Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm
Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 41; no. 2; pp. 292 - 307 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2021.3111679 |
Cover
| Abstract | Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net . |
|---|---|
| AbstractList | Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net . Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net.Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity. Moreover, the manual design of competitive CNNs is time-consuming and requires extensive empirical knowledge. Herein, a novel automated design method, called Genetic U-Net, is proposed to generate a U-shaped CNN that can achieve better retinal vessel segmentation but with fewer architecture-based parameters, thereby addressing the above issues. First, we devised a condensed but flexible search space based on a U-shaped encoder-decoder. Then, we used an improved genetic algorithm to identify better-performing architectures in the search space and investigated the possibility of finding a superior network architecture with fewer parameters. The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular and with significantly fewer parameters than other state-of-the-art models. Furthermore, through in-depth investigation of the experimental results, several effective operations and patterns of networks to generate superior retinal vessel segmentations were identified. The codes of this work are available at https://github.com/96jhwei/Genetic-U-Net. |
| Author | Wei, Jiahong Mo, Jiajie Fan, Zhun Rong, Yibiao Liu, Jinchao Li, Wenji Zhu, Guijie Chen, Xinjian |
| Author_xml | – sequence: 1 givenname: Jiahong orcidid: 0000-0002-8148-2683 surname: Wei fullname: Wei, Jiahong email: 19jhwei@stu.edu.cn organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 2 givenname: Guijie surname: Zhu fullname: Zhu, Guijie email: 16gjzhu@stu.edu.cn organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 3 givenname: Zhun orcidid: 0000-0002-4232-8229 surname: Fan fullname: Fan, Zhun email: zfan@stu.edu.cn organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 4 givenname: Jinchao surname: Liu fullname: Liu, Jinchao email: liujinchao@nankai.edu.cn organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 5 givenname: Yibiao orcidid: 0000-0002-8776-9415 surname: Rong fullname: Rong, Yibiao email: ybrong@stu.edu.cn organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 6 givenname: Jiajie orcidid: 0000-0003-2551-5329 surname: Mo fullname: Mo, Jiajie email: jiajiemo@outlook.com organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 7 givenname: Wenji surname: Li fullname: Li, Wenji email: wenji_li@126.com organization: Department of Electronic Engineering, Shantou University, Shantou, China – sequence: 8 givenname: Xinjian orcidid: 0000-0002-0871-293X surname: Chen fullname: Chen, Xinjian email: xjchen@suda.edu.cn organization: School of Electronics and Information Engineering, Soochow University, Suzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34506278$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9rFDEUx4NU7LZ6FwQJePEya15-TCbelqq1UBW0K95CNvNmnZqZrMkM0v_elN310IOnF_I-nwfvfc_IyRhHJOQ5sCUAM29uPl0tOeOwFABQa_OILECppuJK_jghC8Z1UzFW81NylvMtYyAVM0_IqSi1Ls0FGS5xxKn3dF19xuktXc1THFz5cCHc0XeY--2IbXngjhbgT0y_Mu1iol-LNbpAv2POGOg33A44TsWMI13nftxSR4-zV2EbUz_9HJ6Sx50LGZ8d6jlZf3h_c_Gxuv5yeXWxuq68BDFVWHe69iDFpt0gV0p3TvnGcSF043wHYLxy4FzZlau2bbyUeuMAm45Lplsjzsnr_dxdir9nzJMd-uwxBDdinLPlSoMBY7gs6KsH6G2cU9msUDWXWtWyhkK9PFDzZsDW7lI_uHRnj4csQL0HfIo5J-ys7_fXmJLrgwVm7xOzJTF7n5g9JFZE9kA8zv6P8mKv9Ij4DzdKKAAu_gKpwZ_P |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1587_transfun_2023EAP1120 crossref_primary_10_1109_JBHI_2023_3237704 crossref_primary_10_1016_j_knosys_2023_110338 crossref_primary_10_1007_s11760_024_03711_2 crossref_primary_10_1109_TMI_2022_3151666 crossref_primary_10_1109_JBHI_2023_3312338 crossref_primary_10_1007_s44267_023_00006_x crossref_primary_10_3233_JIFS_233006 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_7717_peerj_cs_1754 crossref_primary_10_1109_TPAMI_2023_3347617 crossref_primary_10_3390_e24070967 crossref_primary_10_1007_s00521_024_09989_0 crossref_primary_10_1016_j_asoc_2023_110839 crossref_primary_10_1109_TETCI_2024_3395540 crossref_primary_10_1007_s11042_023_17243_3 crossref_primary_10_1007_s11390_023_3066_4 crossref_primary_10_1007_s11517_023_02806_1 crossref_primary_10_1038_s41598_024_73335_6 crossref_primary_10_3389_fmed_2024_1377479 crossref_primary_10_1186_s13007_022_00857_3 crossref_primary_10_1016_j_compbiomed_2024_108710 crossref_primary_10_1016_j_engappai_2024_109867 crossref_primary_10_1016_j_compbiomed_2025_109789 crossref_primary_10_1016_j_bspc_2024_106102 crossref_primary_10_1080_0305215X_2023_2225036 crossref_primary_10_7240_jeps_1335157 crossref_primary_10_1016_j_matcom_2022_10_023 crossref_primary_10_1016_j_knosys_2023_111185 crossref_primary_10_1088_1361_6560_ac6d9c crossref_primary_10_1016_j_eswa_2024_123430 crossref_primary_10_1016_j_eswa_2024_124249 crossref_primary_10_3390_math12020264 crossref_primary_10_1016_j_compbiomed_2024_108602 crossref_primary_10_1007_s11517_025_03324_y crossref_primary_10_1364_BOE_522482 crossref_primary_10_1016_j_compbiomed_2023_107542 crossref_primary_10_1016_j_imu_2024_101565 crossref_primary_10_1007_s40747_022_00794_7 crossref_primary_10_1109_TMI_2022_3193150 crossref_primary_10_1016_j_compmedimag_2024_102441 crossref_primary_10_1109_JBHI_2023_3314981 crossref_primary_10_3390_jpm13091298 crossref_primary_10_1007_s11042_024_18938_x crossref_primary_10_1016_j_oceaneng_2023_114885 crossref_primary_10_1109_TMI_2024_3351907 crossref_primary_10_1080_01431161_2023_2225710 crossref_primary_10_1007_s00521_024_10817_8 crossref_primary_10_1007_s40747_023_01166_5 crossref_primary_10_1002_ima_22945 crossref_primary_10_3390_sym16091189 crossref_primary_10_1016_j_asoc_2023_110229 crossref_primary_10_1016_j_inffus_2024_102777 crossref_primary_10_1088_1361_6560_ad0b63 crossref_primary_10_1016_j_artmed_2024_103064 crossref_primary_10_1016_j_jestch_2023_101502 |
| Cites_doi | 10.1016/j.compbiomed.2014.12.016 10.1007/978-3-030-32248-9_25 10.1109/ICCV.2017.324 10.1007/978-3-030-32245-8_1 10.1109/CVPR.2018.00474 10.1109/TMI.2002.803126 10.1109/TMI.2008.920619 10.1016/j.knosys.2019.04.025 10.1109/CVPR.2017.243 10.1109/CVPRW.2019.00020 10.1109/TMI.2019.2950051 10.1109/WCICA.2016.7578606 10.2174/1874364101206010004 10.1109/42.845178 10.1016/j.jvlc.2009.01.006 10.1007/s11263-015-0816-y 10.1109/TMI.2019.2903562 10.1109/CVPR42600.2020.01064 10.1117/1.jmi.6.1.014006 10.1007/978-3-030-00919-9_12 10.1109/5.784219 10.1609/aaai.v34i04.6100 10.1007/978-3-030-32239-7_10 10.1109/TMI.2016.2546227 10.1007/s11548-017-1619-0 10.1109/ICEC.1997.592278 10.1016/j.compmedimag.2016.07.005 10.1109/TBME.2016.2535311 10.1109/20.952626 10.1109/JBHI.2019.2912935 10.1371/journal.pbio.1000502 10.1145/3321707.3321729 10.1109/ICCV.2017.154 10.1109/TBME.2018.2828137 10.1049/iet-ipr.2012.0455 10.1109/TMI.2004.825627 10.1016/j.media.2020.101874 10.1201/9780429128332-4 10.1109/TMI.2015.2457891 10.1109/CVPR.2019.00017 10.1109/ICCV.2015.123 10.1007/BF00113892 10.1002/j.1538-7305.1950.tb00463.x 10.1109/72.279181 10.1007/BF01530777 10.1109/CBMS.2013.6627771 10.1007/978-3-030-32239-7_30 10.1109/72.623217 10.1007/s13398-014-0173-7.2 10.1016/S0161-6420(99)90525-0 10.1167/iovs.08-3018 10.1109/CVPR42600.2020.00418 10.1109/ICMLC.2016.7872998 10.1109/CVPRW.2017.156 10.1109/3DV.2019.00035 10.1162/106365602320169811 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1109/ACCESS.2019.2908991 10.1016/j.cmpb.2012.03.009 10.1109/TMI.2004.836547 10.1109/CVPR.2018.00907 10.7551/mitpress/1090.001.0001 10.1016/j.media.2019.03.004 10.1109/CVPR.2015.7298594 10.1109/RBME.2010.2084567 10.5555/3104322.3104425 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2021.3111679 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 307 |
| ExternalDocumentID | 34506278 10_1109_TMI_2021_3111679 9535112 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: State Key Lab of Digital Manufacturing Equipment & Technology grantid: DMETKF2019020 funderid: 10.13039/501100011133 – fundername: Special Fund of Science and Technology Innovation Strategy of Guangdong Province grantid: 2019A050520001 funderid: 10.13039/501100018568 – fundername: International Cooperation Base of Guangdong Province grantid: 2019A050519008 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c413t-e6f76c143bdbe2557fa5c8a23378acf119c5a1aa15525dd8c447ba1e8f2407d93 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Wed Oct 01 14:17:28 EDT 2025 Sun Jun 29 16:05:23 EDT 2025 Mon Jul 21 05:59:06 EDT 2025 Wed Oct 01 03:55:31 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Wed Aug 27 02:40:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-e6f76c143bdbe2557fa5c8a23378acf119c5a1aa15525dd8c447ba1e8f2407d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8148-2683 0000-0003-2551-5329 0000-0002-8776-9415 0000-0002-4232-8229 0000-0002-0871-293X |
| PMID | 34506278 |
| PQID | 2624756461 |
| PQPubID | 85460 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TMI_2021_3111679 crossref_primary_10_1109_TMI_2021_3111679 ieee_primary_9535112 proquest_journals_2624756461 pubmed_primary_34506278 proquest_miscellaneous_2571919924 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 Simon (ref7) 1935; 35 ref17 ref16 ref19 ref18 Simonyan (ref61) 2014 Zoph (ref37) 2016 ref51 ref50 ref46 ref45 ref47 ref44 ref43 ref49 Zhang (ref74) ref8 ref9 ref4 ref3 ref6 Baker (ref38) 2016 ref5 ref81 ref40 ref80 ref35 ref79 ref34 Kingma (ref75) 2014 ref78 ref36 ref31 ref30 ref33 ref77 ref32 ref76 ref2 Zbigniew (ref71) 1996 ref1 ref39 Brock (ref42) Miller (ref68) 1995; 9 ref70 ref73 ref72 ref24 ref23 ref67 ref26 Ulyanov (ref65) 2016 ref25 ref69 ref20 Glorot (ref54) ref63 ref22 ref66 ref21 Grefenstette (ref48) Liu (ref41) ref28 ref27 ref29 ref60 ref62 Misra (ref64) 2019 |
| References_xml | – ident: ref17 doi: 10.1016/j.compbiomed.2014.12.016 – ident: ref46 doi: 10.1007/978-3-030-32248-9_25 – ident: ref76 doi: 10.1109/ICCV.2017.324 – year: 2016 ident: ref38 article-title: Designing neural network architectures using reinforcement learning publication-title: arXiv:1611.02167 – ident: ref44 doi: 10.1007/978-3-030-32245-8_1 – ident: ref34 doi: 10.1109/CVPR.2018.00474 – ident: ref51 doi: 10.1109/TMI.2002.803126 – ident: ref53 doi: 10.1109/TMI.2008.920619 – ident: ref8 doi: 10.1016/j.knosys.2019.04.025 – ident: ref27 doi: 10.1109/CVPR.2017.243 – ident: ref23 doi: 10.1109/CVPRW.2019.00020 – ident: ref9 doi: 10.1109/TMI.2019.2950051 – ident: ref15 doi: 10.1109/WCICA.2016.7578606 – ident: ref3 doi: 10.2174/1874364101206010004 – ident: ref12 doi: 10.1109/42.845178 – ident: ref6 doi: 10.1016/j.jvlc.2009.01.006 – volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR) ident: ref42 article-title: SMASH: One-shot model architecture search through hypernetworks – ident: ref35 doi: 10.1007/s11263-015-0816-y – ident: ref25 doi: 10.1109/TMI.2019.2903562 – ident: ref31 doi: 10.1109/CVPR42600.2020.01064 – year: 2014 ident: ref61 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref24 doi: 10.1117/1.jmi.6.1.014006 – start-page: 9597 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref74 article-title: Lookahead optimizer: K steps forward, 1 step back – ident: ref30 doi: 10.1007/978-3-030-00919-9_12 – ident: ref50 doi: 10.1109/5.784219 – start-page: 160 volume-title: Proc. 1st Int. Conf. Genetic Algorithms Their Appl. ident: ref48 article-title: Genetic algorithms for the traveling salesman problem – ident: ref56 doi: 10.1609/aaai.v34i04.6100 – ident: ref10 doi: 10.1007/978-3-030-32239-7_10 – ident: ref16 doi: 10.1109/TMI.2016.2546227 – ident: ref19 doi: 10.1007/s11548-017-1619-0 – ident: ref67 doi: 10.1109/ICEC.1997.592278 – ident: ref1 doi: 10.1016/j.compmedimag.2016.07.005 – ident: ref14 doi: 10.1109/TBME.2016.2535311 – ident: ref80 doi: 10.1109/20.952626 – ident: ref57 doi: 10.1109/JBHI.2019.2912935 – ident: ref81 doi: 10.1371/journal.pbio.1000502 – ident: ref40 doi: 10.1145/3321707.3321729 – ident: ref39 doi: 10.1109/ICCV.2017.154 – volume: 9 start-page: 193 issue: 3 year: 1995 ident: ref68 article-title: Genetic algorithms, tournament selection, and the effects of noise publication-title: Complex Syst. – ident: ref33 doi: 10.1109/TBME.2018.2828137 – volume-title: Proc. 7th Int. Conf. Learn. Represent. (ICLR) ident: ref41 article-title: DARTS: Differentiable architecture search – ident: ref13 doi: 10.1049/iet-ipr.2012.0455 – ident: ref11 doi: 10.1109/TMI.2004.825627 – ident: ref26 doi: 10.1016/j.media.2020.101874 – ident: ref79 doi: 10.1201/9780429128332-4 – start-page: 249 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref54 article-title: Understanding the difficulty of training deep feedforward neural networks – ident: ref18 doi: 10.1109/TMI.2015.2457891 – ident: ref28 doi: 10.1109/CVPR.2019.00017 – ident: ref73 doi: 10.1109/ICCV.2015.123 – ident: ref72 doi: 10.1007/BF00113892 – year: 2019 ident: ref64 article-title: Mish: A self regularized non-monotonic activation function publication-title: arXiv:1908.08681 – ident: ref69 doi: 10.1002/j.1538-7305.1950.tb00463.x – ident: ref55 doi: 10.1109/72.279181 – ident: ref66 doi: 10.1007/BF01530777 – ident: ref78 doi: 10.1109/CBMS.2013.6627771 – ident: ref22 doi: 10.1007/978-3-030-32239-7_30 – ident: ref70 doi: 10.1109/72.623217 – ident: ref62 doi: 10.1007/s13398-014-0173-7.2 – ident: ref5 doi: 10.1016/S0161-6420(99)90525-0 – volume: 35 start-page: 901 issue: 18 year: 1935 ident: ref7 article-title: A new scientific method of identification publication-title: New York State J. Med. – ident: ref77 doi: 10.1167/iovs.08-3018 – ident: ref32 doi: 10.1109/CVPR42600.2020.00418 – ident: ref20 doi: 10.1109/ICMLC.2016.7872998 – ident: ref58 doi: 10.1109/CVPRW.2017.156 – ident: ref43 doi: 10.1109/3DV.2019.00035 – start-page: 372 volume-title: Computational Statistics year: 1996 ident: ref71 article-title: Genetic algorithms + data structures = evolution programs – ident: ref49 doi: 10.1162/106365602320169811 – ident: ref59 doi: 10.1109/CVPR.2016.90 – ident: ref21 doi: 10.1007/978-3-319-24574-4_28 – ident: ref29 doi: 10.1109/ACCESS.2019.2908991 – ident: ref2 doi: 10.1016/j.cmpb.2012.03.009 – year: 2016 ident: ref65 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv:1607.08022 – ident: ref52 doi: 10.1109/TMI.2004.836547 – ident: ref36 doi: 10.1109/CVPR.2018.00907 – ident: ref47 doi: 10.7551/mitpress/1090.001.0001 – year: 2016 ident: ref37 article-title: Neural architecture search with reinforcement learning publication-title: arXiv:1611.01578 – ident: ref45 doi: 10.1016/j.media.2019.03.004 – ident: ref60 doi: 10.1109/CVPR.2015.7298594 – ident: ref4 doi: 10.1109/RBME.2010.2084567 – year: 2014 ident: ref75 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref63 doi: 10.5555/3104322.3104425 |
| SSID | ssj0014509 |
| Score | 2.6367033 |
| Snippet | Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 292 |
| SubjectTerms | Algorithms Artificial neural networks Biomedical imaging Blood vessels Coders Complexity Computer applications Computer architecture Convolution Convolutional neural networks (CNNs) Design Encoders-Decoders Fundus Oculi Genetic algorithms genetic algorithms (GAs) Image processing Image Processing, Computer-Assisted - methods Image segmentation Network architecture neural architecture search (NAS) Neural networks Neural Networks, Computer Parameters Retina retinal vessel segmentation Retinal vessels Retinal Vessels - diagnostic imaging |
| Title | Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm |
| URI | https://ieeexplore.ieee.org/document/9535112 https://www.ncbi.nlm.nih.gov/pubmed/34506278 https://www.proquest.com/docview/2624756461 https://www.proquest.com/docview/2571919924 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHqpyKNACDRRkJC5IZDd2YifhtgKqgrR7gC7qLbKdSUFkN1WbHODXM3YeqhAgbpEyeWnGnvkyM98AvETFeWVRhMLEkRthhmGmOAFXrZ1DJR-vXTfycqXO1snHC3mxA6-nXhhE9MVnOHOHPpdfNrZzv8rmuXRpL9pw76SZ6nu1poxBIvtyDuEYYyMlxpRklM_Plx8ICApO-NRnHfZhLyZxJdxstVveyI9X-Xuk6T3O6T1Yju_aF5p8n3Wtmdmfv9E4_u_H3IeDIfRki95WHsAObg_h7i1CwkPYWw6p9iPYOEJqkmTrcIXtG7bo2sbTu-q6_sHe-cIPLOkAr9iqryW_YRQBs0-uiZqe88WxktfsM15uhv6mLfMFCkyz8d6L-rK5_tZ-3TyE9en787dn4TCbIbTk9toQVZUqS8GWKQ0SLEkrLW2mRRynmbYV57mVmmvtGN5kWWY2SVKjOWaVg5BlHj-C3W2zxWNgKbdoKptgaQjdVdJEphSGNobKlJK2lwDmo44KOxCXu_kZdeEBTJQXpODCKbgYFBzAq-mKq5604x-yR043k9yglgBORjMohlV9UwglklSqRPEAXkynaT26JIveYtORjEwJAucEawN43JvPdO_R6p78-ZlPYV-45gpfE34Cu-11h88o5GnNc2_rvwBmNfns |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRSrlwKPlEShgJC5IZDdxbCfhtgKqLTR7gF3UW2Q7TkFkk6pNDvDrGTsPVQgQt0iZvDRjz3yZmW8AXhoRhqU21KcqCuwIM-MnIkTgKqV1qOjjpe1GzlZiuWEfzvjZDryeemGMMa74zMzsocvlF43u7K-yecpt2gs33BucMcb7bq0pZ8B4X9BBLWdsIOiYlAzS-To7QShIQ0SoLu-wD3sRigtqp6td80duwMrfY03nc47vQDa-bV9q8n3WtWqmf_5G5Pi_n3MXbg_BJ1n01nIPdkx9ALeuURIewF42JNsPYWspqVGSbPyVad-QRdc2juBVVtUP8s6VfpgCD8wFWfXV5FcEY2DyybZR43O-WF7yinw259uhw6kmrkSBSDLee1GdN5ff2q_b-7A5fr9-u_SH6Qy-RsfX-kaUsdAYbqlCGQQmcSm5TiSNojiRugzDVHMZSmk53nhRJJqxWMnQJKUFkUUaPYDduqnNIyBxqI0qNTOFQnxXchWogircGkpVcNxgPJiPOsr1QF1uJ2hUuYMwQZqjgnOr4HxQsAevpisuetqOf8geWt1McoNaPDgazSAf1vVVTgVlMRdMhB68mE7jirRpFlmbpkMZHiMIThHYevCwN5_p3qPVPf7zM5_DzeU6O81PT1Yfn8A-ta0WrkL8CHbby848xQCoVc-c3f8CoDn9OQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+U-Net%3A+Automatically+Designed+Deep+Networks+for+Retinal+Vessel+Segmentation+Using+a+Genetic+Algorithm&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wei%2C+Jiahong&rft.au=Zhu%2C+Guijie&rft.au=Fan%2C+Zhun&rft.au=Liu%2C+Jinchao&rft.date=2022-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=41&rft.issue=2&rft.spage=292&rft_id=info:doi/10.1109%2FTMI.2021.3111679&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |