COL7A1 Editing via RNA Trans-Splicing in RDEB-Derived Skin Equivalents
Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (D...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 5; p. 4341 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms24054341 |
Cover
Abstract | Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3′-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3′-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3′-RTMS6m repair molecule. |
---|---|
AbstractList | Mutations in the
COL7A1
gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in
COL7A1
have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3′-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within
COL7A1
via spliceosome-mediated RNA
trans
-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of
COL7A1
via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a
trans
-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3′-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected
COL7A1
mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3′-RTMS6m repair molecule. Mutations in the gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within via spliceosome-mediated RNA -splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a -splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule. Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3′-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3′-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3′-RTMS6m repair molecule. Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule. |
Author | Liemberger, Bernadette Ablinger, Michael Koller, Ulrich Ebner, Patricia Hainzl, Stefan Guttmann-Gruber, Christina Murauer, Eva M. Nyström, Alexander Kocher, Thomas Mayr, Elisabeth Bischof, Johannes Lackner, Nina Bauer, Johann W. Wally, Verena Hofbauer, Josefina Piñón |
AuthorAffiliation | 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria 2 Department of Dermatology, Medical Faculty, Medical Center—University of Freiburg, 79110 Freiburg, Germany 3 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria |
AuthorAffiliation_xml | – name: 2 Department of Dermatology, Medical Faculty, Medical Center—University of Freiburg, 79110 Freiburg, Germany – name: 3 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria – name: 1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria |
Author_xml | – sequence: 1 givenname: Bernadette surname: Liemberger fullname: Liemberger, Bernadette – sequence: 2 givenname: Johannes orcidid: 0000-0001-5309-1936 surname: Bischof fullname: Bischof, Johannes – sequence: 3 givenname: Michael surname: Ablinger fullname: Ablinger, Michael – sequence: 4 givenname: Stefan surname: Hainzl fullname: Hainzl, Stefan – sequence: 5 givenname: Eva M. surname: Murauer fullname: Murauer, Eva M. – sequence: 6 givenname: Nina surname: Lackner fullname: Lackner, Nina – sequence: 7 givenname: Patricia surname: Ebner fullname: Ebner, Patricia – sequence: 8 givenname: Thomas orcidid: 0000-0002-3424-3049 surname: Kocher fullname: Kocher, Thomas – sequence: 9 givenname: Alexander orcidid: 0000-0002-4666-2240 surname: Nyström fullname: Nyström, Alexander – sequence: 10 givenname: Verena orcidid: 0000-0001-8705-3890 surname: Wally fullname: Wally, Verena – sequence: 11 givenname: Elisabeth surname: Mayr fullname: Mayr, Elisabeth – sequence: 12 givenname: Christina orcidid: 0000-0001-8232-5068 surname: Guttmann-Gruber fullname: Guttmann-Gruber, Christina – sequence: 13 givenname: Josefina Piñón orcidid: 0000-0002-8558-9031 surname: Hofbauer fullname: Hofbauer, Josefina Piñón – sequence: 14 givenname: Johann W. surname: Bauer fullname: Bauer, Johann W. – sequence: 15 givenname: Ulrich orcidid: 0000-0002-6285-1789 surname: Koller fullname: Koller, Ulrich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36901775$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PwzAMhiMEAja4cUaVuHCgkK827QmNbXxIE0jbOEdpkkJGl25JO4l_TyYGGhMnW87j16_jDti3tdUAnCF4TUgOb8xs7jGFCSUU7YFjRDGOIUzZ_lZ-BDrezyDEBCf5ITgiaQ4RY8kxuO-_jFgPRUNlGmPfopUR0fi5F02dsD6eLCoj12Vjo_FgeBcPtDMrraLJR6gMl61ZiUrbxp-Ag1JUXp9uYhe83g-n_cd49PLw1O-NYkkRaWKpcYGKTJVEFRnCJC3zFBeJIhjSAlOFmcgUhprkqmDBIJNpySTDJRVa5wySLrj91l20xVwrGWY7UfGFM3PhPnktDP_7Ys07f6tXHMGwPc1RULjcKLh62Wrf8LnxUleVsLpuPccsS2FOM0gDerGDzurW2bDfmkowyrKUBep829Kvl58_DgD-BqSrvXe65NI0ojH12qGpgjW-PiTfPmRoutpp-tH9F_8CPLic3Q |
CitedBy_id | crossref_primary_10_2147_TCRM_S386923 crossref_primary_10_1007_s13555_024_01227_8 crossref_primary_10_1016_j_jid_2024_04_013 crossref_primary_10_1016_j_heliyon_2024_e37361 crossref_primary_10_1080_09546634_2024_2391452 crossref_primary_10_1111_srt_13779 |
Cites_doi | 10.1007/s12031-011-9614-3 10.1089/hum.2005.16.1116 10.1038/gt.2016.57 10.3390/ijms19030762 10.1016/j.dib.2016.03.091 10.1093/nar/gkx669 10.1172/jci.insight.130554 10.3390/ijms23031732 10.1016/j.mbplus.2019.100017 10.1016/j.ymthe.2019.03.007 10.1007/BF00370713 10.1111/bjd.18921 10.1016/j.molmed.2004.04.007 10.1016/j.ymthe.2021.02.019 10.3390/ijms222312774 10.1016/j.jid.2020.02.012 10.1155/2014/603985 10.1073/pnas.1907081116 10.1016/j.ymthe.2017.08.015 10.1038/mtna.2016.3 10.1002/humu.21551 10.1016/j.ymthe.2017.07.005 10.1038/jid.2010.249 10.1038/jid.2012.101 10.1111/bjd.17075 10.1038/gt.2008.150 10.3390/ijms20225707 10.1038/s41587-019-0032-3 10.1038/nmeth.2019 10.1038/mt.2010.91 10.1007/978-1-62703-227-8_30 10.1038/sj.mt.6300178 10.1016/j.omtm.2017.06.008 10.1034/j.1600-0625.2003.120105.x 10.1016/j.jaad.2014.01.903 10.3389/fonc.2020.01387 10.1523/JNEUROSCI.4489-09.2010 10.1016/j.omtn.2021.05.015 10.1056/NEJMoa2206663 10.1093/hmg/ddq405 10.3389/fmed.2022.976604 10.1038/sj.jid.5701152 10.1002/humu.21651 10.1038/mtna.2014.10 10.1016/j.ymthe.2022.04.020 10.1016/j.jid.2016.02.002 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms24054341 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC10002491 36901775 10_3390_ijms24054341 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Land Salzburg grantid: 20204-WISS/225/241/22-2021 – fundername: DEBRA Austria – fundername: Land Salzburg grantid: 20204-WISS/225/241/17-2021 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c413t-ce2b1b8df3db81236f962b5d3204b24d27a8d20e39db71777c6f7c72f4aee9703 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:37:45 EDT 2025 Mon Sep 08 15:06:25 EDT 2025 Fri Jul 25 19:56:26 EDT 2025 Wed Feb 19 02:24:31 EST 2025 Tue Jul 01 02:03:37 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | RNA therapy COL7A1 RNA trans-splicing dystrophic epidermolysis bullosa |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-ce2b1b8df3db81236f962b5d3204b24d27a8d20e39db71777c6f7c72f4aee9703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4666-2240 0000-0001-8232-5068 0000-0001-5309-1936 0000-0002-8558-9031 0000-0002-6285-1789 0000-0001-8705-3890 0000-0002-3424-3049 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms24054341 |
PMID | 36901775 |
PQID | 2785218867 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10002491 proquest_miscellaneous_2786094804 proquest_journals_2785218867 pubmed_primary_36901775 crossref_citationtrail_10_3390_ijms24054341 crossref_primary_10_3390_ijms24054341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230222 |
PublicationDateYYYYMMDD | 2023-02-22 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_16) 2005; 16 Uitto (ref_2) 1994; 287 Kocher (ref_38) 2017; 25 Wally (ref_11) 2010; 19 Fine (ref_3) 2014; 70 Kocher (ref_24) 2020; 140 Eichstadt (ref_42) 2019; 4 Chen (ref_12) 2009; 16 Coady (ref_13) 2010; 30 Bischof (ref_35) 2022; 9 Bornert (ref_26) 2019; 4 Kowalewski (ref_5) 2012; 33 Dallinger (ref_6) 2003; 12 Mansfield (ref_7) 2004; 10 Peking (ref_19) 2019; 180 Shihan (ref_28) 2021; 25 Shihan (ref_29) 2016; 7 Hainzl (ref_30) 2017; 25 Wally (ref_9) 2012; 132 Bonafont (ref_33) 2019; 27 ref_18 Murauer (ref_45) 2011; 131 Schindelin (ref_27) 2012; 9 Aushev (ref_37) 2017; 6 Bauer (ref_8) 2013; 961 Peking (ref_21) 2017; 45 Titeux (ref_41) 2010; 18 Koller (ref_10) 2014; 3 Shababi (ref_14) 2012; 46 Peking (ref_46) 2016; 5 Bonafont (ref_34) 2021; 29 Guide (ref_43) 2022; 387 Jonkman (ref_23) 2011; 32 ref_22 ref_44 Bischof (ref_36) 2022; 30 Jackow (ref_31) 2019; 116 Has (ref_1) 2020; 183 Uddin (ref_40) 2020; 10 Tockner (ref_20) 2016; 23 Hu (ref_39) 2014; 2014 Clement (ref_25) 2019; 37 Mezger (ref_47) 2016; 136 Zayed (ref_15) 2007; 15 ref_4 Wally (ref_17) 2008; 128 Kocher (ref_32) 2021; 25 |
References_xml | – volume: 46 start-page: 459 year: 2012 ident: ref_14 article-title: Optimization of SMN trans-splicing through the analysis of SMN introns publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-011-9614-3 – volume: 16 start-page: 1116 year: 2005 ident: ref_16 article-title: Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells publication-title: Hum. Gene Ther. doi: 10.1089/hum.2005.16.1116 – volume: 23 start-page: 775 year: 2016 ident: ref_20 article-title: Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations publication-title: Gene Ther. doi: 10.1038/gt.2016.57 – ident: ref_18 doi: 10.3390/ijms19030762 – volume: 7 start-page: 1204 year: 2016 ident: ref_29 article-title: Characterization data on the topical carrier DDC642 publication-title: Data Brief doi: 10.1016/j.dib.2016.03.091 – volume: 45 start-page: 10259 year: 2017 ident: ref_21 article-title: An RNA-targeted therapy for dystrophic epidermolysis bullosa publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx669 – volume: 4 start-page: e130554 year: 2019 ident: ref_42 article-title: Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa publication-title: JCI Insight doi: 10.1172/jci.insight.130554 – ident: ref_22 doi: 10.3390/ijms23031732 – volume: 4 start-page: 100017 year: 2019 ident: ref_26 article-title: Generation of rabbit polyclonal human and murine collagen VII monospecific antibodies: A useful tool for dystrophic epidermolysis bullosa therapy studies publication-title: Matrix Biol. Plus doi: 10.1016/j.mbplus.2019.100017 – volume: 27 start-page: 986 year: 2019 ident: ref_33 article-title: Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.03.007 – volume: 287 start-page: 16 year: 1994 ident: ref_2 article-title: Molecular basis for the dystrophic forms of epidermolysis bullosa: Mutations in the type VII collagen gene publication-title: Arch. Dermatol. Res. doi: 10.1007/BF00370713 – volume: 183 start-page: 614 year: 2020 ident: ref_1 article-title: Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility publication-title: Br. J. Dermatol. doi: 10.1111/bjd.18921 – volume: 10 start-page: 263 year: 2004 ident: ref_7 article-title: RNA repair using spliceosome-mediated RNA trans-splicing publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2004.04.007 – volume: 29 start-page: 2008 year: 2021 ident: ref_34 article-title: Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.02.019 – ident: ref_44 doi: 10.3390/ijms222312774 – volume: 140 start-page: 1985 year: 2020 ident: ref_24 article-title: Predictable CRISPR/Cas9-Mediated COL7A1 Reframing for Dystrophic Epidermolysis Bullosa publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2020.02.012 – volume: 2014 start-page: 1 year: 2014 ident: ref_39 article-title: Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells publication-title: BioMed Res. Int. doi: 10.1155/2014/603985 – volume: 116 start-page: 26846 year: 2019 ident: ref_31 article-title: CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1907081116 – volume: 25 start-page: 2585 year: 2017 ident: ref_38 article-title: Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.015 – volume: 5 start-page: e287 year: 2016 ident: ref_46 article-title: A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for COL7A1 Repair publication-title: Mol. Ther.-Nucleic Acids doi: 10.1038/mtna.2016.3 – volume: 32 start-page: 1100 year: 2011 ident: ref_23 article-title: The international dystrophic epidermolysis bullosa patient registry: An online database of dystrophic epidermolysis bullosa patients and their COL7A1 mutations publication-title: Hum. Mutat. doi: 10.1002/humu.21551 – volume: 25 start-page: 2573 year: 2017 ident: ref_30 article-title: COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.07.005 – volume: 131 start-page: 74 year: 2011 ident: ref_45 article-title: Functional correction of type VII collagen expression in dystrophic epidermolysis bullosa publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2010.249 – volume: 132 start-page: 1959 year: 2012 ident: ref_9 article-title: Spliceosome-mediated trans-splicing: The therapeutic cut and paste publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2012.101 – volume: 180 start-page: 141 year: 2019 ident: ref_19 article-title: An ex vivo RNA trans-splicing strategy to correct human generalized severe epidermolysis bullosa simplex publication-title: Br. J. Dermatol. doi: 10.1111/bjd.17075 – volume: 16 start-page: 211 year: 2009 ident: ref_12 article-title: Correction of dystrophia myotonica type 1 pre-mRNA transcripts by artificial trans-splicing publication-title: Gene Ther. doi: 10.1038/gt.2008.150 – ident: ref_4 doi: 10.3390/ijms20225707 – volume: 37 start-page: 224 year: 2019 ident: ref_25 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 9 start-page: 676 year: 2012 ident: ref_27 article-title: Fiji: An open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 18 start-page: 1509 year: 2010 ident: ref_41 article-title: SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa publication-title: Mol. Ther. doi: 10.1038/mt.2010.91 – volume: 961 start-page: 441 year: 2013 ident: ref_8 article-title: RNA trans-splicing for genodermatoses publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-227-8_30 – volume: 25 start-page: 100916 year: 2021 ident: ref_28 article-title: A simple method for quantitating confocal fluorescent images publication-title: Biochem. Biophys. Rep. – volume: 15 start-page: 1273 year: 2007 ident: ref_15 article-title: Correction of DNA protein kinase deficiency by spliceosome-mediated RNA trans-splicing and sleeping beauty transposon delivery publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300178 – volume: 6 start-page: 112 year: 2017 ident: ref_37 article-title: Traceless Targeting and Isolation of Gene-Edited Immortalized Keratinocytes from Epidermolysis Bullosa Simplex Patients publication-title: Mol. Ther.-Methods Clin. Dev. doi: 10.1016/j.omtm.2017.06.008 – volume: 12 start-page: 37 year: 2003 ident: ref_6 article-title: Development of spliceosome-mediated RNA trans-splicing (SMaRT) for the correction of inherited skin diseases publication-title: Exp. Dermatol. doi: 10.1034/j.1600-0625.2003.120105.x – volume: 70 start-page: 1103 year: 2014 ident: ref_3 article-title: Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2014.01.903 – volume: 10 start-page: 1387 year: 2020 ident: ref_40 article-title: CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01387 – volume: 30 start-page: 126 year: 2010 ident: ref_13 article-title: Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4489-09.2010 – volume: 25 start-page: 237 year: 2021 ident: ref_32 article-title: A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.05.015 – volume: 387 start-page: 2211 year: 2022 ident: ref_43 article-title: Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2206663 – volume: 19 start-page: 4715 year: 2010 ident: ref_11 article-title: K14 mRNA reprogramming for dominant epidermolysis bullosa simplex publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq405 – volume: 9 start-page: 976604 year: 2022 ident: ref_35 article-title: COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa publication-title: Front. Med. doi: 10.3389/fmed.2022.976604 – volume: 128 start-page: 568 year: 2008 ident: ref_17 article-title: 5′ trans-splicing repair of the PLEC1 gene publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5701152 – volume: 33 start-page: 327 year: 2012 ident: ref_5 article-title: The COL7A1 mutation database publication-title: Hum. Mutat. doi: 10.1002/humu.21651 – volume: 3 start-page: e157 year: 2014 ident: ref_10 article-title: Considerations for a Successful RNA Trans-splicing Repair of Genetic Disorders publication-title: Mol. Ther.-Nucleic Acids doi: 10.1038/mtna.2014.10 – volume: 30 start-page: 2680 year: 2022 ident: ref_36 article-title: Paired nicking-mediated COL17A1 reframing for junctional epidermolysis bullosa publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.04.020 – volume: 136 start-page: 1116 year: 2016 ident: ref_47 article-title: Collagen VII Half-Life at the Dermal-Epidermal Junction Zone: Implications for Mechanisms and Therapy of Genodermatoses publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2016.02.002 |
SSID | ssj0023259 |
Score | 2.4045272 |
Snippet | Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing... Mutations in the gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin... Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing... Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin’s basement membrane zone (BMZ), impairing... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4341 |
SubjectTerms | Clinical trials Collagen Type VII - genetics CRISPR Epidermolysis Bullosa - genetics Epidermolysis Bullosa Dystrophica - genetics Fibroblasts Genes Humans Keratinocytes - metabolism Life expectancy Mutation Patients Skin - metabolism Trans-Splicing Wound healing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9qi-BL0foVbWUFfZKll_3Ok1zbO0qpFaqFewvZLxrRXNu7K_jfO5Pkrj3FvuQhO5AwM7szs_PxI-RD4bUyeVIscZ-YVPBw4JazZCWXCYdXeux3_nKmjy_kyURN-gu3WV9WuTwT24M6TD3eke9zY8HSWKvN56trhqhRmF3tITQeka12dBnos5ncBVyCt2BpOdggplWhu8J3AWH-fv3j1wyMGTZW5usm6R8_8-9yyXv2Z_yUbPeOIx12kn5GNmKzQx53UJK_n5Px4ddTM8zpKNRYyExv64qenw1pa4vYN8xS4-u6oedHowN2BIp3GwNF7C06ul7UoHBYUvGCXIxH3w-PWY-RwDyYnznzkbvc2ZBEcBYnqaRCc6eC4APpuAzcVDbwQRRFABkYY7xOxhueZBVjAdv9Jdlspk18TShGbpxHJRRmS1NlvXSDYIWVtsqd0Bn5tGRT6fsB4ohj8bOEQAKZWt5nakY-rqivusEZ_6HbXXK87LfPrLwTdkber5ZB8TGbUTVxumhpNMSmdiAz8qoT0OpDAmG2jFEZsWuiWxHgUO31laa-bIdrY74DQtL8zcP_9ZY8QeD5trmd75LN-c0i7oF7MnfvWh38A1oC4cM priority: 102 providerName: ProQuest |
Title | COL7A1 Editing via RNA Trans-Splicing in RDEB-Derived Skin Equivalents |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36901775 https://www.proquest.com/docview/2785218867 https://www.proquest.com/docview/2786094804 https://pubmed.ncbi.nlm.nih.gov/PMC10002491 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwED6NTaC9IH6OwKiMBE8o0Dh27Dwg1G3pJsQKKlTqWxTHtggaGdvaif333CVN1DH24of4kkh3Z919uvN9AK_TMpEq8jL0vPShkLgYTMtDrwUXnoZXlnTf-XiSHM3Ep7mcb0DHNrpS4MV_oR3xSc3OT979Obv6iAf-AyFOhOzvq5-_LjAw0SVJxEFbGJMSgmHHoq8nYNog07bt_cYb23AvJlYmRa2G67HpRsL5b9_kWiAaP4D7qwySjVqTP4QNVz-Cuy2n5NVjONz_8lmNIpbZijqa2WVVsOlkxJqgxMJvVK-m51XNpgfZXniALnjpLCMWLpadLSt0PWqueAKzcfZ9_yhcsSWEJQaiRVg6biKjrY-t0TRTxacJN9LGfCgMF5arQls-dHFq0RpKqTLxqlTci8K5FA_-U9isT2v3DBhhOM6djCXVTX2hS2GGVsda6CIycRLA205PebkaJU6MFic5QgpScL6u4ADe9NK_2xEat8jtdirPOz_IudKYYGidqABe9dt4BKiuUdTudNnIJIhS9VAEsNNaqP9RZ9oA9DXb9QI0Xvv6Tl39aMZsU-UDwWn0_NaPvoBtYp9vbrjzXdhcnC_dS8xRFmYAd9Rc4arHhwPY2ssmX6cDihpy0DjmX4E65sA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkaiJ7Sqvbv2rg8VShtHKU0DCq3Um7H3IYzAaUlS1D_Hb2PHdkwDglsvPtgjP2ZndmY8jw_gdaLiSIQ2IpYqS3jkDoVzy4mVnHKLwysV9jsfTeLRCX93Gp1uwM9VLwyWVa72xHqj1jOF_8h3qJDO0kgZi7dn5wRRozC7uoLQyFtoBb1bjxhrGzsOzeUPF8LNdw8Gbr23KR2mx_sj0qIMEOU28AVRhhZhIbVlupA4i8QmMS0izWjAC8o1FbnUNDAs0e4rhBAqtkIJanluTOIUxt33Bmxy7HDtweZeOvkw7UI-Rmu4ttBZQRJHSdyU3jOWBDvll29zZ06xtTNcN4p_ebp_FmxesYDDu3CndV39fiNr92DDVPfhZgNmefkAhvvvx6If-qkusZTavyhzfzrp-7U1JB8xT46ny8qfDtI9MnCif2G0j-hffnq-LJ3IY1HHQzi5Fv49gl41q8wT8DF2pNRELMJ8rc2l4kWgJZNc5mHBYg_erNiUqXaEOSJpfM1cKINMza4y1YPtjvqsGd3xD7qtFcezVoHn2W9x8-BVd9mpHuZT8srMljVN7KJjGXAPHjcL1D2IIdCXEJEHcm3pOgIc671-pSo_1-O9MePiguLw6f_f6yXcGh0fjbPxweTwGdymTtjqVnu6Bb3F96V57pylRfGilUgfPl23EvwCYvQldg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAkaiJ2TFXq-960OF0sZRS0uoApV6c-19CFfFaUlS1L_Ir2LGLxoQ3HrxwR75MTuzM-N5fABvYxWFwreha5myLg_xkKNb7lrJGbc0vFJRv_PHSbR7xD8ch8dr8LPthaGyynZPrDZqPVP0j3zAhERLI2UkBrYpizgcjd-fX7iEIEWZ1hZOI2tgFvRWNW6safLYN1c_MJybb-2NcO03GRsnX3Z23QZxwFW4mS9cZVju51LbQOeS5pLYOGJ5qAPm8ZxxzUQmNfNMEGv8IiGEiqxQglmeGROj8uB9b8G6QCvJe7C-nUwOp134F7AKus1Hi-hGYRzVZfhBEHuD4vTbHE0rtXn6qwbyL6_3z-LNa9ZwfB_uNW6sM6zl7gGsmfIh3K6BLa8ewXjn04EY-k6iCyqrdi6LzJlOhk5lGd3PlDOn00XpTEfJtjtCNbg02iEkMCe5WBYo_lTg8RiOboR_T6BXzkrzDByKIxkzYRBS7tZmUvHc0zKQXGZ-HkR9eNeyKVXNOHNC1ThLMawhpqbXmdqHzY76vB7j8Q-6jZbjaaPM8_S36PXhTXcZ1ZByK1lpZsuKJsJIWXq8D0_rBeoeFBDolxBhH-TK0nUENOJ79UpZfK1GfVP2BQNk__n_3-s13EFlSA_2Jvsv4C5DWau67tkG9Bbfl-Yl-k2L_FUjkA6c3LQO_ALm-imi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COL7A1+Editing+via+RNA+Trans+-Splicing+in+RDEB-Derived+Skin+Equivalents&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Liemberger%2C+Bernadette&rft.au=Bischof%2C+Johannes&rft.au=Ablinger%2C+Michael&rft.au=Hainzl%2C+Stefan&rft.date=2023-02-22&rft.eissn=1422-0067&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fijms24054341&rft_id=info%3Apmid%2F36901775&rft.externalDocID=36901775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |