Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique

Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 142; pp. 678 - 688
Main Authors Zhang, Cheng, Allafi, Walid, Dinh, Quang, Ascencio, Pedro, Marco, James
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
1873-6785
DOI10.1016/j.energy.2017.10.043

Cover

Abstract Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm. •A novel adaptive estimation method of battery ECM parameters and SOC is presented.•The battery parameters of the fast and slow dynamics are estimated separately.•The proposed method does not require a full-order observer for SOC estimation.•The battery modelling and SOC estimation accuracy is improved.•The proposed algorithm is suitable for both offline and online implementation.
AbstractList Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery Soc estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm.
Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm. •A novel adaptive estimation method of battery ECM parameters and SOC is presented.•The battery parameters of the fast and slow dynamics are estimated separately.•The proposed method does not require a full-order observer for SOC estimation.•The battery modelling and SOC estimation accuracy is improved.•The proposed algorithm is suitable for both offline and online implementation.
Author Dinh, Quang
Marco, James
Allafi, Walid
Ascencio, Pedro
Zhang, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-5803-2860
  surname: Zhang
  fullname: Zhang, Cheng
  email: c.zhang.11@warwick.ac.uk
– sequence: 2
  givenname: Walid
  surname: Allafi
  fullname: Allafi, Walid
– sequence: 3
  givenname: Quang
  surname: Dinh
  fullname: Dinh, Quang
– sequence: 4
  givenname: Pedro
  surname: Ascencio
  fullname: Ascencio, Pedro
– sequence: 5
  givenname: James
  surname: Marco
  fullname: Marco, James
BookMark eNqNkUFrFDEYhoNUcFv9Bx4CXrzMmkwyk4kHQUq1QqEXPYds8s02SzaZTTKVhf54M46nHtRT4ON9Xr7vySW6CDEAQm8p2VJC-w-HLQRI-_O2JVTU0ZZw9gJt6CBY04uhu0AbwnrSdJy3r9BlzgdCSDdIuUFP98G7ABhycUddXAw4jninS4F0xnCa3aP2EAo2LpnZFXyMFjyedNJHqJmMdbA4F11gAc2DTnvAc3Zhjy2YOE8eLPagc8H5NOsEGRcwD8GdZniNXo7aZ3jz571CP77cfL--be7uv367_nzXGE5ZacDYbtd2AgTtRdu2IEfCB9OLnhFrCOWGw8goJ9KSQXQcei241KNlpjVjv2NXqFt75zDp80_tvZpSPTedFSVqUagOalWoFoXLtCqs3PuVm1Ks6-aiji4b8F4HiHOu2apRtkJ2NfruWfQQ5xTqVUsjo1LSQdYUX1MmxZwTjP-7x8dnmHHl92eVpJ3_F_xphaEafnSQVDYOggHrEpiibHR_L_gFbdjACg
CitedBy_id crossref_primary_10_1016_j_jclepro_2020_123424
crossref_primary_10_3390_pr9091685
crossref_primary_10_1109_TIA_2023_3280466
crossref_primary_10_1016_j_geits_2024_100193
crossref_primary_10_1109_TIA_2020_3002977
crossref_primary_10_1016_j_energy_2024_130859
crossref_primary_10_1088_1742_6596_2026_1_012055
crossref_primary_10_1016_j_energy_2021_121296
crossref_primary_10_1109_ACCESS_2019_2909274
crossref_primary_10_1109_ACCESS_2023_3318121
crossref_primary_10_1016_j_energy_2021_121854
crossref_primary_10_1109_ACCESS_2020_3031500
crossref_primary_10_17780_ksujes_600809
crossref_primary_10_1109_ACCESS_2019_2903625
crossref_primary_10_1016_j_apenergy_2024_125087
crossref_primary_10_1109_ACCESS_2021_3068776
crossref_primary_10_3390_batteries9100499
crossref_primary_10_1109_TIA_2021_3101777
crossref_primary_10_3390_jmse10101553
crossref_primary_10_1002_ese3_478
crossref_primary_10_1109_TIM_2022_3156180
crossref_primary_10_1016_j_est_2020_102093
crossref_primary_10_1016_j_energy_2019_01_054
crossref_primary_10_1016_j_jpowsour_2018_08_082
crossref_primary_10_3390_en12030446
crossref_primary_10_1016_j_energy_2023_126724
crossref_primary_10_1149_1945_7111_ad3eb9
crossref_primary_10_3390_app8081301
crossref_primary_10_3390_electricity2040030
crossref_primary_10_1016_j_energy_2023_127378
crossref_primary_10_1109_TIM_2022_3160554
crossref_primary_10_1016_j_est_2023_109202
crossref_primary_10_1016_j_jpowsour_2025_236414
crossref_primary_10_3390_batteries8090125
crossref_primary_10_1016_j_jpowsour_2021_229572
crossref_primary_10_3390_su142315912
crossref_primary_10_1016_j_energy_2024_132204
crossref_primary_10_1016_j_est_2025_115581
crossref_primary_10_3390_electronics10111306
crossref_primary_10_3390_en12071366
crossref_primary_10_1007_s40747_021_00639_9
crossref_primary_10_1002_er_8498
crossref_primary_10_1109_TPEL_2020_3001020
crossref_primary_10_1016_j_est_2024_112220
crossref_primary_10_3390_app14083153
crossref_primary_10_1016_j_applthermaleng_2018_07_105
crossref_primary_10_1016_j_egyr_2023_12_026
crossref_primary_10_1016_j_est_2025_116042
crossref_primary_10_1016_j_seta_2021_101790
crossref_primary_10_1016_j_prime_2023_100207
crossref_primary_10_1016_j_jpowsour_2018_12_001
crossref_primary_10_1016_j_est_2024_113604
crossref_primary_10_1109_TIM_2023_3346509
crossref_primary_10_1016_j_energy_2019_116732
crossref_primary_10_3390_wevj11030050
crossref_primary_10_1016_j_energy_2017_11_154
crossref_primary_10_1016_j_est_2021_103409
crossref_primary_10_3390_electronics14020400
crossref_primary_10_3390_en12173312
crossref_primary_10_1109_TVT_2019_2952970
crossref_primary_10_1109_TII_2020_3047687
crossref_primary_10_1109_TIA_2021_3065322
crossref_primary_10_1016_j_energy_2022_125736
crossref_primary_10_1109_ACCESS_2025_3539528
crossref_primary_10_1016_j_est_2023_106901
crossref_primary_10_2514_1_B38261
crossref_primary_10_48084_etasr_3111
crossref_primary_10_3390_batteries9120563
crossref_primary_10_1155_2018_5218205
crossref_primary_10_20964_2022_08_34
crossref_primary_10_1109_ACCESS_2018_2833858
crossref_primary_10_1016_j_energy_2020_119079
crossref_primary_10_1149_1945_7111_ac2701
crossref_primary_10_1155_2020_8854618
crossref_primary_10_1016_j_epsr_2019_105951
crossref_primary_10_1016_j_est_2023_107677
crossref_primary_10_1109_TIA_2024_3384470
crossref_primary_10_1016_j_energy_2025_134434
crossref_primary_10_3389_fenrg_2020_509052
crossref_primary_10_1016_j_est_2022_106052
crossref_primary_10_1088_1742_6596_2971_1_012011
crossref_primary_10_1016_j_est_2024_113506
crossref_primary_10_1016_j_est_2024_113623
crossref_primary_10_1155_2018_7480602
crossref_primary_10_3390_en13082057
crossref_primary_10_1088_1742_6596_2200_1_012023
crossref_primary_10_1016_j_est_2023_107223
crossref_primary_10_1016_j_apenergy_2023_120987
crossref_primary_10_1016_j_energy_2019_07_127
crossref_primary_10_1109_TIM_2024_3509591
crossref_primary_10_1109_ACCESS_2019_2910882
crossref_primary_10_1016_j_ijhydene_2024_06_297
crossref_primary_10_3390_en16176344
crossref_primary_10_1049_pel2_12129
crossref_primary_10_1002_cta_3339
crossref_primary_10_1016_j_est_2020_101818
crossref_primary_10_1016_j_geits_2022_100028
crossref_primary_10_1016_j_energy_2024_134030
crossref_primary_10_1016_j_est_2021_103611
crossref_primary_10_3390_en17081824
crossref_primary_10_3390_en11051112
crossref_primary_10_3390_en12214036
crossref_primary_10_3390_en18020251
crossref_primary_10_1016_j_energy_2021_120805
crossref_primary_10_1016_j_est_2019_100838
crossref_primary_10_1016_j_seta_2020_100938
crossref_primary_10_1109_TCST_2024_3483093
crossref_primary_10_1016_j_applthermaleng_2024_122853
crossref_primary_10_3390_en12214031
crossref_primary_10_1016_j_energy_2020_116944
crossref_primary_10_1016_j_ifacol_2020_12_1770
crossref_primary_10_1016_j_apenergy_2024_123632
crossref_primary_10_3390_en16093687
crossref_primary_10_1016_j_cles_2023_100104
crossref_primary_10_3390_electronics9010078
crossref_primary_10_3390_en14185924
crossref_primary_10_1016_j_energy_2022_124328
crossref_primary_10_1016_j_jclepro_2022_134279
crossref_primary_10_1109_TPEL_2021_3073810
crossref_primary_10_1016_j_apenergy_2021_117583
crossref_primary_10_1016_j_est_2019_100946
crossref_primary_10_1149_1945_7111_acb10b
crossref_primary_10_1016_j_engappai_2023_106896
crossref_primary_10_1016_j_energy_2018_08_071
crossref_primary_10_1016_j_est_2021_103273
crossref_primary_10_1016_j_measurement_2024_115148
crossref_primary_10_3390_batteries8040034
crossref_primary_10_3390_en17071643
crossref_primary_10_1016_j_est_2024_112600
crossref_primary_10_1109_TIE_2019_2956394
crossref_primary_10_1016_j_est_2023_107072
crossref_primary_10_1016_j_jpowsour_2019_05_092
crossref_primary_10_1016_j_est_2023_108043
crossref_primary_10_3390_batteries9070339
crossref_primary_10_1016_j_est_2023_108046
crossref_primary_10_1016_j_esd_2025_101671
crossref_primary_10_1002_er_5168
crossref_primary_10_1016_j_est_2022_104424
crossref_primary_10_1021_acsomega_3c04222
crossref_primary_10_3390_su12208544
crossref_primary_10_1002_er_6807
crossref_primary_10_1016_j_est_2020_101282
crossref_primary_10_1049_iet_est_2019_0026
crossref_primary_10_3390_electronics13101940
crossref_primary_10_3390_electronics12122598
crossref_primary_10_1007_s41104_021_00090_5
crossref_primary_10_1109_ACCESS_2022_3149617
crossref_primary_10_3390_en15197226
crossref_primary_10_3390_en15072431
crossref_primary_10_1109_TTE_2021_3084196
crossref_primary_10_1002_er_8541
crossref_primary_10_1016_j_jpowsour_2019_226885
crossref_primary_10_1016_j_energy_2024_133709
crossref_primary_10_1002_er_4060
crossref_primary_10_1016_j_energy_2018_03_023
crossref_primary_10_1016_j_est_2023_108197
crossref_primary_10_1016_j_energy_2018_06_116
crossref_primary_10_1002_er_7339
crossref_primary_10_1016_j_est_2021_103825
crossref_primary_10_3390_en14041054
crossref_primary_10_1016_j_epsr_2020_106356
crossref_primary_10_1016_j_energy_2019_02_147
crossref_primary_10_1016_j_apenergy_2019_113339
crossref_primary_10_1016_j_est_2021_103252
crossref_primary_10_1016_j_ifacol_2024_08_572
crossref_primary_10_1016_j_measurement_2023_114019
crossref_primary_10_3390_pr10030567
crossref_primary_10_1016_j_energy_2020_119529
crossref_primary_10_1002_ente_202100235
crossref_primary_10_1002_er_6477
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124748
crossref_primary_10_1016_j_energy_2025_135703
crossref_primary_10_1016_j_est_2021_103485
crossref_primary_10_1016_j_energy_2019_04_126
crossref_primary_10_20964_2021_05_55
crossref_primary_10_1109_ACCESS_2022_3160239
crossref_primary_10_1016_j_energy_2020_117957
crossref_primary_10_3390_en11113160
crossref_primary_10_3390_wevj15090431
crossref_primary_10_1016_j_ensm_2022_08_021
crossref_primary_10_1016_j_asoc_2020_107073
crossref_primary_10_3390_batteries10060215
crossref_primary_10_1002_rnc_6951
crossref_primary_10_1016_j_est_2020_101980
crossref_primary_10_1002_er_6465
crossref_primary_10_1007_s10973_021_10922_z
crossref_primary_10_1016_j_apenergy_2021_117385
crossref_primary_10_1016_j_apenergy_2019_114408
crossref_primary_10_1049_iet_pel_2019_1589
crossref_primary_10_3390_en12071305
crossref_primary_10_1016_j_energy_2019_116204
crossref_primary_10_3390_batteries8050038
crossref_primary_10_1016_j_energy_2023_128951
crossref_primary_10_1016_j_rser_2019_06_040
crossref_primary_10_1109_TIM_2023_3317904
crossref_primary_10_1016_j_etran_2020_100099
crossref_primary_10_1016_j_jpowsour_2020_228051
crossref_primary_10_1038_s41598_021_84729_1
crossref_primary_10_3390_math12010050
crossref_primary_10_20964_2022_01_05
crossref_primary_10_1016_j_apenergy_2020_115494
crossref_primary_10_1155_2022_7383074
crossref_primary_10_1016_j_energy_2018_09_047
crossref_primary_10_1016_j_energy_2024_131285
crossref_primary_10_1016_j_est_2023_107509
crossref_primary_10_1109_TIA_2024_3427049
crossref_primary_10_1016_j_jprocont_2021_12_012
crossref_primary_10_1016_j_apenergy_2020_114932
crossref_primary_10_1007_s10617_021_09246_w
crossref_primary_10_1002_est2_294
crossref_primary_10_1109_TITS_2020_3032447
crossref_primary_10_1002_bte2_20230055
crossref_primary_10_1016_j_apenergy_2024_122848
crossref_primary_10_32604_cmes_2025_061180
crossref_primary_10_1007_s00202_022_01692_4
crossref_primary_10_20964_2021_12_50
crossref_primary_10_1007_s43236_020_00122_7
crossref_primary_10_1016_j_jpowsour_2021_230529
crossref_primary_10_1016_j_energy_2019_01_020
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_3390_en13071679
crossref_primary_10_1016_j_est_2022_105495
crossref_primary_10_1016_j_est_2022_106462
crossref_primary_10_1016_j_jpowsour_2020_229117
crossref_primary_10_3390_wevj14070168
crossref_primary_10_1016_j_energy_2023_127846
crossref_primary_10_3390_en17061272
crossref_primary_10_1016_j_energy_2022_123863
crossref_primary_10_1016_j_est_2023_107298
crossref_primary_10_1016_j_ifacol_2021_08_315
crossref_primary_10_1016_j_jechem_2024_01_040
Cites_doi 10.1016/j.apenergy.2013.09.006
10.1016/j.jpowsour.2016.05.015
10.1016/j.jpowsour.2015.02.099
10.1080/00207177608922186
10.1080/00207177908922676
10.1016/j.jpowsour.2017.02.039
10.1016/j.jpowsour.2016.07.121
10.1016/j.jpowsour.2015.06.140
10.1016/j.apenergy.2016.03.103
10.1016/j.jpowsour.2015.07.041
10.1109/TIE.2016.2610398
10.1016/j.jpowsour.2003.08.042
10.1039/c2ee21892e
10.1016/j.epsr.2008.09.017
10.3390/en6042007
10.1016/j.energy.2015.06.095
10.1016/j.jpowsour.2004.02.033
10.1016/j.electacta.2016.12.129
10.1016/j.jpowsour.2016.09.123
10.3390/en9020100
10.1016/j.jpowsour.2012.07.016
10.1109/TEC.2006.874229
10.1016/j.energy.2016.08.109
10.1007/s10800-007-9291-7
10.1016/j.jpowsour.2015.09.110
10.1016/j.energy.2016.06.010
10.1109/TIE.2013.2263774
10.1109/TCST.2014.2358846
10.1016/j.jpowsour.2016.01.001
10.1016/j.energy.2017.06.094
10.1016/j.jpowsour.2016.05.014
10.1016/j.apenergy.2016.07.005
10.1016/j.apenergy.2016.10.020
10.1016/j.jpowsour.2006.06.004
10.1016/j.energy.2016.05.047
10.1080/0020717031000149636
ContentType Journal Article
Copyright 2017 The Authors
Copyright Elsevier BV Jan 1, 2018
Copyright_xml – notice: 2017 The Authors
– notice: Copyright Elsevier BV Jan 1, 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.energy.2017.10.043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 688
ExternalDocumentID 10.1016/j.energy.2017.10.043
10_1016_j_energy_2017_10_043
S0360544217317127
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c413t-ecd5b257e7167222e9f048c67630dc014c4ef31409d08754e6a749afd3c2cf6b3
IEDL.DBID UNPAY
ISSN 0360-5442
1873-6785
IngestDate Tue Aug 19 21:03:09 EDT 2025
Sat Sep 27 22:45:02 EDT 2025
Wed Aug 13 06:11:04 EDT 2025
Wed Oct 01 01:34:48 EDT 2025
Thu Apr 24 22:48:36 EDT 2025
Fri Feb 23 02:45:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SOC estimation
Decoupled least squares method
Equivalent circuit model
Recursive parameter estimation
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-ecd5b257e7167222e9f048c67630dc014c4ef31409d08754e6a749afd3c2cf6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5803-2860
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.energy.2017.10.043
PQID 2013199189
PQPubID 2045484
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_energy_2017_10_043
proquest_miscellaneous_2000592795
proquest_journals_2013199189
crossref_primary_10_1016_j_energy_2017_10_043
crossref_citationtrail_10_1016_j_energy_2017_10_043
elsevier_sciencedirect_doi_10_1016_j_energy_2017_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhao, Cai, Yang, Deng, Qiang (bib15) 2017; 135
Zhang, Li, McLoone, Yang (bib3) 2014
Zheng, Jiang, Sun, Zhang, Pecht (bib16) 2016; 113
Garnier, Mensler, Richard (bib37) 2003; 76
Young, Jakeman (bib39) 1979; 29
Liu, Li, Zhang (bib10) 2017; 347
Divya, Østergaard (bib2) 2009; 79
Guo, Kang, Yao, Huang, Li (bib20) 2016; 9
Ljung (bib35) 1999
Thackeray, Wolverton, Isaacs (bib1) 2012; 5
Wei, Lim, Skyllas-Kazacos, Wai, Tseng (bib31) 2016; 172
Li, Wang, Gong (bib11) 2016; 109
Dubarry, Truchot, Liaw (bib42) 2012; 219
Bruen, Marco (bib7) 2016; 310
Widanage, Barai, Chouchelamane, Uddin, McGordon, Marco (bib12) 2016; 324
Young (bib38) 1976; 23
Verbrugge, Tate (bib18) 2004; 126
Plett (bib4) 2006; 161
Zhang, Li, Deng, Song (bib14) 2017; 64
Xia, Chen, Tian, Wang, Sun, Xu (bib6) 2015; 90
Garnier, Wang, Young (bib25) 2008
Zhang, Marco, Allafi, Dinh, Widanage (bib28) 2017; 4
Duong, Bastawrous, Lim, See, Zhang, Dou (bib40) 2015; 296
Barai, Widanage, Marco, McGordon, Jennings (bib32) 2015; 295
Chang, Huang, Chang (bib34) 2013; 6
Chen, Rincon-Mora (bib17) 2006; 21
Plett (bib5) 2004; 134
Hu, Wang (bib29) 2015; 23
Dai, Xu, Zhu, Wei, Sun (bib30) 2016; 184
Widanage, Barai, Chouchelamane, Uddin, McGordon, Marco (bib13) 2016; 324
Zhang, Wang, Yang, Chen (bib23) 2016; 115
Xia, Zhao, De Callafon, Garnier, Nguyen, Mi (bib27) 2016; 179
Liu, Li, Yang, Zhang, Deng (bib9) 2017; 225
Wei, Tseng, Wai, Lim, Skyllas-Kazacos (bib24) 2016; 332
Xiong, Sun, Gong, Gao (bib22) 2014; 113
Pastor-Fernandez, Bruen, Widanage, Gama-Valdez, Marco (bib8) 2016; 329
Rahimi-Eichi, Baronti, Chow (bib21) 2014; 61
Alaoui K, Chaplais F. Two time scale system identification: some asymptotic results. Proc European Control Conference, Netherlands. p. 1856–1861.
Ljung, Söderström (bib36) 1983
Verbrugge (bib19) 2007; 37
Zhang, Li, Pei, Zhu (bib33) 2015; 283
Wang, Pei, Wang, Lu, Zhu (bib41) 2016; 301
Xia (10.1016/j.energy.2017.10.043_bib6) 2015; 90
Zhang (10.1016/j.energy.2017.10.043_bib28) 2017; 4
Thackeray (10.1016/j.energy.2017.10.043_bib1) 2012; 5
Chang (10.1016/j.energy.2017.10.043_bib34) 2013; 6
Xiong (10.1016/j.energy.2017.10.043_bib22) 2014; 113
Widanage (10.1016/j.energy.2017.10.043_bib12) 2016; 324
Verbrugge (10.1016/j.energy.2017.10.043_bib18) 2004; 126
Zhang (10.1016/j.energy.2017.10.043_bib23) 2016; 115
Plett (10.1016/j.energy.2017.10.043_bib4) 2006; 161
Bruen (10.1016/j.energy.2017.10.043_bib7) 2016; 310
10.1016/j.energy.2017.10.043_bib26
Zhang (10.1016/j.energy.2017.10.043_bib3) 2014
Liu (10.1016/j.energy.2017.10.043_bib10) 2017; 347
Widanage (10.1016/j.energy.2017.10.043_bib13) 2016; 324
Guo (10.1016/j.energy.2017.10.043_bib20) 2016; 9
Zheng (10.1016/j.energy.2017.10.043_bib16) 2016; 113
Duong (10.1016/j.energy.2017.10.043_bib40) 2015; 296
Xia (10.1016/j.energy.2017.10.043_bib27) 2016; 179
Zhang (10.1016/j.energy.2017.10.043_bib14) 2017; 64
Garnier (10.1016/j.energy.2017.10.043_bib37) 2003; 76
Plett (10.1016/j.energy.2017.10.043_bib5) 2004; 134
Dubarry (10.1016/j.energy.2017.10.043_bib42) 2012; 219
Young (10.1016/j.energy.2017.10.043_bib38) 1976; 23
Ljung (10.1016/j.energy.2017.10.043_bib36) 1983
Chen (10.1016/j.energy.2017.10.043_bib17) 2006; 21
Zhang (10.1016/j.energy.2017.10.043_bib33) 2015; 283
Liu (10.1016/j.energy.2017.10.043_bib9) 2017; 225
Pastor-Fernandez (10.1016/j.energy.2017.10.043_bib8) 2016; 329
Barai (10.1016/j.energy.2017.10.043_bib32) 2015; 295
Wang (10.1016/j.energy.2017.10.043_bib41) 2016; 301
Hu (10.1016/j.energy.2017.10.043_bib29) 2015; 23
Dai (10.1016/j.energy.2017.10.043_bib30) 2016; 184
Rahimi-Eichi (10.1016/j.energy.2017.10.043_bib21) 2014; 61
Divya (10.1016/j.energy.2017.10.043_bib2) 2009; 79
Zhao (10.1016/j.energy.2017.10.043_bib15) 2017; 135
Wei (10.1016/j.energy.2017.10.043_bib31) 2016; 172
Ljung (10.1016/j.energy.2017.10.043_bib35) 1999
Young (10.1016/j.energy.2017.10.043_bib39) 1979; 29
Li (10.1016/j.energy.2017.10.043_bib11) 2016; 109
Verbrugge (10.1016/j.energy.2017.10.043_bib19) 2007; 37
Garnier (10.1016/j.energy.2017.10.043_bib25) 2008
Wei (10.1016/j.energy.2017.10.043_bib24) 2016; 332
References_xml – volume: 37
  start-page: 605
  year: 2007
  end-page: 616
  ident: bib19
  article-title: Adaptive, multi-parameter battery state estimator with optimized time-weighting factors
  publication-title: J Appl Electrochem
– volume: 9
  start-page: 100
  year: 2016
  ident: bib20
  article-title: Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the kalman filter algorithm
  publication-title: Energies
– volume: 23
  start-page: 1180
  year: 2015
  end-page: 1188
  ident: bib29
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans Control Syst Technol
– volume: 109
  start-page: 933
  year: 2016
  end-page: 946
  ident: bib11
  article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
– volume: 90
  start-page: 1426
  year: 2015
  end-page: 1434
  ident: bib6
  article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method
  publication-title: Energy
– reference: Alaoui K, Chaplais F. Two time scale system identification: some asymptotic results. Proc European Control Conference, Netherlands. p. 1856–1861.
– volume: 135
  start-page: 40
  year: 2017
  end-page: 52
  ident: bib15
  article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles
  publication-title: Energy
– volume: 310
  start-page: 91
  year: 2016
  end-page: 101
  ident: bib7
  article-title: Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system
  publication-title: J Power Sources
– volume: 64
  start-page: 654
  year: 2017
  end-page: 663
  ident: bib14
  article-title: Improved realtime state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model
  publication-title: IEEE Trans Industrial Electron
– volume: 301
  start-page: 187
  year: 2016
  end-page: 193
  ident: bib41
  article-title: Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis
  publication-title: J Power Sources
– volume: 79
  start-page: 511
  year: 2009
  end-page: 520
  ident: bib2
  article-title: Battery energy storage technology for power systems—an overview
  publication-title: Electr Power Syst Res
– volume: 115
  start-page: 219
  year: 2016
  end-page: 229
  ident: bib23
  article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
  publication-title: Energy
– volume: 329
  start-page: 574
  year: 2016
  end-page: 585
  ident: bib8
  article-title: A study of cell-to-cell interactions and degradation in parallel strings: implications for the battery management system
  publication-title: J Power Sources
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: bib5
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power sources
– volume: 172
  start-page: 169
  year: 2016
  end-page: 179
  ident: bib31
  article-title: Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery
  publication-title: Appl Energy
– year: 1983
  ident: bib36
  article-title: Theory Pract recursive Identif JSTOR
– volume: 179
  start-page: 426
  year: 2016
  end-page: 436
  ident: bib27
  article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
  publication-title: Appl Energy
– volume: 113
  start-page: 64
  year: 2016
  end-page: 75
  ident: bib16
  article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles
  publication-title: Energy
– volume: 21
  start-page: 504
  year: 2006
  end-page: 511
  ident: bib17
  article-title: Accurate electrical battery model capable of predicting runtime and IV performance
  publication-title: IEEE Trans energy Convers
– volume: 126
  start-page: 236
  year: 2004
  end-page: 249
  ident: bib18
  article-title: Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena
  publication-title: J Power Sources
– volume: 184
  start-page: 119
  year: 2016
  end-page: 131
  ident: bib30
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl Energy
– volume: 295
  start-page: 99
  year: 2015
  end-page: 107
  ident: bib32
  article-title: A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells
  publication-title: J Power Sources
– year: 1999
  ident: bib35
  article-title: System identification (2nd ed.): theory for the user
– volume: 324
  start-page: 70
  year: 2016
  end-page: 78
  ident: bib12
  article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: signal design
  publication-title: J Power Sources
– volume: 61
  start-page: 2053
  year: 2014
  end-page: 2061
  ident: bib21
  article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells
  publication-title: IEEE Trans Industrial Electron
– volume: 6
  start-page: 2007
  year: 2013
  end-page: 2030
  ident: bib34
  article-title: A new state of charge estimation method for LiFePO4 battery packs used in robots
  publication-title: Energies
– volume: 23
  start-page: 593
  year: 1976
  end-page: 612
  ident: bib38
  article-title: Some observations on instrumental variable methods of time-series analysis
  publication-title: Int J Control
– volume: 283
  start-page: 24
  year: 2015
  end-page: 36
  ident: bib33
  article-title: An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
  publication-title: J Power Sources
– start-page: 1
  year: 2008
  end-page: 29
  ident: bib25
  article-title: Direct identification of continuous-time models from sampled data: issues, basic solutions and relevance. Identification of continuous-time models from sampled data
– volume: 5
  start-page: 7854
  year: 2012
  end-page: 7863
  ident: bib1
  article-title: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
  publication-title: Energy & Environ Sci
– volume: 332
  start-page: 389
  year: 2016
  end-page: 398
  ident: bib24
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J Power Sources
– start-page: 2673
  year: 2014
  end-page: 2678
  ident: bib3
  article-title: Battery modelling methods for electric vehicles-A review
  publication-title: European control conference (ECC)
– volume: 113
  start-page: 1421
  year: 2014
  end-page: 1433
  ident: bib22
  article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Appl Energy
– volume: 225
  start-page: 330
  year: 2017
  end-page: 344
  ident: bib9
  article-title: An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model
  publication-title: Electrochimica Acta
– volume: 219
  start-page: 204
  year: 2012
  end-page: 216
  ident: bib42
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J power sources
– volume: 4
  start-page: 823
  year: 2017
  ident: bib28
  article-title: Online battery electric circuit model estimation on continuous-time domain using linear integral filter method
  publication-title: Proc World Acad Sci Eng Technol
– volume: 76
  start-page: 1337
  year: 2003
  end-page: 1357
  ident: bib37
  article-title: Continuous-time model identification from sampled data: implementation issues and performance evaluation
  publication-title: Int J Control
– volume: 161
  start-page: 1369
  year: 2006
  end-page: 1384
  ident: bib4
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation
  publication-title: J power sources
– volume: 347
  start-page: 145
  year: 2017
  end-page: 158
  ident: bib10
  article-title: Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model
  publication-title: J Power Sources
– volume: 324
  start-page: 61
  year: 2016
  end-page: 69
  ident: bib13
  article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: model estimation
  publication-title: J Power Sources
– volume: 29
  start-page: 1
  year: 1979
  end-page: 30
  ident: bib39
  article-title: Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems
  publication-title: Int J Control
– volume: 296
  start-page: 215
  year: 2015
  end-page: 224
  ident: bib40
  article-title: Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares
  publication-title: J Power Sources
– volume: 113
  start-page: 1421
  year: 2014
  ident: 10.1016/j.energy.2017.10.043_bib22
  article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.006
– volume: 324
  start-page: 70
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib12
  article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: signal design
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.05.015
– volume: 283
  start-page: 24
  year: 2015
  ident: 10.1016/j.energy.2017.10.043_bib33
  article-title: An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.02.099
– volume: 23
  start-page: 593
  issue: 5
  year: 1976
  ident: 10.1016/j.energy.2017.10.043_bib38
  article-title: Some observations on instrumental variable methods of time-series analysis
  publication-title: Int J Control
  doi: 10.1080/00207177608922186
– volume: 29
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.energy.2017.10.043_bib39
  article-title: Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems
  publication-title: Int J Control
  doi: 10.1080/00207177908922676
– volume: 347
  start-page: 145
  year: 2017
  ident: 10.1016/j.energy.2017.10.043_bib10
  article-title: Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.02.039
– ident: 10.1016/j.energy.2017.10.043_bib26
– volume: 329
  start-page: 574
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib8
  article-title: A study of cell-to-cell interactions and degradation in parallel strings: implications for the battery management system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.07.121
– volume: 295
  start-page: 99
  year: 2015
  ident: 10.1016/j.energy.2017.10.043_bib32
  article-title: A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.06.140
– volume: 172
  start-page: 169
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib31
  article-title: Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.103
– year: 1999
  ident: 10.1016/j.energy.2017.10.043_bib35
– volume: 296
  start-page: 215
  year: 2015
  ident: 10.1016/j.energy.2017.10.043_bib40
  article-title: Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.07.041
– volume: 64
  start-page: 654
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2017.10.043_bib14
  article-title: Improved realtime state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model
  publication-title: IEEE Trans Industrial Electron
  doi: 10.1109/TIE.2016.2610398
– volume: 126
  start-page: 236
  issue: 1
  year: 2004
  ident: 10.1016/j.energy.2017.10.043_bib18
  article-title: Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.08.042
– volume: 5
  start-page: 7854
  issue: 7
  year: 2012
  ident: 10.1016/j.energy.2017.10.043_bib1
  article-title: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
  publication-title: Energy & Environ Sci
  doi: 10.1039/c2ee21892e
– volume: 79
  start-page: 511
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2017.10.043_bib2
  article-title: Battery energy storage technology for power systems—an overview
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2008.09.017
– volume: 6
  start-page: 2007
  issue: 4
  year: 2013
  ident: 10.1016/j.energy.2017.10.043_bib34
  article-title: A new state of charge estimation method for LiFePO4 battery packs used in robots
  publication-title: Energies
  doi: 10.3390/en6042007
– volume: 90
  start-page: 1426
  year: 2015
  ident: 10.1016/j.energy.2017.10.043_bib6
  article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.095
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  ident: 10.1016/j.energy.2017.10.043_bib5
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 225
  start-page: 330
  year: 2017
  ident: 10.1016/j.energy.2017.10.043_bib9
  article-title: An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2016.12.129
– volume: 332
  start-page: 389
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib24
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.09.123
– volume: 9
  start-page: 100
  issue: 2
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib20
  article-title: Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the kalman filter algorithm
  publication-title: Energies
  doi: 10.3390/en9020100
– year: 1983
  ident: 10.1016/j.energy.2017.10.043_bib36
– volume: 219
  start-page: 204
  year: 2012
  ident: 10.1016/j.energy.2017.10.043_bib42
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J power sources
  doi: 10.1016/j.jpowsour.2012.07.016
– volume: 21
  start-page: 504
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2017.10.043_bib17
  article-title: Accurate electrical battery model capable of predicting runtime and IV performance
  publication-title: IEEE Trans energy Convers
  doi: 10.1109/TEC.2006.874229
– volume: 115
  start-page: 219
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib23
  article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.109
– volume: 37
  start-page: 605
  issue: 5
  year: 2007
  ident: 10.1016/j.energy.2017.10.043_bib19
  article-title: Adaptive, multi-parameter battery state estimator with optimized time-weighting factors
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-007-9291-7
– volume: 301
  start-page: 187
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib41
  article-title: Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.09.110
– volume: 113
  start-page: 64
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib16
  article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.010
– start-page: 1
  year: 2008
  ident: 10.1016/j.energy.2017.10.043_bib25
– volume: 61
  start-page: 2053
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2017.10.043_bib21
  article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells
  publication-title: IEEE Trans Industrial Electron
  doi: 10.1109/TIE.2013.2263774
– volume: 23
  start-page: 1180
  issue: 3
  year: 2015
  ident: 10.1016/j.energy.2017.10.043_bib29
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2358846
– volume: 310
  start-page: 91
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib7
  article-title: Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.01.001
– volume: 135
  start-page: 40
  year: 2017
  ident: 10.1016/j.energy.2017.10.043_bib15
  article-title: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.094
– start-page: 2673
  year: 2014
  ident: 10.1016/j.energy.2017.10.043_bib3
  article-title: Battery modelling methods for electric vehicles-A review
– volume: 324
  start-page: 61
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib13
  article-title: Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: model estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.05.014
– volume: 179
  start-page: 426
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib27
  article-title: Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.005
– volume: 184
  start-page: 119
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib30
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.020
– volume: 161
  start-page: 1369
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2017.10.043_bib4
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: simultaneous state and parameter estimation
  publication-title: J power sources
  doi: 10.1016/j.jpowsour.2006.06.004
– volume: 4
  start-page: 823
  issue: 3
  year: 2017
  ident: 10.1016/j.energy.2017.10.043_bib28
  article-title: Online battery electric circuit model estimation on continuous-time domain using linear integral filter method
  publication-title: Proc World Acad Sci Eng Technol
– volume: 109
  start-page: 933
  year: 2016
  ident: 10.1016/j.energy.2017.10.043_bib11
  article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.047
– volume: 76
  start-page: 1337
  issue: 13
  year: 2003
  ident: 10.1016/j.energy.2017.10.043_bib37
  article-title: Continuous-time model identification from sampled data: implementation issues and performance evaluation
  publication-title: Int J Control
  doi: 10.1080/0020717031000149636
SSID ssj0005899
Score 2.6464536
Snippet Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 678
SubjectTerms algorithms
Batteries
Computer simulation
Decoupled least squares method
Electric cells
Equivalent circuit model
Equivalent circuits
Extracellular matrix
Internet
least squares
Least squares method
Lithium-ion batteries
Mathematical models
Model accuracy
Parameter estimation
Power management
Recursive methods
Recursive parameter estimation
Simulation
SOC estimation
State of charge
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPOhF_MTplAhe61ybfh3H2JiKXlTwVtIklUrtNrsign-877XppgdRPDbNK6Ev7yPJ-_0CcBZjEE3c-MKSgnParRIWNVkypvyXB9p2CCh8c-uNH_jVo_u4AoMGC0Nllcb31z698tampWv-Zneapt079L2Yb3D8JsbAnu2vwprthD27BWv9y-vx7bLSI6iukaT-Fgk0CLqqzEtXEDuq8fLPqcyLOz9FqC8Z6HqZT8X7m8iyL8FotAWbJotk_Xqg27Ci8x1Yb0DGxQ7sD5cANuxoLLjYhY-aW5QRuUaNWmSThMUVy-Y707MyxamHQkymr7JM56y6KocRQ_gLVc4UTOSKVTAkEqyIljSj6vknpnApW04zrVhGNwKxYlYSuokteGL34GE0vB-MLXMDgyUxuM0tLZUbo1FrXFX5mEnoMEGLlx46pQslcXUluU4c4sxSxIzPtSd8HopEOdKWiRc7-9DKJ7k-AJZIjepy6eCVDh9lqDwVBh7xU6qk1xNtcJq_HklDT063ZGRRU4f2HNW6ikhX1IrfaYO1kJrW9By_9PcbhUbfplmEEeQXyU6j_8iYeUHvHaodC8I2nC5eo4HSqYvI9aSkPgTwtf3QbcP5Yt78abSH_x7tEWzgU1DvFXWgNX8t9TFmT_P4xFjHJ0sJGlQ
  priority: 102
  providerName: Elsevier
Title Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
URI https://dx.doi.org/10.1016/j.energy.2017.10.043
https://www.proquest.com/docview/2013199189
https://www.proquest.com/docview/2000592795
https://doi.org/10.1016/j.energy.2017.10.043
UnpaywallVersion publishedVersion
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7R9qFPg7FVK4LKk3ico7ZxkuaxQlRlUyseqMSeIsd2pm4hbUkiBEL87dzlRweTKtir44uc5Hy-y933HcBpiIdo5IR9rqQQ9LdKchriKiT_V4zM0Cag8GzuThfi-7VzvQffaizMq_x9UYdlCgwcFWF5FtVhCbsBLdfBWLkJrcX8cvyzTEf2uSOKXjmDkWdztMFOjZTbcZtdJ9ELT7OdJ2t5fyfj-MWhM9mHWb3cstbkj5VnoaUe_mFyfO_zHMCHyvtk41JdPsKeSQ6hXYOT00PonP8FvuHEauenn-Cx5CRlRMpRoh3ZKmJhwc55z8wmX6LKohBTy1uVLzNWtNhhxCx-QxU3KZOJZgV8iQQLgibDqOr-F9MYAufr2GgWUychlm5yQkWxLb_sZ1hMzq_Oprzq3MAVHooZN0o7IRoDg9GYhx6I8SO0FMpFY9bXCqMyJUxkE9eWJkZ9YVzpCV9G2lZDFbmh3YFmskrMF2CRMhhxOZSwpaSl8rWr_ZFLvJY6GgxkF-z6KwaqojWn7hpxUNev_Q7KVx7QK6dRvE8X-FZqXdJ6vDHfqxUkqFyT0uUI8AO_IXlc61NQmYeUrttUczbyu_B1exk3NmVrZGJWOc0hYPDQ850uWFs9fNdqj_5X4Bia2W1uTtC_ysIeNKynQQ9a44sf03mv2mTPqWAmMQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHMYF8RTlGSSuZWxNX0eEQBuPXQCJW5UmKSoq3UZXISR-PHabDjigIa5JHEV1HDuNv88AxzE60cSNT20pOKe_VcKmJlvGFP_yQPccAgrfDr3-A796dB8X4LzBwlBapTn76zO9Oq1NS8d8zc44TTt3ePZivMFxTvSB3Z6_CEvcdcKgBUtng-v-8CvTI6jKSNJ4mwQaBF2V5qUriB3lePknlObFnd881LcItF3mY_H-JrLsmzO6XIUVE0Wys3qha7Cg83VoNyDjYh22Lr4AbDjQWHCxAR81tygjco0atchGCYsrls13pidlilsPhZhMX2WZTllVKocRQ_gLZc4UTOSKVTAkEqyIljSj7PknpvAqW44zrVhGFYFYMSkJ3cRmPLGb8HB5cX_et00FBluic5vaWio3RqPWeKvyMZLQYYIWLz08lE6VxNuV5DpxiDNLETM-157weSgS5cieTLzY2YJWPsr1NrBEalSXSw-v9PgoQ-WpMPCIn1Il3a6wwGm-eiQNPTlVyciiJg_tOap1FZGuqBXnscCeSY1reo454_1GodGPbRahB5kjudfoPzJmXlC_Q7ljQWjB0awbDZReXUSuRyWNIYBvzw9dC05m--ZPq93592oPod2_v72JbgbD611Yxp6g_m-0B63pa6n3MZKaxgfGUj4BzXQdSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HnryLVaqrODRLW2zSZpjEaUIFQ8W6ilsdjdSjWlrEkTxxzuTR31AsV43O2GTzM7OZOb7BuAswEM0tIM2V1II-lslOQ1xFZD_K3qmaxFQeHjjDEbiemyP1-C8wsL8yN_ndVgmx8BREZbbojosYa3DhmNjrFyDjdHNbf--SEe2uS3yXjmdnmtxtMF2hZRbcptlJ9E3T7OexTP59iqj6Nuhc7UFw2q5Ra3JUytLg5Z6_8XkuOrzbMNm6X2yfqEuO7Bm4l2oV-DkZBcOLr-Abzix3PnJHnwUnKSMSDkKtCObhizI2TnfmJlnE1RZFGJq8qKyScryFjuMmMWfqeImYTLWLIcvkWBO0GQYVd0_MI0hcDaLjGYRdRJiyTwjVBRb8Mvuw-jq8u5iwMvODVzhoZhyo7QdoDEwGI256IEYL0RLoRw0Zm2tMCpTwoQWcW1pYtQXxpGu8GSoLdVVoRNYB1CLp7E5BBYqgxGXTQlbSloqTzva6znEa6nDTkc2wKq-oq9KWnPqrhH5Vf3ao1-8cp9eOY3ifRrAF1Kzgtbjj_lupSB-6ZoULoePH_gPyWalT35pHhK6blHNWc9rwOniMm5sytbI2EwzmkPA4K7r2Q1oLfRwpdUe_VegCbX0JTPH6F-lwUm5rT4Bqd8jpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+estimation+of+battery+equivalent+circuit+model+parameters+and+state+of+charge+using+decoupled+least+squares+technique&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Cheng&rft.au=Allafi%2C+Walid&rft.au=Dinh%2C+Quang&rft.au=Ascencio%2C+Pedro&rft.date=2018-01-01&rft.issn=0360-5442&rft.volume=142+p.678-688&rft.spage=678&rft.epage=688&rft_id=info:doi/10.1016%2Fj.energy.2017.10.043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon