Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm

Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 2; pp. 292 - 307
Main Authors Wei, Jiahong, Zhu, Guijie, Fan, Zhun, Liu, Jinchao, Rong, Yibiao, Mo, Jiajie, Li, Wenji, Chen, Xinjian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2021.3111679

Cover

Abstract Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net .
AbstractList Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net .
Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net.Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net.
Author Wei, Jiahong
Mo, Jiajie
Fan, Zhun
Rong, Yibiao
Liu, Jinchao
Li, Wenji
Zhu, Guijie
Chen, Xinjian
Author_xml – sequence: 1
  givenname: Jiahong
  orcidid: 0000-0002-8148-2683
  surname: Wei
  fullname: Wei, Jiahong
  email: 19jhwei@stu.edu.cn
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 2
  givenname: Guijie
  surname: Zhu
  fullname: Zhu, Guijie
  email: 16gjzhu@stu.edu.cn
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 3
  givenname: Zhun
  orcidid: 0000-0002-4232-8229
  surname: Fan
  fullname: Fan, Zhun
  email: zfan@stu.edu.cn
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 4
  givenname: Jinchao
  surname: Liu
  fullname: Liu, Jinchao
  email: liujinchao@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 5
  givenname: Yibiao
  orcidid: 0000-0002-8776-9415
  surname: Rong
  fullname: Rong, Yibiao
  email: ybrong@stu.edu.cn
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 6
  givenname: Jiajie
  orcidid: 0000-0003-2551-5329
  surname: Mo
  fullname: Mo, Jiajie
  email: jiajiemo@outlook.com
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 7
  givenname: Wenji
  surname: Li
  fullname: Li, Wenji
  email: wenji_li@126.com
  organization: Department of Electronic Engineering, Shantou University, Shantou, China
– sequence: 8
  givenname: Xinjian
  orcidid: 0000-0002-0871-293X
  surname: Chen
  fullname: Chen, Xinjian
  email: xjchen@suda.edu.cn
  organization: School of Electronics and Information Engineering, Soochow University, Suzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34506278$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4NU7LZ6FwQJePEya15-TCbelqq1UBW0K95CNvNmnZqZrMkM0v_elN310IOnF_I-nwfvfc_IyRhHJOQ5sCUAM29uPl0tOeOwFABQa_OILECppuJK_jghC8Z1UzFW81NylvMtYyAVM0_IqSi1Ls0FGS5xxKn3dF19xuktXc1THFz5cCHc0XeY--2IbXngjhbgT0y_Mu1iol-LNbpAv2POGOg33A44TsWMI13nftxSR4-zV2EbUz_9HJ6Sx50LGZ8d6jlZf3h_c_Gxuv5yeXWxuq68BDFVWHe69iDFpt0gV0p3TvnGcSF043wHYLxy4FzZlau2bbyUeuMAm45Lplsjzsnr_dxdir9nzJMd-uwxBDdinLPlSoMBY7gs6KsH6G2cU9msUDWXWtWyhkK9PFDzZsDW7lI_uHRnj4csQL0HfIo5J-ys7_fXmJLrgwVm7xOzJTF7n5g9JFZE9kA8zv6P8mKv9Ij4DzdKKAAu_gKpwZ_P
CODEN ITMID4
CitedBy_id crossref_primary_10_1587_transfun_2023EAP1120
crossref_primary_10_1109_JBHI_2023_3237704
crossref_primary_10_1016_j_knosys_2023_110338
crossref_primary_10_1007_s11760_024_03711_2
crossref_primary_10_1109_TMI_2022_3151666
crossref_primary_10_1109_JBHI_2023_3312338
crossref_primary_10_1007_s44267_023_00006_x
crossref_primary_10_3233_JIFS_233006
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_7717_peerj_cs_1754
crossref_primary_10_1109_TPAMI_2023_3347617
crossref_primary_10_3390_e24070967
crossref_primary_10_1007_s00521_024_09989_0
crossref_primary_10_1016_j_asoc_2023_110839
crossref_primary_10_1109_TETCI_2024_3395540
crossref_primary_10_1007_s11042_023_17243_3
crossref_primary_10_1007_s11390_023_3066_4
crossref_primary_10_1007_s11517_023_02806_1
crossref_primary_10_1038_s41598_024_73335_6
crossref_primary_10_3389_fmed_2024_1377479
crossref_primary_10_1186_s13007_022_00857_3
crossref_primary_10_1016_j_compbiomed_2024_108710
crossref_primary_10_1016_j_engappai_2024_109867
crossref_primary_10_1016_j_compbiomed_2025_109789
crossref_primary_10_1016_j_bspc_2024_106102
crossref_primary_10_1080_0305215X_2023_2225036
crossref_primary_10_7240_jeps_1335157
crossref_primary_10_1016_j_matcom_2022_10_023
crossref_primary_10_1016_j_knosys_2023_111185
crossref_primary_10_1088_1361_6560_ac6d9c
crossref_primary_10_1016_j_eswa_2024_123430
crossref_primary_10_1016_j_eswa_2024_124249
crossref_primary_10_3390_math12020264
crossref_primary_10_1016_j_compbiomed_2024_108602
crossref_primary_10_1007_s11517_025_03324_y
crossref_primary_10_1364_BOE_522482
crossref_primary_10_1016_j_compbiomed_2023_107542
crossref_primary_10_1016_j_imu_2024_101565
crossref_primary_10_1007_s40747_022_00794_7
crossref_primary_10_1109_TMI_2022_3193150
crossref_primary_10_1016_j_compmedimag_2024_102441
crossref_primary_10_1109_JBHI_2023_3314981
crossref_primary_10_3390_jpm13091298
crossref_primary_10_1007_s11042_024_18938_x
crossref_primary_10_1016_j_oceaneng_2023_114885
crossref_primary_10_1109_TMI_2024_3351907
crossref_primary_10_1080_01431161_2023_2225710
crossref_primary_10_1007_s00521_024_10817_8
crossref_primary_10_1007_s40747_023_01166_5
crossref_primary_10_1002_ima_22945
crossref_primary_10_3390_sym16091189
crossref_primary_10_1016_j_asoc_2023_110229
crossref_primary_10_1016_j_inffus_2024_102777
crossref_primary_10_1088_1361_6560_ad0b63
crossref_primary_10_1016_j_artmed_2024_103064
crossref_primary_10_1016_j_jestch_2023_101502
Cites_doi 10.1016/j.compbiomed.2014.12.016
10.1007/978-3-030-32248-9_25
10.1109/ICCV.2017.324
10.1007/978-3-030-32245-8_1
10.1109/CVPR.2018.00474
10.1109/TMI.2002.803126
10.1109/TMI.2008.920619
10.1016/j.knosys.2019.04.025
10.1109/CVPR.2017.243
10.1109/CVPRW.2019.00020
10.1109/TMI.2019.2950051
10.1109/WCICA.2016.7578606
10.2174/1874364101206010004
10.1109/42.845178
10.1016/j.jvlc.2009.01.006
10.1007/s11263-015-0816-y
10.1109/TMI.2019.2903562
10.1109/CVPR42600.2020.01064
10.1117/1.jmi.6.1.014006
10.1007/978-3-030-00919-9_12
10.1109/5.784219
10.1609/aaai.v34i04.6100
10.1007/978-3-030-32239-7_10
10.1109/TMI.2016.2546227
10.1007/s11548-017-1619-0
10.1109/ICEC.1997.592278
10.1016/j.compmedimag.2016.07.005
10.1109/TBME.2016.2535311
10.1109/20.952626
10.1109/JBHI.2019.2912935
10.1371/journal.pbio.1000502
10.1145/3321707.3321729
10.1109/ICCV.2017.154
10.1109/TBME.2018.2828137
10.1049/iet-ipr.2012.0455
10.1109/TMI.2004.825627
10.1016/j.media.2020.101874
10.1201/9780429128332-4
10.1109/TMI.2015.2457891
10.1109/CVPR.2019.00017
10.1109/ICCV.2015.123
10.1007/BF00113892
10.1002/j.1538-7305.1950.tb00463.x
10.1109/72.279181
10.1007/BF01530777
10.1109/CBMS.2013.6627771
10.1007/978-3-030-32239-7_30
10.1109/72.623217
10.1007/s13398-014-0173-7.2
10.1016/S0161-6420(99)90525-0
10.1167/iovs.08-3018
10.1109/CVPR42600.2020.00418
10.1109/ICMLC.2016.7872998
10.1109/CVPRW.2017.156
10.1109/3DV.2019.00035
10.1162/106365602320169811
10.1109/CVPR.2016.90
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2019.2908991
10.1016/j.cmpb.2012.03.009
10.1109/TMI.2004.836547
10.1109/CVPR.2018.00907
10.7551/mitpress/1090.001.0001
10.1016/j.media.2019.03.004
10.1109/CVPR.2015.7298594
10.1109/RBME.2010.2084567
10.5555/3104322.3104425
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2021.3111679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 307
ExternalDocumentID 34506278
10_1109_TMI_2021_3111679
9535112
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: State Key Lab of Digital Manufacturing Equipment & Technology
  grantid: DMETKF2019020
  funderid: 10.13039/501100011133
– fundername: Special Fund of Science and Technology Innovation Strategy of Guangdong Province
  grantid: 2019A050520001
  funderid: 10.13039/501100018568
– fundername: International Cooperation Base of Guangdong Province
  grantid: 2019A050519008
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c413t-e6f76c143bdbe2557fa5c8a23378acf119c5a1aa15525dd8c447ba1e8f2407d93
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Oct 01 14:17:28 EDT 2025
Sun Jun 29 16:05:23 EDT 2025
Mon Jul 21 05:59:06 EDT 2025
Wed Oct 01 03:55:31 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Wed Aug 27 02:40:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e6f76c143bdbe2557fa5c8a23378acf119c5a1aa15525dd8c447ba1e8f2407d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8148-2683
0000-0003-2551-5329
0000-0002-8776-9415
0000-0002-4232-8229
0000-0002-0871-293X
PMID 34506278
PQID 2624756461
PQPubID 85460
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TMI_2021_3111679
crossref_primary_10_1109_TMI_2021_3111679
ieee_primary_9535112
proquest_journals_2624756461
pubmed_primary_34506278
proquest_miscellaneous_2571919924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Simon (ref7) 1935; 35
ref17
ref16
ref19
ref18
Simonyan (ref61) 2014
Zoph (ref37) 2016
ref51
ref50
ref46
ref45
ref47
ref44
ref43
ref49
Zhang (ref74)
ref8
ref9
ref4
ref3
ref6
Baker (ref38) 2016
ref5
ref81
ref40
ref80
ref35
ref79
ref34
Kingma (ref75) 2014
ref78
ref36
ref31
ref30
ref33
ref77
ref32
ref76
ref2
Zbigniew (ref71) 1996
ref1
ref39
Brock (ref42)
Miller (ref68) 1995; 9
ref70
ref73
ref72
ref24
ref23
ref67
ref26
Ulyanov (ref65) 2016
ref25
ref69
ref20
Glorot (ref54)
ref63
ref22
ref66
ref21
Grefenstette (ref48)
Liu (ref41)
ref28
ref27
ref29
ref60
ref62
Misra (ref64) 2019
References_xml – ident: ref17
  doi: 10.1016/j.compbiomed.2014.12.016
– ident: ref46
  doi: 10.1007/978-3-030-32248-9_25
– ident: ref76
  doi: 10.1109/ICCV.2017.324
– year: 2016
  ident: ref38
  article-title: Designing neural network architectures using reinforcement learning
  publication-title: arXiv:1611.02167
– ident: ref44
  doi: 10.1007/978-3-030-32245-8_1
– ident: ref34
  doi: 10.1109/CVPR.2018.00474
– ident: ref51
  doi: 10.1109/TMI.2002.803126
– ident: ref53
  doi: 10.1109/TMI.2008.920619
– ident: ref8
  doi: 10.1016/j.knosys.2019.04.025
– ident: ref27
  doi: 10.1109/CVPR.2017.243
– ident: ref23
  doi: 10.1109/CVPRW.2019.00020
– ident: ref9
  doi: 10.1109/TMI.2019.2950051
– ident: ref15
  doi: 10.1109/WCICA.2016.7578606
– ident: ref3
  doi: 10.2174/1874364101206010004
– ident: ref12
  doi: 10.1109/42.845178
– ident: ref6
  doi: 10.1016/j.jvlc.2009.01.006
– volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref42
  article-title: SMASH: One-shot model architecture search through hypernetworks
– ident: ref35
  doi: 10.1007/s11263-015-0816-y
– ident: ref25
  doi: 10.1109/TMI.2019.2903562
– ident: ref31
  doi: 10.1109/CVPR42600.2020.01064
– year: 2014
  ident: ref61
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref24
  doi: 10.1117/1.jmi.6.1.014006
– start-page: 9597
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref74
  article-title: Lookahead optimizer: K steps forward, 1 step back
– ident: ref30
  doi: 10.1007/978-3-030-00919-9_12
– ident: ref50
  doi: 10.1109/5.784219
– start-page: 160
  volume-title: Proc. 1st Int. Conf. Genetic Algorithms Their Appl.
  ident: ref48
  article-title: Genetic algorithms for the traveling salesman problem
– ident: ref56
  doi: 10.1609/aaai.v34i04.6100
– ident: ref10
  doi: 10.1007/978-3-030-32239-7_10
– ident: ref16
  doi: 10.1109/TMI.2016.2546227
– ident: ref19
  doi: 10.1007/s11548-017-1619-0
– ident: ref67
  doi: 10.1109/ICEC.1997.592278
– ident: ref1
  doi: 10.1016/j.compmedimag.2016.07.005
– ident: ref14
  doi: 10.1109/TBME.2016.2535311
– ident: ref80
  doi: 10.1109/20.952626
– ident: ref57
  doi: 10.1109/JBHI.2019.2912935
– ident: ref81
  doi: 10.1371/journal.pbio.1000502
– ident: ref40
  doi: 10.1145/3321707.3321729
– ident: ref39
  doi: 10.1109/ICCV.2017.154
– volume: 9
  start-page: 193
  issue: 3
  year: 1995
  ident: ref68
  article-title: Genetic algorithms, tournament selection, and the effects of noise
  publication-title: Complex Syst.
– ident: ref33
  doi: 10.1109/TBME.2018.2828137
– volume-title: Proc. 7th Int. Conf. Learn. Represent. (ICLR)
  ident: ref41
  article-title: DARTS: Differentiable architecture search
– ident: ref13
  doi: 10.1049/iet-ipr.2012.0455
– ident: ref11
  doi: 10.1109/TMI.2004.825627
– ident: ref26
  doi: 10.1016/j.media.2020.101874
– ident: ref79
  doi: 10.1201/9780429128332-4
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref54
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref18
  doi: 10.1109/TMI.2015.2457891
– ident: ref28
  doi: 10.1109/CVPR.2019.00017
– ident: ref73
  doi: 10.1109/ICCV.2015.123
– ident: ref72
  doi: 10.1007/BF00113892
– year: 2019
  ident: ref64
  article-title: Mish: A self regularized non-monotonic activation function
  publication-title: arXiv:1908.08681
– ident: ref69
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– ident: ref55
  doi: 10.1109/72.279181
– ident: ref66
  doi: 10.1007/BF01530777
– ident: ref78
  doi: 10.1109/CBMS.2013.6627771
– ident: ref22
  doi: 10.1007/978-3-030-32239-7_30
– ident: ref70
  doi: 10.1109/72.623217
– ident: ref62
  doi: 10.1007/s13398-014-0173-7.2
– ident: ref5
  doi: 10.1016/S0161-6420(99)90525-0
– volume: 35
  start-page: 901
  issue: 18
  year: 1935
  ident: ref7
  article-title: A new scientific method of identification
  publication-title: New York State J. Med.
– ident: ref77
  doi: 10.1167/iovs.08-3018
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00418
– ident: ref20
  doi: 10.1109/ICMLC.2016.7872998
– ident: ref58
  doi: 10.1109/CVPRW.2017.156
– ident: ref43
  doi: 10.1109/3DV.2019.00035
– start-page: 372
  volume-title: Computational Statistics
  year: 1996
  ident: ref71
  article-title: Genetic algorithms + data structures = evolution programs
– ident: ref49
  doi: 10.1162/106365602320169811
– ident: ref59
  doi: 10.1109/CVPR.2016.90
– ident: ref21
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref29
  doi: 10.1109/ACCESS.2019.2908991
– ident: ref2
  doi: 10.1016/j.cmpb.2012.03.009
– year: 2016
  ident: ref65
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv:1607.08022
– ident: ref52
  doi: 10.1109/TMI.2004.836547
– ident: ref36
  doi: 10.1109/CVPR.2018.00907
– ident: ref47
  doi: 10.7551/mitpress/1090.001.0001
– year: 2016
  ident: ref37
  article-title: Neural architecture search with reinforcement learning
  publication-title: arXiv:1611.01578
– ident: ref45
  doi: 10.1016/j.media.2019.03.004
– ident: ref60
  doi: 10.1109/CVPR.2015.7298594
– ident: ref4
  doi: 10.1109/RBME.2010.2084567
– year: 2014
  ident: ref75
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref63
  doi: 10.5555/3104322.3104425
SSID ssj0014509
Score 2.6367033
Snippet Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms Algorithms
Artificial neural networks
Biomedical imaging
Blood vessels
Coders
Complexity
Computer applications
Computer architecture
Convolution
Convolutional neural networks (CNNs)
Design
Encoders-Decoders
Fundus Oculi
Genetic algorithms
genetic algorithms (GAs)
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Network architecture
neural architecture search (NAS)
Neural networks
Neural Networks, Computer
Parameters
Retina
retinal vessel segmentation
Retinal vessels
Retinal Vessels - diagnostic imaging
Title Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9535112
https://www.ncbi.nlm.nih.gov/pubmed/34506278
https://www.proquest.com/docview/2624756461
https://www.proquest.com/docview/2571919924
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHqpyKNACDRRkJC5IZDd2YifhtgKqgrR7gC7qLbKdSUFkN1WbHODXM3YeqhAgbpEyeWnGnvkyM98AvETFeWVRhMLEkRthhmGmOAFXrZ1DJR-vXTfycqXO1snHC3mxA6-nXhhE9MVnOHOHPpdfNrZzv8rmuXRpL9pw76SZ6nu1poxBIvtyDuEYYyMlxpRklM_Plx8ICApO-NRnHfZhLyZxJdxstVveyI9X-Xuk6T3O6T1Yju_aF5p8n3Wtmdmfv9E4_u_H3IeDIfRki95WHsAObg_h7i1CwkPYWw6p9iPYOEJqkmTrcIXtG7bo2sbTu-q6_sHe-cIPLOkAr9iqryW_YRQBs0-uiZqe88WxktfsM15uhv6mLfMFCkyz8d6L-rK5_tZ-3TyE9en787dn4TCbIbTk9toQVZUqS8GWKQ0SLEkrLW2mRRynmbYV57mVmmvtGN5kWWY2SVKjOWaVg5BlHj-C3W2zxWNgKbdoKptgaQjdVdJEphSGNobKlJK2lwDmo44KOxCXu_kZdeEBTJQXpODCKbgYFBzAq-mKq5604x-yR043k9yglgBORjMohlV9UwglklSqRPEAXkynaT26JIveYtORjEwJAucEawN43JvPdO_R6p78-ZlPYV-45gpfE34Cu-11h88o5GnNc2_rvwBmNfns
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRSrlwKPlEShgJC5IZDdxbCfhtgKqLTR7gF3UW2Q7TkFkk6pNDvDrGTsPVQgQt0iZvDRjz3yZmW8AXhoRhqU21KcqCuwIM-MnIkTgKqV1qOjjpe1GzlZiuWEfzvjZDryeemGMMa74zMzsocvlF43u7K-yecpt2gs33BucMcb7bq0pZ8B4X9BBLWdsIOiYlAzS-To7QShIQ0SoLu-wD3sRigtqp6td80duwMrfY03nc47vQDa-bV9q8n3WtWqmf_5G5Pi_n3MXbg_BJ1n01nIPdkx9ALeuURIewF42JNsPYWspqVGSbPyVad-QRdc2juBVVtUP8s6VfpgCD8wFWfXV5FcEY2DyybZR43O-WF7yinw259uhw6kmrkSBSDLee1GdN5ff2q_b-7A5fr9-u_SH6Qy-RsfX-kaUsdAYbqlCGQQmcSm5TiSNojiRugzDVHMZSmk53nhRJJqxWMnQJKUFkUUaPYDduqnNIyBxqI0qNTOFQnxXchWogircGkpVcNxgPJiPOsr1QF1uJ2hUuYMwQZqjgnOr4HxQsAevpisuetqOf8geWt1McoNaPDgazSAf1vVVTgVlMRdMhB68mE7jirRpFlmbpkMZHiMIThHYevCwN5_p3qPVPf7zM5_DzeU6O81PT1Yfn8A-ta0WrkL8CHbby848xQCoVc-c3f8CoDn9OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+U-Net%3A+Automatically+Designed+Deep+Networks+for+Retinal+Vessel+Segmentation+Using+a+Genetic+Algorithm&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wei%2C+Jiahong&rft.au=Zhu%2C+Guijie&rft.au=Fan%2C+Zhun&rft.au=Liu%2C+Jinchao&rft.date=2022-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=41&rft.issue=2&rft.spage=292&rft_id=info:doi/10.1109%2FTMI.2021.3111679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon