Modeling and Prediction of Thermal Deformation Errors in Fiber Optic Gyroscopes Based on the TD-Model

For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the re...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 23; p. 9450
Main Authors Xu, Jintao, Tian, Ailing, Liu, Hui, Liu, Ying
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.11.2023
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23239450

Cover

Abstract For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope’s output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.
AbstractList For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope's output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope's output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.
For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope’s output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.
Audience Academic
Author Liu, Ying
Liu, Hui
Xu, Jintao
Tian, Ailing
Author_xml – sequence: 1
  givenname: Jintao
  surname: Xu
  fullname: Xu, Jintao
– sequence: 2
  givenname: Ailing
  surname: Tian
  fullname: Tian, Ailing
– sequence: 3
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38067822$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2LFDEQhoOsuB968A9IwIsKs-aj09057rcLK-thPId0UpnN0J20STcy_944vQ7iQRJIUXnqpeqtU3QUYgCE3lJyzrkknzPjjMtKkBfohFasWrWMkaO_4mN0mvOWEMY5b1-hY96SuikfJwi-Rgu9Dxusg8XfElhvJh8Djg6vnyANusfX4GIJ9umblGLK2Ad86ztI-HGcvMF3uxSziSNkfKkzWFzI6Qnw-nq113-NXjrdZ3jz_J6h77c366svq4fHu_uri4eVqSifVpYKTcDy2vHGNYx1pozVkRbAtKLm1kgqW0ZbaZwgVEsgTnZW0EoSCsxRfobuF10b9VaNyQ867VTUXu0TMW2UTqXhHhSnoqm5o50wpDhnOudEV5VbU1ZrBkXr06I1h1Hvfuq-PwhSon77rg6-F_jDAo8p_pghT2rw2UDf6wBxzopJwqSgteAFff8Puo1zCsUWxVpZ1FpWyUKdL9RGl2Z9cHFK2pRjYfCmrN_5kr9oGtFKxuumFLx7lp27Aeyh1z-rLsDHBTBlVzmB-884vwCg7bRN
Cites_doi 10.3390/app11125444
10.1016/j.precisioneng.2022.05.008
10.1088/1742-6596/1168/2/022022
10.1115/1.4049494
10.1016/S0007-8506(07)63001-7
10.1016/j.cirp.2020.03.017
10.1016/j.cirp.2018.04.001
10.1016/j.ijleo.2022.168765
10.1149/10201.0003ecst
10.3390/s21020360
10.1080/00401706.2000.10485983
10.1016/j.asoc.2021.107094
10.1016/j.ijmachtools.2015.04.008
10.1007/s00170-021-06899-6
10.1016/j.cirp.2021.04.029
10.1016/j.ijmachtools.2016.11.001
10.7498/aps.70.20210083
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/s23239450
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_315763f1b5c0450cbff5b45b46126a2e
10.3390/s23239450
A775892367
38067822
10_3390_s23239450
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c413t-d15a0ed36f37f722bc239b08eec8563dc91982189cf501a9e0f9bd514901e2f13
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:55 EDT 2025
Sun Oct 26 04:38:34 EDT 2025
Fri Sep 05 10:25:30 EDT 2025
Tue Oct 07 07:36:30 EDT 2025
Mon Oct 20 17:14:05 EDT 2025
Wed Feb 19 02:08:14 EST 2025
Thu Oct 16 04:43:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords overfitting
thermal errors
biased regression
prediction model
fiber optic gyroscope
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-d15a0ed36f37f722bc239b08eec8563dc91982189cf501a9e0f9bd514901e2f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/315763f1b5c0450cbff5b45b46126a2e
PMID 38067822
PQID 2899458249
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_315763f1b5c0450cbff5b45b46126a2e
unpaywall_primary_10_3390_s23239450
proquest_miscellaneous_2902951653
proquest_journals_2899458249
gale_infotracacademiconefile_A775892367
pubmed_primary_38067822
crossref_primary_10_3390_s23239450
PublicationCentury 2000
PublicationDate 2023-Nov-27
PublicationDateYYYYMMDD 2023-11-27
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mayr (ref_12) 2018; 67
Mao (ref_2) 2023; 31
Liu (ref_18) 2021; 102
Chengyang (ref_19) 2021; 143
Li (ref_16) 2021; 114
Fan (ref_5) 2021; 41
Liu (ref_21) 2017; 113
Shang (ref_1) 2021; 29
Bryan (ref_7) 1990; 39
Wei (ref_15) 2022; 77
Hoerl (ref_22) 1970; 42
Ryan (ref_3) 2021; 102
Cao (ref_6) 2022; 256
Li (ref_10) 2021; 70
Zimmermann (ref_13) 2020; 69
ref_17
ref_9
Lei (ref_4) 2022; 43
Yang (ref_11) 2015; 95
Zimmermann (ref_14) 2021; 70
Aronson (ref_8) 1996; 116
Ying (ref_20) 2019; 1168
References_xml – ident: ref_17
  doi: 10.3390/app11125444
– volume: 77
  start-page: 65
  year: 2022
  ident: ref_15
  article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2022.05.008
– volume: 29
  start-page: 502
  year: 2021
  ident: ref_1
  article-title: Design, manufacturing and future development of the integrated fiber optic gyroscope
  publication-title: J. Chin. Inert. Technol.
– volume: 1168
  start-page: 022022
  year: 2019
  ident: ref_20
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1168/2/022022
– volume: 41
  start-page: 2306002
  year: 2021
  ident: ref_5
  article-title: Temperature Performance Evaluation of Fiber Coil with Equivalent Asymmetric Length
  publication-title: Acta Opt. Sin.
– volume: 143
  start-page: 051013
  year: 2021
  ident: ref_19
  article-title: Thermal error modeling of rotary axis based on convolutional neural network
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4049494
– volume: 39
  start-page: 645
  year: 1990
  ident: ref_7
  article-title: International Status of Thermal Error Research
  publication-title: CIRP Ann.
  doi: 10.1016/S0007-8506(07)63001-7
– volume: 69
  start-page: 485
  year: 2020
  ident: ref_13
  article-title: Adaptive input selection for thermal error compensation models
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2020.03.017
– volume: 67
  start-page: 551
  year: 2018
  ident: ref_12
  article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.001
– volume: 256
  start-page: 168765
  year: 2022
  ident: ref_6
  article-title: A method for temperature error compensation in fiber-optic gyroscope based on machine learning
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168765
– volume: 102
  start-page: 3
  year: 2021
  ident: ref_3
  article-title: Silicon nanosheets as candidates for silicon-based optoelectronics
  publication-title: ECS Trans.
  doi: 10.1149/10201.0003ecst
– ident: ref_9
  doi: 10.3390/s21020360
– volume: 42
  start-page: 80
  year: 1970
  ident: ref_22
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485983
– volume: 102
  start-page: 107094
  year: 2021
  ident: ref_18
  article-title: Thermally-induced error compensation of spindle system based on long short term memory neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107094
– volume: 116
  start-page: 45
  year: 1996
  ident: ref_8
  article-title: War against thermal expansion
  publication-title: Manuf. Eng.
– volume: 95
  start-page: 20
  year: 2015
  ident: ref_11
  article-title: A review on spindle thermal error compensation in machine tools
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2015.04.008
– volume: 31
  start-page: 202
  year: 2023
  ident: ref_2
  article-title: Silicon photonics integrated chip based optical fiber gyroscope
  publication-title: J. Chin. Inert. Technol.
– volume: 114
  start-page: 1545
  year: 2021
  ident: ref_16
  article-title: Prediction of thermal error for feed system of machine tools based on random radial basis function neural network
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-06899-6
– volume: 70
  start-page: 431
  year: 2021
  ident: ref_14
  article-title: Autonomously triggered model updates for self-learning thermal error compensation
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2021.04.029
– volume: 113
  start-page: 35
  year: 2017
  ident: ref_21
  article-title: Robustness Modeling Method for Thermal Error of CNC Machine Tools Based on Ridge Regression Algorithm
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2016.11.001
– volume: 70
  start-page: 190201
  year: 2021
  ident: ref_10
  article-title: Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20210083
– volume: 43
  start-page: 666
  year: 2022
  ident: ref_4
  article-title: Development Status and Trend of integrated Fiber Optic Gyroscope
  publication-title: Semicond. Optoelectron.
SSID ssj0023338
Score 2.4195955
Snippet For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9450
SubjectTerms Accuracy
Algorithms
Analysis
biased regression
Deformation
Equipment and supplies
fiber optic gyroscope
Fiber optics
Information management
Light
Neural networks
overfitting
prediction model
Semiconductors
Sensors
Temperature effects
thermal errors
Thermal properties
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll7SH0nfdpkV9QE8msmTL0jFpsg2FPg4J5CYkeQSFxV68u4T8-8ysvcYQSi8Fn2xhpJmRvm-Q5hNjn4NXqQETc9AB8rKBlBuTbO51QDRG_PWeipN__NQXV-X36-p6dtUXnQkb5IEHwx2rAhmxSkWoIrIPEUNKVSjxQWjWXgKtvsLYfTI1ploKM69BR0hhUn-8Rt6gbEnF9TP02Yn031-KZ1h0uG1X_vbGL5cz0Fk8YY9HtshPhl4-ZQ-gfcYezTQEnzOg28yoppz7tuG_e9p4IWPzLnGMAVx3l_wMphpFft73Xb_mf1q-oMMi_BeuGZF_uyVVy24Fa36KuNZwbInUkF-e5bv_v2BXi_PLrxf5eHdCHhGWNnlTVF5Ao3RSdaqlDBENEIQBiKbSqom2sAbh3cZUicJbEMmGBtkT8gOQqVAv2UHbtfCacVmhP0MC_FEqk4khBis0RFsjO9RCZezj3qZuNUhkOEwtyPBuMnzGTsnaUwNStd69QF-70dfuX77O2BfylaO5t-l99GMJAfaTVKzcSY3ZjyVNuowd7d3pxkm5dpRb0jZhaTP2YfqM04n2SHwL3RbbWCGRdOoKh_VqCIOpz8oQtEuZsU9TXPx9xG_-x4jfsod0vz0VP8r6iB1s-i28Qxa0Ce93AX8HPSkDRw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9RAEC7W2YN6EN9GV2kf4ClspzuvPojsuDMuguMiu7C30E8RhmTMzCD7763KJHFEFHJKmqZTVV31VTr1FcAbo2VwvrSxz42PU-dDXJZBxTo3GI0x_mpNxcmfF_nZZfrpKrs6gMVQC0O_VQ4-sXPUrrH0jfyYEgM640nV-9WPmLpG0enq0EJD960V3LuOYuwGHApixprA4XS2OP86pmASM7Idv5DEZP94jXhC4rT8j6jUkff_7aL3YtTNbb3S1z_1crkXjOZ34U6PItnJTu334MDX9-H2HrfgA_DU5YxqzZmuHTtv6UCGlMCawNA20B8v2akfaxfZrG2bds2-12xOP5GwL-hLLPt4TWyXzcqv2RTjnWM4EiEjuziNu_kfwuV8dvHhLO57KsQWw9UmdkmmuXcyD7IIhRDGogAML723ZZZLZ1WiSgz7yoaMJ1p5HpRxiKoQN3gREvkIJnVT-yfARIZ6NsHjRCENpTXWKJ57qwpEjTmXEbwaZFqtdtQZFaYcJPhqFHwEU5L2OIDYrrsbTfut6jdPJRPMimRITGYRgXJrQshMihfCs1wLH8Fb0lVFe3LTaqv70gJcJ7FbVScFZkWKuOoiOBrUWfWbdV39Nq0IXo6PcZvR2YmufbPFMYoLBKN5hq_1eGcG45plSSFfiAhej3bx7zd--v8lPINb1NGeyh1FcQSTTbv1zxH3bMyL3ph_Ae-7AdY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAuBgsxD4pSuY8dOfEJb2qVCovTQlcopsh0bVaySVTbbqvx6ZrLZaAEhISHllEwsOzOe-Sb2fCbkrTUilD53sVfWx2npQ5znQcdGWYjGEH-NweLkzyfqeJZ-OpfnW1X8uK0SUvGLzkljFVYMEYyNucBLp5KNF2V4f9n_S0IyccAIAItvkh0lAY2PyM7s5HTytSsq6t9eEwoJyO7HSwAQApv5JQx1bP1_-uStoHRrVS3M9ZWZz7eiz_QeMZt-rzedfN9ftXbf_fiN0vF_Bnaf3O2hKZ2sbekBueGrh-TOFmHhI-Lx6DQsYKemKulpg6s8qFlaBwoGB05-Tg_9UBBJj5qmbpb0oqJT3JlCv4CDcvTjNVJo1gu_pAcQREsKkoBD6dlh3LX_mMymR2cfjuP-oIbYQQxs4zKRhvlSqCCykHFuHXxky3LvXS6VKJ1OdA5YQrsgWWK0Z0HbEqAagBHPQyJ2yaiqK_-UUC7BeGzw0FBIQ-6ss5op73QGUFQxEZHXG70VizUfRwF5DCq3GJQbkQPU6CCAFNrdjbr5VvQzshAJpFoiJFY6gLXM2RCkTeECzKcM9xF5h_ZQ4ERvG-NMX68A_UTKrGKSQaqlkQAvInsbkyl6D7AsMJHFNclUR-TV8BjmLi7ImMrXK5DRjAPCVRKG9WRtakOfRY44gvOIvBls7-8jfvZPUs_JbQ4YDUspebZHRm2z8i8AU7X2ZT9tfgJdrxk4
  priority: 102
  providerName: Unpaywall
Title Modeling and Prediction of Thermal Deformation Errors in Fiber Optic Gyroscopes Based on the TD-Model
URI https://www.ncbi.nlm.nih.gov/pubmed/38067822
https://www.proquest.com/docview/2899458249
https://www.proquest.com/docview/2902951653
https://www.mdpi.com/1424-8220/23/23/9450/pdf?version=1701095255
https://doaj.org/article/315763f1b5c0450cbff5b45b46126a2e
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeglMWJ87LB4Ratt0V0pYKbaVyimzHRkhV0k1bQf89M2kadQVISFEOieU447G_bzKZGYA3WglX2Mz4NtHWjwrr_Cxz0leJRjRG_FWKgpMvx8nFNPo8i2cHsPutuRXg8q-mHdWTmtbz01_Xm4-44D-QxYkm-_slsgIho5i_XVz7VE-K_K5tcY1DOEbMklTU4TLq_AuhEE2Nawrz8hEi-Tbn0M3ebiBVk9D_z217D7durcuF2vxU8_keQI3uwd2WWbL-VhXuw4EtH8CdvXyDD8FS5TOKP2eqLNikJicNTQyrHEN9wT16zs5sF8_IhnVd1Uv2o2Qj-rGEfcH9xbDzDWXARDEt2QAxsGDYEmkkuzrzm_4fwXQ0vPp04bd1FnyDELbyiyBW3BYicSJ1aRhqgwLQPLPWZHEiCiMDmSEVkMbFPFDScid1gUwLuYQNXSAew1FZlfYpsDDGudfOYkcucpnRRkueWCNTZJIJFx682sk0X2zTaeRohpDg807wHgxI2l0DyoDdXKjq73m7oHIRoKUkXKBjg6yUG-1crCM8kLIlKrQevKO5yklzVrUyqg03wHFSxqu8n6KlJCl_nQcnu-nMd_qXkx1KLsVIevCyu41Lj_wpqrTVGttIHiJBTWJ8rSdbNejGLDKiAWHowetOL_79xs_-4xnP4TaVuqc4yDA9gaNVvbYvkBCtdA8O01mK52x03oPjwXA8-dprPi70Gq3Ha9PxpP_tN1dHDgU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxLnKJm7bx8QKhlu2zpAw5baW-p7dgIaZUs2V1V-6f4jczk1UUIbpVySizLGc_M902cmQF4q5VwuU2Nb2Nt_TC3zk9TJ30Va0RjxF-lKDn59Cwen4dfptF0C351uTD0W2XnE2tHnZeGvpHvUWBAZzyh_Dj_6VPXKDpd7VpoNGpxbNeXGLItPhwNcX_fcT46nHwa-21XAd-gw176-SBSgc1F7ETiEs614ULqILXWpFEsciMxDkfgk8ZFwUBJGzipc-QViJyWu4HAeW_AzVCgL0H7SaZXAZ7AeK-pXiSEDPYWyFYELjr4A_Pq1gB_A8AGAu6sirlaX6rZbAPqRnfhTstR2X6jVPdgyxb34fZG5cIHYKmHGmWyM1Xk7FtFxz20xax0DDUPvf2MDW2fGckOq6qsFuxHwUb0iwr7ip7KsM9rqqVZzu2CHSCa5gxHIiFlk6Ffz_8Qzq9Fto9guygL-wQYj1CLtLM4kQtdarTRMoitkQly0jgQHrzuZJrNm8IcGQY0JPisF7wHByTtfgDV0q5vlNX3rDXNTAww5hJuoCOD_DYw2rlIh3gh-YsVtx68p73KyOKXlTKqTVzAdVLtrGw_wZhLUiU8D3a77cxaV7DIrhTXg1f9YzRiOplRhS1XOEYGHKluHOFrPW7UoF-zSIlQcO7Bm14v_v3GT_-_hJewM56cnmQnR2fHz-AWR52lxEqe7ML2slrZ58iwlvpFrdYMLq7bjn4DLwM3iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4ECpiXOEWb2Hn5gFDLdmkplB5aaW_BdmyEtEqWZFfV_jV-HTObRxchuFXKKbEsezyPbzKeGYDXWglX2Mz4NtHWjwrr_Cxz0leJRmuM9lcpSk7-cpwcnEWfpvF0C371uTB0rbLXiWtFXVSG_pGPyDGgGE8kR667FnEynryf__SpgxRFWvt2Gi2LHNnVObpvzbvDMZ71G84n-6cfDvyuw4BvUHkv_CKMVWALkTiRupRzbbiQOsisNVmciMJI9MnRCErj4iBU0gZO6gIxBlpRy10ocN4rcDUVQtJ1wnR64ewJ9P3aSkb4MRg1iFwEbiD4w_6t2wT8bQw2rOH1ZTlXq3M1m22YvcltuNXhVbbbMtgd2LLlXbi5UcXwHljqp0ZZ7UyVBTupKfRDx80qx5ALUfPP2NgOWZJsv66rumE_Sjah6yrsK2otwz6uqK5mNbcN20PLWjAcieCUnY799fz34exSaPsAtsuqtI-A8Rg5SjuLE7nIZUYbLYPEGpkiPk0C4cHLnqb5vC3SkaNzQ4TPB8J7sEfUHgZQXe31i6r-nndimosQ_S_hQh0bxLqB0c7FOsIHgWCiuPXgLZ1VTtK_qJVRXRIDrpPqaOW7KfpfkqriebDTH2feqYUmv2BiD14Mn1GgKUqjSlstcYwMOMLeJMZtPWzZYFizyAhccO7Bq4Ev_r3jx_9fwnO4hhKUfz48PnoCNziyLOVY8nQHthf10j5FsLXQz9ZczeDbZYvRb96XO84
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAuBgsxD4pSuY8dOfEJb2qVCovTQlcopsh0bVaySVTbbqvx6ZrLZaAEhISHllEwsOzOe-Sb2fCbkrTUilD53sVfWx2npQ5znQcdGWYjGEH-NweLkzyfqeJZ-OpfnW1X8uK0SUvGLzkljFVYMEYyNucBLp5KNF2V4f9n_S0IyccAIAItvkh0lAY2PyM7s5HTytSsq6t9eEwoJyO7HSwAQApv5JQx1bP1_-uStoHRrVS3M9ZWZz7eiz_QeMZt-rzedfN9ftXbf_fiN0vF_Bnaf3O2hKZ2sbekBueGrh-TOFmHhI-Lx6DQsYKemKulpg6s8qFlaBwoGB05-Tg_9UBBJj5qmbpb0oqJT3JlCv4CDcvTjNVJo1gu_pAcQREsKkoBD6dlh3LX_mMymR2cfjuP-oIbYQQxs4zKRhvlSqCCykHFuHXxky3LvXS6VKJ1OdA5YQrsgWWK0Z0HbEqAagBHPQyJ2yaiqK_-UUC7BeGzw0FBIQ-6ss5op73QGUFQxEZHXG70VizUfRwF5DCq3GJQbkQPU6CCAFNrdjbr5VvQzshAJpFoiJFY6gLXM2RCkTeECzKcM9xF5h_ZQ4ERvG-NMX68A_UTKrGKSQaqlkQAvInsbkyl6D7AsMJHFNclUR-TV8BjmLi7ImMrXK5DRjAPCVRKG9WRtakOfRY44gvOIvBls7-8jfvZPUs_JbQ4YDUspebZHRm2z8i8AU7X2ZT9tfgJdrxk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Prediction+of+Thermal+Deformation+Errors+in+Fiber+Optic+Gyroscopes+Based+on+the+TD-Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Jintao&rft.au=Tian%2C+Ailing&rft.au=Liu%2C+Hui&rft.au=Liu%2C+Ying&rft.date=2023-11-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=23&rft_id=info:doi/10.3390%2Fs23239450&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon