Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may...
Saved in:
Published in | Energy (Oxford) Vol. 142; pp. 678 - 688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 1873-6785 |
DOI | 10.1016/j.energy.2017.10.043 |
Cover
Abstract | Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm.
•A novel adaptive estimation method of battery ECM parameters and SOC is presented.•The battery parameters of the fast and slow dynamics are estimated separately.•The proposed method does not require a full-order observer for SOC estimation.•The battery modelling and SOC estimation accuracy is improved.•The proposed algorithm is suitable for both offline and online implementation. |
---|---|
AbstractList | Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery Soc estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm. Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm. •A novel adaptive estimation method of battery ECM parameters and SOC is presented.•The battery parameters of the fast and slow dynamics are estimated separately.•The proposed method does not require a full-order observer for SOC estimation.•The battery modelling and SOC estimation accuracy is improved.•The proposed algorithm is suitable for both offline and online implementation. |
Author | Dinh, Quang Marco, James Allafi, Walid Ascencio, Pedro Zhang, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-5803-2860 surname: Zhang fullname: Zhang, Cheng email: c.zhang.11@warwick.ac.uk – sequence: 2 givenname: Walid surname: Allafi fullname: Allafi, Walid – sequence: 3 givenname: Quang surname: Dinh fullname: Dinh, Quang – sequence: 4 givenname: Pedro surname: Ascencio fullname: Ascencio, Pedro – sequence: 5 givenname: James surname: Marco fullname: Marco, James |
BookMark | eNqNkUFrFDEYhoNUcFv9Bx4CXrzMmkwyk4kHQUq1QqEXPYds8s02SzaZTTKVhf54M46nHtRT4ON9Xr7vySW6CDEAQm8p2VJC-w-HLQRI-_O2JVTU0ZZw9gJt6CBY04uhu0AbwnrSdJy3r9BlzgdCSDdIuUFP98G7ABhycUddXAw4jninS4F0xnCa3aP2EAo2LpnZFXyMFjyedNJHqJmMdbA4F11gAc2DTnvAc3Zhjy2YOE8eLPagc8H5NOsEGRcwD8GdZniNXo7aZ3jz571CP77cfL--be7uv367_nzXGE5ZacDYbtd2AgTtRdu2IEfCB9OLnhFrCOWGw8goJ9KSQXQcei241KNlpjVjv2NXqFt75zDp80_tvZpSPTedFSVqUagOalWoFoXLtCqs3PuVm1Ks6-aiji4b8F4HiHOu2apRtkJ2NfruWfQQ5xTqVUsjo1LSQdYUX1MmxZwTjP-7x8dnmHHl92eVpJ3_F_xphaEafnSQVDYOggHrEpiibHR_L_gFbdjACg |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_123424 crossref_primary_10_3390_pr9091685 crossref_primary_10_1109_TIA_2023_3280466 crossref_primary_10_1016_j_geits_2024_100193 crossref_primary_10_1109_TIA_2020_3002977 crossref_primary_10_1016_j_energy_2024_130859 crossref_primary_10_1088_1742_6596_2026_1_012055 crossref_primary_10_1016_j_energy_2021_121296 crossref_primary_10_1109_ACCESS_2019_2909274 crossref_primary_10_1109_ACCESS_2023_3318121 crossref_primary_10_1016_j_energy_2021_121854 crossref_primary_10_1109_ACCESS_2020_3031500 crossref_primary_10_17780_ksujes_600809 crossref_primary_10_1109_ACCESS_2019_2903625 crossref_primary_10_1016_j_apenergy_2024_125087 crossref_primary_10_1109_ACCESS_2021_3068776 crossref_primary_10_3390_batteries9100499 crossref_primary_10_1109_TIA_2021_3101777 crossref_primary_10_3390_jmse10101553 crossref_primary_10_1002_ese3_478 crossref_primary_10_1109_TIM_2022_3156180 crossref_primary_10_1016_j_est_2020_102093 crossref_primary_10_1016_j_energy_2019_01_054 crossref_primary_10_1016_j_jpowsour_2018_08_082 crossref_primary_10_3390_en12030446 crossref_primary_10_1016_j_energy_2023_126724 crossref_primary_10_1149_1945_7111_ad3eb9 crossref_primary_10_3390_app8081301 crossref_primary_10_3390_electricity2040030 crossref_primary_10_1016_j_energy_2023_127378 crossref_primary_10_1109_TIM_2022_3160554 crossref_primary_10_1016_j_est_2023_109202 crossref_primary_10_1016_j_jpowsour_2025_236414 crossref_primary_10_3390_batteries8090125 crossref_primary_10_1016_j_jpowsour_2021_229572 crossref_primary_10_3390_su142315912 crossref_primary_10_1016_j_energy_2024_132204 crossref_primary_10_1016_j_est_2025_115581 crossref_primary_10_3390_electronics10111306 crossref_primary_10_3390_en12071366 crossref_primary_10_1007_s40747_021_00639_9 crossref_primary_10_1002_er_8498 crossref_primary_10_1109_TPEL_2020_3001020 crossref_primary_10_1016_j_est_2024_112220 crossref_primary_10_3390_app14083153 crossref_primary_10_1016_j_applthermaleng_2018_07_105 crossref_primary_10_1016_j_egyr_2023_12_026 crossref_primary_10_1016_j_est_2025_116042 crossref_primary_10_1016_j_seta_2021_101790 crossref_primary_10_1016_j_prime_2023_100207 crossref_primary_10_1016_j_jpowsour_2018_12_001 crossref_primary_10_1016_j_est_2024_113604 crossref_primary_10_1109_TIM_2023_3346509 crossref_primary_10_1016_j_energy_2019_116732 crossref_primary_10_3390_wevj11030050 crossref_primary_10_1016_j_energy_2017_11_154 crossref_primary_10_1016_j_est_2021_103409 crossref_primary_10_3390_electronics14020400 crossref_primary_10_3390_en12173312 crossref_primary_10_1109_TVT_2019_2952970 crossref_primary_10_1109_TII_2020_3047687 crossref_primary_10_1109_TIA_2021_3065322 crossref_primary_10_1016_j_energy_2022_125736 crossref_primary_10_1109_ACCESS_2025_3539528 crossref_primary_10_1016_j_est_2023_106901 crossref_primary_10_2514_1_B38261 crossref_primary_10_48084_etasr_3111 crossref_primary_10_3390_batteries9120563 crossref_primary_10_1155_2018_5218205 crossref_primary_10_20964_2022_08_34 crossref_primary_10_1109_ACCESS_2018_2833858 crossref_primary_10_1016_j_energy_2020_119079 crossref_primary_10_1149_1945_7111_ac2701 crossref_primary_10_1155_2020_8854618 crossref_primary_10_1016_j_epsr_2019_105951 crossref_primary_10_1016_j_est_2023_107677 crossref_primary_10_1109_TIA_2024_3384470 crossref_primary_10_1016_j_energy_2025_134434 crossref_primary_10_3389_fenrg_2020_509052 crossref_primary_10_1016_j_est_2022_106052 crossref_primary_10_1088_1742_6596_2971_1_012011 crossref_primary_10_1016_j_est_2024_113506 crossref_primary_10_1016_j_est_2024_113623 crossref_primary_10_1155_2018_7480602 crossref_primary_10_3390_en13082057 crossref_primary_10_1088_1742_6596_2200_1_012023 crossref_primary_10_1016_j_est_2023_107223 crossref_primary_10_1016_j_apenergy_2023_120987 crossref_primary_10_1016_j_energy_2019_07_127 crossref_primary_10_1109_TIM_2024_3509591 crossref_primary_10_1109_ACCESS_2019_2910882 crossref_primary_10_1016_j_ijhydene_2024_06_297 crossref_primary_10_3390_en16176344 crossref_primary_10_1049_pel2_12129 crossref_primary_10_1002_cta_3339 crossref_primary_10_1016_j_est_2020_101818 crossref_primary_10_1016_j_geits_2022_100028 crossref_primary_10_1016_j_energy_2024_134030 crossref_primary_10_1016_j_est_2021_103611 crossref_primary_10_3390_en17081824 crossref_primary_10_3390_en11051112 crossref_primary_10_3390_en12214036 crossref_primary_10_3390_en18020251 crossref_primary_10_1016_j_energy_2021_120805 crossref_primary_10_1016_j_est_2019_100838 crossref_primary_10_1016_j_seta_2020_100938 crossref_primary_10_1109_TCST_2024_3483093 crossref_primary_10_1016_j_applthermaleng_2024_122853 crossref_primary_10_3390_en12214031 crossref_primary_10_1016_j_energy_2020_116944 crossref_primary_10_1016_j_ifacol_2020_12_1770 crossref_primary_10_1016_j_apenergy_2024_123632 crossref_primary_10_3390_en16093687 crossref_primary_10_1016_j_cles_2023_100104 crossref_primary_10_3390_electronics9010078 crossref_primary_10_3390_en14185924 crossref_primary_10_1016_j_energy_2022_124328 crossref_primary_10_1016_j_jclepro_2022_134279 crossref_primary_10_1109_TPEL_2021_3073810 crossref_primary_10_1016_j_apenergy_2021_117583 crossref_primary_10_1016_j_est_2019_100946 crossref_primary_10_1149_1945_7111_acb10b crossref_primary_10_1016_j_engappai_2023_106896 crossref_primary_10_1016_j_energy_2018_08_071 crossref_primary_10_1016_j_est_2021_103273 crossref_primary_10_1016_j_measurement_2024_115148 crossref_primary_10_3390_batteries8040034 crossref_primary_10_3390_en17071643 crossref_primary_10_1016_j_est_2024_112600 crossref_primary_10_1109_TIE_2019_2956394 crossref_primary_10_1016_j_est_2023_107072 crossref_primary_10_1016_j_jpowsour_2019_05_092 crossref_primary_10_1016_j_est_2023_108043 crossref_primary_10_3390_batteries9070339 crossref_primary_10_1016_j_est_2023_108046 crossref_primary_10_1016_j_esd_2025_101671 crossref_primary_10_1002_er_5168 crossref_primary_10_1016_j_est_2022_104424 crossref_primary_10_1021_acsomega_3c04222 crossref_primary_10_3390_su12208544 crossref_primary_10_1002_er_6807 crossref_primary_10_1016_j_est_2020_101282 crossref_primary_10_1049_iet_est_2019_0026 crossref_primary_10_3390_electronics13101940 crossref_primary_10_3390_electronics12122598 crossref_primary_10_1007_s41104_021_00090_5 crossref_primary_10_1109_ACCESS_2022_3149617 crossref_primary_10_3390_en15197226 crossref_primary_10_3390_en15072431 crossref_primary_10_1109_TTE_2021_3084196 crossref_primary_10_1002_er_8541 crossref_primary_10_1016_j_jpowsour_2019_226885 crossref_primary_10_1016_j_energy_2024_133709 crossref_primary_10_1002_er_4060 crossref_primary_10_1016_j_energy_2018_03_023 crossref_primary_10_1016_j_est_2023_108197 crossref_primary_10_1016_j_energy_2018_06_116 crossref_primary_10_1002_er_7339 crossref_primary_10_1016_j_est_2021_103825 crossref_primary_10_3390_en14041054 crossref_primary_10_1016_j_epsr_2020_106356 crossref_primary_10_1016_j_energy_2019_02_147 crossref_primary_10_1016_j_apenergy_2019_113339 crossref_primary_10_1016_j_est_2021_103252 crossref_primary_10_1016_j_ifacol_2024_08_572 crossref_primary_10_1016_j_measurement_2023_114019 crossref_primary_10_3390_pr10030567 crossref_primary_10_1016_j_energy_2020_119529 crossref_primary_10_1002_ente_202100235 crossref_primary_10_1002_er_6477 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124748 crossref_primary_10_1016_j_energy_2025_135703 crossref_primary_10_1016_j_est_2021_103485 crossref_primary_10_1016_j_energy_2019_04_126 crossref_primary_10_20964_2021_05_55 crossref_primary_10_1109_ACCESS_2022_3160239 crossref_primary_10_1016_j_energy_2020_117957 crossref_primary_10_3390_en11113160 crossref_primary_10_3390_wevj15090431 crossref_primary_10_1016_j_ensm_2022_08_021 crossref_primary_10_1016_j_asoc_2020_107073 crossref_primary_10_3390_batteries10060215 crossref_primary_10_1002_rnc_6951 crossref_primary_10_1016_j_est_2020_101980 crossref_primary_10_1002_er_6465 crossref_primary_10_1007_s10973_021_10922_z crossref_primary_10_1016_j_apenergy_2021_117385 crossref_primary_10_1016_j_apenergy_2019_114408 crossref_primary_10_1049_iet_pel_2019_1589 crossref_primary_10_3390_en12071305 crossref_primary_10_1016_j_energy_2019_116204 crossref_primary_10_3390_batteries8050038 crossref_primary_10_1016_j_energy_2023_128951 crossref_primary_10_1016_j_rser_2019_06_040 crossref_primary_10_1109_TIM_2023_3317904 crossref_primary_10_1016_j_etran_2020_100099 crossref_primary_10_1016_j_jpowsour_2020_228051 crossref_primary_10_1038_s41598_021_84729_1 crossref_primary_10_3390_math12010050 crossref_primary_10_20964_2022_01_05 crossref_primary_10_1016_j_apenergy_2020_115494 crossref_primary_10_1155_2022_7383074 crossref_primary_10_1016_j_energy_2018_09_047 crossref_primary_10_1016_j_energy_2024_131285 crossref_primary_10_1016_j_est_2023_107509 crossref_primary_10_1109_TIA_2024_3427049 crossref_primary_10_1016_j_jprocont_2021_12_012 crossref_primary_10_1016_j_apenergy_2020_114932 crossref_primary_10_1007_s10617_021_09246_w crossref_primary_10_1002_est2_294 crossref_primary_10_1109_TITS_2020_3032447 crossref_primary_10_1002_bte2_20230055 crossref_primary_10_1016_j_apenergy_2024_122848 crossref_primary_10_32604_cmes_2025_061180 crossref_primary_10_1007_s00202_022_01692_4 crossref_primary_10_20964_2021_12_50 crossref_primary_10_1007_s43236_020_00122_7 crossref_primary_10_1016_j_jpowsour_2021_230529 crossref_primary_10_1016_j_energy_2019_01_020 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_3390_en13071679 crossref_primary_10_1016_j_est_2022_105495 crossref_primary_10_1016_j_est_2022_106462 crossref_primary_10_1016_j_jpowsour_2020_229117 crossref_primary_10_3390_wevj14070168 crossref_primary_10_1016_j_energy_2023_127846 crossref_primary_10_3390_en17061272 crossref_primary_10_1016_j_energy_2022_123863 crossref_primary_10_1016_j_est_2023_107298 crossref_primary_10_1016_j_ifacol_2021_08_315 crossref_primary_10_1016_j_jechem_2024_01_040 |
Cites_doi | 10.1016/j.apenergy.2013.09.006 10.1016/j.jpowsour.2016.05.015 10.1016/j.jpowsour.2015.02.099 10.1080/00207177608922186 10.1080/00207177908922676 10.1016/j.jpowsour.2017.02.039 10.1016/j.jpowsour.2016.07.121 10.1016/j.jpowsour.2015.06.140 10.1016/j.apenergy.2016.03.103 10.1016/j.jpowsour.2015.07.041 10.1109/TIE.2016.2610398 10.1016/j.jpowsour.2003.08.042 10.1039/c2ee21892e 10.1016/j.epsr.2008.09.017 10.3390/en6042007 10.1016/j.energy.2015.06.095 10.1016/j.jpowsour.2004.02.033 10.1016/j.electacta.2016.12.129 10.1016/j.jpowsour.2016.09.123 10.3390/en9020100 10.1016/j.jpowsour.2012.07.016 10.1109/TEC.2006.874229 10.1016/j.energy.2016.08.109 10.1007/s10800-007-9291-7 10.1016/j.jpowsour.2015.09.110 10.1016/j.energy.2016.06.010 10.1109/TIE.2013.2263774 10.1109/TCST.2014.2358846 10.1016/j.jpowsour.2016.01.001 10.1016/j.energy.2017.06.094 10.1016/j.jpowsour.2016.05.014 10.1016/j.apenergy.2016.07.005 10.1016/j.apenergy.2016.10.020 10.1016/j.jpowsour.2006.06.004 10.1016/j.energy.2016.05.047 10.1080/0020717031000149636 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright Elsevier BV Jan 1, 2018 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright Elsevier BV Jan 1, 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
DOI | 10.1016/j.energy.2017.10.043 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 688 |
ExternalDocumentID | 10.1016/j.energy.2017.10.043 10_1016_j_energy_2017_10_043 S0360544217317127 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c413t-ecd5b257e7167222e9f048c67630dc014c4ef31409d08754e6a749afd3c2cf6b3 |
IEDL.DBID | UNPAY |
ISSN | 0360-5442 1873-6785 |
IngestDate | Tue Aug 19 21:03:09 EDT 2025 Sat Sep 27 22:45:02 EDT 2025 Wed Aug 13 06:11:04 EDT 2025 Wed Oct 01 01:34:48 EDT 2025 Thu Apr 24 22:48:36 EDT 2025 Fri Feb 23 02:45:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SOC estimation Decoupled least squares method Equivalent circuit model Recursive parameter estimation |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-ecd5b257e7167222e9f048c67630dc014c4ef31409d08754e6a749afd3c2cf6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5803-2860 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.energy.2017.10.043 |
PQID | 2013199189 |
PQPubID | 2045484 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1016_j_energy_2017_10_043 proquest_miscellaneous_2000592795 proquest_journals_2013199189 crossref_primary_10_1016_j_energy_2017_10_043 crossref_citationtrail_10_1016_j_energy_2017_10_043 elsevier_sciencedirect_doi_10_1016_j_energy_2017_10_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhao, Cai, Yang, Deng, Qiang (bib15) 2017; 135 Zhang, Li, McLoone, Yang (bib3) 2014 Zheng, Jiang, Sun, Zhang, Pecht (bib16) 2016; 113 Garnier, Mensler, Richard (bib37) 2003; 76 Young, Jakeman (bib39) 1979; 29 Liu, Li, Zhang (bib10) 2017; 347 Divya, Østergaard (bib2) 2009; 79 Guo, Kang, Yao, Huang, Li (bib20) 2016; 9 Ljung (bib35) 1999 Thackeray, Wolverton, Isaacs (bib1) 2012; 5 Wei, Lim, Skyllas-Kazacos, Wai, Tseng (bib31) 2016; 172 Li, Wang, Gong (bib11) 2016; 109 Dubarry, Truchot, Liaw (bib42) 2012; 219 Bruen, Marco (bib7) 2016; 310 Widanage, Barai, Chouchelamane, Uddin, McGordon, Marco (bib12) 2016; 324 Young (bib38) 1976; 23 Verbrugge, Tate (bib18) 2004; 126 Plett (bib4) 2006; 161 Zhang, Li, Deng, Song (bib14) 2017; 64 Xia, Chen, Tian, Wang, Sun, Xu (bib6) 2015; 90 Garnier, Wang, Young (bib25) 2008 Zhang, Marco, Allafi, Dinh, Widanage (bib28) 2017; 4 Duong, Bastawrous, Lim, See, Zhang, Dou (bib40) 2015; 296 Barai, Widanage, Marco, McGordon, Jennings (bib32) 2015; 295 Chang, Huang, Chang (bib34) 2013; 6 Chen, Rincon-Mora (bib17) 2006; 21 Plett (bib5) 2004; 134 Hu, Wang (bib29) 2015; 23 Dai, Xu, Zhu, Wei, Sun (bib30) 2016; 184 Widanage, Barai, Chouchelamane, Uddin, McGordon, Marco (bib13) 2016; 324 Zhang, Wang, Yang, Chen (bib23) 2016; 115 Xia, Zhao, De Callafon, Garnier, Nguyen, Mi (bib27) 2016; 179 Liu, Li, Yang, Zhang, Deng (bib9) 2017; 225 Wei, Tseng, Wai, Lim, Skyllas-Kazacos (bib24) 2016; 332 Xiong, Sun, Gong, Gao (bib22) 2014; 113 Pastor-Fernandez, Bruen, Widanage, Gama-Valdez, Marco (bib8) 2016; 329 Rahimi-Eichi, Baronti, Chow (bib21) 2014; 61 Alaoui K, Chaplais F. Two time scale system identification: some asymptotic results. Proc European Control Conference, Netherlands. p. 1856–1861. Ljung, Söderström (bib36) 1983 Verbrugge (bib19) 2007; 37 Zhang, Li, Pei, Zhu (bib33) 2015; 283 Wang, Pei, Wang, Lu, Zhu (bib41) 2016; 301 Xia (10.1016/j.energy.2017.10.043_bib6) 2015; 90 Zhang (10.1016/j.energy.2017.10.043_bib28) 2017; 4 Thackeray (10.1016/j.energy.2017.10.043_bib1) 2012; 5 Chang (10.1016/j.energy.2017.10.043_bib34) 2013; 6 Xiong (10.1016/j.energy.2017.10.043_bib22) 2014; 113 Widanage (10.1016/j.energy.2017.10.043_bib12) 2016; 324 Verbrugge (10.1016/j.energy.2017.10.043_bib18) 2004; 126 Zhang (10.1016/j.energy.2017.10.043_bib23) 2016; 115 Plett (10.1016/j.energy.2017.10.043_bib4) 2006; 161 Bruen (10.1016/j.energy.2017.10.043_bib7) 2016; 310 10.1016/j.energy.2017.10.043_bib26 Zhang (10.1016/j.energy.2017.10.043_bib3) 2014 Liu (10.1016/j.energy.2017.10.043_bib10) 2017; 347 Widanage (10.1016/j.energy.2017.10.043_bib13) 2016; 324 Guo (10.1016/j.energy.2017.10.043_bib20) 2016; 9 Zheng (10.1016/j.energy.2017.10.043_bib16) 2016; 113 Duong (10.1016/j.energy.2017.10.043_bib40) 2015; 296 Xia (10.1016/j.energy.2017.10.043_bib27) 2016; 179 Zhang (10.1016/j.energy.2017.10.043_bib14) 2017; 64 Garnier (10.1016/j.energy.2017.10.043_bib37) 2003; 76 Plett (10.1016/j.energy.2017.10.043_bib5) 2004; 134 Dubarry (10.1016/j.energy.2017.10.043_bib42) 2012; 219 Young (10.1016/j.energy.2017.10.043_bib38) 1976; 23 Ljung (10.1016/j.energy.2017.10.043_bib36) 1983 Chen (10.1016/j.energy.2017.10.043_bib17) 2006; 21 Zhang (10.1016/j.energy.2017.10.043_bib33) 2015; 283 Liu (10.1016/j.energy.2017.10.043_bib9) 2017; 225 Pastor-Fernandez (10.1016/j.energy.2017.10.043_bib8) 2016; 329 Barai (10.1016/j.energy.2017.10.043_bib32) 2015; 295 Wang (10.1016/j.energy.2017.10.043_bib41) 2016; 301 Hu (10.1016/j.energy.2017.10.043_bib29) 2015; 23 Dai (10.1016/j.energy.2017.10.043_bib30) 2016; 184 Rahimi-Eichi (10.1016/j.energy.2017.10.043_bib21) 2014; 61 Divya (10.1016/j.energy.2017.10.043_bib2) 2009; 79 Zhao (10.1016/j.energy.2017.10.043_bib15) 2017; 135 Wei (10.1016/j.energy.2017.10.043_bib31) 2016; 172 Ljung (10.1016/j.energy.2017.10.043_bib35) 1999 Young (10.1016/j.energy.2017.10.043_bib39) 1979; 29 Li (10.1016/j.energy.2017.10.043_bib11) 2016; 109 Verbrugge (10.1016/j.energy.2017.10.043_bib19) 2007; 37 Garnier (10.1016/j.energy.2017.10.043_bib25) 2008 Wei (10.1016/j.energy.2017.10.043_bib24) 2016; 332 |
References_xml | – volume: 37 start-page: 605 year: 2007 end-page: 616 ident: bib19 article-title: Adaptive, multi-parameter battery state estimator with optimized time-weighting factors publication-title: J Appl Electrochem – volume: 9 start-page: 100 year: 2016 ident: bib20 article-title: Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the kalman filter algorithm publication-title: Energies – volume: 23 start-page: 1180 year: 2015 end-page: 1188 ident: bib29 article-title: Two time-scaled battery model identification with application to battery state estimation publication-title: IEEE Trans Control Syst Technol – volume: 109 start-page: 933 year: 2016 end-page: 946 ident: bib11 article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy – volume: 90 start-page: 1426 year: 2015 end-page: 1434 ident: bib6 article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method publication-title: Energy – reference: Alaoui K, Chaplais F. Two time scale system identification: some asymptotic results. Proc European Control Conference, Netherlands. p. 1856–1861. – volume: 135 start-page: 40 year: 2017 end-page: 52 ident: bib15 article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles publication-title: Energy – volume: 310 start-page: 91 year: 2016 end-page: 101 ident: bib7 article-title: Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system publication-title: J Power Sources – volume: 64 start-page: 654 year: 2017 end-page: 663 ident: bib14 article-title: Improved realtime state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model publication-title: IEEE Trans Industrial Electron – volume: 301 start-page: 187 year: 2016 end-page: 193 ident: bib41 article-title: Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis publication-title: J Power Sources – volume: 79 start-page: 511 year: 2009 end-page: 520 ident: bib2 article-title: Battery energy storage technology for power systems—an overview publication-title: Electr Power Syst Res – volume: 115 start-page: 219 year: 2016 end-page: 229 ident: bib23 article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model publication-title: Energy – volume: 329 start-page: 574 year: 2016 end-page: 585 ident: bib8 article-title: A study of cell-to-cell interactions and degradation in parallel strings: implications for the battery management system publication-title: J Power Sources – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: bib5 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power sources – volume: 172 start-page: 169 year: 2016 end-page: 179 ident: bib31 article-title: Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery publication-title: Appl Energy – year: 1983 ident: bib36 article-title: Theory Pract recursive Identif JSTOR – volume: 179 start-page: 426 year: 2016 end-page: 436 ident: bib27 article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods publication-title: Appl Energy – volume: 113 start-page: 64 year: 2016 end-page: 75 ident: bib16 article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles publication-title: Energy – volume: 21 start-page: 504 year: 2006 end-page: 511 ident: bib17 article-title: Accurate electrical battery model capable of predicting runtime and IV performance publication-title: IEEE Trans energy Convers – volume: 126 start-page: 236 year: 2004 end-page: 249 ident: bib18 article-title: Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena publication-title: J Power Sources – volume: 184 start-page: 119 year: 2016 end-page: 131 ident: bib30 article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales publication-title: Appl Energy – volume: 295 start-page: 99 year: 2015 end-page: 107 ident: bib32 article-title: A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells publication-title: J Power Sources – year: 1999 ident: bib35 article-title: System identification (2nd ed.): theory for the user – volume: 324 start-page: 70 year: 2016 end-page: 78 ident: bib12 article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: signal design publication-title: J Power Sources – volume: 61 start-page: 2053 year: 2014 end-page: 2061 ident: bib21 article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells publication-title: IEEE Trans Industrial Electron – volume: 6 start-page: 2007 year: 2013 end-page: 2030 ident: bib34 article-title: A new state of charge estimation method for LiFePO4 battery packs used in robots publication-title: Energies – volume: 23 start-page: 593 year: 1976 end-page: 612 ident: bib38 article-title: Some observations on instrumental variable methods of time-series analysis publication-title: Int J Control – volume: 283 start-page: 24 year: 2015 end-page: 36 ident: bib33 article-title: An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries publication-title: J Power Sources – start-page: 1 year: 2008 end-page: 29 ident: bib25 article-title: Direct identification of continuous-time models from sampled data: issues, basic solutions and relevance. Identification of continuous-time models from sampled data – volume: 5 start-page: 7854 year: 2012 end-page: 7863 ident: bib1 article-title: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries publication-title: Energy & Environ Sci – volume: 332 start-page: 389 year: 2016 end-page: 398 ident: bib24 article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery publication-title: J Power Sources – start-page: 2673 year: 2014 end-page: 2678 ident: bib3 article-title: Battery modelling methods for electric vehicles-A review publication-title: European control conference (ECC) – volume: 113 start-page: 1421 year: 2014 end-page: 1433 ident: bib22 article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles publication-title: Appl Energy – volume: 225 start-page: 330 year: 2017 end-page: 344 ident: bib9 article-title: An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model publication-title: Electrochimica Acta – volume: 219 start-page: 204 year: 2012 end-page: 216 ident: bib42 article-title: Synthesize battery degradation modes via a diagnostic and prognostic model publication-title: J power sources – volume: 4 start-page: 823 year: 2017 ident: bib28 article-title: Online battery electric circuit model estimation on continuous-time domain using linear integral filter method publication-title: Proc World Acad Sci Eng Technol – volume: 76 start-page: 1337 year: 2003 end-page: 1357 ident: bib37 article-title: Continuous-time model identification from sampled data: implementation issues and performance evaluation publication-title: Int J Control – volume: 161 start-page: 1369 year: 2006 end-page: 1384 ident: bib4 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation publication-title: J power sources – volume: 347 start-page: 145 year: 2017 end-page: 158 ident: bib10 article-title: Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model publication-title: J Power Sources – volume: 324 start-page: 61 year: 2016 end-page: 69 ident: bib13 article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: model estimation publication-title: J Power Sources – volume: 29 start-page: 1 year: 1979 end-page: 30 ident: bib39 article-title: Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems publication-title: Int J Control – volume: 296 start-page: 215 year: 2015 end-page: 224 ident: bib40 article-title: Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares publication-title: J Power Sources – volume: 113 start-page: 1421 year: 2014 ident: 10.1016/j.energy.2017.10.043_bib22 article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.006 – volume: 324 start-page: 70 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib12 article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: signal design publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.015 – volume: 283 start-page: 24 year: 2015 ident: 10.1016/j.energy.2017.10.043_bib33 article-title: An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.02.099 – volume: 23 start-page: 593 issue: 5 year: 1976 ident: 10.1016/j.energy.2017.10.043_bib38 article-title: Some observations on instrumental variable methods of time-series analysis publication-title: Int J Control doi: 10.1080/00207177608922186 – volume: 29 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.energy.2017.10.043_bib39 article-title: Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems publication-title: Int J Control doi: 10.1080/00207177908922676 – volume: 347 start-page: 145 year: 2017 ident: 10.1016/j.energy.2017.10.043_bib10 article-title: Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.02.039 – ident: 10.1016/j.energy.2017.10.043_bib26 – volume: 329 start-page: 574 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib8 article-title: A study of cell-to-cell interactions and degradation in parallel strings: implications for the battery management system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.07.121 – volume: 295 start-page: 99 year: 2015 ident: 10.1016/j.energy.2017.10.043_bib32 article-title: A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.06.140 – volume: 172 start-page: 169 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib31 article-title: Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.103 – year: 1999 ident: 10.1016/j.energy.2017.10.043_bib35 – volume: 296 start-page: 215 year: 2015 ident: 10.1016/j.energy.2017.10.043_bib40 article-title: Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.07.041 – volume: 64 start-page: 654 issue: 1 year: 2017 ident: 10.1016/j.energy.2017.10.043_bib14 article-title: Improved realtime state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model publication-title: IEEE Trans Industrial Electron doi: 10.1109/TIE.2016.2610398 – volume: 126 start-page: 236 issue: 1 year: 2004 ident: 10.1016/j.energy.2017.10.043_bib18 article-title: Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.08.042 – volume: 5 start-page: 7854 issue: 7 year: 2012 ident: 10.1016/j.energy.2017.10.043_bib1 article-title: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries publication-title: Energy & Environ Sci doi: 10.1039/c2ee21892e – volume: 79 start-page: 511 issue: 4 year: 2009 ident: 10.1016/j.energy.2017.10.043_bib2 article-title: Battery energy storage technology for power systems—an overview publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2008.09.017 – volume: 6 start-page: 2007 issue: 4 year: 2013 ident: 10.1016/j.energy.2017.10.043_bib34 article-title: A new state of charge estimation method for LiFePO4 battery packs used in robots publication-title: Energies doi: 10.3390/en6042007 – volume: 90 start-page: 1426 year: 2015 ident: 10.1016/j.energy.2017.10.043_bib6 article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method publication-title: Energy doi: 10.1016/j.energy.2015.06.095 – volume: 134 start-page: 277 issue: 2 year: 2004 ident: 10.1016/j.energy.2017.10.043_bib5 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 225 start-page: 330 year: 2017 ident: 10.1016/j.energy.2017.10.043_bib9 article-title: An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2016.12.129 – volume: 332 start-page: 389 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib24 article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.09.123 – volume: 9 start-page: 100 issue: 2 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib20 article-title: Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the kalman filter algorithm publication-title: Energies doi: 10.3390/en9020100 – year: 1983 ident: 10.1016/j.energy.2017.10.043_bib36 – volume: 219 start-page: 204 year: 2012 ident: 10.1016/j.energy.2017.10.043_bib42 article-title: Synthesize battery degradation modes via a diagnostic and prognostic model publication-title: J power sources doi: 10.1016/j.jpowsour.2012.07.016 – volume: 21 start-page: 504 issue: 2 year: 2006 ident: 10.1016/j.energy.2017.10.043_bib17 article-title: Accurate electrical battery model capable of predicting runtime and IV performance publication-title: IEEE Trans energy Convers doi: 10.1109/TEC.2006.874229 – volume: 115 start-page: 219 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib23 article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model publication-title: Energy doi: 10.1016/j.energy.2016.08.109 – volume: 37 start-page: 605 issue: 5 year: 2007 ident: 10.1016/j.energy.2017.10.043_bib19 article-title: Adaptive, multi-parameter battery state estimator with optimized time-weighting factors publication-title: J Appl Electrochem doi: 10.1007/s10800-007-9291-7 – volume: 301 start-page: 187 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib41 article-title: Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.09.110 – volume: 113 start-page: 64 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib16 article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2016.06.010 – start-page: 1 year: 2008 ident: 10.1016/j.energy.2017.10.043_bib25 – volume: 61 start-page: 2053 issue: 4 year: 2014 ident: 10.1016/j.energy.2017.10.043_bib21 article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells publication-title: IEEE Trans Industrial Electron doi: 10.1109/TIE.2013.2263774 – volume: 23 start-page: 1180 issue: 3 year: 2015 ident: 10.1016/j.energy.2017.10.043_bib29 article-title: Two time-scaled battery model identification with application to battery state estimation publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2358846 – volume: 310 start-page: 91 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib7 article-title: Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.01.001 – volume: 135 start-page: 40 year: 2017 ident: 10.1016/j.energy.2017.10.043_bib15 article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2017.06.094 – start-page: 2673 year: 2014 ident: 10.1016/j.energy.2017.10.043_bib3 article-title: Battery modelling methods for electric vehicles-A review – volume: 324 start-page: 61 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib13 article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: model estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.014 – volume: 179 start-page: 426 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib27 article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.005 – volume: 184 start-page: 119 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib30 article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.10.020 – volume: 161 start-page: 1369 issue: 2 year: 2006 ident: 10.1016/j.energy.2017.10.043_bib4 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation publication-title: J power sources doi: 10.1016/j.jpowsour.2006.06.004 – volume: 4 start-page: 823 issue: 3 year: 2017 ident: 10.1016/j.energy.2017.10.043_bib28 article-title: Online battery electric circuit model estimation on continuous-time domain using linear integral filter method publication-title: Proc World Acad Sci Eng Technol – volume: 109 start-page: 933 year: 2016 ident: 10.1016/j.energy.2017.10.043_bib11 article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.05.047 – volume: 76 start-page: 1337 issue: 13 year: 2003 ident: 10.1016/j.energy.2017.10.043_bib37 article-title: Continuous-time model identification from sampled data: implementation issues and performance evaluation publication-title: Int J Control doi: 10.1080/0020717031000149636 |
SSID | ssj0005899 |
Score | 2.6464536 |
Snippet | Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 678 |
SubjectTerms | algorithms Batteries Computer simulation Decoupled least squares method Electric cells Equivalent circuit model Equivalent circuits Extracellular matrix Internet least squares Least squares method Lithium-ion batteries Mathematical models Model accuracy Parameter estimation Power management Recursive methods Recursive parameter estimation Simulation SOC estimation State of charge Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPOhF_MTplAhe61ybfh3H2JiKXlTwVtIklUrtNrsign-877XppgdRPDbNK6Ev7yPJ-_0CcBZjEE3c-MKSgnParRIWNVkypvyXB9p2CCh8c-uNH_jVo_u4AoMGC0Nllcb31z698tampWv-Zneapt079L2Yb3D8JsbAnu2vwprthD27BWv9y-vx7bLSI6iukaT-Fgk0CLqqzEtXEDuq8fLPqcyLOz9FqC8Z6HqZT8X7m8iyL8FotAWbJotk_Xqg27Ci8x1Yb0DGxQ7sD5cANuxoLLjYhY-aW5QRuUaNWmSThMUVy-Y707MyxamHQkymr7JM56y6KocRQ_gLVc4UTOSKVTAkEqyIljSj6vknpnApW04zrVhGNwKxYlYSuokteGL34GE0vB-MLXMDgyUxuM0tLZUbo1FrXFX5mEnoMEGLlx46pQslcXUluU4c4sxSxIzPtSd8HopEOdKWiRc7-9DKJ7k-AJZIjepy6eCVDh9lqDwVBh7xU6qk1xNtcJq_HklDT063ZGRRU4f2HNW6ikhX1IrfaYO1kJrW9By_9PcbhUbfplmEEeQXyU6j_8iYeUHvHaodC8I2nC5eo4HSqYvI9aSkPgTwtf3QbcP5Yt78abSH_x7tEWzgU1DvFXWgNX8t9TFmT_P4xFjHJ0sJGlQ priority: 102 providerName: Elsevier |
Title | Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique |
URI | https://dx.doi.org/10.1016/j.energy.2017.10.043 https://www.proquest.com/docview/2013199189 https://www.proquest.com/docview/2000592795 https://doi.org/10.1016/j.energy.2017.10.043 |
UnpaywallVersion | publishedVersion |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7R9qFPg7FVK4LKk3ico7ZxkuaxQlRlUyseqMSeIsd2pm4hbUkiBEL87dzlRweTKtir44uc5Hy-y933HcBpiIdo5IR9rqQQ9LdKchriKiT_V4zM0Cag8GzuThfi-7VzvQffaizMq_x9UYdlCgwcFWF5FtVhCbsBLdfBWLkJrcX8cvyzTEf2uSOKXjmDkWdztMFOjZTbcZtdJ9ELT7OdJ2t5fyfj-MWhM9mHWb3cstbkj5VnoaUe_mFyfO_zHMCHyvtk41JdPsKeSQ6hXYOT00PonP8FvuHEauenn-Cx5CRlRMpRoh3ZKmJhwc55z8wmX6LKohBTy1uVLzNWtNhhxCx-QxU3KZOJZgV8iQQLgibDqOr-F9MYAufr2GgWUychlm5yQkWxLb_sZ1hMzq_Oprzq3MAVHooZN0o7IRoDg9GYhx6I8SO0FMpFY9bXCqMyJUxkE9eWJkZ9YVzpCV9G2lZDFbmh3YFmskrMF2CRMhhxOZSwpaSl8rWr_ZFLvJY6GgxkF-z6KwaqojWn7hpxUNev_Q7KVx7QK6dRvE8X-FZqXdJ6vDHfqxUkqFyT0uUI8AO_IXlc61NQmYeUrttUczbyu_B1exk3NmVrZGJWOc0hYPDQ850uWFs9fNdqj_5X4Bia2W1uTtC_ysIeNKynQQ9a44sf03mv2mTPqWAmMQ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHMYF8RTlGSSuZWxNX0eEQBuPXQCJW5UmKSoq3UZXISR-PHabDjigIa5JHEV1HDuNv88AxzE60cSNT20pOKe_VcKmJlvGFP_yQPccAgrfDr3-A796dB8X4LzBwlBapTn76zO9Oq1NS8d8zc44TTt3ePZivMFxTvSB3Z6_CEvcdcKgBUtng-v-8CvTI6jKSNJ4mwQaBF2V5qUriB3lePknlObFnd881LcItF3mY_H-JrLsmzO6XIUVE0Wys3qha7Cg83VoNyDjYh22Lr4AbDjQWHCxAR81tygjco0atchGCYsrls13pidlilsPhZhMX2WZTllVKocRQ_gLZc4UTOSKVTAkEqyIljSj7PknpvAqW44zrVhGFYFYMSkJ3cRmPLGb8HB5cX_et00FBluic5vaWio3RqPWeKvyMZLQYYIWLz08lE6VxNuV5DpxiDNLETM-157weSgS5cieTLzY2YJWPsr1NrBEalSXSw-v9PgoQ-WpMPCIn1Il3a6wwGm-eiQNPTlVyciiJg_tOap1FZGuqBXnscCeSY1reo454_1GodGPbRahB5kjudfoPzJmXlC_Q7ljQWjB0awbDZReXUSuRyWNIYBvzw9dC05m--ZPq93592oPod2_v72JbgbD611Yxp6g_m-0B63pa6n3MZKaxgfGUj4BzXQdSg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HnryLVaqrODRLW2zSZpjEaUIFQ8W6ilsdjdSjWlrEkTxxzuTR31AsV43O2GTzM7OZOb7BuAswEM0tIM2V1II-lslOQ1xFZD_K3qmaxFQeHjjDEbiemyP1-C8wsL8yN_ndVgmx8BREZbbojosYa3DhmNjrFyDjdHNbf--SEe2uS3yXjmdnmtxtMF2hZRbcptlJ9E3T7OexTP59iqj6Nuhc7UFw2q5Ra3JUytLg5Z6_8XkuOrzbMNm6X2yfqEuO7Bm4l2oV-DkZBcOLr-Abzix3PnJHnwUnKSMSDkKtCObhizI2TnfmJlnE1RZFGJq8qKyScryFjuMmMWfqeImYTLWLIcvkWBO0GQYVd0_MI0hcDaLjGYRdRJiyTwjVBRb8Mvuw-jq8u5iwMvODVzhoZhyo7QdoDEwGI256IEYL0RLoRw0Zm2tMCpTwoQWcW1pYtQXxpGu8GSoLdVVoRNYB1CLp7E5BBYqgxGXTQlbSloqTzva6znEa6nDTkc2wKq-oq9KWnPqrhH5Vf3ao1-8cp9eOY3ifRrAF1Kzgtbjj_lupSB-6ZoULoePH_gPyWalT35pHhK6blHNWc9rwOniMm5sytbI2EwzmkPA4K7r2Q1oLfRwpdUe_VegCbX0JTPH6F-lwUm5rT4Bqd8jpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+estimation+of+battery+equivalent+circuit+model+parameters+and+state+of+charge+using+decoupled+least+squares+technique&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Cheng&rft.au=Allafi%2C+Walid&rft.au=Dinh%2C+Quang&rft.au=Ascencio%2C+Pedro&rft.date=2018-01-01&rft.issn=0360-5442&rft.volume=142+p.678-688&rft.spage=678&rft.epage=688&rft_id=info:doi/10.1016%2Fj.energy.2017.10.043&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |