Modeling and Prediction of Thermal Deformation Errors in Fiber Optic Gyroscopes Based on the TD-Model
For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the re...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 23; p. 9450 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
27.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23239450 |
Cover
| Abstract | For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope’s output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy. |
|---|---|
| AbstractList | For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope's output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope's output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy. For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope’s output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy. |
| Audience | Academic |
| Author | Liu, Ying Liu, Hui Xu, Jintao Tian, Ailing |
| Author_xml | – sequence: 1 givenname: Jintao surname: Xu fullname: Xu, Jintao – sequence: 2 givenname: Ailing surname: Tian fullname: Tian, Ailing – sequence: 3 givenname: Hui surname: Liu fullname: Liu, Hui – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38067822$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU2LFDEQhoOsuB968A9IwIsKs-aj09057rcLK-thPId0UpnN0J20STcy_944vQ7iQRJIUXnqpeqtU3QUYgCE3lJyzrkknzPjjMtKkBfohFasWrWMkaO_4mN0mvOWEMY5b1-hY96SuikfJwi-Rgu9Dxusg8XfElhvJh8Djg6vnyANusfX4GIJ9umblGLK2Ad86ztI-HGcvMF3uxSziSNkfKkzWFzI6Qnw-nq113-NXjrdZ3jz_J6h77c366svq4fHu_uri4eVqSifVpYKTcDy2vHGNYx1pozVkRbAtKLm1kgqW0ZbaZwgVEsgTnZW0EoSCsxRfobuF10b9VaNyQ867VTUXu0TMW2UTqXhHhSnoqm5o50wpDhnOudEV5VbU1ZrBkXr06I1h1Hvfuq-PwhSon77rg6-F_jDAo8p_pghT2rw2UDf6wBxzopJwqSgteAFff8Puo1zCsUWxVpZ1FpWyUKdL9RGl2Z9cHFK2pRjYfCmrN_5kr9oGtFKxuumFLx7lp27Aeyh1z-rLsDHBTBlVzmB-884vwCg7bRN |
| Cites_doi | 10.3390/app11125444 10.1016/j.precisioneng.2022.05.008 10.1088/1742-6596/1168/2/022022 10.1115/1.4049494 10.1016/S0007-8506(07)63001-7 10.1016/j.cirp.2020.03.017 10.1016/j.cirp.2018.04.001 10.1016/j.ijleo.2022.168765 10.1149/10201.0003ecst 10.3390/s21020360 10.1080/00401706.2000.10485983 10.1016/j.asoc.2021.107094 10.1016/j.ijmachtools.2015.04.008 10.1007/s00170-021-06899-6 10.1016/j.cirp.2021.04.029 10.1016/j.ijmachtools.2016.11.001 10.7498/aps.70.20210083 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s23239450 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_315763f1b5c0450cbff5b45b46126a2e 10.3390/s23239450 A775892367 38067822 10_3390_s23239450 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c413t-d15a0ed36f37f722bc239b08eec8563dc91982189cf501a9e0f9bd514901e2f13 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:55 EDT 2025 Sun Oct 26 04:38:34 EDT 2025 Fri Sep 05 10:25:30 EDT 2025 Tue Oct 07 07:36:30 EDT 2025 Mon Oct 20 17:14:05 EDT 2025 Wed Feb 19 02:08:14 EST 2025 Thu Oct 16 04:43:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | overfitting thermal errors biased regression prediction model fiber optic gyroscope |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-d15a0ed36f37f722bc239b08eec8563dc91982189cf501a9e0f9bd514901e2f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/315763f1b5c0450cbff5b45b46126a2e |
| PMID | 38067822 |
| PQID | 2899458249 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_315763f1b5c0450cbff5b45b46126a2e unpaywall_primary_10_3390_s23239450 proquest_miscellaneous_2902951653 proquest_journals_2899458249 gale_infotracacademiconefile_A775892367 pubmed_primary_38067822 crossref_primary_10_3390_s23239450 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov-27 |
| PublicationDateYYYYMMDD | 2023-11-27 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mayr (ref_12) 2018; 67 Mao (ref_2) 2023; 31 Liu (ref_18) 2021; 102 Chengyang (ref_19) 2021; 143 Li (ref_16) 2021; 114 Fan (ref_5) 2021; 41 Liu (ref_21) 2017; 113 Shang (ref_1) 2021; 29 Bryan (ref_7) 1990; 39 Wei (ref_15) 2022; 77 Hoerl (ref_22) 1970; 42 Ryan (ref_3) 2021; 102 Cao (ref_6) 2022; 256 Li (ref_10) 2021; 70 Zimmermann (ref_13) 2020; 69 ref_17 ref_9 Lei (ref_4) 2022; 43 Yang (ref_11) 2015; 95 Zimmermann (ref_14) 2021; 70 Aronson (ref_8) 1996; 116 Ying (ref_20) 2019; 1168 |
| References_xml | – ident: ref_17 doi: 10.3390/app11125444 – volume: 77 start-page: 65 year: 2022 ident: ref_15 article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2022.05.008 – volume: 29 start-page: 502 year: 2021 ident: ref_1 article-title: Design, manufacturing and future development of the integrated fiber optic gyroscope publication-title: J. Chin. Inert. Technol. – volume: 1168 start-page: 022022 year: 2019 ident: ref_20 article-title: An overview of overfitting and its solutions publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1168/2/022022 – volume: 41 start-page: 2306002 year: 2021 ident: ref_5 article-title: Temperature Performance Evaluation of Fiber Coil with Equivalent Asymmetric Length publication-title: Acta Opt. Sin. – volume: 143 start-page: 051013 year: 2021 ident: ref_19 article-title: Thermal error modeling of rotary axis based on convolutional neural network publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4049494 – volume: 39 start-page: 645 year: 1990 ident: ref_7 article-title: International Status of Thermal Error Research publication-title: CIRP Ann. doi: 10.1016/S0007-8506(07)63001-7 – volume: 69 start-page: 485 year: 2020 ident: ref_13 article-title: Adaptive input selection for thermal error compensation models publication-title: CIRP Ann. doi: 10.1016/j.cirp.2020.03.017 – volume: 67 start-page: 551 year: 2018 ident: ref_12 article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates publication-title: CIRP Ann. doi: 10.1016/j.cirp.2018.04.001 – volume: 256 start-page: 168765 year: 2022 ident: ref_6 article-title: A method for temperature error compensation in fiber-optic gyroscope based on machine learning publication-title: Optik doi: 10.1016/j.ijleo.2022.168765 – volume: 102 start-page: 3 year: 2021 ident: ref_3 article-title: Silicon nanosheets as candidates for silicon-based optoelectronics publication-title: ECS Trans. doi: 10.1149/10201.0003ecst – ident: ref_9 doi: 10.3390/s21020360 – volume: 42 start-page: 80 year: 1970 ident: ref_22 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.2000.10485983 – volume: 102 start-page: 107094 year: 2021 ident: ref_18 article-title: Thermally-induced error compensation of spindle system based on long short term memory neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107094 – volume: 116 start-page: 45 year: 1996 ident: ref_8 article-title: War against thermal expansion publication-title: Manuf. Eng. – volume: 95 start-page: 20 year: 2015 ident: ref_11 article-title: A review on spindle thermal error compensation in machine tools publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2015.04.008 – volume: 31 start-page: 202 year: 2023 ident: ref_2 article-title: Silicon photonics integrated chip based optical fiber gyroscope publication-title: J. Chin. Inert. Technol. – volume: 114 start-page: 1545 year: 2021 ident: ref_16 article-title: Prediction of thermal error for feed system of machine tools based on random radial basis function neural network publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06899-6 – volume: 70 start-page: 431 year: 2021 ident: ref_14 article-title: Autonomously triggered model updates for self-learning thermal error compensation publication-title: CIRP Ann. doi: 10.1016/j.cirp.2021.04.029 – volume: 113 start-page: 35 year: 2017 ident: ref_21 article-title: Robustness Modeling Method for Thermal Error of CNC Machine Tools Based on Ridge Regression Algorithm publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2016.11.001 – volume: 70 start-page: 190201 year: 2021 ident: ref_10 article-title: Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials publication-title: Acta Phys. Sin. doi: 10.7498/aps.70.20210083 – volume: 43 start-page: 666 year: 2022 ident: ref_4 article-title: Development Status and Trend of integrated Fiber Optic Gyroscope publication-title: Semicond. Optoelectron. |
| SSID | ssj0023338 |
| Score | 2.4195955 |
| Snippet | For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 9450 |
| SubjectTerms | Accuracy Algorithms Analysis biased regression Deformation Equipment and supplies fiber optic gyroscope Fiber optics Information management Light Neural networks overfitting prediction model Semiconductors Sensors Temperature effects thermal errors Thermal properties Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll7SH0nfdpkV9QE8msmTL0jFpsg2FPg4J5CYkeQSFxV68u4T8-8ysvcYQSi8Fn2xhpJmRvm-Q5hNjn4NXqQETc9AB8rKBlBuTbO51QDRG_PWeipN__NQXV-X36-p6dtUXnQkb5IEHwx2rAhmxSkWoIrIPEUNKVSjxQWjWXgKtvsLYfTI1ploKM69BR0hhUn-8Rt6gbEnF9TP02Yn031-KZ1h0uG1X_vbGL5cz0Fk8YY9HtshPhl4-ZQ-gfcYezTQEnzOg28yoppz7tuG_e9p4IWPzLnGMAVx3l_wMphpFft73Xb_mf1q-oMMi_BeuGZF_uyVVy24Fa36KuNZwbInUkF-e5bv_v2BXi_PLrxf5eHdCHhGWNnlTVF5Ao3RSdaqlDBENEIQBiKbSqom2sAbh3cZUicJbEMmGBtkT8gOQqVAv2UHbtfCacVmhP0MC_FEqk4khBis0RFsjO9RCZezj3qZuNUhkOEwtyPBuMnzGTsnaUwNStd69QF-70dfuX77O2BfylaO5t-l99GMJAfaTVKzcSY3ZjyVNuowd7d3pxkm5dpRb0jZhaTP2YfqM04n2SHwL3RbbWCGRdOoKh_VqCIOpz8oQtEuZsU9TXPx9xG_-x4jfsod0vz0VP8r6iB1s-i28Qxa0Ce93AX8HPSkDRw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9RAEC7W2YN6EN9GV2kf4ClspzuvPojsuDMuguMiu7C30E8RhmTMzCD7763KJHFEFHJKmqZTVV31VTr1FcAbo2VwvrSxz42PU-dDXJZBxTo3GI0x_mpNxcmfF_nZZfrpKrs6gMVQC0O_VQ4-sXPUrrH0jfyYEgM640nV-9WPmLpG0enq0EJD960V3LuOYuwGHApixprA4XS2OP86pmASM7Idv5DEZP94jXhC4rT8j6jUkff_7aL3YtTNbb3S1z_1crkXjOZ34U6PItnJTu334MDX9-H2HrfgA_DU5YxqzZmuHTtv6UCGlMCawNA20B8v2akfaxfZrG2bds2-12xOP5GwL-hLLPt4TWyXzcqv2RTjnWM4EiEjuziNu_kfwuV8dvHhLO57KsQWw9UmdkmmuXcyD7IIhRDGogAML723ZZZLZ1WiSgz7yoaMJ1p5HpRxiKoQN3gREvkIJnVT-yfARIZ6NsHjRCENpTXWKJ57qwpEjTmXEbwaZFqtdtQZFaYcJPhqFHwEU5L2OIDYrrsbTfut6jdPJRPMimRITGYRgXJrQshMihfCs1wLH8Fb0lVFe3LTaqv70gJcJ7FbVScFZkWKuOoiOBrUWfWbdV39Nq0IXo6PcZvR2YmufbPFMYoLBKN5hq_1eGcG45plSSFfiAhej3bx7zd--v8lPINb1NGeyh1FcQSTTbv1zxH3bMyL3ph_Ae-7AdY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAuBgsxD4pSuY8dOfEJb2qVCovTQlcopsh0bVaySVTbbqvx6ZrLZaAEhISHllEwsOzOe-Sb2fCbkrTUilD53sVfWx2npQ5znQcdGWYjGEH-NweLkzyfqeJZ-OpfnW1X8uK0SUvGLzkljFVYMEYyNucBLp5KNF2V4f9n_S0IyccAIAItvkh0lAY2PyM7s5HTytSsq6t9eEwoJyO7HSwAQApv5JQx1bP1_-uStoHRrVS3M9ZWZz7eiz_QeMZt-rzedfN9ftXbf_fiN0vF_Bnaf3O2hKZ2sbekBueGrh-TOFmHhI-Lx6DQsYKemKulpg6s8qFlaBwoGB05-Tg_9UBBJj5qmbpb0oqJT3JlCv4CDcvTjNVJo1gu_pAcQREsKkoBD6dlh3LX_mMymR2cfjuP-oIbYQQxs4zKRhvlSqCCykHFuHXxky3LvXS6VKJ1OdA5YQrsgWWK0Z0HbEqAagBHPQyJ2yaiqK_-UUC7BeGzw0FBIQ-6ss5op73QGUFQxEZHXG70VizUfRwF5DCq3GJQbkQPU6CCAFNrdjbr5VvQzshAJpFoiJFY6gLXM2RCkTeECzKcM9xF5h_ZQ4ERvG-NMX68A_UTKrGKSQaqlkQAvInsbkyl6D7AsMJHFNclUR-TV8BjmLi7ImMrXK5DRjAPCVRKG9WRtakOfRY44gvOIvBls7-8jfvZPUs_JbQ4YDUspebZHRm2z8i8AU7X2ZT9tfgJdrxk4 priority: 102 providerName: Unpaywall |
| Title | Modeling and Prediction of Thermal Deformation Errors in Fiber Optic Gyroscopes Based on the TD-Model |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38067822 https://www.proquest.com/docview/2899458249 https://www.proquest.com/docview/2902951653 https://www.mdpi.com/1424-8220/23/23/9450/pdf?version=1701095255 https://doaj.org/article/315763f1b5c0450cbff5b45b46126a2e |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeglMWJ87LB4Ratt0V0pYKbaVyimzHRkhV0k1bQf89M2kadQVISFEOieU447G_bzKZGYA3WglX2Mz4NtHWjwrr_Cxz0leJRjRG_FWKgpMvx8nFNPo8i2cHsPutuRXg8q-mHdWTmtbz01_Xm4-44D-QxYkm-_slsgIho5i_XVz7VE-K_K5tcY1DOEbMklTU4TLq_AuhEE2Nawrz8hEi-Tbn0M3ebiBVk9D_z217D7durcuF2vxU8_keQI3uwd2WWbL-VhXuw4EtH8CdvXyDD8FS5TOKP2eqLNikJicNTQyrHEN9wT16zs5sF8_IhnVd1Uv2o2Qj-rGEfcH9xbDzDWXARDEt2QAxsGDYEmkkuzrzm_4fwXQ0vPp04bd1FnyDELbyiyBW3BYicSJ1aRhqgwLQPLPWZHEiCiMDmSEVkMbFPFDScid1gUwLuYQNXSAew1FZlfYpsDDGudfOYkcucpnRRkueWCNTZJIJFx682sk0X2zTaeRohpDg807wHgxI2l0DyoDdXKjq73m7oHIRoKUkXKBjg6yUG-1crCM8kLIlKrQevKO5yklzVrUyqg03wHFSxqu8n6KlJCl_nQcnu-nMd_qXkx1KLsVIevCyu41Lj_wpqrTVGttIHiJBTWJ8rSdbNejGLDKiAWHowetOL_79xs_-4xnP4TaVuqc4yDA9gaNVvbYvkBCtdA8O01mK52x03oPjwXA8-dprPi70Gq3Ha9PxpP_tN1dHDgU |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxLnKJm7bx8QKhlu2zpAw5baW-p7dgIaZUs2V1V-6f4jczk1UUIbpVySizLGc_M902cmQF4q5VwuU2Nb2Nt_TC3zk9TJ30Va0RjxF-lKDn59Cwen4dfptF0C351uTD0W2XnE2tHnZeGvpHvUWBAZzyh_Dj_6VPXKDpd7VpoNGpxbNeXGLItPhwNcX_fcT46nHwa-21XAd-gw176-SBSgc1F7ETiEs614ULqILXWpFEsciMxDkfgk8ZFwUBJGzipc-QViJyWu4HAeW_AzVCgL0H7SaZXAZ7AeK-pXiSEDPYWyFYELjr4A_Pq1gB_A8AGAu6sirlaX6rZbAPqRnfhTstR2X6jVPdgyxb34fZG5cIHYKmHGmWyM1Xk7FtFxz20xax0DDUPvf2MDW2fGckOq6qsFuxHwUb0iwr7ip7KsM9rqqVZzu2CHSCa5gxHIiFlk6Ffz_8Qzq9Fto9guygL-wQYj1CLtLM4kQtdarTRMoitkQly0jgQHrzuZJrNm8IcGQY0JPisF7wHByTtfgDV0q5vlNX3rDXNTAww5hJuoCOD_DYw2rlIh3gh-YsVtx68p73KyOKXlTKqTVzAdVLtrGw_wZhLUiU8D3a77cxaV7DIrhTXg1f9YzRiOplRhS1XOEYGHKluHOFrPW7UoF-zSIlQcO7Bm14v_v3GT_-_hJewM56cnmQnR2fHz-AWR52lxEqe7ML2slrZ58iwlvpFrdYMLq7bjn4DLwM3iw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiXOEWb2Hn5gFDLdmkplB5aaW_BdmyEtEqWZFfV_jV-HTObRxchuFXKKbEsezyPbzKeGYDXWglX2Mz4NtHWjwrr_Cxz0leJRmuM9lcpSk7-cpwcnEWfpvF0C371uTB0rbLXiWtFXVSG_pGPyDGgGE8kR667FnEynryf__SpgxRFWvt2Gi2LHNnVObpvzbvDMZ71G84n-6cfDvyuw4BvUHkv_CKMVWALkTiRupRzbbiQOsisNVmciMJI9MnRCErj4iBU0gZO6gIxBlpRy10ocN4rcDUVQtJ1wnR64ewJ9P3aSkb4MRg1iFwEbiD4w_6t2wT8bQw2rOH1ZTlXq3M1m22YvcltuNXhVbbbMtgd2LLlXbi5UcXwHljqp0ZZ7UyVBTupKfRDx80qx5ALUfPP2NgOWZJsv66rumE_Sjah6yrsK2otwz6uqK5mNbcN20PLWjAcieCUnY799fz34exSaPsAtsuqtI-A8Rg5SjuLE7nIZUYbLYPEGpkiPk0C4cHLnqb5vC3SkaNzQ4TPB8J7sEfUHgZQXe31i6r-nndimosQ_S_hQh0bxLqB0c7FOsIHgWCiuPXgLZ1VTtK_qJVRXRIDrpPqaOW7KfpfkqriebDTH2feqYUmv2BiD14Mn1GgKUqjSlstcYwMOMLeJMZtPWzZYFizyAhccO7Bq4Ev_r3jx_9fwnO4hhKUfz48PnoCNziyLOVY8nQHthf10j5FsLXQz9ZczeDbZYvRb96XO84 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAuBgsxD4pSuY8dOfEJb2qVCovTQlcopsh0bVaySVTbbqvx6ZrLZaAEhISHllEwsOzOe-Sb2fCbkrTUilD53sVfWx2npQ5znQcdGWYjGEH-NweLkzyfqeJZ-OpfnW1X8uK0SUvGLzkljFVYMEYyNucBLp5KNF2V4f9n_S0IyccAIAItvkh0lAY2PyM7s5HTytSsq6t9eEwoJyO7HSwAQApv5JQx1bP1_-uStoHRrVS3M9ZWZz7eiz_QeMZt-rzedfN9ftXbf_fiN0vF_Bnaf3O2hKZ2sbekBueGrh-TOFmHhI-Lx6DQsYKemKulpg6s8qFlaBwoGB05-Tg_9UBBJj5qmbpb0oqJT3JlCv4CDcvTjNVJo1gu_pAcQREsKkoBD6dlh3LX_mMymR2cfjuP-oIbYQQxs4zKRhvlSqCCykHFuHXxky3LvXS6VKJ1OdA5YQrsgWWK0Z0HbEqAagBHPQyJ2yaiqK_-UUC7BeGzw0FBIQ-6ss5op73QGUFQxEZHXG70VizUfRwF5DCq3GJQbkQPU6CCAFNrdjbr5VvQzshAJpFoiJFY6gLXM2RCkTeECzKcM9xF5h_ZQ4ERvG-NMX68A_UTKrGKSQaqlkQAvInsbkyl6D7AsMJHFNclUR-TV8BjmLi7ImMrXK5DRjAPCVRKG9WRtakOfRY44gvOIvBls7-8jfvZPUs_JbQ4YDUspebZHRm2z8i8AU7X2ZT9tfgJdrxk4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Prediction+of+Thermal+Deformation+Errors+in+Fiber+Optic+Gyroscopes+Based+on+the+TD-Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Jintao&rft.au=Tian%2C+Ailing&rft.au=Liu%2C+Hui&rft.au=Liu%2C+Ying&rft.date=2023-11-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=23&rft_id=info:doi/10.3390%2Fs23239450&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |