Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons

Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction o...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 481; no. 7380; pp. 185 - 189
Main Authors Huang, Hsien-Sung, Allen, John A., Mabb, Angela M., King, Ian F., Miriyala, Jayalakshmi, Taylor-Blake, Bonnie, Sciaky, Noah, Dutton, J. Walter, Lee, Hyeong-Min, Chen, Xin, Jin, Jian, Bridges, Arlene S., Zylka, Mark J., Roth, Bryan L., Philpot, Benjamin D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.12.2011
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature10726

Cover

Abstract Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction of the maternal allele of the Ube3a gene, the paternal allele remains intact but is epigenetically silenced. Benjamin Philpot and colleagues perform an unbiased drug screen on mouse cortical neurons expressing fluorescent Ube3a and identify topoisomerase inhibitors that are capable of activating paternal Ube3a , including topotecan, a cancer therapeutic approved by the US Food and Drug Administration. When the drug is delivered in vivo , paternal Ube3a is activated in multiple regions of the brain, and effects persist for several weeks after drug cessation. This demonstrates a potential method for reactivating dormant alleles of imprinted genes, which may be a therapeutic strategy in disorders such as Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( UBE3A ) 1 , 2 , 3 . In neurons, the paternal allele of UBE3A is intact but epigenetically silenced 4 , 5 , 6 , raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein 7 , 8 . Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a -null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a 9 , 10 , 11 . These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo , topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
AbstractList Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( Ube3a ) 1 – 3 . In neurons, the paternal allele of Ube3a is intact but epigenetically silenced 4 – 6 , raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein 7 , 8 . Using an unbiased, high-content screen in primary cortical neurons from mice, we identified twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide, and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a -null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a 9 – 11 . These results suggest that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo , topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least twelve weeks after cessation of topotecan treatment, suggesting transient topoisomerase inhibition can have enduring effects on gene expression. While potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12  weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12  weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a loss of function of non-imprinted alleles expressed from one parent. In Angelman syndrome, a neurodevelopmental disorder caused by dysfunction of the maternal allele of the Ube3a gene, the paternal allele remains intact but is epigenetically silenced. Benjamin Philpot and colleagues perform an unbiased drug screen on mouse cortical neurons expressing fluorescent Ube3a and identify topoisomerase inhibitors that are capable of activating paternal Ube3a , including topotecan, a cancer therapeutic approved by the US Food and Drug Administration. When the drug is delivered in vivo , paternal Ube3a is activated in multiple regions of the brain, and effects persist for several weeks after drug cessation. This demonstrates a potential method for reactivating dormant alleles of imprinted genes, which may be a therapeutic strategy in disorders such as Angelman syndrome. Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( UBE3A ) 1 , 2 , 3 . In neurons, the paternal allele of UBE3A is intact but epigenetically silenced 4 , 5 , 6 , raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein 7 , 8 . Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a -null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a 9 , 10 , 11 . These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo , topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12  weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Author Jin, Jian
Bridges, Arlene S.
Huang, Hsien-Sung
Zylka, Mark J.
Dutton, J. Walter
Lee, Hyeong-Min
Philpot, Benjamin D.
Miriyala, Jayalakshmi
Taylor-Blake, Bonnie
Chen, Xin
Mabb, Angela M.
Sciaky, Noah
Roth, Bryan L.
Allen, John A.
King, Ian F.
AuthorAffiliation 1 Department of Cell and Molecular Physiology, University of North Carolina (UNC) at Chapel Hill, School of Medicine
7 UNC Neuroscience Center
3 Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
4 Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
8 National Institute of Mental Health, Psychoactive Drug Screening Program
2 Department of Pharmacology, UNC School of Medicine
5 Department of Pathology and Laboratory Medicine, UNC School of Medicine
6 UNC Carolina Institute for Developmental Disabilities
AuthorAffiliation_xml – name: 4 Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
– name: 3 Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
– name: 1 Department of Cell and Molecular Physiology, University of North Carolina (UNC) at Chapel Hill, School of Medicine
– name: 7 UNC Neuroscience Center
– name: 6 UNC Carolina Institute for Developmental Disabilities
– name: 2 Department of Pharmacology, UNC School of Medicine
– name: 5 Department of Pathology and Laboratory Medicine, UNC School of Medicine
– name: 8 National Institute of Mental Health, Psychoactive Drug Screening Program
Author_xml – sequence: 1
  givenname: Hsien-Sung
  surname: Huang
  fullname: Huang, Hsien-Sung
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 2
  givenname: John A.
  surname: Allen
  fullname: Allen, John A.
  organization: Department of Pharmacology, University of North Carolina School of Medicine
– sequence: 3
  givenname: Angela M.
  surname: Mabb
  fullname: Mabb, Angela M.
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 4
  givenname: Ian F.
  surname: King
  fullname: King, Ian F.
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 5
  givenname: Jayalakshmi
  surname: Miriyala
  fullname: Miriyala, Jayalakshmi
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 6
  givenname: Bonnie
  surname: Taylor-Blake
  fullname: Taylor-Blake, Bonnie
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 7
  givenname: Noah
  surname: Sciaky
  fullname: Sciaky, Noah
  organization: Department of Pharmacology, University of North Carolina School of Medicine
– sequence: 8
  givenname: J. Walter
  surname: Dutton
  fullname: Dutton, J. Walter
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine
– sequence: 9
  givenname: Hyeong-Min
  surname: Lee
  fullname: Lee, Hyeong-Min
  organization: Department of Pharmacology, University of North Carolina School of Medicine
– sequence: 10
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy
– sequence: 11
  givenname: Jian
  surname: Jin
  fullname: Jin, Jian
  organization: Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy
– sequence: 12
  givenname: Arlene S.
  surname: Bridges
  fullname: Bridges, Arlene S.
  organization: Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine
– sequence: 13
  givenname: Mark J.
  surname: Zylka
  fullname: Zylka, Mark J.
  email: zylka@med.unc.edu
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center
– sequence: 14
  givenname: Bryan L.
  surname: Roth
  fullname: Roth, Bryan L.
  email: bryan_roth@med.unc.edu
  organization: Department of Pharmacology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Department of Pharmacology, National Institute of Mental Health, Psychoactive Drug Screening Program, University of North Carolina School of Medicine
– sequence: 15
  givenname: Benjamin D.
  surname: Philpot
  fullname: Philpot, Benjamin D.
  email: bphilpot@med.unc.edu
  organization: Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Carolina Institute for Developmental Disabilities, University of North Carolina, University of North Carolina Neuroscience Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22190039$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNU7Gt15V5mp1BHbz5mJtkIUqoWCm7adchk7vSlZJJnkhH8783j1VJFXd3F_Z3DufeckKMQAxLyksI7Cly-D6asCSkMrH9CNlQMfSt6ORyRDQCTLUjeH5OTnO8AoKODeEaOGaMKgKsNubyOu-hyXDCZjI0LWze6ElNu1pCdx2CxKVtsppgWE0pjvEePTZybmxG5qYIm4JpiyM_J09n4jC_u5ym5-XRxff6lvfr6-fL841VrBeWltTOf1ahoLyeQAq2yjBmwvRCsY0IoNcyqB95N40gFQjehpJPpJOVy5L2V_JR8OPju1nHByWIoyXi9S24x6YeOxunfN8Ft9W38rjnrBsFYNXh9b5DitxVz0YvLFr03AeOadc1G6wM5reSb_5JUcMX4IGGPvnqc6iHOr09X4OwA2BRzTjg_IBT0vkf9qMdK0z9o64opLu5Pcv4fmrcHTa7O4RaTvotrCrWLv-I_AeajsUc
CitedBy_id crossref_primary_10_3389_fcell_2023_1274040
crossref_primary_10_1371_journal_pbio_1001478
crossref_primary_10_1517_21678707_2015_1136557
crossref_primary_10_1016_j_tips_2023_09_008
crossref_primary_10_1016_j_nbd_2017_10_016
crossref_primary_10_1038_s41576_018_0092_0
crossref_primary_10_1371_journal_pgen_1004446
crossref_primary_10_1186_s13229_019_0277_1
crossref_primary_10_3390_brainsci9020039
crossref_primary_10_1038_s41380_023_02208_7
crossref_primary_10_1016_j_neubiorev_2020_08_009
crossref_primary_10_1038_nm_3193
crossref_primary_10_1002_cne_23507
crossref_primary_10_1016_j_braindev_2020_08_014
crossref_primary_10_1016_j_trsl_2019_02_012
crossref_primary_10_2217_fnl_12_57
crossref_primary_10_1038_nature12504
crossref_primary_10_2174_1570180820666230220124204
crossref_primary_10_1111_gbb_12184
crossref_primary_10_1093_bioinformatics_btw416
crossref_primary_10_1016_j_neuroscience_2020_02_017
crossref_primary_10_1172_JCI142574
crossref_primary_10_1289_EHP9808
crossref_primary_10_1093_hmg_dds130
crossref_primary_10_1186_1471_2202_15_76
crossref_primary_10_1016_j_tibs_2024_06_011
crossref_primary_10_1126_scitranslmed_3004356
crossref_primary_10_1016_j_stemcr_2020_08_006
crossref_primary_10_1016_j_tins_2018_07_005
crossref_primary_10_1038_nrneurol_2016_133
crossref_primary_10_1038_nrg3961
crossref_primary_10_1177_13872877241283680
crossref_primary_10_1007_s00439_023_02537_1
crossref_primary_10_3389_fnmol_2019_00109
crossref_primary_10_1007_s10354_015_0408_z
crossref_primary_10_5493_wjem_v13_i4_59
crossref_primary_10_7554_eLife_81892
crossref_primary_10_1146_annurev_genet_120215_035120
crossref_primary_10_1016_j_mcn_2020_103535
crossref_primary_10_1002_ana_25531
crossref_primary_10_1093_hmg_ddu343
crossref_primary_10_1515_medgen_2020_2043
crossref_primary_10_1073_pnas_1413620111
crossref_primary_10_1186_s11689_017_9195_8
crossref_primary_10_1016_j_nbd_2024_106669
crossref_primary_10_1016_j_jmb_2013_06_031
crossref_primary_10_1093_hmg_ddy023
crossref_primary_10_1016_j_cell_2015_06_045
crossref_primary_10_1016_j_dnarep_2017_06_005
crossref_primary_10_1007_s13311_021_01082_x
crossref_primary_10_3390_epigenomes4030021
crossref_primary_10_1002_humu_22687
crossref_primary_10_1038_nature10784
crossref_primary_10_1080_14737175_2023_2245568
crossref_primary_10_1038_s41419_018_0981_3
crossref_primary_10_1016_j_ymthe_2023_02_015
crossref_primary_10_1016_j_conb_2017_12_004
crossref_primary_10_1002_aur_2709
crossref_primary_10_1002_ajmg_c_31536
crossref_primary_10_1038_nm_4257
crossref_primary_10_1038_nrm_2016_111
crossref_primary_10_1007_s13311_013_0227_0
crossref_primary_10_1016_j_jfda_2018_08_002
crossref_primary_10_1111_febs_15258
crossref_primary_10_3389_fnmol_2017_00151
crossref_primary_10_1002_ca_22659
crossref_primary_10_1186_s11689_020_09332_3
crossref_primary_10_3390_ijms26052304
crossref_primary_10_1080_13543784_2021_1939674
crossref_primary_10_1007_s00439_012_1189_8
crossref_primary_10_1038_srep28238
crossref_primary_10_1371_journal_pbio_1001712
crossref_primary_10_1038_s41467_018_06953_0
crossref_primary_10_1242_jcs_228973
crossref_primary_10_1016_j_conb_2012_03_004
crossref_primary_10_1016_j_tins_2015_12_008
crossref_primary_10_1016_j_neuropharm_2012_11_015
crossref_primary_10_3389_fpsyt_2014_00053
crossref_primary_10_1038_ncomms11173
crossref_primary_10_1146_annurev_neuro_061010_113708
crossref_primary_10_3390_biom11010075
crossref_primary_10_1038_srep08353
crossref_primary_10_1021_acs_jmedchem_6b00966
crossref_primary_10_1371_journal_pone_0098383
crossref_primary_10_1016_j_mcn_2016_07_001
crossref_primary_10_1021_acs_jmedchem_1c01922
crossref_primary_10_1038_s41594_024_01422_3
crossref_primary_10_1016_j_brainres_2015_09_020
crossref_primary_10_1152_physrev_00041_2015
crossref_primary_10_1002_pd_4942
crossref_primary_10_3390_cancers12082108
crossref_primary_10_2217_epi_15_70
crossref_primary_10_1186_s13148_022_01369_6
crossref_primary_10_1186_s13229_017_0174_4
crossref_primary_10_1007_s13311_015_0361_y
crossref_primary_10_1002_aur_2203
crossref_primary_10_3109_17518423_2012_676101
crossref_primary_10_1016_j_neuroscience_2019_10_027
crossref_primary_10_1038_s41588_024_02025_w
crossref_primary_10_1007_s12031_017_0900_6
crossref_primary_10_1016_j_nbd_2017_05_010
crossref_primary_10_3389_fnmol_2018_00448
crossref_primary_10_1002_dneu_22150
crossref_primary_10_1016_j_ceb_2015_04_008
crossref_primary_10_5607_en_2015_24_4_257
crossref_primary_10_1093_abbs_gmw052
crossref_primary_10_3390_cells9040993
crossref_primary_10_1038_nature13975
crossref_primary_10_1517_14728222_2016_1115837
crossref_primary_10_1007_s12012_014_9264_0
crossref_primary_10_1016_j_celrep_2016_11_067
crossref_primary_10_1002_med_21546
crossref_primary_10_1016_j_neubiorev_2017_01_030
crossref_primary_10_1093_hmg_ddw398
crossref_primary_10_1038_nm_2828
crossref_primary_10_3892_mmr_2013_1848
crossref_primary_10_3389_fnmol_2017_00234
crossref_primary_10_1158_1535_7163_MCT_13_0729
crossref_primary_10_1016_j_nlm_2018_01_012
crossref_primary_10_1002_jnr_24576
crossref_primary_10_1161_CIRCULATIONAHA_115_019847
crossref_primary_10_1007_s12035_024_04493_x
crossref_primary_10_3389_fncel_2024_1320784
crossref_primary_10_1126_scitranslmed_abf4077
crossref_primary_10_1186_1866_1955_4_1
crossref_primary_10_3389_fcell_2024_1413248
crossref_primary_10_1074_jbc_M112_367219
crossref_primary_10_1038_s41421_024_00727_3
crossref_primary_10_1051_medsci_2012286005
crossref_primary_10_1172_JCI120816
crossref_primary_10_1111_dmcn_14398
crossref_primary_10_1158_0008_5472_CAN_12_3504
crossref_primary_10_1089_crispr_2024_0074
crossref_primary_10_1186_s12883_014_0232_x
crossref_primary_10_3390_diseases12010007
crossref_primary_10_1371_journal_pgen_1004039
crossref_primary_10_1038_s41467_018_05627_1
crossref_primary_10_1172_JCI80554
crossref_primary_10_3389_fnins_2015_00322
crossref_primary_10_1016_j_ajhg_2012_05_003
crossref_primary_10_1016_j_cca_2017_03_022
crossref_primary_10_3389_fpsyt_2020_592408
crossref_primary_10_1186_s13229_018_0228_2
crossref_primary_10_1186_s12864_018_4948_7
crossref_primary_10_3390_cells9112455
crossref_primary_10_2139_ssrn_3385690
crossref_primary_10_1111_dmcn_14831
crossref_primary_10_1016_j_dnarep_2014_03_020
crossref_primary_10_1093_hmg_ddt628
crossref_primary_10_1038_s41586_020_2835_2
crossref_primary_10_1523_JNEUROSCI_1018_17_2017
crossref_primary_10_1002_aur_2418
crossref_primary_10_1002_dneu_22757
crossref_primary_10_1016_j_conb_2024_102899
crossref_primary_10_1242_dev_088849
crossref_primary_10_1016_j_mcn_2017_11_016
crossref_primary_10_4161_rna_20482
crossref_primary_10_1038_srep10172
crossref_primary_10_1021_acs_jmedchem_9b00797
crossref_primary_10_1038_nrg3796
crossref_primary_10_1002_ajmg_b_32132
crossref_primary_10_1016_j_gde_2013_09_001
crossref_primary_10_1016_j_neuroscience_2019_12_030
crossref_primary_10_1073_pnas_1413204111
crossref_primary_10_1016_j_mam_2022_101148
crossref_primary_10_1186_s13229_020_00376_9
crossref_primary_10_1016_j_pcl_2024_01_004
crossref_primary_10_1111_gbb_12452
crossref_primary_10_1016_j_gpb_2016_02_004
crossref_primary_10_1016_j_pediatrneurol_2012_09_015
crossref_primary_10_1016_j_xcrm_2021_100360
crossref_primary_10_1101_gad_242990_114
crossref_primary_10_1016_j_jaac_2015_01_019
crossref_primary_10_1038_s41380_022_01484_z
crossref_primary_10_1016_j_neuroscience_2012_11_030
crossref_primary_10_1016_j_neubiorev_2016_04_008
crossref_primary_10_3389_fcell_2021_730014
crossref_primary_10_3390_ijms18030618
crossref_primary_10_1002_dneu_22084
crossref_primary_10_1515_cpp_2016_0028
crossref_primary_10_1073_pnas_1815279116
crossref_primary_10_1016_j_nbd_2020_105180
crossref_primary_10_1016_j_neuroscience_2013_12_009
crossref_primary_10_1038_nature12553
crossref_primary_10_1111_jnc_16018
crossref_primary_10_1016_j_conb_2012_04_008
crossref_primary_10_1016_j_neubiorev_2018_01_014
crossref_primary_10_1016_j_ymthe_2024_09_032
crossref_primary_10_2217_epi_15_55
crossref_primary_10_1016_j_neuron_2016_02_040
crossref_primary_10_1016_j_ejpn_2012_03_006
crossref_primary_10_1038_srep25368
crossref_primary_10_1891_0730_0832_36_3_142
crossref_primary_10_1038_nature_2011_9700
crossref_primary_10_1002_acn3_51385
crossref_primary_10_1016_j_bbr_2012_12_052
crossref_primary_10_1038_nsmb_3384
crossref_primary_10_3389_fnmol_2019_00289
crossref_primary_10_1016_j_cell_2013_02_016
crossref_primary_10_1155_2012_710943
crossref_primary_10_3389_fgene_2018_00029
crossref_primary_10_1007_s11920_019_1122_0
crossref_primary_10_1111_age_13023
crossref_primary_10_1038_s41398_022_02206_3
crossref_primary_10_1073_pnas_1504809112
crossref_primary_10_1016_j_cbpa_2013_04_018
crossref_primary_10_1016_j_neuron_2018_10_015
crossref_primary_10_1016_j_febslet_2014_06_023
crossref_primary_10_1038_ng_2776
crossref_primary_10_1080_15592294_2020_1823160
crossref_primary_10_3390_ph5040369
crossref_primary_10_1007_s13353_023_00824_1
crossref_primary_10_1371_journal_pone_0163663
crossref_primary_10_1073_pnas_1305426110
crossref_primary_10_3389_fnbeh_2022_968159
crossref_primary_10_4196_kjpp_2012_16_6_369
crossref_primary_10_1352_1944_7558_127_2_95
crossref_primary_10_1542_neo_18_9_e532
crossref_primary_10_1007_s11825_016_0081_7
crossref_primary_10_1111_cns_12710
crossref_primary_10_1038_nrg3766
crossref_primary_10_1124_mol_113_089649
crossref_primary_10_1038_nrn_2016_101
crossref_primary_10_1126_sciadv_abm7069
crossref_primary_10_1016_j_cub_2014_12_047
crossref_primary_10_1038_nrneurol_2012_2
crossref_primary_10_1523_JNEUROSCI_1930_11_2013
crossref_primary_10_1093_hmg_ddv234
crossref_primary_10_1093_hmg_ddv476
crossref_primary_10_1039_C9SC04336E
crossref_primary_10_1080_14656566_2022_2105141
crossref_primary_10_1038_s41398_022_01972_4
crossref_primary_10_1093_cercor_bhw102
crossref_primary_10_1093_nar_gkt778
crossref_primary_10_1146_annurev_pharmtox_010814_124527
crossref_primary_10_1371_journal_pone_0124649
crossref_primary_10_1080_17460441_2024_2416484
crossref_primary_10_1038_s41398_020_0720_2
crossref_primary_10_1101_lm_051201_119
crossref_primary_10_1177_1087057115598609
crossref_primary_10_1016_j_pcl_2015_03_004
crossref_primary_10_1371_journal_pone_0156439
crossref_primary_10_1038_npp_2012_85
crossref_primary_10_1016_j_mcn_2021_103602
crossref_primary_10_1038_ncomms15038
crossref_primary_10_1371_journal_pone_0147053
crossref_primary_10_1016_j_neubiorev_2014_02_015
crossref_primary_10_1038_nrn_2016_124
crossref_primary_10_1038_mt_2015_236
crossref_primary_10_1159_000515434
crossref_primary_10_1242_dmm_028811
crossref_primary_10_1016_j_bbagrm_2015_05_006
crossref_primary_10_1016_j_virusres_2023_199191
crossref_primary_10_1093_hmg_ddab104
crossref_primary_10_2217_epi_14_42
crossref_primary_10_3389_fnana_2024_1410791
crossref_primary_10_1016_j_omtn_2022_04_009
crossref_primary_10_1021_cb5010417
crossref_primary_10_1038_srep20398
crossref_primary_10_1016_j_cobeha_2014_07_008
crossref_primary_10_1016_j_marpolbul_2015_06_020
crossref_primary_10_1172_jci_insight_144712
crossref_primary_10_1038_s41467_024_49788_8
Cites_doi 10.1093/nar/gkq1201
10.1093/hmg/ddm288
10.1038/ng0997-12
10.1002/ajmg.a.33509
10.1038/90067
10.1038/373081a0
10.1016/j.cell.2009.04.024
10.1016/j.ygeno.2010.08.007
10.1021/jm060564z
10.1093/nar/gkh670
10.1093/hmg/8.8.1357
10.1006/geno.2001.6543
10.1006/nbdi.2001.0463
10.1016/S0169-409X(03)00101-7
10.1038/ng0197-74
10.1101/gr.7.4.368
10.1074/jbc.272.21.13548
10.1038/ng0197-70
10.1038/ng0598-15
10.1128/MCB.00617-06
10.1016/j.cell.2010.01.026
10.1038/ng0997-75
10.2146/ajhp060165
10.1002/cne.20793
10.1021/jm00123a038
10.1038/nature05918
10.1016/S0076-6879(05)98011-7
10.1016/S0896-6273(00)80596-6
10.1021/jm000029d
10.1038/ng0997-14
10.1007/s00335-007-9019-3
10.1523/JNEUROSCI.2479-09.2010
10.1634/theoncologist.6-6-506
10.1016/j.tins.2011.04.001
10.1093/hmg/10.23.2687
10.1038/nrc1977
10.2144/000112257
ContentType Journal Article
Copyright Springer Nature Limited 2011
Copyright_xml – notice: Springer Nature Limited 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1038/nature10726
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 189
ExternalDocumentID PMC3257422
22190039
10_1038_nature10726
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F32 NS067712
– fundername: PHS HHS
  grantid: HHSN-271-2008-00025-C
– fundername: NINDS NIH HHS
  grantid: R01NS067688
– fundername: NINDS NIH HHS
  grantid: R01NS060725
– fundername: NEI NIH HHS
  grantid: R01EY018323
– fundername: NICHD NIH HHS
  grantid: T32HD040127-07
– fundername: NINDS NIH HHS
  grantid: 5F32NS067712
– fundername: NINDS NIH HHS
  grantid: R01 NS060725
– fundername: NINDS NIH HHS
  grantid: P30 NS045892
– fundername: NIMH NIH HHS
  grantid: R01 MH093372
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGCDD
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7TM
8FD
ESTFP
FR3
P64
PJZUB
PPXIY
PQGLB
PUEGO
RC3
7X8
5PM
ID FETCH-LOGICAL-c413t-cf3f9b9168d084ec9c22a0c64425244997f96035dbb14e05de81da58138b36c83
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:32:56 EDT 2025
Fri Sep 05 13:37:57 EDT 2025
Mon Sep 08 12:35:09 EDT 2025
Sat May 31 02:07:47 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 02:56:47 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7380
Language English
License http://www.springer.com/tdm
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-cf3f9b9168d084ec9c22a0c64425244997f96035dbb14e05de81da58138b36c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3257422
PMID 22190039
PQID 1439237801
PQPubID 23462
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3257422
proquest_miscellaneous_916146831
proquest_miscellaneous_1439237801
pubmed_primary_22190039
crossref_primary_10_1038_nature10726
crossref_citationtrail_10_1038_nature10726
springer_journals_10_1038_nature10726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20111221
PublicationDateYYYYMMDD 2011-12-21
PublicationDate_xml – month: 12
  year: 2011
  text: 20111221
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2011
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Nakatani (CR12) 2009; 137
Pommier (CR19) 2006; 6
Bressler (CR25) 2001; 28
Pierce, Xu (CR38) 2010; 30
Kishino, Lalande, Wagstaff (CR1) 1997; 15
Bomgaars, Berg, Blaney (CR30) 2001; 6
Matsuura (CR2) 1997; 15
Miura (CR14) 2002; 9
Beaudenon, Dastur, Huibregtse (CR23) 2005; 398
Lyu (CR29) 2006; 26
Nagarajan (CR32) 2006; 49
Runte (CR17) 2001; 10
Kumar, Kao, Howley (CR24) 1997; 272
Hertzberg (CR20) 1989; 32
Peters (CR8) 2010; 152A
Landers (CR10) 2004; 32
Gammon (CR27) 2006; 63
Vu, Hoffman (CR6) 1997; 17
Sutcliffe (CR3) 1997; 7
Abramoff, Magelhaes, Ram (CR33) 2004; 11
Scheffner, Nuber, Huibregtse (CR22) 1995; 373
Mabb, Judson, Zylka, Philpot (CR7) 2011; 34
Greer (CR28) 2010; 140
Peery, Elmore, Resnick, Brannan, Johnstone (CR36) 2007; 18
Fairbanks (CR37) 2003; 55
Albrecht (CR4) 1997; 17
Chamberlain, Brannan (CR9) 2001; 73
Rougeulle, Cardoso, Fontes, Colleaux, Lalande (CR16) 1998; 19
Cushman (CR31) 2000; 43
Lamprecht, Sabatini, Carpenter (CR34) 2007; 42
Numata, Kohama, Abe, Kiyosawa (CR11) 2011; 39
Plaschkes, Silverman, Priel (CR21) 2005; 493
Rougeulle, Glatt, Lalande (CR5) 1997; 17
Dindot, Antalffy, Bhattacharjee, Beaudet (CR15) 2008; 17
Tsai, Jiang, Bressler, Armstrong, Beaudet (CR35) 1999; 8
Watanabe (CR18) 2010; 96
Reik (CR26) 2007; 447
Jiang (CR13) 1998; 21
YH Jiang (BFnature10726_CR13) 1998; 21
TH Vu (BFnature10726_CR6) 1997; 17
S Kumar (BFnature10726_CR24) 1997; 272
AA Pierce (BFnature10726_CR38) 2010; 30
T Kishino (BFnature10726_CR1) 1997; 15
JS Sutcliffe (BFnature10726_CR3) 1997; 7
K Miura (BFnature10726_CR14) 2002; 9
C Rougeulle (BFnature10726_CR5) 1997; 17
RP Hertzberg (BFnature10726_CR20) 1989; 32
MD Abramoff (BFnature10726_CR33) 2004; 11
EG Peery (BFnature10726_CR36) 2007; 18
Y Pommier (BFnature10726_CR19) 2006; 6
S Beaudenon (BFnature10726_CR23) 2005; 398
I Plaschkes (BFnature10726_CR21) 2005; 493
K Numata (BFnature10726_CR11) 2011; 39
SU Peters (BFnature10726_CR8) 2010; 152A
M Landers (BFnature10726_CR10) 2004; 32
J Nakatani (BFnature10726_CR12) 2009; 137
YL Lyu (BFnature10726_CR29) 2006; 26
M Nagarajan (BFnature10726_CR32) 2006; 49
SJ Chamberlain (BFnature10726_CR9) 2001; 73
L Bomgaars (BFnature10726_CR30) 2001; 6
M Cushman (BFnature10726_CR31) 2000; 43
W Reik (BFnature10726_CR26) 2007; 447
T Matsuura (BFnature10726_CR2) 1997; 15
M Scheffner (BFnature10726_CR22) 1995; 373
U Albrecht (BFnature10726_CR4) 1997; 17
CA Fairbanks (BFnature10726_CR37) 2003; 55
M Runte (BFnature10726_CR17) 2001; 10
J Bressler (BFnature10726_CR25) 2001; 28
Y Watanabe (BFnature10726_CR18) 2010; 96
C Rougeulle (BFnature10726_CR16) 1998; 19
MR Lamprecht (BFnature10726_CR34) 2007; 42
DC Gammon (BFnature10726_CR27) 2006; 63
AM Mabb (BFnature10726_CR7) 2011; 34
SV Dindot (BFnature10726_CR15) 2008; 17
TF Tsai (BFnature10726_CR35) 1999; 8
PL Greer (BFnature10726_CR28) 2010; 140
22190038 - Nature. 2011 Dec 21;481(7380):150-2. doi: 10.1038/nature10784.
22270025 - Nat Rev Neurol. 2012 Jan 24;8(2):62. doi: 10.1038/nrneurol.2012.2.
References_xml – volume: 39
  start-page: 2649
  year: 2011
  end-page: 2657
  ident: CR11
  article-title: Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic expression associated with locus-wide antisense transcription
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1201
– volume: 17
  start-page: 111
  year: 2008
  end-page: 118
  ident: CR15
  article-title: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm288
– volume: 17
  start-page: 12
  year: 1997
  end-page: 13
  ident: CR6
  article-title: Imprinting of the Angelman syndrome gene, , is restricted to brain
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-12
– volume: 152A
  start-page: 1994
  year: 2010
  end-page: 2001
  ident: CR8
  article-title: Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.33509
– volume: 28
  start-page: 232
  year: 2001
  end-page: 240
  ident: CR25
  article-title: The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice
  publication-title: Nature Genet.
  doi: 10.1038/90067
– volume: 373
  start-page: 81
  year: 1995
  end-page: 83
  ident: CR22
  article-title: Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade
  publication-title: Nature
  doi: 10.1038/373081a0
– volume: 137
  start-page: 1235
  year: 2009
  end-page: 1246
  ident: CR12
  article-title: Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.024
– volume: 96
  start-page: 333
  year: 2010
  end-page: 341
  ident: CR18
  article-title: Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.08.007
– volume: 49
  start-page: 6283
  year: 2006
  end-page: 6289
  ident: CR32
  article-title: Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060564z
– volume: 32
  start-page: 3480
  year: 2004
  end-page: 3492
  ident: CR10
  article-title: Regulation of the large (approximately 1000 kb) imprinted murine antisense transcript by alternative exons upstream of /
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh670
– volume: 8
  start-page: 1357
  year: 1999
  end-page: 1364
  ident: CR35
  article-title: Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.8.1357
– volume: 73
  start-page: 316
  year: 2001
  end-page: 322
  ident: CR9
  article-title: The Prader–Willi syndrome imprinting center activates the paternally expressed murine antisense transcript but represses paternal
  publication-title: Genomics
  doi: 10.1006/geno.2001.6543
– volume: 9
  start-page: 149
  year: 2002
  end-page: 159
  ident: CR14
  article-title: Neurobehavioral and electroencephalographic abnormalities in maternal-deficient mice
  publication-title: Neurobiol. Dis.
  doi: 10.1006/nbdi.2001.0463
– volume: 55
  start-page: 1007
  year: 2003
  end-page: 1041
  ident: CR37
  article-title: Spinal delivery of analgesics in experimental models of pain and analgesia
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(03)00101-7
– volume: 15
  start-page: 74
  year: 1997
  end-page: 77
  ident: CR2
  article-title: truncating mutations in E6-AP ubiquitin-protein ligase gene ( ) in Angelman syndrome
  publication-title: Nature Genet.
  doi: 10.1038/ng0197-74
– volume: 7
  start-page: 368
  year: 1997
  end-page: 377
  ident: CR3
  article-title: The E6-Ap ubiquitin-protein ligase ( ) gene is localized within a narrowed Angelman syndrome critical region
  publication-title: Genome Res.
  doi: 10.1101/gr.7.4.368
– volume: 272
  start-page: 13548
  year: 1997
  end-page: 13554
  ident: CR24
  article-title: Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.21.13548
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  ident: CR33
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– volume: 15
  start-page: 70
  year: 1997
  end-page: 73
  ident: CR1
  article-title: UBE3A/E6-AP mutations cause Angelman syndrome
  publication-title: Nature Genet.
  doi: 10.1038/ng0197-70
– volume: 19
  start-page: 15
  year: 1998
  end-page: 16
  ident: CR16
  article-title: An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript
  publication-title: Nature Genet.
  doi: 10.1038/ng0598-15
– volume: 26
  start-page: 7929
  year: 2006
  end-page: 7941
  ident: CR29
  article-title: Role of topoisomerase IIβ in the expression of developmentally regulated genes
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00617-06
– volume: 140
  start-page: 704
  year: 2010
  end-page: 716
  ident: CR28
  article-title: The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.026
– volume: 17
  start-page: 75
  year: 1997
  end-page: 78
  ident: CR4
  article-title: Imprinted expression of the murine Angelman syndrome gene, , in hippocampal and Purkinje neurons
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-75
– volume: 63
  start-page: 2083
  year: 2006
  end-page: 2086
  ident: CR27
  article-title: Intrathecal topotecan in adult patients with neoplastic meningitis
  publication-title: Am. J. Health Syst. Pharm.
  doi: 10.2146/ajhp060165
– volume: 493
  start-page: 357
  year: 2005
  end-page: 369
  ident: CR21
  article-title: DNA topoisomerase I in the mouse central nervous system: age and sex dependence
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20793
– volume: 32
  start-page: 715
  year: 1989
  end-page: 720
  ident: CR20
  article-title: Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00123a038
– volume: 447
  start-page: 425
  year: 2007
  end-page: 432
  ident: CR26
  article-title: Stability and flexibility of epigenetic gene regulation in mammalian development
  publication-title: Nature
  doi: 10.1038/nature05918
– volume: 398
  start-page: 112
  year: 2005
  end-page: 125
  ident: CR23
  article-title: Expression and assay of HECT domain ligases
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)98011-7
– volume: 21
  start-page: 799
  year: 1998
  end-page: 811
  ident: CR13
  article-title: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80596-6
– volume: 43
  start-page: 3688
  year: 2000
  end-page: 3698
  ident: CR31
  article-title: Synthesis of new indeno[1,2- ]isoquinolines: cytotoxic non-camptothecin topoisomerase I inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm000029d
– volume: 17
  start-page: 14
  year: 1997
  end-page: 15
  ident: CR5
  article-title: The Angelman syndrome candidate gene, , is imprinted in brain
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-14
– volume: 18
  start-page: 255
  year: 2007
  end-page: 262
  ident: CR36
  article-title: A targeted deletion upstream of does not result in an imprinting defect
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-007-9019-3
– volume: 30
  start-page: 723
  year: 2010
  end-page: 730
  ident: CR38
  article-title: De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2479-09.2010
– volume: 6
  start-page: 506
  year: 2001
  end-page: 516
  ident: CR30
  article-title: The development of camptothecin analogs in childhood cancers
  publication-title: Oncologist
  doi: 10.1634/theoncologist.6-6-506
– volume: 34
  start-page: 293
  year: 2011
  end-page: 303
  ident: CR7
  article-title: Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.04.001
– volume: 10
  start-page: 2687
  year: 2001
  end-page: 2700
  ident: CR17
  article-title: The IC- – transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.23.2687
– volume: 6
  start-page: 789
  year: 2006
  end-page: 802
  ident: CR19
  article-title: Topoisomerase I inhibitors: camptothecins and beyond
  publication-title: Nature Rev. Cancer
  doi: 10.1038/nrc1977
– volume: 42
  start-page: 71
  year: 2007
  end-page: 75
  ident: CR34
  article-title: CellProfiler: free, versatile software for automated biological image analysis
  publication-title: Biotechniques
  doi: 10.2144/000112257
– volume: 272
  start-page: 13548
  year: 1997
  ident: BFnature10726_CR24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.21.13548
– volume: 140
  start-page: 704
  year: 2010
  ident: BFnature10726_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.026
– volume: 15
  start-page: 70
  year: 1997
  ident: BFnature10726_CR1
  publication-title: Nature Genet.
  doi: 10.1038/ng0197-70
– volume: 49
  start-page: 6283
  year: 2006
  ident: BFnature10726_CR32
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060564z
– volume: 137
  start-page: 1235
  year: 2009
  ident: BFnature10726_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.024
– volume: 9
  start-page: 149
  year: 2002
  ident: BFnature10726_CR14
  publication-title: Neurobiol. Dis.
  doi: 10.1006/nbdi.2001.0463
– volume: 18
  start-page: 255
  year: 2007
  ident: BFnature10726_CR36
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-007-9019-3
– volume: 32
  start-page: 3480
  year: 2004
  ident: BFnature10726_CR10
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh670
– volume: 96
  start-page: 333
  year: 2010
  ident: BFnature10726_CR18
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.08.007
– volume: 63
  start-page: 2083
  year: 2006
  ident: BFnature10726_CR27
  publication-title: Am. J. Health Syst. Pharm.
  doi: 10.2146/ajhp060165
– volume: 17
  start-page: 75
  year: 1997
  ident: BFnature10726_CR4
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-75
– volume: 21
  start-page: 799
  year: 1998
  ident: BFnature10726_CR13
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80596-6
– volume: 10
  start-page: 2687
  year: 2001
  ident: BFnature10726_CR17
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.23.2687
– volume: 373
  start-page: 81
  year: 1995
  ident: BFnature10726_CR22
  publication-title: Nature
  doi: 10.1038/373081a0
– volume: 42
  start-page: 71
  year: 2007
  ident: BFnature10726_CR34
  publication-title: Biotechniques
  doi: 10.2144/000112257
– volume: 30
  start-page: 723
  year: 2010
  ident: BFnature10726_CR38
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2479-09.2010
– volume: 19
  start-page: 15
  year: 1998
  ident: BFnature10726_CR16
  publication-title: Nature Genet.
  doi: 10.1038/ng0598-15
– volume: 55
  start-page: 1007
  year: 2003
  ident: BFnature10726_CR37
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(03)00101-7
– volume: 493
  start-page: 357
  year: 2005
  ident: BFnature10726_CR21
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20793
– volume: 6
  start-page: 506
  year: 2001
  ident: BFnature10726_CR30
  publication-title: Oncologist
  doi: 10.1634/theoncologist.6-6-506
– volume: 7
  start-page: 368
  year: 1997
  ident: BFnature10726_CR3
  publication-title: Genome Res.
  doi: 10.1101/gr.7.4.368
– volume: 32
  start-page: 715
  year: 1989
  ident: BFnature10726_CR20
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00123a038
– volume: 11
  start-page: 36
  year: 2004
  ident: BFnature10726_CR33
  publication-title: Biophotonics International
– volume: 34
  start-page: 293
  year: 2011
  ident: BFnature10726_CR7
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.04.001
– volume: 17
  start-page: 12
  year: 1997
  ident: BFnature10726_CR6
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-12
– volume: 398
  start-page: 112
  year: 2005
  ident: BFnature10726_CR23
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)98011-7
– volume: 15
  start-page: 74
  year: 1997
  ident: BFnature10726_CR2
  publication-title: Nature Genet.
  doi: 10.1038/ng0197-74
– volume: 26
  start-page: 7929
  year: 2006
  ident: BFnature10726_CR29
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00617-06
– volume: 39
  start-page: 2649
  year: 2011
  ident: BFnature10726_CR11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1201
– volume: 447
  start-page: 425
  year: 2007
  ident: BFnature10726_CR26
  publication-title: Nature
  doi: 10.1038/nature05918
– volume: 17
  start-page: 14
  year: 1997
  ident: BFnature10726_CR5
  publication-title: Nature Genet.
  doi: 10.1038/ng0997-14
– volume: 6
  start-page: 789
  year: 2006
  ident: BFnature10726_CR19
  publication-title: Nature Rev. Cancer
  doi: 10.1038/nrc1977
– volume: 43
  start-page: 3688
  year: 2000
  ident: BFnature10726_CR31
  publication-title: J. Med. Chem.
  doi: 10.1021/jm000029d
– volume: 8
  start-page: 1357
  year: 1999
  ident: BFnature10726_CR35
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.8.1357
– volume: 73
  start-page: 316
  year: 2001
  ident: BFnature10726_CR9
  publication-title: Genomics
  doi: 10.1006/geno.2001.6543
– volume: 152A
  start-page: 1994
  year: 2010
  ident: BFnature10726_CR8
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.a.33509
– volume: 28
  start-page: 232
  year: 2001
  ident: BFnature10726_CR25
  publication-title: Nature Genet.
  doi: 10.1038/90067
– volume: 17
  start-page: 111
  year: 2008
  ident: BFnature10726_CR15
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm288
– reference: 22270025 - Nat Rev Neurol. 2012 Jan 24;8(2):62. doi: 10.1038/nrneurol.2012.2.
– reference: 22190038 - Nature. 2011 Dec 21;481(7380):150-2. doi: 10.1038/nature10784.
SSID ssj0005174
Score 2.5327837
Snippet Cancer drugs that can potentially treat Angelman syndrome are identified. Angelman syndrome mutation reversed Genomic imprinting disorders arise owing to a...
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In...
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A ( Ube3a ) 1...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 185
SubjectTerms 631/154/309/436
631/208/200
631/378/2571/1696
692/699/375/366
Alleles
Angelman Syndrome - drug therapy
Angelman Syndrome - genetics
Animals
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - drug effects
Cerebral Cortex - metabolism
Drug Evaluation, Preclinical
Fathers
Female
Gene Silencing - drug effects
Genomic Imprinting - drug effects
Genomic Imprinting - genetics
Humanities and Social Sciences
letter
Male
Mice
Mice, Inbred C57BL
Mothers
multidisciplinary
Neurons - drug effects
Neurons - metabolism
Science
Science (multidisciplinary)
Small Molecule Libraries - administration & dosage
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Topoisomerase Inhibitors - administration & dosage
Topoisomerase Inhibitors - analysis
Topoisomerase Inhibitors - pharmacokinetics
Topoisomerase Inhibitors - pharmacology
Topotecan - administration & dosage
Topotecan - pharmacokinetics
Topotecan - pharmacology
Ubiquitin-Protein Ligases - deficiency
Ubiquitin-Protein Ligases - genetics
Title Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons
URI https://link.springer.com/article/10.1038/nature10726
https://www.ncbi.nlm.nih.gov/pubmed/22190039
https://www.proquest.com/docview/1439237801
https://www.proquest.com/docview/916146831
https://pubmed.ncbi.nlm.nih.gov/PMC3257422
Volume 481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELc2qkl7mdbui3WrPKmTtlWhSezEySOwMjoJVG1F4g3ZjlGROoIaeNlfv_NHPihM2vpiUGJihd_lfHe5-x1Cp4wIP0459TiRmUcVOCgijbkH2xFXLKNZFuja4dE4Hk7o92k0rVOHTHXJWnTk7711JQ9BFY4BrrpK9j-QrS4KB-A74AsjIAzjv2Gcr_JFkeu4UqHJP24WYmG65-jGH6aayNiVmakM0LHdW2VzCSdCEa5DHYbO0gXsnIk6NlSfzVYfaY29iy4PC9AI3s-N2_a0wOiWLGVu71m3U0e67Rufrk6e5Wej6kTZTOUSFMyg0ww-6Oy30LMVzVUxgCW4ttuJ1aGUxR6N3T7qlCxNgoY0MWLbNzmtGdiuPW4DDmxPoR3dbpncLd8pOK220L6B8uqXgTkEHawrjusNrko7vBr1CagoGsKefRAyMLZa6KDb-9ob1FlB94i7XUknrH3eWFlTSLtltu2ZHSdlN9f23gt3Y8dcP0fPnAOCu1aaDtEjtTxCT0wisCyO0KFT9gX-5BjJP79Al1uChmtBw5WgYRA07AQNW0HD-RwbQYMfYCdoL9FkcHHdH3quB4cnwbxZe3JO5qkAHyLJ_IQqmcow5L4EKzqMwDJMUzYHH5hEmRABVX6UKXCAeJQEJBEklgl5hVrLfKneIMylFODLRSpNFBU8TVLJfEkCpeMzipM2-lL-kzPpCOp1n5TbmUmUIMmsgUAbnVaTV5aXZf-0DyUkM9Cb-mUYX6p8U4DLC54BYWCgtRH-yxy4bV2ZSGDKa4titVYJfxuxLXyrCZq2ffvMcnFj6NudCLbRx1ISZk6nFPtu4e2DVzhGT-tn9h1qre826j2Y0Gtxgh6zKYMx6Qd6HHw7cQ8CfPYuxlc__gA9g8ve
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topoisomerase+inhibitors+unsilence+the+dormant+allele+of+Ube3a+in+neurons&rft.jtitle=Nature+%28London%29&rft.au=Huang%2C+Hsien-Sung&rft.au=Allen%2C+John+A.&rft.au=Mabb%2C+Angela+M.&rft.au=King%2C+Ian+F.&rft.date=2011-12-21&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=481&rft.issue=7380&rft.spage=185&rft.epage=189&rft_id=info:doi/10.1038%2Fnature10726&rft_id=info%3Apmid%2F22190039&rft.externalDocID=PMC3257422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon