A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor
Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using...
Saved in:
| Published in | Energy (Oxford) Vol. 191; p. 116414 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.01.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 1873-6785 |
| DOI | 10.1016/j.energy.2019.116414 |
Cover
| Abstract | Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved.
•Outlines a detailed CFD model validated with experimental data in a fast pyrolysis reactor.•Details development of a new model by integrating machine learning tools and CFD simulations.•Predicts the performance of a fast pyrolysis reactor in different operational conditions.•Optimizes the bio-oil yield in a fact pyrolysis reactor considering the variability in effective parameters. |
|---|---|
| AbstractList | Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved. Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved. •Outlines a detailed CFD model validated with experimental data in a fast pyrolysis reactor.•Details development of a new model by integrating machine learning tools and CFD simulations.•Predicts the performance of a fast pyrolysis reactor in different operational conditions.•Optimizes the bio-oil yield in a fact pyrolysis reactor considering the variability in effective parameters. |
| ArticleNumber | 116414 |
| Author | Garaniya, Vikram Jalalifar, Salman Masoudi, Mojtaba Abbassi, Rouzbeh Ghiji, Mohammadmahdi Salehi, Fatemeh |
| Author_xml | – sequence: 1 givenname: Salman orcidid: 0000-0003-3921-9846 surname: Jalalifar fullname: Jalalifar, Salman organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania, Australia – sequence: 2 givenname: Mojtaba surname: Masoudi fullname: Masoudi, Mojtaba organization: Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran – sequence: 3 givenname: Rouzbeh orcidid: 0000-0002-9230-6175 surname: Abbassi fullname: Abbassi, Rouzbeh email: Rouzbeh.Abbassi@mq.edu.au organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 4 givenname: Vikram surname: Garaniya fullname: Garaniya, Vikram organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania, Australia – sequence: 5 givenname: Mohammadmahdi surname: Ghiji fullname: Ghiji, Mohammadmahdi organization: Institute of Sustainable Industries and Liveable Cities, Victoria University, Victoria, Australia – sequence: 6 givenname: Fatemeh surname: Salehi fullname: Salehi, Fatemeh organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia |
| BookMark | eNqNkU9rFDEYxoNUcFv9Bh4CXrzMmkz-zI4HoWytCoWKVa8xf96pWbKTMcko8-3NMp56UA8hIfyelzy_nKOzMY6A0HNKtpRQ-eqwhRHS_bJtCe23lEpO-SO0obuONbLbiTO0IUySRnDePkHnOR8IIWLX9xv07RJ_X0zyDt99_dR8vLvFx-gg4BLxlMB5W7DG--urxugMDsep-KM_ncxsTPDjPR7C7N16Vde0pBiW7DNOoG2J6Sl6POiQ4dmf_QJ9uX77ef--ubl992F_edNYTllpgAphCHFkAEuBa-4ENYMQXWc66YwEph2zxGmqpet1N1gugDEmKTGtaYFdILHOncdJL790CGpK_qjToihRJ03qoFZN6qRJrZpq7uWam1L8MUMuqvazEIIeIc5ZtYwJyltBWUVfPEAPcU5jbVUpQXrWtr2s1OuVsinmnGBQ1hddfBxL0j786zX8Qfg_S7xZY1AN__SQVLYeRls_MIEtykX_9wG_AcMQs7k |
| CitedBy_id | crossref_primary_10_1016_j_jpowsour_2021_229727 crossref_primary_10_2139_ssrn_3998957 crossref_primary_10_1177_0958305X20930386 crossref_primary_10_1016_j_icheatmasstransfer_2021_105741 crossref_primary_10_1016_j_jaap_2022_105433 crossref_primary_10_1016_j_fuel_2021_120488 crossref_primary_10_1016_j_engfailanal_2022_106734 crossref_primary_10_1016_j_fuel_2022_126055 crossref_primary_10_3390_atmos12121702 crossref_primary_10_1016_j_icheatmasstransfer_2021_105808 crossref_primary_10_1016_j_applthermaleng_2023_122150 crossref_primary_10_1016_j_jcrysgro_2023_127311 crossref_primary_10_1016_j_geothermics_2023_102711 crossref_primary_10_1016_j_resconrec_2022_106847 crossref_primary_10_1016_j_energy_2023_127732 crossref_primary_10_3390_app13169221 crossref_primary_10_1016_j_fuel_2020_117791 crossref_primary_10_1016_j_jclepro_2022_133025 crossref_primary_10_1016_j_energy_2023_130081 crossref_primary_10_1016_j_joei_2025_101991 crossref_primary_10_1016_j_jaap_2023_106015 crossref_primary_10_1016_j_biombioe_2024_107111 crossref_primary_10_1016_j_fuel_2025_134901 crossref_primary_10_1021_acsestengg_3c00043 crossref_primary_10_1016_j_cherd_2022_01_024 crossref_primary_10_1016_j_measurement_2023_113106 crossref_primary_10_1021_acs_iecr_3c01813 crossref_primary_10_1016_j_cej_2021_131285 crossref_primary_10_1021_acs_iecr_3c03812 crossref_primary_10_1016_j_ijhydene_2024_11_179 crossref_primary_10_1016_j_dche_2023_100103 crossref_primary_10_1016_j_fuel_2022_124344 crossref_primary_10_1007_s11831_024_10185_5 crossref_primary_10_2139_ssrn_3906523 crossref_primary_10_1016_j_renene_2025_122628 crossref_primary_10_1016_j_ceramint_2022_05_203 crossref_primary_10_3390_pr8111332 crossref_primary_10_1016_j_jlp_2023_105092 crossref_primary_10_1007_s13762_022_04013_1 crossref_primary_10_1016_j_cej_2024_152335 crossref_primary_10_1016_j_ijthermalsci_2021_107008 crossref_primary_10_1016_j_partic_2023_10_007 crossref_primary_10_3390_fi14090247 crossref_primary_10_1016_j_est_2023_107059 crossref_primary_10_1051_e3sconf_202125904002 crossref_primary_10_1002_srin_202400231 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122903 crossref_primary_10_1016_j_energy_2022_123306 |
| Cites_doi | 10.1016/j.enconman.2017.11.005 10.1021/ef010053h 10.1080/00908310290142127 10.1007/s11027-009-9192-7 10.1016/j.jaap.2005.11.007 10.1021/ef4012966 10.1016/j.cep.2017.12.006 10.1016/j.jaap.2016.01.003 10.1016/j.ces.2011.03.010 10.1080/00102209708935670 10.1214/009053604000000067 10.1016/j.jaap.2016.08.002 10.1016/j.fuel.2020.117791 10.1016/j.rser.2012.01.024 10.1080/01431160512331314083 10.1016/j.biortech.2010.07.094 10.1016/S0016-2361(98)00156-2 10.1016/j.jaap.2017.07.008 10.1038/s41524-018-0081-z 10.1016/j.rser.2006.07.014 10.3414/ME09-01-0010 10.1016/j.cpc.2014.02.012 10.1016/j.fuel.2013.09.009 10.1016/j.renene.2009.04.019 10.1021/bk-1977-0043.ch005 10.1016/j.fuel.2007.03.033 10.1016/j.fuel.2018.07.070 10.1016/j.fuproc.2017.04.012 10.1016/j.fuel.2017.06.068 10.1016/j.enconman.2009.08.014 10.1016/j.jaap.2015.11.015 10.1016/S0196-8904(99)00130-2 10.1016/j.fuel.2012.02.065 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 15, 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2020 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.energy.2019.116414 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | oai:eprints.vu.edu.au:40873 10_1016_j_energy_2019_116414 S0360544219321097 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHIDL AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSH SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ADMUD ADNMO ADXHL AFJKZ AGQPQ AHHHB AIGII ASPBG AVWKF AZFZN CITATION EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c413t-e155b00d0fec1e4a4d51bf5577b76db6e3ad3c0da1a6d9a7fc45e333610b2b2e3 |
| IEDL.DBID | UNPAY |
| ISSN | 0360-5442 1873-6785 |
| IngestDate | Sun Oct 26 03:55:36 EDT 2025 Thu Oct 02 21:44:22 EDT 2025 Wed Aug 13 06:10:20 EDT 2025 Wed Oct 01 06:04:09 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Sat Jul 19 17:11:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bubbling fluidised bed reactor Support vector regression (SVR) Fast pyrolysis process Computational fluid dynamic (CFD) simulation Particle swarm optimisation (PSO) |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-e155b00d0fec1e4a4d51bf5577b76db6e3ad3c0da1a6d9a7fc45e333610b2b2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3921-9846 0000-0002-9230-6175 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://vuir.vu.edu.au/40873/ |
| PQID | 2350932296 |
| PQPubID | 2045484 |
| ParticipantIDs | unpaywall_primary_10_1016_j_energy_2019_116414 proquest_miscellaneous_2335142513 proquest_journals_2350932296 crossref_citationtrail_10_1016_j_energy_2019_116414 crossref_primary_10_1016_j_energy_2019_116414 elsevier_sciencedirect_doi_10_1016_j_energy_2019_116414 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-15 |
| PublicationDateYYYYMMDD | 2020-01-15 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Efron (bib37) 2004; 32 Ward, Braslaw, flame (bib52) 1985; vol. 61 Park (bib18) 2019 Blanco, Chejne (bib27) 2016; 118 Shafizadeh, Chin (bib48) 1977 Matta (bib58) 2017; vol. 210 Jalalifar (bib26) 2017 Xue (bib44) 2012; 97 Tsai, Lee, Chang (bib3) 2006; 76 Authier (bib50) 2010; vol. 8 Tibshirani (bib36) 1996 Xiong, Aramideh, Kong (bib22) 2013; 27 Van de Velden (bib47) 2010; 35 Koufopanos, Lucchesi, Maschio (bib53) 1989; vol. 67 Han, Kim, reviews (bib49) 2008; vol. 12 Zhang (bib13) 2017; 105 Liu (bib20) 2017; 164 Niemelä (bib29) 2017; vol. 128 Yang (bib51) 2006; vol. 20 Cai, Dai, Liu (bib5) 2018; vol. 154 DEMİRBAŞ (bib14) 2003; 25 Xiong (bib24) 2016; 117 Yang (bib64) 2007; 86 Chen, Fang, Duan (bib11) 2018; 218 Jalalifar (bib25) 2018; 234 Sunphorka, Chalermsinsuwan, Piumsomboon (bib33) 2017; vol. 193 Kennedy (bib38) 2011 Kim (bib7) 2010; 101 Pal, Mather (bib40) 2005; 26 Hejazi (bib28) 2016; 121 Xiong (bib43) 2014; 185 Hough (bib34) 2017; vol. 104 Gidaspow (bib42) 1994 Miller, Bellan (bib56) 1997; vol. 126 Saleem, M. and I. Ali, Machine learning based prediction of Pyrolytic conversion for red Sea Seaweed Demirbaş (bib46) 2000; 41 Hu (bib19) 2018 Chuang (bib61) 2010; 49 Guizani (bib17) 2017; 207 Mellin, Kantarelis, Yang (bib23) 2014; 117 Marathe, Westerhof, Kersten (bib30) 2019; 236 Orfao, Antunes, Figueiredo (bib55) 1999; vol. 78 Bishop (bib41) 2006 Rezaei, Sokhansanj, Lim (bib16) 2018; 124 Goyal, Seal, Saxena (bib9) 2008; 12 Zhang, Ling (bib39) 2018; 4 Lajili (bib4) 2018; vol. 150 Lathouwers, Bellan (bib59) 2001; 15 Anca-Couce, Sommersacher, Scharler (bib15) 2017; 127 Sun (bib35) 2016; vol. 120 Mutlu, Yucel (bib31) 2018; vol. 165 Vapnik (bib62) 2013 Wang (bib12) 2019 Clissold J, et al. A Parametric Study on Fluidisation Characteristics and Product Yields in Bubbling Fluidised Bed Reactor. Australian Combustion Symposium, Adelaide, 4-6 December 2019. Accepted. Blin (bib1) 2007; 86 Yang, Wu, Wu (bib6) 2014; vol. 66 Koufopanos (bib54) 1991; 69 Kennedy, Eberhart (bib63) 1995 Xue, Heindel, Fox (bib45) 2011; 66 Balat (bib10) 2009; 50 Ranzi (bib57) 2008; 22 Panwar, Kothari, Tyagi (bib2) 2012; 16 Gao (bib60) 2009; vol. 55 Panwar, Rathore (bib8) 2009; 14 Cardoso (bib21) 2018; 156 Kim (10.1016/j.energy.2019.116414_bib7) 2010; 101 Blin (10.1016/j.energy.2019.116414_bib1) 2007; 86 Zhang (10.1016/j.energy.2019.116414_bib13) 2017; 105 Marathe (10.1016/j.energy.2019.116414_bib30) 2019; 236 Goyal (10.1016/j.energy.2019.116414_bib9) 2008; 12 Shafizadeh (10.1016/j.energy.2019.116414_bib48) 1977 Chen (10.1016/j.energy.2019.116414_bib11) 2018; 218 Mutlu (10.1016/j.energy.2019.116414_bib31) 2018; vol. 165 Han (10.1016/j.energy.2019.116414_bib49) 2008; vol. 12 Tibshirani (10.1016/j.energy.2019.116414_bib36) 1996 Chuang (10.1016/j.energy.2019.116414_bib61) 2010; 49 10.1016/j.energy.2019.116414_bib65 Blanco (10.1016/j.energy.2019.116414_bib27) 2016; 118 Koufopanos (10.1016/j.energy.2019.116414_bib53) 1989; vol. 67 Hejazi (10.1016/j.energy.2019.116414_bib28) 2016; 121 Lathouwers (10.1016/j.energy.2019.116414_bib59) 2001; 15 Kennedy (10.1016/j.energy.2019.116414_bib38) 2011 Guizani (10.1016/j.energy.2019.116414_bib17) 2017; 207 Van de Velden (10.1016/j.energy.2019.116414_bib47) 2010; 35 Zhang (10.1016/j.energy.2019.116414_bib39) 2018; 4 Tsai (10.1016/j.energy.2019.116414_bib3) 2006; 76 Xiong (10.1016/j.energy.2019.116414_bib22) 2013; 27 Gidaspow (10.1016/j.energy.2019.116414_bib42) 1994 Yang (10.1016/j.energy.2019.116414_bib64) 2007; 86 Panwar (10.1016/j.energy.2019.116414_bib2) 2012; 16 Jalalifar (10.1016/j.energy.2019.116414_bib25) 2018; 234 Sun (10.1016/j.energy.2019.116414_bib35) 2016; vol. 120 Demirbaş (10.1016/j.energy.2019.116414_bib46) 2000; 41 Ward (10.1016/j.energy.2019.116414_bib52) 1985; vol. 61 Pal (10.1016/j.energy.2019.116414_bib40) 2005; 26 Lajili (10.1016/j.energy.2019.116414_bib4) 2018; vol. 150 Bishop (10.1016/j.energy.2019.116414_bib41) 2006 Balat (10.1016/j.energy.2019.116414_bib10) 2009; 50 Xiong (10.1016/j.energy.2019.116414_bib43) 2014; 185 Anca-Couce (10.1016/j.energy.2019.116414_bib15) 2017; 127 Koufopanos (10.1016/j.energy.2019.116414_bib54) 1991; 69 Gao (10.1016/j.energy.2019.116414_bib60) 2009; vol. 55 Miller (10.1016/j.energy.2019.116414_bib56) 1997; vol. 126 Xue (10.1016/j.energy.2019.116414_bib44) 2012; 97 Niemelä (10.1016/j.energy.2019.116414_bib29) 2017; vol. 128 Panwar (10.1016/j.energy.2019.116414_bib8) 2009; 14 DEMİRBAŞ (10.1016/j.energy.2019.116414_bib14) 2003; 25 Matta (10.1016/j.energy.2019.116414_bib58) 2017; vol. 210 Yang (10.1016/j.energy.2019.116414_bib6) 2014; vol. 66 Rezaei (10.1016/j.energy.2019.116414_bib16) 2018; 124 Yang (10.1016/j.energy.2019.116414_bib51) 2006; vol. 20 Efron (10.1016/j.energy.2019.116414_bib37) 2004; 32 Vapnik (10.1016/j.energy.2019.116414_bib62) 2013 Jalalifar (10.1016/j.energy.2019.116414_bib26) 2017 Hough (10.1016/j.energy.2019.116414_bib34) 2017; vol. 104 Park (10.1016/j.energy.2019.116414_bib18) 2019 Hu (10.1016/j.energy.2019.116414_bib19) 2018 Sunphorka (10.1016/j.energy.2019.116414_bib33) 2017; vol. 193 Mellin (10.1016/j.energy.2019.116414_bib23) 2014; 117 Cardoso (10.1016/j.energy.2019.116414_bib21) 2018; 156 Orfao (10.1016/j.energy.2019.116414_bib55) 1999; vol. 78 Liu (10.1016/j.energy.2019.116414_bib20) 2017; 164 Xue (10.1016/j.energy.2019.116414_bib45) 2011; 66 Wang (10.1016/j.energy.2019.116414_bib12) 2019 Ranzi (10.1016/j.energy.2019.116414_bib57) 2008; 22 10.1016/j.energy.2019.116414_bib32 Cai (10.1016/j.energy.2019.116414_bib5) 2018; vol. 154 Kennedy (10.1016/j.energy.2019.116414_bib63) 1995 Authier (10.1016/j.energy.2019.116414_bib50) 2010; vol. 8 Xiong (10.1016/j.energy.2019.116414_bib24) 2016; 117 |
| References_xml | – volume: vol. 66 start-page: 162 year: 2014 end-page: 171 ident: bib6 publication-title: Application of biomass fast pyrolysis part I: pyrolysis characteristics and products – volume: 164 start-page: 51 year: 2017 end-page: 68 ident: bib20 article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment publication-title: Fuel Process Technol – volume: vol. 193 start-page: 142 year: 2017 end-page: 158 ident: bib33 publication-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents – year: 2018 ident: bib19 article-title: CFD-DEM investigation on the biomass fast pyrolysis: the influences of shrinkage Patterns and operating parameters – volume: vol. 120 start-page: 94 year: 2016 end-page: 102 ident: bib35 publication-title: Pyrolysis products from industrial waste biomass based on a neural network model – start-page: 760 year: 2011 end-page: 766 ident: bib38 article-title: Particle swarm optimization publication-title: Encyclopedia of machine learning – volume: vol. 55 start-page: 1680 year: 2009 end-page: 1694 ident: bib60 publication-title: CFD Modeling And Validation Of The Turbulent Fluidized Bed Of FCC Particles – volume: vol. 8 year: 2010 ident: bib50 publication-title: Solid Pyrolysis Modelling by a Lagrangian and Dimensionless Approach-Application to Cellulose Fast Pyrolysis – year: 1977 ident: bib48 article-title: Thermal deterioration of wood publication-title: ACS Symposium Series American chemical Society – volume: 236 start-page: 1125 year: 2019 end-page: 1137 ident: bib30 article-title: Fast pyrolysis of lignins with different molecular weight publication-title: Experiments and modelling – volume: vol. 165 start-page: 895 year: 2018 end-page: 901 ident: bib31 publication-title: An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification – year: 2019 ident: bib12 article-title: Formate-assisted analytical pyrolysis of kraft lignin to phenols – volume: 156 start-page: 53 year: 2018 end-page: 67 ident: bib21 article-title: Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: a numerical study with experimental validation publication-title: Energy Convers Manag – volume: 4 start-page: 25 year: 2018 ident: bib39 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: npj Comput. Mater. – start-page: 267 year: 1996 end-page: 288 ident: bib36 article-title: Regression shrinkage and selection via the lasso – volume: 185 start-page: 1739 year: 2014 end-page: 1746 ident: bib43 article-title: BIOTC: an open-source CFD code for simulating biomass fast pyrolysis publication-title: Comput Phys Commun – volume: 127 start-page: 411 year: 2017 end-page: 425 ident: bib15 article-title: Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis publication-title: J Anal Appl Pyrolysis – volume: 117 start-page: 704 year: 2014 end-page: 715 ident: bib23 article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme publication-title: Fuel – volume: vol. 61 start-page: 261 year: 1985 end-page: 269 ident: bib52 publication-title: Experimental Weight Loss Kinetics Of Wood Pyrolysis Under Vacuum – reference: Clissold J, et al. A Parametric Study on Fluidisation Characteristics and Product Yields in Bubbling Fluidised Bed Reactor. Australian Combustion Symposium, Adelaide, 4-6 December 2019. Accepted. – volume: 25 start-page: 67 year: 2003 end-page: 75 ident: bib14 article-title: Hydrocarbons from pyrolysis and hydrolysis processes of biomass publication-title: Energy Sources – year: 1994 ident: bib42 article-title: Multiphase flow and fluidization: continuum and kinetic theory descriptions – volume: 86 start-page: 2679 year: 2007 end-page: 2686 ident: bib1 article-title: Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use publication-title: Fuel – volume: vol. 12 start-page: 397 year: 2008 end-page: 416 ident: bib49 publication-title: The Reduction And Control Technology Of Tar During Biomass Gasification/Pyrolysis: An Overview – volume: vol. 154 start-page: 477 year: 2018 end-page: 487 ident: bib5 publication-title: Catalytic fast pyrolysis of rice husk for bio-oil production – start-page: 138 year: 2006 end-page: 147 ident: bib41 article-title: Pattern Recognition and machine learning (Information science and Statistics) – volume: 22 start-page: 4292 year: 2008 end-page: 4300 ident: bib57 publication-title: Chemical Kinetics of Biomass Pyrolysis – volume: 14 start-page: 711 year: 2009 ident: bib8 article-title: Potential of surplus biomass gasifier based power generation: a case study of an Indian state Rajasthan publication-title: Mitig Adapt Strategies Glob Change – volume: vol. 150 start-page: 61 year: 2018 end-page: 68 ident: bib4 publication-title: Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues – volume: 69 start-page: 907 year: 1991 end-page: 915 ident: bib54 article-title: Modelling of the pyrolysis of biomass particles publication-title: Studies on Kinetics, Thermal and Heat Transfer Effects – volume: 117 start-page: 176 year: 2016 end-page: 181 ident: bib24 article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds publication-title: J Anal Appl Pyrolysis – year: 1995 ident: bib63 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks IV – volume: vol. 67 start-page: 75 year: 1989 end-page: 84 ident: bib53 article-title: Kinetic modelling of the pyrolysis of biomass and biomass components publication-title: T.C.J.o.C.E. – volume: vol. 126 start-page: 97 year: 1997 end-page: 137 ident: bib56 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust.Sci and Technol. – volume: 207 start-page: 71 year: 2017 end-page: 84 ident: bib17 article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling publication-title: Fuel – volume: 16 start-page: 1801 year: 2012 end-page: 1816 ident: bib2 article-title: Thermo chemical conversion of biomass–Eco friendly energy routes publication-title: Renew Sustain Energy Rev – volume: 118 start-page: 105 year: 2016 end-page: 114 ident: bib27 article-title: Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor publication-title: J Anal Appl Pyrolysis – volume: vol. 78 start-page: 349 year: 1999 end-page: 358 ident: bib55 article-title: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model publication-title: Fuel – volume: 234 start-page: 616 year: 2018 end-page: 625 ident: bib25 article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor publication-title: Fuel – volume: 105 start-page: 136 year: 2017 end-page: 146 ident: bib13 article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy – year: 2019 ident: bib18 article-title: Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor – volume: 12 start-page: 504 year: 2008 end-page: 517 ident: bib9 article-title: Bio-fuels from thermochemical conversion of renewable resources: a review publication-title: Renew Sustain Energy Rev – volume: vol. 104 start-page: 56 year: 2017 end-page: 63 ident: bib34 publication-title: Application of machine learning to pyrolysis reaction networks: reducing model solution time to enable process optimization – volume: 15 start-page: 1247 year: 2001 end-page: 1262 ident: bib59 article-title: Yield optimization and scaling of fluidized beds for tar production from biomass publication-title: Energy & Fuels – volume: 76 start-page: 230 year: 2006 end-page: 237 ident: bib3 article-title: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor publication-title: J Anal Appl Pyrolysis – volume: 218 start-page: 54 year: 2018 end-page: 65 ident: bib11 article-title: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor – volume: vol. 210 start-page: 625 year: 2017 end-page: 638 ident: bib58 publication-title: Comparison of multi-component kinetic relations on bubbling fluidized-bed woody biomass fast pyrolysis reactor model performance – volume: 101 start-page: 9797 year: 2010 end-page: 9802 ident: bib7 article-title: Pyrolysis kinetics and decomposition characteristics of pine trees publication-title: Bioresour Technol – volume: 27 start-page: 5948 year: 2013 end-page: 5956 ident: bib22 article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors publication-title: Energy & Fuels – volume: 124 start-page: 222 year: 2018 end-page: 234 ident: bib16 article-title: Minimum fluidization velocity of ground chip and ground pellet particles of woody biomass publication-title: Chem. Eng. Processing-Process Intensification – volume: 121 start-page: 213 year: 2016 end-page: 229 ident: bib28 article-title: Coupled reactor and particle model of biomass drying and pyrolysis in a bubbling fluidized bed reactor publication-title: J Anal Appl Pyrolysis – volume: 49 start-page: 254 year: 2010 end-page: 268 ident: bib61 article-title: Correlation-based gene selection and classification using Taguchi-BPSO publication-title: Methods Inf Med – year: 2013 ident: bib62 article-title: The nature of statistical learning theory – year: 2017 ident: bib26 article-title: Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor publication-title: IOP Conference Series: Earth and Environmental Science – volume: 97 start-page: 757 year: 2012 end-page: 769 ident: bib44 article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors publication-title: Fuel – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib64 article-title: Characteristics of hemicellulose publication-title: Cellulose and Lignin Pyrolysis – volume: vol. 128 start-page: 676 year: 2017 end-page: 687 ident: bib29 publication-title: CFD based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization – volume: 35 start-page: 232 year: 2010 end-page: 242 ident: bib47 article-title: Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction publication-title: Renew Energy – reference: Saleem, M. and I. Ali, Machine learning based prediction of Pyrolytic conversion for red Sea Seaweed – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: bib37 article-title: Least angle regression publication-title: Ann Stat – volume: vol. 20 start-page: 388 year: 2006 end-page: 393 ident: bib51 publication-title: In-Depth Investigation Of Biomass Pyrolysis Based On Three Major Components: Hemicellulose, Cellulose And Lignin – volume: 41 start-page: 633 year: 2000 end-page: 646 ident: bib46 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energy Convers Manag – volume: 50 start-page: 3147 year: 2009 end-page: 3157 ident: bib10 article-title: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems publication-title: Energy Convers Manag – volume: 66 start-page: 2440 year: 2011 end-page: 2452 ident: bib45 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem Eng Sci – volume: 26 start-page: 1007 year: 2005 end-page: 1011 ident: bib40 article-title: Support vector machines for classification in remote sensing publication-title: Int J Remote Sens – start-page: 138 year: 2006 ident: 10.1016/j.energy.2019.116414_bib41 – volume: 156 start-page: 53 year: 2018 ident: 10.1016/j.energy.2019.116414_bib21 article-title: Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: a numerical study with experimental validation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.005 – year: 2019 ident: 10.1016/j.energy.2019.116414_bib18 – volume: vol. 210 start-page: 625 year: 2017 ident: 10.1016/j.energy.2019.116414_bib58 – year: 2013 ident: 10.1016/j.energy.2019.116414_bib62 – year: 1995 ident: 10.1016/j.energy.2019.116414_bib63 article-title: Particle swarm optimization – volume: 218 start-page: 54 year: 2018 ident: 10.1016/j.energy.2019.116414_bib11 article-title: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor – volume: 15 start-page: 1247 issue: 5 year: 2001 ident: 10.1016/j.energy.2019.116414_bib59 article-title: Yield optimization and scaling of fluidized beds for tar production from biomass publication-title: Energy & Fuels doi: 10.1021/ef010053h – volume: vol. 61 start-page: 261 year: 1985 ident: 10.1016/j.energy.2019.116414_bib52 – volume: vol. 66 start-page: 162 year: 2014 ident: 10.1016/j.energy.2019.116414_bib6 – volume: 25 start-page: 67 issue: 1 year: 2003 ident: 10.1016/j.energy.2019.116414_bib14 article-title: Hydrocarbons from pyrolysis and hydrolysis processes of biomass publication-title: Energy Sources doi: 10.1080/00908310290142127 – volume: 14 start-page: 711 issue: 8 year: 2009 ident: 10.1016/j.energy.2019.116414_bib8 article-title: Potential of surplus biomass gasifier based power generation: a case study of an Indian state Rajasthan publication-title: Mitig Adapt Strategies Glob Change doi: 10.1007/s11027-009-9192-7 – volume: 76 start-page: 230 issue: 1–2 year: 2006 ident: 10.1016/j.energy.2019.116414_bib3 article-title: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2005.11.007 – volume: 27 start-page: 5948 issue: 10 year: 2013 ident: 10.1016/j.energy.2019.116414_bib22 article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors publication-title: Energy & Fuels doi: 10.1021/ef4012966 – volume: 124 start-page: 222 year: 2018 ident: 10.1016/j.energy.2019.116414_bib16 article-title: Minimum fluidization velocity of ground chip and ground pellet particles of woody biomass publication-title: Chem. Eng. Processing-Process Intensification doi: 10.1016/j.cep.2017.12.006 – volume: 118 start-page: 105 year: 2016 ident: 10.1016/j.energy.2019.116414_bib27 article-title: Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2016.01.003 – volume: 66 start-page: 2440 issue: 11 year: 2011 ident: 10.1016/j.energy.2019.116414_bib45 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.03.010 – volume: vol. 126 start-page: 97 year: 1997 ident: 10.1016/j.energy.2019.116414_bib56 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust.Sci and Technol. doi: 10.1080/00102209708935670 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 10.1016/j.energy.2019.116414_bib37 article-title: Least angle regression publication-title: Ann Stat doi: 10.1214/009053604000000067 – volume: vol. 193 start-page: 142 year: 2017 ident: 10.1016/j.energy.2019.116414_bib33 – volume: 236 start-page: 1125 year: 2019 ident: 10.1016/j.energy.2019.116414_bib30 article-title: Fast pyrolysis of lignins with different molecular weight publication-title: Experiments and modelling – volume: vol. 67 start-page: 75 year: 1989 ident: 10.1016/j.energy.2019.116414_bib53 article-title: Kinetic modelling of the pyrolysis of biomass and biomass components publication-title: T.C.J.o.C.E. – volume: 22 start-page: 4292 issue: 6 year: 2008 ident: 10.1016/j.energy.2019.116414_bib57 publication-title: Chemical Kinetics of Biomass Pyrolysis – volume: 121 start-page: 213 year: 2016 ident: 10.1016/j.energy.2019.116414_bib28 article-title: Coupled reactor and particle model of biomass drying and pyrolysis in a bubbling fluidized bed reactor publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2016.08.002 – ident: 10.1016/j.energy.2019.116414_bib65 doi: 10.1016/j.fuel.2020.117791 – volume: 16 start-page: 1801 issue: 4 year: 2012 ident: 10.1016/j.energy.2019.116414_bib2 article-title: Thermo chemical conversion of biomass–Eco friendly energy routes publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.01.024 – volume: 26 start-page: 1007 issue: 5 year: 2005 ident: 10.1016/j.energy.2019.116414_bib40 article-title: Support vector machines for classification in remote sensing publication-title: Int J Remote Sens doi: 10.1080/01431160512331314083 – volume: 101 start-page: 9797 issue: 24 year: 2010 ident: 10.1016/j.energy.2019.116414_bib7 article-title: Pyrolysis kinetics and decomposition characteristics of pine trees publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.07.094 – volume: vol. 78 start-page: 349 year: 1999 ident: 10.1016/j.energy.2019.116414_bib55 article-title: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model publication-title: Fuel doi: 10.1016/S0016-2361(98)00156-2 – volume: 105 start-page: 136 year: 2017 ident: 10.1016/j.energy.2019.116414_bib13 article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy – volume: 86 start-page: 1781 issue: 12–13 year: 2007 ident: 10.1016/j.energy.2019.116414_bib64 article-title: Characteristics of hemicellulose publication-title: Cellulose and Lignin Pyrolysis – volume: 69 start-page: 907 issue: 4 year: 1991 ident: 10.1016/j.energy.2019.116414_bib54 article-title: Modelling of the pyrolysis of biomass particles publication-title: Studies on Kinetics, Thermal and Heat Transfer Effects – volume: 127 start-page: 411 year: 2017 ident: 10.1016/j.energy.2019.116414_bib15 article-title: Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2017.07.008 – year: 2018 ident: 10.1016/j.energy.2019.116414_bib19 – volume: 4 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.energy.2019.116414_bib39 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0081-z – start-page: 760 year: 2011 ident: 10.1016/j.energy.2019.116414_bib38 article-title: Particle swarm optimization – volume: vol. 150 start-page: 61 year: 2018 ident: 10.1016/j.energy.2019.116414_bib4 – volume: vol. 120 start-page: 94 year: 2016 ident: 10.1016/j.energy.2019.116414_bib35 – volume: 12 start-page: 504 issue: 2 year: 2008 ident: 10.1016/j.energy.2019.116414_bib9 article-title: Bio-fuels from thermochemical conversion of renewable resources: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2006.07.014 – volume: 49 start-page: 254 issue: 03 year: 2010 ident: 10.1016/j.energy.2019.116414_bib61 article-title: Correlation-based gene selection and classification using Taguchi-BPSO publication-title: Methods Inf Med doi: 10.3414/ME09-01-0010 – volume: 185 start-page: 1739 issue: 6 year: 2014 ident: 10.1016/j.energy.2019.116414_bib43 article-title: BIOTC: an open-source CFD code for simulating biomass fast pyrolysis publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2014.02.012 – volume: 117 start-page: 704 year: 2014 ident: 10.1016/j.energy.2019.116414_bib23 article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme publication-title: Fuel doi: 10.1016/j.fuel.2013.09.009 – volume: 35 start-page: 232 issue: 1 year: 2010 ident: 10.1016/j.energy.2019.116414_bib47 article-title: Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction publication-title: Renew Energy doi: 10.1016/j.renene.2009.04.019 – start-page: 267 year: 1996 ident: 10.1016/j.energy.2019.116414_bib36 – year: 1977 ident: 10.1016/j.energy.2019.116414_bib48 article-title: Thermal deterioration of wood doi: 10.1021/bk-1977-0043.ch005 – volume: 86 start-page: 2679 issue: 17–18 year: 2007 ident: 10.1016/j.energy.2019.116414_bib1 article-title: Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use publication-title: Fuel doi: 10.1016/j.fuel.2007.03.033 – volume: vol. 165 start-page: 895 year: 2018 ident: 10.1016/j.energy.2019.116414_bib31 – volume: vol. 8 year: 2010 ident: 10.1016/j.energy.2019.116414_bib50 – volume: vol. 128 start-page: 676 year: 2017 ident: 10.1016/j.energy.2019.116414_bib29 – volume: 234 start-page: 616 year: 2018 ident: 10.1016/j.energy.2019.116414_bib25 article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2018.07.070 – volume: vol. 104 start-page: 56 year: 2017 ident: 10.1016/j.energy.2019.116414_bib34 – year: 1994 ident: 10.1016/j.energy.2019.116414_bib42 – volume: vol. 12 start-page: 397 year: 2008 ident: 10.1016/j.energy.2019.116414_bib49 – year: 2017 ident: 10.1016/j.energy.2019.116414_bib26 article-title: Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor – volume: 164 start-page: 51 year: 2017 ident: 10.1016/j.energy.2019.116414_bib20 article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2017.04.012 – volume: 207 start-page: 71 year: 2017 ident: 10.1016/j.energy.2019.116414_bib17 article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling publication-title: Fuel doi: 10.1016/j.fuel.2017.06.068 – volume: vol. 20 start-page: 388 year: 2006 ident: 10.1016/j.energy.2019.116414_bib51 – year: 2019 ident: 10.1016/j.energy.2019.116414_bib12 – ident: 10.1016/j.energy.2019.116414_bib32 – volume: 50 start-page: 3147 issue: 12 year: 2009 ident: 10.1016/j.energy.2019.116414_bib10 article-title: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.08.014 – volume: 117 start-page: 176 year: 2016 ident: 10.1016/j.energy.2019.116414_bib24 article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2015.11.015 – volume: 41 start-page: 633 issue: 6 year: 2000 ident: 10.1016/j.energy.2019.116414_bib46 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(99)00130-2 – volume: vol. 154 start-page: 477 year: 2018 ident: 10.1016/j.energy.2019.116414_bib5 – volume: 97 start-page: 757 year: 2012 ident: 10.1016/j.energy.2019.116414_bib44 article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors publication-title: Fuel doi: 10.1016/j.fuel.2012.02.065 – volume: vol. 55 start-page: 1680 year: 2009 ident: 10.1016/j.energy.2019.116414_bib60 |
| SSID | ssj0005899 |
| Score | 2.5220022 |
| Snippet | Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116414 |
| SubjectTerms | Algorithms biofuels Biomass Bubbling Bubbling fluidised bed reactor Carrier gases Computational fluid dynamic (CFD) simulation Computational fluid dynamics Computer applications Computer simulation data collection energy Fast pyrolysis process Flow rates Flow velocity fluid mechanics Fluidized beds Learning algorithms Machine learning Mathematical models Operating temperature Parameters Particle swarm optimisation (PSO) Particle swarm optimization Pretreatment Pyrolysis Reactors regression analysis sand Support vector machines Support vector regression (SVR) temperature |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA7ii76IesqtepKDe43bNGlrH2XPRQTvDlcP33JJk3B7LG3ZbZF98W93pj_WvQdRfCiUdgJDZjLztZkvQ8i3ILaZdy5gJg4kk86mzFidMWG4TxMPANsi3_nmR3x1L68foocNMuq5MFhW2cX-NqY30bp7Muxmc1hOp8MJxF7AGzJECIL7qMhglwl2MTh7WivzOG96SKIwQ-mePtfUeLmGX4cFXinEjlhy-Vp6WoOfW3Ve6uWjns3WMtF4l-x0EJJetFrukQ2X75OtnmG82CeHly_sNRDslu_iE_lzQf8ukaJFJ79v2a_JT9o0wqFVQcs57thUVNPR-DvD3GZpAeEE3ADuTG0M8tapn9VT2z6Cq1zOi-ZIEwrQE__-H5D78eXd6Ip1LRZYBtmrYg7gBCw8G3iXcSe1tBE3PoqSxCSxNbET2oossJrr2KY68ZmMnBACQJcJTejEIdnMi9x9JpR7zdPEcW7OnTTWmBDyL7fcc-6DzMYDIvqZVVl3_ji2wZipvtDsn2rtodAeqrXHgLDVqLI9f-MN-aQ3mvrPjxSkiDdGnvQ2Vt06XqhQAKCCmJeC-l9Xr2HqcVtF566oUQbZEIATxYCcrXzjXdoefVjbY7Id4pd_wBmPTshmNa_dF4BHlTlt_P8Z9sYPLw priority: 102 providerName: Elsevier |
| Title | A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor |
| URI | https://dx.doi.org/10.1016/j.energy.2019.116414 https://www.proquest.com/docview/2350932296 https://www.proquest.com/docview/2335142513 https://vuir.vu.edu.au/40873/ |
| UnpaywallVersion | submittedVersion |
| Volume | 191 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9t7cN44WMwUdgqI_Hqzo6dZHmsxqoCokyMovEU7NgWgyqp2gRUHvjbOeejm5CmwUOkKDlLTu7s-8l3vzuAlywymbOWUR0xSaU1CdVGZVRo7pLYIcA2nu_8bhZN5_LNZXi5A0cdF-ZHdbW67nxwLNlJLI53oR-FCLV70J_Pzsefm_gjo6Gsm-NwlKG46YYdNa7O37I1d84nbyW4L0SSy9tczw1ouVflS7X5qRaLG15m8qA5EFzXxQl9csn3UVXqUfbrr9KNt37AQ7jf4ksybgziEezYfB_2Ovrxeh8Ozq6pbSjYru31Y_gyJl83nr9FLj59oOcX70ndJYeUBVmufDinJIqcTl5R7_gMKXCvQRvBO11p7UntxC2qK9M8wmu5WRV1vROCuNSHBp7AfHL28XRK2_4LNEPXVlKLWANXpWHOZtxKJU3ItQvDONZxZHRkhTIiY0ZxFZlExS6ToRVCICLTgQ6sOIBeXuT2KRDuFE9iy7k-sVIbrQN0ztxwx7ljmYkGIDrVpFlbnNz3yFikXRbat7RRaOoVmjYKHQDdjlo2xTnukI87ractwGiAQ4r-446Rh52RpO0iX6eBQLSFG2KC03-xfY2_3sdcVG6Lyst4qgSCSDGA0da4_mm2z_53wHO4F_jTAMYpDw-hV64qe4SQqdRD2B395kPoj1-_nc6G7TL6A3lSF_s |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGeCgviA0mCmMzEq9e49hJlseprCpjG4huaG_Gjm2tqEqiNhHqC387d_lRygMa4iFS5Jylk89398W-zybkXRDbzDsXMBMHkklnU2aszpgw3KeJB4Btke98dR1Pb-XFXXS3Q8Y9FwbLKrvY38b0Jlp3LaNuNEflfD6aQewFvCFDhCC4j_qIPJZRmOAf2MnPrTqP0-YSSZRmKN7z55oiL9cQ7LDCK4XgEUsu_5aftvDnoM5Lvf6hF4utVDR5Rp52GJKetWrukR2X75NBTzFe7ZOD89_0NRDs_Hf1nHw7o_dr5GjR2dcv7PPsE21uwqFVQcslbtlUVNPx5D3D5GZpAfEE5gG8mdoYJK5Tv6jntm2Cp1wvi-ZMEwrYE5f_X5DbyfnNeMq6OxZYBumrYg7wBHieDbzLuJNa2ogbH0VJYpLYmtgJbUUWWM11bFOd-ExGTggBqMuEJnTigOzmRe5eEsq95mniODenThprTAgJmFvuOfdBZuMhEf3Iqqw7gBzvwViovtLsu2rtodAeqrXHkLBNr7I9gOMB-aQ3mvpjIinIEQ_0POxtrDpHXqlQAKKCoJeC-m83n2HocV9F566oUQbpEAAUxZCcbObGP2n76r-1PSaD6c3Vpbr8cP3xNXkS4jJAwBmPDslutazdG8BKlTlqfOEXokkSUg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9zBeYBtMFDZkJF7d2fFHlsdqrJomsU2MovFk7NjWBlVStQmo_PWc89FNSNPgIVKUnCUnd_b95LvfHULvqXJ58J4Sq6ggwruMWGdywi0LWRoAYLvId_54rk6n4uxaXm-gg54L87O-Xdx1PjgU9Cjlh0_QppIAtQdoc3p-Of7axh8pkaJpjsNAhsCmK3tqXJO_5RvuXEzeymBfUIKJh1zPPWi5VRdzs_plZrN7XmbyvD0QXDbFCWNyyY9RXdlR_vuv0o0PfsA2etbhSzxuDWIHbfhiF2319OPlLto7uaO2gWC3tpcv0LcxvllF_ha--vKJXF5d4KZLDq5KPF_EcE6FDT6efCDR8Tlcwl4DNgJ3trY2ktpxmNW3rn0E13y1KJt6JxhwaQwNvETTycnn41PS9V8gObi2injAGrAqHQ0-Z14Y4SSzQco0talyVnluHM-pM8wol5k05EJ6zjkgMpvYxPM9NCjKwr9CmAXDstQzZo-8sM7aBJwzcywwFmju1BDxXjU674qTxx4ZM91noX3XrUJ1VKhuFTpEZD1q3hbneEQ-7bWuO4DRAgcN_uORkfu9kehukS91wgFtwYaYwfTfrV_Dr48xF1P4so4ykSoBIJIP0WhtXP8029f_O-ANeprE0wDKCJP7aFAtan8AkKmyb7uF8wdA1BVv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+SVR-PSO+model+to+predict+a+CFD-based+optimised+bubbling+fluidised+bed+pyrolysis+reactor&rft.jtitle=Energy+%28Oxford%29&rft.au=Jalalifar%2C+Salman&rft.au=Masoudi%2C+Mojtaba&rft.au=Abbassi%2C+Rouzbeh&rft.au=Garaniya%2C+Vikram&rft.date=2020-01-15&rft.issn=0360-5442&rft.volume=191&rft.spage=116414&rft_id=info:doi/10.1016%2Fj.energy.2019.116414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2019_116414 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |