A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor

Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 191; p. 116414
Main Authors Jalalifar, Salman, Masoudi, Mojtaba, Abbassi, Rouzbeh, Garaniya, Vikram, Ghiji, Mohammadmahdi, Salehi, Fatemeh
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
1873-6785
DOI10.1016/j.energy.2019.116414

Cover

Abstract Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved. •Outlines a detailed CFD model validated with experimental data in a fast pyrolysis reactor.•Details development of a new model by integrating machine learning tools and CFD simulations.•Predicts the performance of a fast pyrolysis reactor in different operational conditions.•Optimizes the bio-oil yield in a fact pyrolysis reactor considering the variability in effective parameters.
AbstractList Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved.
Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved. •Outlines a detailed CFD model validated with experimental data in a fast pyrolysis reactor.•Details development of a new model by integrating machine learning tools and CFD simulations.•Predicts the performance of a fast pyrolysis reactor in different operational conditions.•Optimizes the bio-oil yield in a fact pyrolysis reactor considering the variability in effective parameters.
ArticleNumber 116414
Author Garaniya, Vikram
Jalalifar, Salman
Masoudi, Mojtaba
Abbassi, Rouzbeh
Ghiji, Mohammadmahdi
Salehi, Fatemeh
Author_xml – sequence: 1
  givenname: Salman
  orcidid: 0000-0003-3921-9846
  surname: Jalalifar
  fullname: Jalalifar, Salman
  organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania, Australia
– sequence: 2
  givenname: Mojtaba
  surname: Masoudi
  fullname: Masoudi, Mojtaba
  organization: Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
– sequence: 3
  givenname: Rouzbeh
  orcidid: 0000-0002-9230-6175
  surname: Abbassi
  fullname: Abbassi, Rouzbeh
  email: Rouzbeh.Abbassi@mq.edu.au
  organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
– sequence: 4
  givenname: Vikram
  surname: Garaniya
  fullname: Garaniya, Vikram
  organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania, Australia
– sequence: 5
  givenname: Mohammadmahdi
  surname: Ghiji
  fullname: Ghiji, Mohammadmahdi
  organization: Institute of Sustainable Industries and Liveable Cities, Victoria University, Victoria, Australia
– sequence: 6
  givenname: Fatemeh
  surname: Salehi
  fullname: Salehi, Fatemeh
  organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
BookMark eNqNkU9rFDEYxoNUcFv9Bh4CXrzMmkz-zI4HoWytCoWKVa8xf96pWbKTMcko8-3NMp56UA8hIfyelzy_nKOzMY6A0HNKtpRQ-eqwhRHS_bJtCe23lEpO-SO0obuONbLbiTO0IUySRnDePkHnOR8IIWLX9xv07RJ_X0zyDt99_dR8vLvFx-gg4BLxlMB5W7DG--urxugMDsep-KM_ncxsTPDjPR7C7N16Vde0pBiW7DNOoG2J6Sl6POiQ4dmf_QJ9uX77ef--ubl992F_edNYTllpgAphCHFkAEuBa-4ENYMQXWc66YwEph2zxGmqpet1N1gugDEmKTGtaYFdILHOncdJL790CGpK_qjToihRJ03qoFZN6qRJrZpq7uWam1L8MUMuqvazEIIeIc5ZtYwJyltBWUVfPEAPcU5jbVUpQXrWtr2s1OuVsinmnGBQ1hddfBxL0j786zX8Qfg_S7xZY1AN__SQVLYeRls_MIEtykX_9wG_AcMQs7k
CitedBy_id crossref_primary_10_1016_j_jpowsour_2021_229727
crossref_primary_10_2139_ssrn_3998957
crossref_primary_10_1177_0958305X20930386
crossref_primary_10_1016_j_icheatmasstransfer_2021_105741
crossref_primary_10_1016_j_jaap_2022_105433
crossref_primary_10_1016_j_fuel_2021_120488
crossref_primary_10_1016_j_engfailanal_2022_106734
crossref_primary_10_1016_j_fuel_2022_126055
crossref_primary_10_3390_atmos12121702
crossref_primary_10_1016_j_icheatmasstransfer_2021_105808
crossref_primary_10_1016_j_applthermaleng_2023_122150
crossref_primary_10_1016_j_jcrysgro_2023_127311
crossref_primary_10_1016_j_geothermics_2023_102711
crossref_primary_10_1016_j_resconrec_2022_106847
crossref_primary_10_1016_j_energy_2023_127732
crossref_primary_10_3390_app13169221
crossref_primary_10_1016_j_fuel_2020_117791
crossref_primary_10_1016_j_jclepro_2022_133025
crossref_primary_10_1016_j_energy_2023_130081
crossref_primary_10_1016_j_joei_2025_101991
crossref_primary_10_1016_j_jaap_2023_106015
crossref_primary_10_1016_j_biombioe_2024_107111
crossref_primary_10_1016_j_fuel_2025_134901
crossref_primary_10_1021_acsestengg_3c00043
crossref_primary_10_1016_j_cherd_2022_01_024
crossref_primary_10_1016_j_measurement_2023_113106
crossref_primary_10_1021_acs_iecr_3c01813
crossref_primary_10_1016_j_cej_2021_131285
crossref_primary_10_1021_acs_iecr_3c03812
crossref_primary_10_1016_j_ijhydene_2024_11_179
crossref_primary_10_1016_j_dche_2023_100103
crossref_primary_10_1016_j_fuel_2022_124344
crossref_primary_10_1007_s11831_024_10185_5
crossref_primary_10_2139_ssrn_3906523
crossref_primary_10_1016_j_renene_2025_122628
crossref_primary_10_1016_j_ceramint_2022_05_203
crossref_primary_10_3390_pr8111332
crossref_primary_10_1016_j_jlp_2023_105092
crossref_primary_10_1007_s13762_022_04013_1
crossref_primary_10_1016_j_cej_2024_152335
crossref_primary_10_1016_j_ijthermalsci_2021_107008
crossref_primary_10_1016_j_partic_2023_10_007
crossref_primary_10_3390_fi14090247
crossref_primary_10_1016_j_est_2023_107059
crossref_primary_10_1051_e3sconf_202125904002
crossref_primary_10_1002_srin_202400231
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122903
crossref_primary_10_1016_j_energy_2022_123306
Cites_doi 10.1016/j.enconman.2017.11.005
10.1021/ef010053h
10.1080/00908310290142127
10.1007/s11027-009-9192-7
10.1016/j.jaap.2005.11.007
10.1021/ef4012966
10.1016/j.cep.2017.12.006
10.1016/j.jaap.2016.01.003
10.1016/j.ces.2011.03.010
10.1080/00102209708935670
10.1214/009053604000000067
10.1016/j.jaap.2016.08.002
10.1016/j.fuel.2020.117791
10.1016/j.rser.2012.01.024
10.1080/01431160512331314083
10.1016/j.biortech.2010.07.094
10.1016/S0016-2361(98)00156-2
10.1016/j.jaap.2017.07.008
10.1038/s41524-018-0081-z
10.1016/j.rser.2006.07.014
10.3414/ME09-01-0010
10.1016/j.cpc.2014.02.012
10.1016/j.fuel.2013.09.009
10.1016/j.renene.2009.04.019
10.1021/bk-1977-0043.ch005
10.1016/j.fuel.2007.03.033
10.1016/j.fuel.2018.07.070
10.1016/j.fuproc.2017.04.012
10.1016/j.fuel.2017.06.068
10.1016/j.enconman.2009.08.014
10.1016/j.jaap.2015.11.015
10.1016/S0196-8904(99)00130-2
10.1016/j.fuel.2012.02.065
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.energy.2019.116414
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID oai:eprints.vu.edu.au:40873
10_1016_j_energy_2019_116414
S0360544219321097
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
ADXHL
AFJKZ
AGQPQ
AHHHB
AIGII
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c413t-e155b00d0fec1e4a4d51bf5577b76db6e3ad3c0da1a6d9a7fc45e333610b2b2e3
IEDL.DBID UNPAY
ISSN 0360-5442
1873-6785
IngestDate Sun Oct 26 03:55:36 EDT 2025
Thu Oct 02 21:44:22 EDT 2025
Wed Aug 13 06:10:20 EDT 2025
Wed Oct 01 06:04:09 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Sat Jul 19 17:11:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bubbling fluidised bed reactor
Support vector regression (SVR)
Fast pyrolysis process
Computational fluid dynamic (CFD) simulation
Particle swarm optimisation (PSO)
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e155b00d0fec1e4a4d51bf5577b76db6e3ad3c0da1a6d9a7fc45e333610b2b2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3921-9846
0000-0002-9230-6175
OpenAccessLink https://proxy.k.utb.cz/login?url=https://vuir.vu.edu.au/40873/
PQID 2350932296
PQPubID 2045484
ParticipantIDs unpaywall_primary_10_1016_j_energy_2019_116414
proquest_miscellaneous_2335142513
proquest_journals_2350932296
crossref_citationtrail_10_1016_j_energy_2019_116414
crossref_primary_10_1016_j_energy_2019_116414
elsevier_sciencedirect_doi_10_1016_j_energy_2019_116414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-15
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Efron (bib37) 2004; 32
Ward, Braslaw, flame (bib52) 1985; vol. 61
Park (bib18) 2019
Blanco, Chejne (bib27) 2016; 118
Shafizadeh, Chin (bib48) 1977
Matta (bib58) 2017; vol. 210
Jalalifar (bib26) 2017
Xue (bib44) 2012; 97
Tsai, Lee, Chang (bib3) 2006; 76
Authier (bib50) 2010; vol. 8
Tibshirani (bib36) 1996
Xiong, Aramideh, Kong (bib22) 2013; 27
Van de Velden (bib47) 2010; 35
Koufopanos, Lucchesi, Maschio (bib53) 1989; vol. 67
Han, Kim, reviews (bib49) 2008; vol. 12
Zhang (bib13) 2017; 105
Liu (bib20) 2017; 164
Niemelä (bib29) 2017; vol. 128
Yang (bib51) 2006; vol. 20
Cai, Dai, Liu (bib5) 2018; vol. 154
DEMİRBAŞ (bib14) 2003; 25
Xiong (bib24) 2016; 117
Yang (bib64) 2007; 86
Chen, Fang, Duan (bib11) 2018; 218
Jalalifar (bib25) 2018; 234
Sunphorka, Chalermsinsuwan, Piumsomboon (bib33) 2017; vol. 193
Kennedy (bib38) 2011
Kim (bib7) 2010; 101
Pal, Mather (bib40) 2005; 26
Hejazi (bib28) 2016; 121
Xiong (bib43) 2014; 185
Hough (bib34) 2017; vol. 104
Gidaspow (bib42) 1994
Miller, Bellan (bib56) 1997; vol. 126
Saleem, M. and I. Ali, Machine learning based prediction of Pyrolytic conversion for red Sea Seaweed
Demirbaş (bib46) 2000; 41
Hu (bib19) 2018
Chuang (bib61) 2010; 49
Guizani (bib17) 2017; 207
Mellin, Kantarelis, Yang (bib23) 2014; 117
Marathe, Westerhof, Kersten (bib30) 2019; 236
Orfao, Antunes, Figueiredo (bib55) 1999; vol. 78
Bishop (bib41) 2006
Rezaei, Sokhansanj, Lim (bib16) 2018; 124
Goyal, Seal, Saxena (bib9) 2008; 12
Zhang, Ling (bib39) 2018; 4
Lajili (bib4) 2018; vol. 150
Lathouwers, Bellan (bib59) 2001; 15
Anca-Couce, Sommersacher, Scharler (bib15) 2017; 127
Sun (bib35) 2016; vol. 120
Mutlu, Yucel (bib31) 2018; vol. 165
Vapnik (bib62) 2013
Wang (bib12) 2019
Clissold J, et al. A Parametric Study on Fluidisation Characteristics and Product Yields in Bubbling Fluidised Bed Reactor. Australian Combustion Symposium, Adelaide, 4-6 December 2019. Accepted.
