Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons
Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction o...
Saved in:
Published in | Nature (London) Vol. 481; no. 7380; pp. 185 - 189 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.12.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature10726 |
Cover
Abstract | Cancer drugs that can potentially treat Angelman syndrome are identified.
Angelman syndrome mutation reversed
Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction of the maternal allele of the
Ube3a
gene, the paternal allele remains intact but is epigenetically silenced. Benjamin Philpot and colleagues perform an unbiased drug screen on mouse cortical neurons expressing fluorescent
Ube3a
and identify topoisomerase inhibitors that are capable of activating paternal
Ube3a
, including topotecan, a cancer therapeutic approved by the US Food and Drug Administration. When the drug is delivered
in vivo
, paternal
Ube3a
is activated in multiple regions of the brain, and effects persist for several weeks after drug cessation. This demonstrates a potential method for reactivating dormant alleles of imprinted genes, which may be a therapeutic strategy in disorders such as Angelman syndrome.
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (
UBE3A
)
1
,
2
,
3
. In neurons, the paternal allele of
UBE3A
is intact but epigenetically silenced
4
,
5
,
6
, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein
7
,
8
. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal
Ube3a
allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal
Ube3a
-null mice. Topotecan concomitantly downregulated expression of the
Ube3a
antisense transcript that overlaps the paternal copy of
Ube3a
9
,
10
,
11
. These results indicate that topotecan unsilences
Ube3a
in
cis
by reducing transcription of an imprinted antisense RNA. When administered
in vivo
, topotecan unsilenced the paternal
Ube3a
allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of
Ube3a
remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of
Ube3a
in patients with Angelman syndrome. |
---|---|
AbstractList | Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( Ube3a ) 1 – 3 . In neurons, the paternal allele of Ube3a is intact but epigenetically silenced 4 – 6 , raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein 7 , 8 . Using an unbiased, high-content screen in primary cortical neurons from mice, we identified twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide, and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a -null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a 9 – 11 . These results suggest that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo , topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least twelve weeks after cessation of topotecan treatment, suggesting transient topoisomerase inhibition can have enduring effects on gene expression. While potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome. Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction of the maternal allele of the Ube3a gene, the paternal allele remains intact but is epigenetically silenced. Benjamin Philpot and colleagues perform an unbiased drug screen on mouse cortical neurons expressing fluorescent Ube3a and identify topoisomerase inhibitors that are capable of activating paternal Ube3a , including topotecan, a cancer therapeutic approved by the US Food and Drug Administration. When the drug is delivered in vivo , paternal Ube3a is activated in multiple regions of the brain, and effects persist for several weeks after drug cessation. This demonstrates a potential method for reactivating dormant alleles of imprinted genes, which may be a therapeutic strategy in disorders such as Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( UBE3A ) 1 , 2 , 3 . In neurons, the paternal allele of UBE3A is intact but epigenetically silenced 4 , 5 , 6 , raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein 7 , 8 . Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a -null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a 9 , 10 , 11 . These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo , topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome. |
Author | Jin, Jian Bridges, Arlene S. Huang, Hsien-Sung Zylka, Mark J. Dutton, J. Walter Lee, Hyeong-Min Philpot, Benjamin D. Miriyala, Jayalakshmi Taylor-Blake, Bonnie Chen, Xin Mabb, Angela M. Sciaky, Noah Roth, Bryan L. Allen, John A. King, Ian F. |
AuthorAffiliation | 1 Department of Cell and Molecular Physiology, University of North Carolina (UNC) at Chapel Hill, School of Medicine 7 UNC Neuroscience Center 3 Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy 4 Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy 8 National Institute of Mental Health, Psychoactive Drug Screening Program 2 Department of Pharmacology, UNC School of Medicine 5 Department of Pathology and Laboratory Medicine, UNC School of Medicine 6 UNC Carolina Institute for Developmental Disabilities |
AuthorAffiliation_xml | – name: 4 Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy – name: 3 Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy – name: 1 Department of Cell and Molecular Physiology, University of North Carolina (UNC) at Chapel Hill, School of Medicine – name: 7 UNC Neuroscience Center – name: 6 UNC Carolina Institute for Developmental Disabilities – name: 2 Department of Pharmacology, UNC School of Medicine – name: 5 Department of Pathology and Laboratory Medicine, UNC School of Medicine – name: 8 National Institute of Mental Health, Psychoactive Drug Screening Program |
Author_xml | – sequence: 1 givenname: Hsien-Sung surname: Huang fullname: Huang, Hsien-Sung organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 2 givenname: John A. surname: Allen fullname: Allen, John A. organization: Department of Pharmacology, University of North Carolina School of Medicine – sequence: 3 givenname: Angela M. surname: Mabb fullname: Mabb, Angela M. organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 4 givenname: Ian F. surname: King fullname: King, Ian F. organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 5 givenname: Jayalakshmi surname: Miriyala fullname: Miriyala, Jayalakshmi organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 6 givenname: Bonnie surname: Taylor-Blake fullname: Taylor-Blake, Bonnie organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 7 givenname: Noah surname: Sciaky fullname: Sciaky, Noah organization: Department of Pharmacology, University of North Carolina School of Medicine – sequence: 8 givenname: J. Walter surname: Dutton fullname: Dutton, J. Walter organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine – sequence: 9 givenname: Hyeong-Min surname: Lee fullname: Lee, Hyeong-Min organization: Department of Pharmacology, University of North Carolina School of Medicine – sequence: 10 givenname: Xin surname: Chen fullname: Chen, Xin organization: Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy – sequence: 11 givenname: Jian surname: Jin fullname: Jin, Jian organization: Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy – sequence: 12 givenname: Arlene S. surname: Bridges fullname: Bridges, Arlene S. organization: Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine – sequence: 13 givenname: Mark J. surname: Zylka fullname: Zylka, Mark J. email: zylka@med.unc.edu organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center – sequence: 14 givenname: Bryan L. surname: Roth fullname: Roth, Bryan L. email: bryan_roth@med.unc.edu organization: Department of Pharmacology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Department of Pharmacology, National Institute of Mental Health, Psychoactive Drug Screening Program, University of North Carolina School of Medicine – sequence: 15 givenname: Benjamin D. surname: Philpot fullname: Philpot, Benjamin D. email: bphilpot@med.unc.edu organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22190039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFTEUxYNU7Gt15V5mp1BHbz5mJtkIUqoWCm7adchk7vSlZJJnkhH8783j1VJFXd3F_Z3DufeckKMQAxLyksI7Cly-D6asCSkMrH9CNlQMfSt6ORyRDQCTLUjeH5OTnO8AoKODeEaOGaMKgKsNubyOu-hyXDCZjI0LWze6ElNu1pCdx2CxKVtsppgWE0pjvEePTZybmxG5qYIm4JpiyM_J09n4jC_u5ym5-XRxff6lvfr6-fL841VrBeWltTOf1ahoLyeQAq2yjBmwvRCsY0IoNcyqB95N40gFQjehpJPpJOVy5L2V_JR8OPju1nHByWIoyXi9S24x6YeOxunfN8Ft9W38rjnrBsFYNXh9b5DitxVz0YvLFr03AeOadc1G6wM5reSb_5JUcMX4IGGPvnqc6iHOr09X4OwA2BRzTjg_IBT0vkf9qMdK0z9o64opLu5Pcv4fmrcHTa7O4RaTvotrCrWLv-I_AeajsUc |
CitedBy_id | crossref_primary_10_3389_fcell_2023_1274040 crossref_primary_10_1371_journal_pbio_1001478 crossref_primary_10_1517_21678707_2015_1136557 crossref_primary_10_1016_j_tips_2023_09_008 crossref_primary_10_1016_j_nbd_2017_10_016 crossref_primary_10_1038_s41576_018_0092_0 crossref_primary_10_1371_journal_pgen_1004446 crossref_primary_10_1186_s13229_019_0277_1 crossref_primary_10_3390_brainsci9020039 crossref_primary_10_1038_s41380_023_02208_7 crossref_primary_10_1016_j_neubiorev_2020_08_009 crossref_primary_10_1038_nm_3193 crossref_primary_10_1002_cne_23507 crossref_primary_10_1016_j_braindev_2020_08_014 crossref_primary_10_1016_j_trsl_2019_02_012 crossref_primary_10_2217_fnl_12_57 crossref_primary_10_1038_nature12504 crossref_primary_10_2174_1570180820666230220124204 crossref_primary_10_1111_gbb_12184 crossref_primary_10_1093_bioinformatics_btw416 crossref_primary_10_1016_j_neuroscience_2020_02_017 crossref_primary_10_1172_JCI142574 crossref_primary_10_1289_EHP9808 crossref_primary_10_1093_hmg_dds130 crossref_primary_10_1186_1471_2202_15_76 crossref_primary_10_1016_j_tibs_2024_06_011 crossref_primary_10_1126_scitranslmed_3004356 crossref_primary_10_1016_j_stemcr_2020_08_006 crossref_primary_10_1016_j_tins_2018_07_005 crossref_primary_10_1038_nrneurol_2016_133 crossref_primary_10_1038_nrg3961 crossref_primary_10_1177_13872877241283680 crossref_primary_10_1007_s00439_023_02537_1 crossref_primary_10_3389_fnmol_2019_00109 crossref_primary_10_1007_s10354_015_0408_z crossref_primary_10_5493_wjem_v13_i4_59 crossref_primary_10_7554_eLife_81892 crossref_primary_10_1146_annurev_genet_120215_035120 crossref_primary_10_1016_j_mcn_2020_103535 crossref_primary_10_1002_ana_25531 crossref_primary_10_1093_hmg_ddu343 crossref_primary_10_1515_medgen_2020_2043 crossref_primary_10_1073_pnas_1413620111 crossref_primary_10_1186_s11689_017_9195_8 crossref_primary_10_1016_j_nbd_2024_106669 crossref_primary_10_1016_j_jmb_2013_06_031 crossref_primary_10_1093_hmg_ddy023 crossref_primary_10_1016_j_cell_2015_06_045 crossref_primary_10_1016_j_dnarep_2017_06_005 crossref_primary_10_1007_s13311_021_01082_x crossref_primary_10_3390_epigenomes4030021 crossref_primary_10_1002_humu_22687 crossref_primary_10_1038_nature10784 crossref_primary_10_1080_14737175_2023_2245568 crossref_primary_10_1038_s41419_018_0981_3 crossref_primary_10_1016_j_ymthe_2023_02_015 crossref_primary_10_1016_j_conb_2017_12_004 crossref_primary_10_1002_aur_2709 crossref_primary_10_1002_ajmg_c_31536 crossref_primary_10_1038_nm_4257 crossref_primary_10_1038_nrm_2016_111 crossref_primary_10_1007_s13311_013_0227_0 crossref_primary_10_1016_j_jfda_2018_08_002 crossref_primary_10_1111_febs_15258 crossref_primary_10_3389_fnmol_2017_00151 crossref_primary_10_1002_ca_22659 crossref_primary_10_1186_s11689_020_09332_3 crossref_primary_10_3390_ijms26052304 crossref_primary_10_1080_13543784_2021_1939674 crossref_primary_10_1007_s00439_012_1189_8 crossref_primary_10_1038_srep28238 crossref_primary_10_1371_journal_pbio_1001712 crossref_primary_10_1038_s41467_018_06953_0 crossref_primary_10_1242_jcs_228973 crossref_primary_10_1016_j_conb_2012_03_004 crossref_primary_10_1016_j_tins_2015_12_008 crossref_primary_10_1016_j_neuropharm_2012_11_015 crossref_primary_10_3389_fpsyt_2014_00053 crossref_primary_10_1038_ncomms11173 crossref_primary_10_1146_annurev_neuro_061010_113708 crossref_primary_10_3390_biom11010075 crossref_primary_10_1038_srep08353 crossref_primary_10_1021_acs_jmedchem_6b00966 crossref_primary_10_1371_journal_pone_0098383 crossref_primary_10_1016_j_mcn_2016_07_001 crossref_primary_10_1021_acs_jmedchem_1c01922 crossref_primary_10_1038_s41594_024_01422_3 crossref_primary_10_1016_j_brainres_2015_09_020 crossref_primary_10_1152_physrev_00041_2015 crossref_primary_10_1002_pd_4942 crossref_primary_10_3390_cancers12082108 crossref_primary_10_2217_epi_15_70 crossref_primary_10_1186_s13148_022_01369_6 crossref_primary_10_1186_s13229_017_0174_4 crossref_primary_10_1007_s13311_015_0361_y crossref_primary_10_1002_aur_2203 crossref_primary_10_3109_17518423_2012_676101 crossref_primary_10_1016_j_neuroscience_2019_10_027 crossref_primary_10_1038_s41588_024_02025_w crossref_primary_10_1007_s12031_017_0900_6 crossref_primary_10_1016_j_nbd_2017_05_010 crossref_primary_10_3389_fnmol_2018_00448 crossref_primary_10_1002_dneu_22150 crossref_primary_10_1016_j_ceb_2015_04_008 crossref_primary_10_5607_en_2015_24_4_257 crossref_primary_10_1093_abbs_gmw052 crossref_primary_10_3390_cells9040993 crossref_primary_10_1038_nature13975 crossref_primary_10_1517_14728222_2016_1115837 crossref_primary_10_1007_s12012_014_9264_0 crossref_primary_10_1016_j_celrep_2016_11_067 crossref_primary_10_1002_med_21546 crossref_primary_10_1016_j_neubiorev_2017_01_030 crossref_primary_10_1093_hmg_ddw398 crossref_primary_10_1038_nm_2828 crossref_primary_10_3892_mmr_2013_1848 crossref_primary_10_3389_fnmol_2017_00234 crossref_primary_10_1158_1535_7163_MCT_13_0729 crossref_primary_10_1016_j_nlm_2018_01_012 crossref_primary_10_1002_jnr_24576 crossref_primary_10_1161_CIRCULATIONAHA_115_019847 crossref_primary_10_1007_s12035_024_04493_x crossref_primary_10_3389_fncel_2024_1320784 crossref_primary_10_1126_scitranslmed_abf4077 crossref_primary_10_1186_1866_1955_4_1 crossref_primary_10_3389_fcell_2024_1413248 crossref_primary_10_1074_jbc_M112_367219 crossref_primary_10_1038_s41421_024_00727_3 crossref_primary_10_1051_medsci_2012286005 crossref_primary_10_1172_JCI120816 crossref_primary_10_1111_dmcn_14398 crossref_primary_10_1158_0008_5472_CAN_12_3504 crossref_primary_10_1089_crispr_2024_0074 crossref_primary_10_1186_s12883_014_0232_x crossref_primary_10_3390_diseases12010007 crossref_primary_10_1371_journal_pgen_1004039 crossref_primary_10_1038_s41467_018_05627_1 crossref_primary_10_1172_JCI80554 crossref_primary_10_3389_fnins_2015_00322 crossref_primary_10_1016_j_ajhg_2012_05_003 crossref_primary_10_1016_j_cca_2017_03_022 crossref_primary_10_3389_fpsyt_2020_592408 crossref_primary_10_1186_s13229_018_0228_2 crossref_primary_10_1186_s12864_018_4948_7 crossref_primary_10_3390_cells9112455 crossref_primary_10_2139_ssrn_3385690 crossref_primary_10_1111_dmcn_14831 crossref_primary_10_1016_j_dnarep_2014_03_020 crossref_primary_10_1093_hmg_ddt628 crossref_primary_10_1038_s41586_020_2835_2 crossref_primary_10_1523_JNEUROSCI_1018_17_2017 crossref_primary_10_1002_aur_2418 crossref_primary_10_1002_dneu_22757 crossref_primary_10_1016_j_conb_2024_102899 crossref_primary_10_1242_dev_088849 crossref_primary_10_1016_j_mcn_2017_11_016 crossref_primary_10_4161_rna_20482 crossref_primary_10_1038_srep10172 crossref_primary_10_1021_acs_jmedchem_9b00797 crossref_primary_10_1038_nrg3796 crossref_primary_10_1002_ajmg_b_32132 crossref_primary_10_1016_j_gde_2013_09_001 crossref_primary_10_1016_j_neuroscience_2019_12_030 crossref_primary_10_1073_pnas_1413204111 crossref_primary_10_1016_j_mam_2022_101148 crossref_primary_10_1186_s13229_020_00376_9 crossref_primary_10_1016_j_pcl_2024_01_004 crossref_primary_10_1111_gbb_12452 crossref_primary_10_1016_j_gpb_2016_02_004 crossref_primary_10_1016_j_pediatrneurol_2012_09_015 crossref_primary_10_1016_j_xcrm_2021_100360 crossref_primary_10_1101_gad_242990_114 crossref_primary_10_1016_j_jaac_2015_01_019 crossref_primary_10_1038_s41380_022_01484_z crossref_primary_10_1016_j_neuroscience_2012_11_030 crossref_primary_10_1016_j_neubiorev_2016_04_008 crossref_primary_10_3389_fcell_2021_730014 crossref_primary_10_3390_ijms18030618 crossref_primary_10_1002_dneu_22084 crossref_primary_10_1515_cpp_2016_0028 crossref_primary_10_1073_pnas_1815279116 crossref_primary_10_1016_j_nbd_2020_105180 crossref_primary_10_1016_j_neuroscience_2013_12_009 crossref_primary_10_1038_nature12553 crossref_primary_10_1111_jnc_16018 crossref_primary_10_1016_j_conb_2012_04_008 crossref_primary_10_1016_j_neubiorev_2018_01_014 crossref_primary_10_1016_j_ymthe_2024_09_032 crossref_primary_10_2217_epi_15_55 crossref_primary_10_1016_j_neuron_2016_02_040 crossref_primary_10_1016_j_ejpn_2012_03_006 crossref_primary_10_1038_srep25368 crossref_primary_10_1891_0730_0832_36_3_142 crossref_primary_10_1038_nature_2011_9700 crossref_primary_10_1002_acn3_51385 crossref_primary_10_1016_j_bbr_2012_12_052 crossref_primary_10_1038_nsmb_3384 crossref_primary_10_3389_fnmol_2019_00289 crossref_primary_10_1016_j_cell_2013_02_016 crossref_primary_10_1155_2012_710943 crossref_primary_10_3389_fgene_2018_00029 crossref_primary_10_1007_s11920_019_1122_0 crossref_primary_10_1111_age_13023 crossref_primary_10_1038_s41398_022_02206_3 crossref_primary_10_1073_pnas_1504809112 crossref_primary_10_1016_j_cbpa_2013_04_018 crossref_primary_10_1016_j_neuron_2018_10_015 crossref_primary_10_1016_j_febslet_2014_06_023 crossref_primary_10_1038_ng_2776 crossref_primary_10_1080_15592294_2020_1823160 crossref_primary_10_3390_ph5040369 crossref_primary_10_1007_s13353_023_00824_1 crossref_primary_10_1371_journal_pone_0163663 crossref_primary_10_1073_pnas_1305426110 crossref_primary_10_3389_fnbeh_2022_968159 crossref_primary_10_4196_kjpp_2012_16_6_369 crossref_primary_10_1352_1944_7558_127_2_95 crossref_primary_10_1542_neo_18_9_e532 crossref_primary_10_1007_s11825_016_0081_7 crossref_primary_10_1111_cns_12710 crossref_primary_10_1038_nrg3766 crossref_primary_10_1124_mol_113_089649 crossref_primary_10_1038_nrn_2016_101 crossref_primary_10_1126_sciadv_abm7069 crossref_primary_10_1016_j_cub_2014_12_047 crossref_primary_10_1038_nrneurol_2012_2 crossref_primary_10_1523_JNEUROSCI_1930_11_2013 crossref_primary_10_1093_hmg_ddv234 crossref_primary_10_1093_hmg_ddv476 crossref_primary_10_1039_C9SC04336E crossref_primary_10_1080_14656566_2022_2105141 crossref_primary_10_1038_s41398_022_01972_4 crossref_primary_10_1093_cercor_bhw102 crossref_primary_10_1093_nar_gkt778 crossref_primary_10_1146_annurev_pharmtox_010814_124527 crossref_primary_10_1371_journal_pone_0124649 crossref_primary_10_1080_17460441_2024_2416484 crossref_primary_10_1038_s41398_020_0720_2 crossref_primary_10_1101_lm_051201_119 crossref_primary_10_1177_1087057115598609 crossref_primary_10_1016_j_pcl_2015_03_004 crossref_primary_10_1371_journal_pone_0156439 crossref_primary_10_1038_npp_2012_85 crossref_primary_10_1016_j_mcn_2021_103602 crossref_primary_10_1038_ncomms15038 crossref_primary_10_1371_journal_pone_0147053 crossref_primary_10_1016_j_neubiorev_2014_02_015 crossref_primary_10_1038_nrn_2016_124 crossref_primary_10_1038_mt_2015_236 crossref_primary_10_1159_000515434 crossref_primary_10_1242_dmm_028811 crossref_primary_10_1016_j_bbagrm_2015_05_006 crossref_primary_10_1016_j_virusres_2023_199191 crossref_primary_10_1093_hmg_ddab104 crossref_primary_10_2217_epi_14_42 crossref_primary_10_3389_fnana_2024_1410791 crossref_primary_10_1016_j_omtn_2022_04_009 crossref_primary_10_1021_cb5010417 crossref_primary_10_1038_srep20398 crossref_primary_10_1016_j_cobeha_2014_07_008 crossref_primary_10_1016_j_marpolbul_2015_06_020 crossref_primary_10_1172_jci_insight_144712 crossref_primary_10_1038_s41467_024_49788_8 |
Cites_doi | 10.1093/nar/gkq1201 10.1093/hmg/ddm288 10.1038/ng0997-12 10.1002/ajmg.a.33509 10.1038/90067 10.1038/373081a0 10.1016/j.cell.2009.04.024 10.1016/j.ygeno.2010.08.007 10.1021/jm060564z 10.1093/nar/gkh670 10.1093/hmg/8.8.1357 10.1006/geno.2001.6543 10.1006/nbdi.2001.0463 10.1016/S0169-409X(03)00101-7 10.1038/ng0197-74 10.1101/gr.7.4.368 10.1074/jbc.272.21.13548 10.1038/ng0197-70 10.1038/ng0598-15 10.1128/MCB.00617-06 10.1016/j.cell.2010.01.026 10.1038/ng0997-75 10.2146/ajhp060165 10.1002/cne.20793 10.1021/jm00123a038 10.1038/nature05918 10.1016/S0076-6879(05)98011-7 10.1016/S0896-6273(00)80596-6 10.1021/jm000029d 10.1038/ng0997-14 10.1007/s00335-007-9019-3 10.1523/JNEUROSCI.2479-09.2010 10.1634/theoncologist.6-6-506 10.1016/j.tins.2011.04.001 10.1093/hmg/10.23.2687 10.1038/nrc1977 10.2144/000112257 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1038/nature10726 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 189 |
ExternalDocumentID | PMC3257422 22190039 10_1038_nature10726 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F32 NS067712 – fundername: PHS HHS grantid: HHSN-271-2008-00025-C – fundername: NINDS NIH HHS grantid: R01NS067688 – fundername: NINDS NIH HHS grantid: R01NS060725 – fundername: NEI NIH HHS grantid: R01EY018323 – fundername: NICHD NIH HHS grantid: T32HD040127-07 – fundername: NINDS NIH HHS grantid: 5F32NS067712 – fundername: NINDS NIH HHS grantid: R01 NS060725 – fundername: NINDS NIH HHS grantid: P30 NS045892 – fundername: NIMH NIH HHS grantid: R01 MH093372 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGCDD AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7TK 7TM 8FD ESTFP FR3 P64 PJZUB PPXIY PQGLB PUEGO RC3 7X8 5PM |
ID | FETCH-LOGICAL-c413t-cf3f9b9168d084ec9c22a0c64425244997f96035dbb14e05de81da58138b36c83 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:32:56 EDT 2025 Fri Sep 05 13:37:57 EDT 2025 Mon Sep 08 12:35:09 EDT 2025 Sat May 31 02:07:47 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Tue Jul 01 02:56:47 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7380 |
Language | English |
License | http://www.springer.com/tdm Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-cf3f9b9168d084ec9c22a0c64425244997f96035dbb14e05de81da58138b36c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3257422 |
PMID | 22190039 |
PQID | 1439237801 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3257422 proquest_miscellaneous_916146831 proquest_miscellaneous_1439237801 pubmed_primary_22190039 crossref_primary_10_1038_nature10726 crossref_citationtrail_10_1038_nature10726 springer_journals_10_1038_nature10726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20111221 |
PublicationDateYYYYMMDD | 2011-12-21 |
PublicationDate_xml | – month: 12 year: 2011 text: 20111221 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | Nakatani (CR12) 2009; 137 Pommier (CR19) 2006; 6 Bressler (CR25) 2001; 28 Pierce, Xu (CR38) 2010; 30 Kishino, Lalande, Wagstaff (CR1) 1997; 15 Bomgaars, Berg, Blaney (CR30) 2001; 6 Matsuura (CR2) 1997; 15 Miura (CR14) 2002; 9 Beaudenon, Dastur, Huibregtse (CR23) 2005; 398 Lyu (CR29) 2006; 26 Nagarajan (CR32) 2006; 49 Runte (CR17) 2001; 10 Kumar, Kao, Howley (CR24) 1997; 272 Hertzberg (CR20) 1989; 32 Peters (CR8) 2010; 152A Landers (CR10) 2004; 32 Gammon (CR27) 2006; 63 Vu, Hoffman (CR6) 1997; 17 Sutcliffe (CR3) 1997; 7 Abramoff, Magelhaes, Ram (CR33) 2004; 11 Scheffner, Nuber, Huibregtse (CR22) 1995; 373 Mabb, Judson, Zylka, Philpot (CR7) 2011; 34 Greer (CR28) 2010; 140 Peery, Elmore, Resnick, Brannan, Johnstone (CR36) 2007; 18 Fairbanks (CR37) 2003; 55 Albrecht (CR4) 1997; 17 Chamberlain, Brannan (CR9) 2001; 73 Rougeulle, Cardoso, Fontes, Colleaux, Lalande (CR16) 1998; 19 Cushman (CR31) 2000; 43 Lamprecht, Sabatini, Carpenter (CR34) 2007; 42 Numata, Kohama, Abe, Kiyosawa (CR11) 2011; 39 Plaschkes, Silverman, Priel (CR21) 2005; 493 Rougeulle, Glatt, Lalande (CR5) 1997; 17 Dindot, Antalffy, Bhattacharjee, Beaudet (CR15) 2008; 17 Tsai, Jiang, Bressler, Armstrong, Beaudet (CR35) 1999; 8 Watanabe (CR18) 2010; 96 Reik (CR26) 2007; 447 Jiang (CR13) 1998; 21 YH Jiang (BFnature10726_CR13) 1998; 21 TH Vu (BFnature10726_CR6) 1997; 17 S Kumar (BFnature10726_CR24) 1997; 272 AA Pierce (BFnature10726_CR38) 2010; 30 T Kishino (BFnature10726_CR1) 1997; 15 JS Sutcliffe (BFnature10726_CR3) 1997; 7 K Miura (BFnature10726_CR14) 2002; 9 C Rougeulle (BFnature10726_CR5) 1997; 17 RP Hertzberg (BFnature10726_CR20) 1989; 32 MD Abramoff (BFnature10726_CR33) 2004; 11 EG Peery (BFnature10726_CR36) 2007; 18 Y Pommier (BFnature10726_CR19) 2006; 6 S Beaudenon (BFnature10726_CR23) 2005; 398 I Plaschkes (BFnature10726_CR21) 2005; 493 K Numata (BFnature10726_CR11) 2011; 39 SU Peters (BFnature10726_CR8) 2010; 152A M Landers (BFnature10726_CR10) 2004; 32 J Nakatani (BFnature10726_CR12) 2009; 137 YL Lyu (BFnature10726_CR29) 2006; 26 M Nagarajan (BFnature10726_CR32) 2006; 49 SJ Chamberlain (BFnature10726_CR9) 2001; 73 L Bomgaars (BFnature10726_CR30) 2001; 6 M Cushman (BFnature10726_CR31) 2000; 43 W Reik (BFnature10726_CR26) 2007; 447 T Matsuura (BFnature10726_CR2) 1997; 15 M Scheffner (BFnature10726_CR22) 1995; 373 U Albrecht (BFnature10726_CR4) 1997; 17 CA Fairbanks (BFnature10726_CR37) 2003; 55 M Runte (BFnature10726_CR17) 2001; 10 J Bressler (BFnature10726_CR25) 2001; 28 Y Watanabe (BFnature10726_CR18) 2010; 96 C Rougeulle (BFnature10726_CR16) 1998; 19 MR Lamprecht (BFnature10726_CR34) 2007; 42 DC Gammon (BFnature10726_CR27) 2006; 63 AM Mabb (BFnature10726_CR7) 2011; 34 SV Dindot (BFnature10726_CR15) 2008; 17 TF Tsai (BFnature10726_CR35) 1999; 8 PL Greer (BFnature10726_CR28) 2010; 140 22190038 - Nature. 2011 Dec 21;481(7380):150-2. doi: 10.1038/nature10784. 22270025 - Nat Rev Neurol. 2012 Jan 24;8(2):62. doi: 10.1038/nrneurol.2012.2. |
References_xml | – volume: 39 start-page: 2649 year: 2011 end-page: 2657 ident: CR11 article-title: Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic expression associated with locus-wide antisense transcription publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1201 – volume: 17 start-page: 111 year: 2008 end-page: 118 ident: CR15 article-title: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm288 – volume: 17 start-page: 12 year: 1997 end-page: 13 ident: CR6 article-title: Imprinting of the Angelman syndrome gene, , is restricted to brain publication-title: Nature Genet. doi: 10.1038/ng0997-12 – volume: 152A start-page: 1994 year: 2010 end-page: 2001 ident: CR8 article-title: Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid publication-title: Am. J. Med. Genet. doi: 10.1002/ajmg.a.33509 – volume: 28 start-page: 232 year: 2001 end-page: 240 ident: CR25 article-title: The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice publication-title: Nature Genet. doi: 10.1038/90067 – volume: 373 start-page: 81 year: 1995 end-page: 83 ident: CR22 article-title: Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade publication-title: Nature doi: 10.1038/373081a0 – volume: 137 start-page: 1235 year: 2009 end-page: 1246 ident: CR12 article-title: Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism publication-title: Cell doi: 10.1016/j.cell.2009.04.024 – volume: 96 start-page: 333 year: 2010 end-page: 341 ident: CR18 article-title: Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse publication-title: Genomics doi: 10.1016/j.ygeno.2010.08.007 – volume: 49 start-page: 6283 year: 2006 end-page: 6289 ident: CR32 article-title: Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles publication-title: J. Med. Chem. doi: 10.1021/jm060564z – volume: 32 start-page: 3480 year: 2004 end-page: 3492 ident: CR10 article-title: Regulation of the large (approximately 1000 kb) imprinted murine antisense transcript by alternative exons upstream of / publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh670 – volume: 8 start-page: 1357 year: 1999 end-page: 1364 ident: CR35 article-title: Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.8.1357 – volume: 73 start-page: 316 year: 2001 end-page: 322 ident: CR9 article-title: The Prader–Willi syndrome imprinting center activates the paternally expressed murine antisense transcript but represses paternal publication-title: Genomics doi: 10.1006/geno.2001.6543 – volume: 9 start-page: 149 year: 2002 end-page: 159 ident: CR14 article-title: Neurobehavioral and electroencephalographic abnormalities in maternal-deficient mice publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.2001.0463 – volume: 55 start-page: 1007 year: 2003 end-page: 1041 ident: CR37 article-title: Spinal delivery of analgesics in experimental models of pain and analgesia publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(03)00101-7 – volume: 15 start-page: 74 year: 1997 end-page: 77 ident: CR2 article-title: truncating mutations in E6-AP ubiquitin-protein ligase gene ( ) in Angelman syndrome publication-title: Nature Genet. doi: 10.1038/ng0197-74 – volume: 7 start-page: 368 year: 1997 end-page: 377 ident: CR3 article-title: The E6-Ap ubiquitin-protein ligase ( ) gene is localized within a narrowed Angelman syndrome critical region publication-title: Genome Res. doi: 10.1101/gr.7.4.368 – volume: 272 start-page: 13548 year: 1997 end-page: 13554 ident: CR24 article-title: Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.21.13548 – volume: 11 start-page: 36 year: 2004 end-page: 42 ident: CR33 article-title: Image processing with ImageJ publication-title: Biophotonics International – volume: 15 start-page: 70 year: 1997 end-page: 73 ident: CR1 article-title: UBE3A/E6-AP mutations cause Angelman syndrome publication-title: Nature Genet. doi: 10.1038/ng0197-70 – volume: 19 start-page: 15 year: 1998 end-page: 16 ident: CR16 article-title: An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript publication-title: Nature Genet. doi: 10.1038/ng0598-15 – volume: 26 start-page: 7929 year: 2006 end-page: 7941 ident: CR29 article-title: Role of topoisomerase IIβ in the expression of developmentally regulated genes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00617-06 – volume: 140 start-page: 704 year: 2010 end-page: 716 ident: CR28 article-title: The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc publication-title: Cell doi: 10.1016/j.cell.2010.01.026 – volume: 17 start-page: 75 year: 1997 end-page: 78 ident: CR4 article-title: Imprinted expression of the murine Angelman syndrome gene, , in hippocampal and Purkinje neurons publication-title: Nature Genet. doi: 10.1038/ng0997-75 – volume: 63 start-page: 2083 year: 2006 end-page: 2086 ident: CR27 article-title: Intrathecal topotecan in adult patients with neoplastic meningitis publication-title: Am. J. Health Syst. Pharm. doi: 10.2146/ajhp060165 – volume: 493 start-page: 357 year: 2005 end-page: 369 ident: CR21 article-title: DNA topoisomerase I in the mouse central nervous system: age and sex dependence publication-title: J. Comp. Neurol. doi: 10.1002/cne.20793 – volume: 32 start-page: 715 year: 1989 end-page: 720 ident: CR20 article-title: Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity publication-title: J. Med. Chem. doi: 10.1021/jm00123a038 – volume: 447 start-page: 425 year: 2007 end-page: 432 ident: CR26 article-title: Stability and flexibility of epigenetic gene regulation in mammalian development publication-title: Nature doi: 10.1038/nature05918 – volume: 398 start-page: 112 year: 2005 end-page: 125 ident: CR23 article-title: Expression and assay of HECT domain ligases publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)98011-7 – volume: 21 start-page: 799 year: 1998 end-page: 811 ident: CR13 article-title: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation publication-title: Neuron doi: 10.1016/S0896-6273(00)80596-6 – volume: 43 start-page: 3688 year: 2000 end-page: 3698 ident: CR31 article-title: Synthesis of new indeno[1,2- ]isoquinolines: cytotoxic non-camptothecin topoisomerase I inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm000029d – volume: 17 start-page: 14 year: 1997 end-page: 15 ident: CR5 article-title: The Angelman syndrome candidate gene, , is imprinted in brain publication-title: Nature Genet. doi: 10.1038/ng0997-14 – volume: 18 start-page: 255 year: 2007 end-page: 262 ident: CR36 article-title: A targeted deletion upstream of does not result in an imprinting defect publication-title: Mamm. Genome doi: 10.1007/s00335-007-9019-3 – volume: 30 start-page: 723 year: 2010 end-page: 730 ident: CR38 article-title: De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2479-09.2010 – volume: 6 start-page: 506 year: 2001 end-page: 516 ident: CR30 article-title: The development of camptothecin analogs in childhood cancers publication-title: Oncologist doi: 10.1634/theoncologist.6-6-506 – volume: 34 start-page: 293 year: 2011 end-page: 303 ident: CR7 article-title: Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.04.001 – volume: 10 start-page: 2687 year: 2001 end-page: 2700 ident: CR17 article-title: The IC- – transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.23.2687 – volume: 6 start-page: 789 year: 2006 end-page: 802 ident: CR19 article-title: Topoisomerase I inhibitors: camptothecins and beyond publication-title: Nature Rev. Cancer doi: 10.1038/nrc1977 – volume: 42 start-page: 71 year: 2007 end-page: 75 ident: CR34 article-title: CellProfiler: free, versatile software for automated biological image analysis publication-title: Biotechniques doi: 10.2144/000112257 – volume: 272 start-page: 13548 year: 1997 ident: BFnature10726_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.21.13548 – volume: 140 start-page: 704 year: 2010 ident: BFnature10726_CR28 publication-title: Cell doi: 10.1016/j.cell.2010.01.026 – volume: 15 start-page: 70 year: 1997 ident: BFnature10726_CR1 publication-title: Nature Genet. doi: 10.1038/ng0197-70 – volume: 49 start-page: 6283 year: 2006 ident: BFnature10726_CR32 publication-title: J. Med. Chem. doi: 10.1021/jm060564z – volume: 137 start-page: 1235 year: 2009 ident: BFnature10726_CR12 publication-title: Cell doi: 10.1016/j.cell.2009.04.024 – volume: 9 start-page: 149 year: 2002 ident: BFnature10726_CR14 publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.2001.0463 – volume: 18 start-page: 255 year: 2007 ident: BFnature10726_CR36 publication-title: Mamm. Genome doi: 10.1007/s00335-007-9019-3 – volume: 32 start-page: 3480 year: 2004 ident: BFnature10726_CR10 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh670 – volume: 96 start-page: 333 year: 2010 ident: BFnature10726_CR18 publication-title: Genomics doi: 10.1016/j.ygeno.2010.08.007 – volume: 63 start-page: 2083 year: 2006 ident: BFnature10726_CR27 publication-title: Am. J. Health Syst. Pharm. doi: 10.2146/ajhp060165 – volume: 17 start-page: 75 year: 1997 ident: BFnature10726_CR4 publication-title: Nature Genet. doi: 10.1038/ng0997-75 – volume: 21 start-page: 799 year: 1998 ident: BFnature10726_CR13 publication-title: Neuron doi: 10.1016/S0896-6273(00)80596-6 – volume: 10 start-page: 2687 year: 2001 ident: BFnature10726_CR17 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.23.2687 – volume: 373 start-page: 81 year: 1995 ident: BFnature10726_CR22 publication-title: Nature doi: 10.1038/373081a0 – volume: 42 start-page: 71 year: 2007 ident: BFnature10726_CR34 publication-title: Biotechniques doi: 10.2144/000112257 – volume: 30 start-page: 723 year: 2010 ident: BFnature10726_CR38 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2479-09.2010 – volume: 19 start-page: 15 year: 1998 ident: BFnature10726_CR16 publication-title: Nature Genet. doi: 10.1038/ng0598-15 – volume: 55 start-page: 1007 year: 2003 ident: BFnature10726_CR37 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(03)00101-7 – volume: 493 start-page: 357 year: 2005 ident: BFnature10726_CR21 publication-title: J. Comp. Neurol. doi: 10.1002/cne.20793 – volume: 6 start-page: 506 year: 2001 ident: BFnature10726_CR30 publication-title: Oncologist doi: 10.1634/theoncologist.6-6-506 – volume: 7 start-page: 368 year: 1997 ident: BFnature10726_CR3 publication-title: Genome Res. doi: 10.1101/gr.7.4.368 – volume: 32 start-page: 715 year: 1989 ident: BFnature10726_CR20 publication-title: J. Med. Chem. doi: 10.1021/jm00123a038 – volume: 11 start-page: 36 year: 2004 ident: BFnature10726_CR33 publication-title: Biophotonics International – volume: 34 start-page: 293 year: 2011 ident: BFnature10726_CR7 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.04.001 – volume: 17 start-page: 12 year: 1997 ident: BFnature10726_CR6 publication-title: Nature Genet. doi: 10.1038/ng0997-12 – volume: 398 start-page: 112 year: 2005 ident: BFnature10726_CR23 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)98011-7 – volume: 15 start-page: 74 year: 1997 ident: BFnature10726_CR2 publication-title: Nature Genet. doi: 10.1038/ng0197-74 – volume: 26 start-page: 7929 year: 2006 ident: BFnature10726_CR29 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00617-06 – volume: 39 start-page: 2649 year: 2011 ident: BFnature10726_CR11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1201 – volume: 447 start-page: 425 year: 2007 ident: BFnature10726_CR26 publication-title: Nature doi: 10.1038/nature05918 – volume: 17 start-page: 14 year: 1997 ident: BFnature10726_CR5 publication-title: Nature Genet. doi: 10.1038/ng0997-14 – volume: 6 start-page: 789 year: 2006 ident: BFnature10726_CR19 publication-title: Nature Rev. Cancer doi: 10.1038/nrc1977 – volume: 43 start-page: 3688 year: 2000 ident: BFnature10726_CR31 publication-title: J. Med. Chem. doi: 10.1021/jm000029d – volume: 8 start-page: 1357 year: 1999 ident: BFnature10726_CR35 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.8.1357 – volume: 73 start-page: 316 year: 2001 ident: BFnature10726_CR9 publication-title: Genomics doi: 10.1006/geno.2001.6543 – volume: 152A start-page: 1994 year: 2010 ident: BFnature10726_CR8 publication-title: Am. J. Med. Genet. doi: 10.1002/ajmg.a.33509 – volume: 28 start-page: 232 year: 2001 ident: BFnature10726_CR25 publication-title: Nature Genet. doi: 10.1038/90067 – volume: 17 start-page: 111 year: 2008 ident: BFnature10726_CR15 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm288 – reference: 22270025 - Nat Rev Neurol. 2012 Jan 24;8(2):62. doi: 10.1038/nrneurol.2012.2. – reference: 22190038 - Nature. 2011 Dec 21;481(7380):150-2. doi: 10.1038/nature10784. |
SSID | ssj0005174 |
Score | 2.5327837 |
Snippet | Cancer drugs that can potentially treat Angelman syndrome are identified.
Angelman syndrome mutation reversed
Genomic imprinting disorders arise owing to a... Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In... Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( Ube3a ) 1... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 185 |
SubjectTerms | 631/154/309/436 631/208/200 631/378/2571/1696 692/699/375/366 Alleles Angelman Syndrome - drug therapy Angelman Syndrome - genetics Animals Cells, Cultured Cerebral Cortex - cytology Cerebral Cortex - drug effects Cerebral Cortex - metabolism Drug Evaluation, Preclinical Fathers Female Gene Silencing - drug effects Genomic Imprinting - drug effects Genomic Imprinting - genetics Humanities and Social Sciences letter Male Mice Mice, Inbred C57BL Mothers multidisciplinary Neurons - drug effects Neurons - metabolism Science Science (multidisciplinary) Small Molecule Libraries - administration & dosage Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Topoisomerase Inhibitors - administration & dosage Topoisomerase Inhibitors - analysis Topoisomerase Inhibitors - pharmacokinetics Topoisomerase Inhibitors - pharmacology Topotecan - administration & dosage Topotecan - pharmacokinetics Topotecan - pharmacology Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - genetics |
Title | Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons |
URI | https://link.springer.com/article/10.1038/nature10726 https://www.ncbi.nlm.nih.gov/pubmed/22190039 https://www.proquest.com/docview/1439237801 https://www.proquest.com/docview/916146831 https://pubmed.ncbi.nlm.nih.gov/PMC3257422 |
Volume | 481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELc2qkl7mdbui3WrPKmTtlWhSezEySOwMjoJVG1F4g3ZjlGROoIaeNlfv_NHPihM2vpiUGJihd_lfHe5-x1Cp4wIP0459TiRmUcVOCgijbkH2xFXLKNZFuja4dE4Hk7o92k0rVOHTHXJWnTk7711JQ9BFY4BrrpK9j-QrS4KB-A74AsjIAzjv2Gcr_JFkeu4UqHJP24WYmG65-jGH6aayNiVmakM0LHdW2VzCSdCEa5DHYbO0gXsnIk6NlSfzVYfaY29iy4PC9AI3s-N2_a0wOiWLGVu71m3U0e67Rufrk6e5Wej6kTZTOUSFMyg0ww-6Oy30LMVzVUxgCW4ttuJ1aGUxR6N3T7qlCxNgoY0MWLbNzmtGdiuPW4DDmxPoR3dbpncLd8pOK220L6B8uqXgTkEHawrjusNrko7vBr1CagoGsKefRAyMLZa6KDb-9ob1FlB94i7XUknrH3eWFlTSLtltu2ZHSdlN9f23gt3Y8dcP0fPnAOCu1aaDtEjtTxCT0wisCyO0KFT9gX-5BjJP79Al1uChmtBw5WgYRA07AQNW0HD-RwbQYMfYCdoL9FkcHHdH3quB4cnwbxZe3JO5qkAHyLJ_IQqmcow5L4EKzqMwDJMUzYHH5hEmRABVX6UKXCAeJQEJBEklgl5hVrLfKneIMylFODLRSpNFBU8TVLJfEkCpeMzipM2-lL-kzPpCOp1n5TbmUmUIMmsgUAbnVaTV5aXZf-0DyUkM9Cb-mUYX6p8U4DLC54BYWCgtRH-yxy4bV2ZSGDKa4titVYJfxuxLXyrCZq2ffvMcnFj6NudCLbRx1ISZk6nFPtu4e2DVzhGT-tn9h1qre826j2Y0Gtxgh6zKYMx6Qd6HHw7cQ8CfPYuxlc__gA9g8ve |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topoisomerase+inhibitors+unsilence+the+dormant+allele+of+Ube3a+in+neurons&rft.jtitle=Nature+%28London%29&rft.au=Huang%2C+Hsien-Sung&rft.au=Allen%2C+John+A.&rft.au=Mabb%2C+Angela+M.&rft.au=King%2C+Ian+F.&rft.date=2011-12-21&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=481&rft.issue=7380&rft.spage=185&rft.epage=189&rft_id=info:doi/10.1038%2Fnature10726&rft_id=info%3Apmid%2F22190039&rft.externalDocID=PMC3257422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |