasoUIDuEX5DLzJXiwpSy1DFlsQzlSIUCsQ2LR4oOU1meIqxTEocipxh_VSXNKPWVbVV3BDuO2yFEMyA3pitSDs4ic3MjrACpPkjKJ2O6w1-a6LaxhEP3EBR4QecRkv_vGdbXKqWXGpcE7C3HPEPcMcc8Q9wxyL2Jvh396gjeN3uuZajqtnRs82xCt4WJUxF4Nn1HfyIliK6iXcyO1JtiKy4nYu14Y1iRumvF1JzDr0T9XU7cqDdDAmDykz_6P5kt298uHsfn88fzTLrtHn9o0yT22tZgt4TnipUX5olGJPx5wDLI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+RBF+surrogate-based+efficient+optimization+method+for+engineering+design+problems+with+expensive+black-box+functions&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Peng%2C+Lei&rft.au=Liu%2C+Li&rft.au=Long%2C+Teng&rft.au=Guo%2C+Xiaosong&rft.date=2014-11-01&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=27&rft.issue=6&rft.spage=1099&rft.epage=1111&rft_id=info:doi/10.3901%2FCJME.2014.0820.138&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85891X%2F85891X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxgcxb-e%2Fjxgcxb-e.jpg  |