Blin (bib1) 2007; 86
Yang, Wu, Wu (bib6) 2014; vol. 66
Koufopanos (bib54) 1991; 69
Kennedy, Eberhart (bib63) 1995
Xue, Heindel, Fox (bib45) 2011; 66
Balat (bib10) 2009; 50
Ranzi (bib57) 2008; 22
Panwar, Kothari, Tyagi (bib2) 2012; 16
Gao (bib60) 2009; vol. 55
Panwar, Rathore (bib8) 2009; 14
Cardoso (bib21) 2018; 156
Kim (10.1016/j.energy.2019.116414_bib7) 2010; 101
Blin (10.1016/j.energy.2019.116414_bib1) 2007; 86
Zhang (10.1016/j.energy.2019.116414_bib13) 2017; 105
Marathe (10.1016/j.energy.2019.116414_bib30) 2019; 236
Goyal (10.1016/j.energy.2019.116414_bib9) 2008; 12
Shafizadeh (10.1016/j.energy.2019.116414_bib48) 1977
Chen (10.1016/j.energy.2019.116414_bib11) 2018; 218
Mutlu (10.1016/j.energy.2019.116414_bib31) 2018; vol. 165
Han (10.1016/j.energy.2019.116414_bib49) 2008; vol. 12
Tibshirani (10.1016/j.energy.2019.116414_bib36) 1996
Chuang (10.1016/j.energy.2019.116414_bib61) 2010; 49
10.1016/j.energy.2019.116414_bib65
Blanco (10.1016/j.energy.2019.116414_bib27) 2016; 118
Koufopanos (10.1016/j.energy.2019.116414_bib53) 1989; vol. 67
Hejazi (10.1016/j.energy.2019.116414_bib28) 2016; 121
Lathouwers (10.1016/j.energy.2019.116414_bib59) 2001; 15
Kennedy (10.1016/j.energy.2019.116414_bib38) 2011
Guizani (10.1016/j.energy.2019.116414_bib17) 2017; 207
Van de Velden (10.1016/j.energy.2019.116414_bib47) 2010; 35
Zhang (10.1016/j.energy.2019.116414_bib39) 2018; 4
Tsai (10.1016/j.energy.2019.116414_bib3) 2006; 76
Xiong (10.1016/j.energy.2019.116414_bib22) 2013; 27
Gidaspow (10.1016/j.energy.2019.116414_bib42) 1994
Yang (10.1016/j.energy.2019.116414_bib64) 2007; 86
Panwar (10.1016/j.energy.2019.116414_bib2) 2012; 16
Jalalifar (10.1016/j.energy.2019.116414_bib25) 2018; 234
Sun (10.1016/j.energy.2019.116414_bib35) 2016; vol. 120
Demirbaş (10.1016/j.energy.2019.116414_bib46) 2000; 41
Ward (10.1016/j.energy.2019.116414_bib52) 1985; vol. 61
Pal (10.1016/j.energy.2019.116414_bib40) 2005; 26
Lajili (10.1016/j.energy.2019.116414_bib4) 2018; vol. 150
Bishop (10.1016/j.energy.2019.116414_bib41) 2006
Balat (10.1016/j.energy.2019.116414_bib10) 2009; 50
Xiong (10.1016/j.energy.2019.116414_bib43) 2014; 185
Anca-Couce (10.1016/j.energy.2019.116414_bib15) 2017; 127
Koufopanos (10.1016/j.energy.2019.116414_bib54) 1991; 69
Gao (10.1016/j.energy.2019.116414_bib60) 2009; vol. 55
Miller (10.1016/j.energy.2019.116414_bib56) 1997; vol. 126
Xue (10.1016/j.energy.2019.116414_bib44) 2012; 97
Niemelä (10.1016/j.energy.2019.116414_bib29) 2017; vol. 128
Panwar (10.1016/j.energy.2019.116414_bib8) 2009; 14
DEMİRBAŞ (10.1016/j.energy.2019.116414_bib14) 2003; 25
Matta (10.1016/j.energy.2019.116414_bib58) 2017; vol. 210
Yang (10.1016/j.energy.2019.116414_bib6) 2014; vol. 66
Rezaei (10.1016/j.energy.2019.116414_bib16) 2018; 124
Yang (10.1016/j.energy.2019.116414_bib51) 2006; vol. 20
Efron (10.1016/j.energy.2019.116414_bib37) 2004; 32
Vapnik (10.1016/j.energy.2019.116414_bib62) 2013
Jalalifar (10.1016/j.energy.2019.116414_bib26) 2017
Hough (10.1016/j.energy.2019.116414_bib34) 2017; vol. 104
Park (10.1016/j.energy.2019.116414_bib18) 2019
Hu (10.1016/j.energy.2019.116414_bib19) 2018
Sunphorka (10.1016/j.energy.2019.116414_bib33) 2017; vol. 193
Mellin (10.1016/j.energy.2019.116414_bib23) 2014; 117
Cardoso (10.1016/j.energy.2019.116414_bib21) 2018; 156
Orfao (10.1016/j.energy.2019.116414_bib55) 1999; vol. 78
Liu (10.1016/j.energy.2019.116414_bib20) 2017; 164
Xue (10.1016/j.energy.2019.116414_bib45) 2011; 66
Wang (10.1016/j.energy.2019.116414_bib12) 2019
Ranzi (10.1016/j.energy.2019.116414_bib57) 2008; 22
10.1016/j.energy.2019.116414_bib32
Cai (10.1016/j.energy.2019.116414_bib5) 2018; vol. 154
Kennedy (10.1016/j.energy.2019.116414_bib63) 1995
Authier (10.1016/j.energy.2019.116414_bib50) 2010; vol. 8
Xiong (10.1016/j.energy.2019.116414_bib24) 2016; 117
References_xml – volume: vol. 66
  start-page: 162
  year: 2014
  end-page: 171
  ident: bib6
  publication-title: Application of biomass fast pyrolysis part I: pyrolysis characteristics and products
– volume: 164
  start-page: 51
  year: 2017
  end-page: 68
  ident: bib20
  article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment
  publication-title: Fuel Process Technol
– volume: vol. 193
  start-page: 142
  year: 2017
  end-page: 158
  ident: bib33
  publication-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
– year: 2018
  ident: bib19
  article-title: CFD-DEM investigation on the biomass fast pyrolysis: the influences of shrinkage Patterns and operating parameters
– volume: vol. 120
  start-page: 94
  year: 2016
  end-page: 102
  ident: bib35
  publication-title: Pyrolysis products from industrial waste biomass based on a neural network model
– start-page: 760
  year: 2011
  end-page: 766
  ident: bib38
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of machine learning
– volume: vol. 55
  start-page: 1680
  year: 2009
  end-page: 1694
  ident: bib60
  publication-title: CFD Modeling And Validation Of The Turbulent Fluidized Bed Of FCC Particles
– volume: vol. 8
  year: 2010
  ident: bib50
  publication-title: Solid Pyrolysis Modelling by a Lagrangian and Dimensionless Approach-Application to Cellulose Fast Pyrolysis
– year: 1977
  ident: bib48
  article-title: Thermal deterioration of wood
  publication-title: ACS Symposium Series American chemical Society
– volume: 236
  start-page: 1125
  year: 2019
  end-page: 1137
  ident: bib30
  article-title: Fast pyrolysis of lignins with different molecular weight
  publication-title: Experiments and modelling
– volume: vol. 165
  start-page: 895
  year: 2018
  end-page: 901
  ident: bib31
  publication-title: An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification
– year: 2019
  ident: bib12
  article-title: Formate-assisted analytical pyrolysis of kraft lignin to phenols
– volume: 156
  start-page: 53
  year: 2018
  end-page: 67
  ident: bib21
  article-title: Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: a numerical study with experimental validation
  publication-title: Energy Convers Manag
– volume: 4
  start-page: 25
  year: 2018
  ident: bib39
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: npj Comput. Mater.
– start-page: 267
  year: 1996
  end-page: 288
  ident: bib36
  article-title: Regression shrinkage and selection via the lasso
– volume: 185
  start-page: 1739
  year: 2014
  end-page: 1746
  ident: bib43
  article-title: BIOTC: an open-source CFD code for simulating biomass fast pyrolysis
  publication-title: Comput Phys Commun
– volume: 127
  start-page: 411
  year: 2017
  end-page: 425
  ident: bib15
  article-title: Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis
  publication-title: J Anal Appl Pyrolysis
– volume: 117
  start-page: 704
  year: 2014
  end-page: 715
  ident: bib23
  article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme
  publication-title: Fuel
– volume: vol. 61
  start-page: 261
  year: 1985
  end-page: 269
  ident: bib52
  publication-title: Experimental Weight Loss Kinetics Of Wood Pyrolysis Under Vacuum
– reference: Clissold J, et al. A Parametric Study on Fluidisation Characteristics and Product Yields in Bubbling Fluidised Bed Reactor. Australian Combustion Symposium, Adelaide, 4-6 December 2019. Accepted.
– volume: 25
  start-page: 67
  year: 2003
  end-page: 75
  ident: bib14
  article-title: Hydrocarbons from pyrolysis and hydrolysis processes of biomass
  publication-title: Energy Sources
– year: 1994
  ident: bib42
  article-title: Multiphase flow and fluidization: continuum and kinetic theory descriptions
– volume: 86
  start-page: 2679
  year: 2007
  end-page: 2686
  ident: bib1
  article-title: Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use
  publication-title: Fuel
– volume: vol. 12
  start-page: 397
  year: 2008
  end-page: 416
  ident: bib49
  publication-title: The Reduction And Control Technology Of Tar During Biomass Gasification/Pyrolysis: An Overview
– volume: vol. 154
  start-page: 477
  year: 2018
  end-page: 487
  ident: bib5
  publication-title: Catalytic fast pyrolysis of rice husk for bio-oil production
– start-page: 138
  year: 2006
  end-page: 147
  ident: bib41
  article-title: Pattern Recognition and machine learning (Information science and Statistics)
– volume: 22
  start-page: 4292
  year: 2008
  end-page: 4300
  ident: bib57
  publication-title: Chemical Kinetics of Biomass Pyrolysis
– volume: 14
  start-page: 711
  year: 2009
  ident: bib8
  article-title: Potential of surplus biomass gasifier based power generation: a case study of an Indian state Rajasthan
  publication-title: Mitig Adapt Strategies Glob Change
– volume: vol. 150
  start-page: 61
  year: 2018
  end-page: 68
  ident: bib4
  publication-title: Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues
– volume: 69
  start-page: 907
  year: 1991
  end-page: 915
  ident: bib54
  article-title: Modelling of the pyrolysis of biomass particles
  publication-title: Studies on Kinetics, Thermal and Heat Transfer Effects
– volume: 117
  start-page: 176
  year: 2016
  end-page: 181
  ident: bib24
  article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds
  publication-title: J Anal Appl Pyrolysis
– year: 1995
  ident: bib63
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks IV
– volume: vol. 67
  start-page: 75
  year: 1989
  end-page: 84
  ident: bib53
  article-title: Kinetic modelling of the pyrolysis of biomass and biomass components
  publication-title: T.C.J.o.C.E.
– volume: vol. 126
  start-page: 97
  year: 1997
  end-page: 137
  ident: bib56
  article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics
  publication-title: Combust.Sci and Technol.
– volume: 207
  start-page: 71
  year: 2017
  end-page: 84
  ident: bib17
  article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling
  publication-title: Fuel
– volume: 16
  start-page: 1801
  year: 2012
  end-page: 1816
  ident: bib2
  article-title: Thermo chemical conversion of biomass–Eco friendly energy routes
  publication-title: Renew Sustain Energy Rev
– volume: 118
  start-page: 105
  year: 2016
  end-page: 114
  ident: bib27
  article-title: Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor
  publication-title: J Anal Appl Pyrolysis
– volume: vol. 78
  start-page: 349
  year: 1999
  end-page: 358
  ident: bib55
  article-title: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model
  publication-title: Fuel
– volume: 234
  start-page: 616
  year: 2018
  end-page: 625
  ident: bib25
  article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor
  publication-title: Fuel
– volume: 105
  start-page: 136
  year: 2017
  end-page: 146
  ident: bib13
  article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy
– year: 2019
  ident: bib18
  article-title: Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor
– volume: 12
  start-page: 504
  year: 2008
  end-page: 517
  ident: bib9
  article-title: Bio-fuels from thermochemical conversion of renewable resources: a review
  publication-title: Renew Sustain Energy Rev
– volume: vol. 104
  start-page: 56
  year: 2017
  end-page: 63
  ident: bib34
  publication-title: Application of machine learning to pyrolysis reaction networks: reducing model solution time to enable process optimization
– volume: 15
  start-page: 1247
  year: 2001
  end-page: 1262
  ident: bib59
  article-title: Yield optimization and scaling of fluidized beds for tar production from biomass
  publication-title: Energy & Fuels
– volume: 76
  start-page: 230
  year: 2006
  end-page: 237
  ident: bib3
  article-title: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor
  publication-title: J Anal Appl Pyrolysis
– volume: 218
  start-page: 54
  year: 2018
  end-page: 65
  ident: bib11
  article-title: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor
– volume: vol. 210
  start-page: 625
  year: 2017
  end-page: 638
  ident: bib58
  publication-title: Comparison of multi-component kinetic relations on bubbling fluidized-bed woody biomass fast pyrolysis reactor model performance
– volume: 101
  start-page: 9797
  year: 2010
  end-page: 9802
  ident: bib7
  article-title: Pyrolysis kinetics and decomposition characteristics of pine trees
  publication-title: Bioresour Technol
– volume: 27
  start-page: 5948
  year: 2013
  end-page: 5956
  ident: bib22
  article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors
  publication-title: Energy & Fuels
– volume: 124
  start-page: 222
  year: 2018
  end-page: 234
  ident: bib16
  article-title: Minimum fluidization velocity of ground chip and ground pellet particles of woody biomass
  publication-title: Chem. Eng. Processing-Process Intensification
– volume: 121
  start-page: 213
  year: 2016
  end-page: 229
  ident: bib28
  article-title: Coupled reactor and particle model of biomass drying and pyrolysis in a bubbling fluidized bed reactor
  publication-title: J Anal Appl Pyrolysis
– volume: 49
  start-page: 254
  year: 2010
  end-page: 268
  ident: bib61
  article-title: Correlation-based gene selection and classification using Taguchi-BPSO
  publication-title: Methods Inf Med
– year: 2013
  ident: bib62
  article-title: The nature of statistical learning theory
– year: 2017
  ident: bib26
  article-title: Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 97
  start-page: 757
  year: 2012
  end-page: 769
  ident: bib44
  article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Fuel
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib64
  article-title: Characteristics of hemicellulose
  publication-title: Cellulose and Lignin Pyrolysis
– volume: vol. 128
  start-page: 676
  year: 2017
  end-page: 687
  ident: bib29
  publication-title: CFD based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization
– volume: 35
  start-page: 232
  year: 2010
  end-page: 242
  ident: bib47
  article-title: Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction
  publication-title: Renew Energy
– reference: Saleem, M. and I. Ali, Machine learning based prediction of Pyrolytic conversion for red Sea Seaweed
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bib37
  article-title: Least angle regression
  publication-title: Ann Stat
– volume: vol. 20
  start-page: 388
  year: 2006
  end-page: 393
  ident: bib51
  publication-title: In-Depth Investigation Of Biomass Pyrolysis Based On Three Major Components: Hemicellulose, Cellulose And Lignin
– volume: 41
  start-page: 633
  year: 2000
  end-page: 646
  ident: bib46
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energy Convers Manag
– volume: 50
  start-page: 3147
  year: 2009
  end-page: 3157
  ident: bib10
  article-title: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems
  publication-title: Energy Convers Manag
– volume: 66
  start-page: 2440
  year: 2011
  end-page: 2452
  ident: bib45
  article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Chem Eng Sci
– volume: 26
  start-page: 1007
  year: 2005
  end-page: 1011
  ident: bib40
  article-title: Support vector machines for classification in remote sensing
  publication-title: Int J Remote Sens
– start-page: 138
  year: 2006
  ident: 10.1016/j.energy.2019.116414_bib41
– volume: 156
  start-page: 53
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib21
  article-title: Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor: a numerical study with experimental validation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.005
– year: 2019
  ident: 10.1016/j.energy.2019.116414_bib18
– volume: vol. 210
  start-page: 625
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib58
– year: 2013
  ident: 10.1016/j.energy.2019.116414_bib62
– year: 1995
  ident: 10.1016/j.energy.2019.116414_bib63
  article-title: Particle swarm optimization
– volume: 218
  start-page: 54
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib11
  article-title: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor
– volume: 15
  start-page: 1247
  issue: 5
  year: 2001
  ident: 10.1016/j.energy.2019.116414_bib59
  article-title: Yield optimization and scaling of fluidized beds for tar production from biomass
  publication-title: Energy & Fuels
  doi: 10.1021/ef010053h
– volume: vol. 61
  start-page: 261
  year: 1985
  ident: 10.1016/j.energy.2019.116414_bib52
– volume: vol. 66
  start-page: 162
  year: 2014
  ident: 10.1016/j.energy.2019.116414_bib6
– volume: 25
  start-page: 67
  issue: 1
  year: 2003
  ident: 10.1016/j.energy.2019.116414_bib14
  article-title: Hydrocarbons from pyrolysis and hydrolysis processes of biomass
  publication-title: Energy Sources
  doi: 10.1080/00908310290142127
– volume: 14
  start-page: 711
  issue: 8
  year: 2009
  ident: 10.1016/j.energy.2019.116414_bib8
  article-title: Potential of surplus biomass gasifier based power generation: a case study of an Indian state Rajasthan
  publication-title: Mitig Adapt Strategies Glob Change
  doi: 10.1007/s11027-009-9192-7
– volume: 76
  start-page: 230
  issue: 1–2
  year: 2006
  ident: 10.1016/j.energy.2019.116414_bib3
  article-title: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2005.11.007
– volume: 27
  start-page: 5948
  issue: 10
  year: 2013
  ident: 10.1016/j.energy.2019.116414_bib22
  article-title: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors
  publication-title: Energy & Fuels
  doi: 10.1021/ef4012966
– volume: 124
  start-page: 222
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib16
  article-title: Minimum fluidization velocity of ground chip and ground pellet particles of woody biomass
  publication-title: Chem. Eng. Processing-Process Intensification
  doi: 10.1016/j.cep.2017.12.006
– volume: 118
  start-page: 105
  year: 2016
  ident: 10.1016/j.energy.2019.116414_bib27
  article-title: Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2016.01.003
– volume: 66
  start-page: 2440
  issue: 11
  year: 2011
  ident: 10.1016/j.energy.2019.116414_bib45
  article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.03.010
– volume: vol. 126
  start-page: 97
  year: 1997
  ident: 10.1016/j.energy.2019.116414_bib56
  article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics
  publication-title: Combust.Sci and Technol.
  doi: 10.1080/00102209708935670
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 10.1016/j.energy.2019.116414_bib37
  article-title: Least angle regression
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– volume: vol. 193
  start-page: 142
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib33
– volume: 236
  start-page: 1125
  year: 2019
  ident: 10.1016/j.energy.2019.116414_bib30
  article-title: Fast pyrolysis of lignins with different molecular weight
  publication-title: Experiments and modelling
– volume: vol. 67
  start-page: 75
  year: 1989
  ident: 10.1016/j.energy.2019.116414_bib53
  article-title: Kinetic modelling of the pyrolysis of biomass and biomass components
  publication-title: T.C.J.o.C.E.
– volume: 22
  start-page: 4292
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2019.116414_bib57
  publication-title: Chemical Kinetics of Biomass Pyrolysis
– volume: 121
  start-page: 213
  year: 2016
  ident: 10.1016/j.energy.2019.116414_bib28
  article-title: Coupled reactor and particle model of biomass drying and pyrolysis in a bubbling fluidized bed reactor
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2016.08.002
– ident: 10.1016/j.energy.2019.116414_bib65
  doi: 10.1016/j.fuel.2020.117791
– volume: 16
  start-page: 1801
  issue: 4
  year: 2012
  ident: 10.1016/j.energy.2019.116414_bib2
  article-title: Thermo chemical conversion of biomass–Eco friendly energy routes
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.01.024
– volume: 26
  start-page: 1007
  issue: 5
  year: 2005
  ident: 10.1016/j.energy.2019.116414_bib40
  article-title: Support vector machines for classification in remote sensing
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160512331314083
– volume: 101
  start-page: 9797
  issue: 24
  year: 2010
  ident: 10.1016/j.energy.2019.116414_bib7
  article-title: Pyrolysis kinetics and decomposition characteristics of pine trees
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.07.094
– volume: vol. 78
  start-page: 349
  year: 1999
  ident: 10.1016/j.energy.2019.116414_bib55
  article-title: Pyrolysis kinetics of lignocellulosic materials—three independent reactions model
  publication-title: Fuel
  doi: 10.1016/S0016-2361(98)00156-2
– volume: 105
  start-page: 136
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib13
  article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy
– volume: 86
  start-page: 1781
  issue: 12–13
  year: 2007
  ident: 10.1016/j.energy.2019.116414_bib64
  article-title: Characteristics of hemicellulose
  publication-title: Cellulose and Lignin Pyrolysis
– volume: 69
  start-page: 907
  issue: 4
  year: 1991
  ident: 10.1016/j.energy.2019.116414_bib54
  article-title: Modelling of the pyrolysis of biomass particles
  publication-title: Studies on Kinetics, Thermal and Heat Transfer Effects
– volume: 127
  start-page: 411
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib15
  article-title: Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2017.07.008
– year: 2018
  ident: 10.1016/j.energy.2019.116414_bib19
– volume: 4
  start-page: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib39
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– start-page: 760
  year: 2011
  ident: 10.1016/j.energy.2019.116414_bib38
  article-title: Particle swarm optimization
– volume: vol. 150
  start-page: 61
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib4
– volume: vol. 120
  start-page: 94
  year: 2016
  ident: 10.1016/j.energy.2019.116414_bib35
– volume: 12
  start-page: 504
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2019.116414_bib9
  article-title: Bio-fuels from thermochemical conversion of renewable resources: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2006.07.014
– volume: 49
  start-page: 254
  issue: 03
  year: 2010
  ident: 10.1016/j.energy.2019.116414_bib61
  article-title: Correlation-based gene selection and classification using Taguchi-BPSO
  publication-title: Methods Inf Med
  doi: 10.3414/ME09-01-0010
– volume: 185
  start-page: 1739
  issue: 6
  year: 2014
  ident: 10.1016/j.energy.2019.116414_bib43
  article-title: BIOTC: an open-source CFD code for simulating biomass fast pyrolysis
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2014.02.012
– volume: 117
  start-page: 704
  year: 2014
  ident: 10.1016/j.energy.2019.116414_bib23
  article-title: Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.09.009
– volume: 35
  start-page: 232
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2019.116414_bib47
  article-title: Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.04.019
– start-page: 267
  year: 1996
  ident: 10.1016/j.energy.2019.116414_bib36
– year: 1977
  ident: 10.1016/j.energy.2019.116414_bib48
  article-title: Thermal deterioration of wood
  doi: 10.1021/bk-1977-0043.ch005
– volume: 86
  start-page: 2679
  issue: 17–18
  year: 2007
  ident: 10.1016/j.energy.2019.116414_bib1
  article-title: Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.03.033
– volume: vol. 165
  start-page: 895
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib31
– volume: vol. 8
  year: 2010
  ident: 10.1016/j.energy.2019.116414_bib50
– volume: vol. 128
  start-page: 676
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib29
– volume: 234
  start-page: 616
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib25
  article-title: Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.07.070
– volume: vol. 104
  start-page: 56
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib34
– year: 1994
  ident: 10.1016/j.energy.2019.116414_bib42
– volume: vol. 12
  start-page: 397
  year: 2008
  ident: 10.1016/j.energy.2019.116414_bib49
– year: 2017
  ident: 10.1016/j.energy.2019.116414_bib26
  article-title: Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor
– volume: 164
  start-page: 51
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib20
  article-title: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2017.04.012
– volume: 207
  start-page: 71
  year: 2017
  ident: 10.1016/j.energy.2019.116414_bib17
  article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.068
– volume: vol. 20
  start-page: 388
  year: 2006
  ident: 10.1016/j.energy.2019.116414_bib51
– year: 2019
  ident: 10.1016/j.energy.2019.116414_bib12
– ident: 10.1016/j.energy.2019.116414_bib32
– volume: 50
  start-page: 3147
  issue: 12
  year: 2009
  ident: 10.1016/j.energy.2019.116414_bib10
  article-title: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.08.014
– volume: 117
  start-page: 176
  year: 2016
  ident: 10.1016/j.energy.2019.116414_bib24
  article-title: Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2015.11.015
– volume: 41
  start-page: 633
  issue: 6
  year: 2000
  ident: 10.1016/j.energy.2019.116414_bib46
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energy Convers Manag
  doi: 10.1016/S0196-8904(99)00130-2
– volume: vol. 154
  start-page: 477
  year: 2018
  ident: 10.1016/j.energy.2019.116414_bib5
– volume: 97
  start-page: 757
  year: 2012
  ident: 10.1016/j.energy.2019.116414_bib44
  article-title: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.02.065
– volume: vol. 55
  start-page: 1680
  year: 2009
  ident: 10.1016/j.energy.2019.116414_bib60
SSID ssj0005899
Score 2.5220022
Snippet Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116414
SubjectTerms Algorithms
biofuels
Biomass
Bubbling
Bubbling fluidised bed reactor
Carrier gases
Computational fluid dynamic (CFD) simulation
Computational fluid dynamics
Computer applications
Computer simulation
data collection
energy
Fast pyrolysis process
Flow rates
Flow velocity
fluid mechanics
Fluidized beds
Learning algorithms
Machine learning
Mathematical models
Operating temperature
Parameters
Particle swarm optimisation (PSO)
Particle swarm optimization
Pretreatment
Pyrolysis
Reactors
regression analysis
sand
Support vector machines
Support vector regression (SVR)
temperature
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA7ii76IesqtepKDe43bNGlrH2XPRQTvDlcP33JJk3B7LG3ZbZF98W93pj_WvQdRfCiUdgJDZjLztZkvQ8i3ILaZdy5gJg4kk86mzFidMWG4TxMPANsi3_nmR3x1L68foocNMuq5MFhW2cX-NqY30bp7Muxmc1hOp8MJxF7AGzJECIL7qMhglwl2MTh7WivzOG96SKIwQ-mePtfUeLmGX4cFXinEjlhy-Vp6WoOfW3Ve6uWjns3WMtF4l-x0EJJetFrukQ2X75OtnmG82CeHly_sNRDslu_iE_lzQf8ukaJFJ79v2a_JT9o0wqFVQcs57thUVNPR-DvD3GZpAeEE3ADuTG0M8tapn9VT2z6Cq1zOi-ZIEwrQE__-H5D78eXd6Ip1LRZYBtmrYg7gBCw8G3iXcSe1tBE3PoqSxCSxNbET2oossJrr2KY68ZmMnBACQJcJTejEIdnMi9x9JpR7zdPEcW7OnTTWmBDyL7fcc-6DzMYDIvqZVVl3_ji2wZipvtDsn2rtodAeqrXHgLDVqLI9f-MN-aQ3mvrPjxSkiDdGnvQ2Vt06XqhQAKCCmJeC-l9Xr2HqcVtF566oUQbZEIATxYCcrXzjXdoefVjbY7Id4pd_wBmPTshmNa_dF4BHlTlt_P8Z9sYPLw
  priority: 102
  providerName: Elsevier
Title A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor
URI https://dx.doi.org/10.1016/j.energy.2019.116414
https://www.proquest.com/docview/2350932296
https://www.proquest.com/docview/2335142513
https://vuir.vu.edu.au/40873/
UnpaywallVersion submittedVersion
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9t7cN44WMwUdgqI_Hqzo6dZHmsxqoCokyMovEU7NgWgyqp2gRUHvjbOeejm5CmwUOkKDlLTu7s-8l3vzuAlywymbOWUR0xSaU1CdVGZVRo7pLYIcA2nu_8bhZN5_LNZXi5A0cdF-ZHdbW67nxwLNlJLI53oR-FCLV70J_Pzsefm_gjo6Gsm-NwlKG46YYdNa7O37I1d84nbyW4L0SSy9tczw1ouVflS7X5qRaLG15m8qA5EFzXxQl9csn3UVXqUfbrr9KNt37AQ7jf4ksybgziEezYfB_2Ovrxeh8Ozq6pbSjYru31Y_gyJl83nr9FLj59oOcX70ndJYeUBVmufDinJIqcTl5R7_gMKXCvQRvBO11p7UntxC2qK9M8wmu5WRV1vROCuNSHBp7AfHL28XRK2_4LNEPXVlKLWANXpWHOZtxKJU3ItQvDONZxZHRkhTIiY0ZxFZlExS6ToRVCICLTgQ6sOIBeXuT2KRDuFE9iy7k-sVIbrQN0ztxwx7ljmYkGIDrVpFlbnNz3yFikXRbat7RRaOoVmjYKHQDdjlo2xTnukI87ractwGiAQ4r-446Rh52RpO0iX6eBQLSFG2KC03-xfY2_3sdcVG6Lyst4qgSCSDGA0da4_mm2z_53wHO4F_jTAMYpDw-hV64qe4SQqdRD2B395kPoj1-_nc6G7TL6A3lSF_s
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGeCgviA0mCmMzEq9e49hJlseprCpjG4huaG_Gjm2tqEqiNhHqC387d_lRygMa4iFS5Jylk89398W-zybkXRDbzDsXMBMHkklnU2aszpgw3KeJB4Btke98dR1Pb-XFXXS3Q8Y9FwbLKrvY38b0Jlp3LaNuNEflfD6aQewFvCFDhCC4j_qIPJZRmOAf2MnPrTqP0-YSSZRmKN7z55oiL9cQ7LDCK4XgEUsu_5aftvDnoM5Lvf6hF4utVDR5Rp52GJKetWrukR2X75NBTzFe7ZOD89_0NRDs_Hf1nHw7o_dr5GjR2dcv7PPsE21uwqFVQcslbtlUVNPx5D3D5GZpAfEE5gG8mdoYJK5Tv6jntm2Cp1wvi-ZMEwrYE5f_X5DbyfnNeMq6OxZYBumrYg7wBHieDbzLuJNa2ogbH0VJYpLYmtgJbUUWWM11bFOd-ExGTggBqMuEJnTigOzmRe5eEsq95mniODenThprTAgJmFvuOfdBZuMhEf3Iqqw7gBzvwViovtLsu2rtodAeqrXHkLBNr7I9gOMB-aQ3mvpjIinIEQ_0POxtrDpHXqlQAKKCoJeC-m83n2HocV9F566oUQbpEAAUxZCcbObGP2n76r-1PSaD6c3Vpbr8cP3xNXkS4jJAwBmPDslutazdG8BKlTlqfOEXokkSUg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9zBeYBtMFDZkJF7d2fFHlsdqrJomsU2MovFk7NjWBlVStQmo_PWc89FNSNPgIVKUnCUnd_b95LvfHULvqXJ58J4Sq6ggwruMWGdywi0LWRoAYLvId_54rk6n4uxaXm-gg54L87O-Xdx1PjgU9Cjlh0_QppIAtQdoc3p-Of7axh8pkaJpjsNAhsCmK3tqXJO_5RvuXEzeymBfUIKJh1zPPWi5VRdzs_plZrN7XmbyvD0QXDbFCWNyyY9RXdlR_vuv0o0PfsA2etbhSzxuDWIHbfhiF2319OPlLto7uaO2gWC3tpcv0LcxvllF_ha--vKJXF5d4KZLDq5KPF_EcE6FDT6efCDR8Tlcwl4DNgJ3trY2ktpxmNW3rn0E13y1KJt6JxhwaQwNvETTycnn41PS9V8gObi2injAGrAqHQ0-Z14Y4SSzQco0talyVnluHM-pM8wol5k05EJ6zjkgMpvYxPM9NCjKwr9CmAXDstQzZo-8sM7aBJwzcywwFmju1BDxXjU674qTxx4ZM91noX3XrUJ1VKhuFTpEZD1q3hbneEQ-7bWuO4DRAgcN_uORkfu9kehukS91wgFtwYaYwfTfrV_Dr48xF1P4so4ykSoBIJIP0WhtXP8029f_O-ANeprE0wDKCJP7aFAtan8AkKmyb7uF8wdA1BVv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+SVR-PSO+model+to+predict+a+CFD-based+optimised+bubbling+fluidised+bed+pyrolysis+reactor&rft.jtitle=Energy+%28Oxford%29&rft.au=Jalalifar%2C+Salman&rft.au=Masoudi%2C+Mojtaba&rft.au=Abbassi%2C+Rouzbeh&rft.au=Garaniya%2C+Vikram&rft.date=2020-01-15&rft.issn=0360-5442&rft.volume=191&rft.spage=116414&rft_id=info:doi/10.1016%2Fj.energy.2019.116414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2019_116414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon