Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms
•Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, L...
Saved in:
| Published in | Computers and electronics in agriculture Vol. 184; p. 106085 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.05.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1699 1872-7107 1872-7107 |
| DOI | 10.1016/j.compag.2021.106085 |
Cover
| Abstract | •Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, Landrace, and Large White breeds.
A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson’s correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study’s findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs. |
|---|---|
| AbstractList | A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson's correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study's findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs. •Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, Landrace, and Large White breeds. A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson’s correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study’s findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs. |
| ArticleNumber | 106085 |
| Author | Tiezzi, Francesco He, Yuqing Maltecca, Christian Howard, Jeremy |
| Author_xml | – sequence: 1 givenname: Yuqing surname: He fullname: He, Yuqing email: yhe22@ncsu.edu organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA – sequence: 2 givenname: Francesco surname: Tiezzi fullname: Tiezzi, Francesco organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA – sequence: 3 givenname: Jeremy surname: Howard fullname: Howard, Jeremy organization: Smithfield Premium Genetics, Rose Hill, NC 28458, USA – sequence: 4 givenname: Christian surname: Maltecca fullname: Maltecca, Christian organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA |
| BookMark | eNqNkc1q3DAURkVJoJOkb9CFoZtuPJH8J6mLQglpUwi0i2Qt5OtrjwZbciU5w7x9ZdxVFm1XQh_nu-geXZEL6ywS8p7RPaOsuT3uwU2zHvYFLViKGirqN2THBC9yzii_ILuEiZw1Ur4lVyEcabpLwXcEfnrsDERjh6x13Tk7oRkOMTM2G7w7rfFshpD13k1Zj4ldQTzoF-N81umosyWs2aThYCxmI2pv10CPg_MmHqZwQy57PQZ89-e8Js9f75_uHvLHH9--3315zKFiZcwB2rLGUjSCSyooRyGLHqAEqGjdNz10mgPrmZQMW17XvCxaWbVtzXmHZQ3lNam3uYud9fmkx1HN3kzanxWjajWljmozpVZTajOVeh-33uzdrwVDVJMJgOOoLbolqKIpm6oUjMmEfniFHt3ibdpKFXUhRILoSn3aKPAuBI-9AhN1NM5Gr834r9dUr8r_ucTnrYbJ8ItBrwIYtJB-zCNE1Tnz9wG_AXWztZ0 |
| CitedBy_id | crossref_primary_10_1016_j_biosystemseng_2023_02_010 crossref_primary_10_1016_j_jia_2024_08_014 crossref_primary_10_3390_s23115092 crossref_primary_10_3390_agriculture13102027 crossref_primary_10_1016_j_biosystemseng_2022_05_016 crossref_primary_10_3390_ani14010031 crossref_primary_10_1093_jas_skad337 crossref_primary_10_3390_agriculture13020253 crossref_primary_10_3390_ani12101234 crossref_primary_10_35633_inmateh_69_09 crossref_primary_10_1016_j_jclepro_2021_129956 crossref_primary_10_3390_ani13091555 crossref_primary_10_1016_j_aiia_2024_03_001 crossref_primary_10_1016_j_jclepro_2025_145301 crossref_primary_10_3390_ani15020231 crossref_primary_10_1017_S0007485324000932 crossref_primary_10_1016_j_compag_2024_109791 crossref_primary_10_1016_j_compag_2023_107790 crossref_primary_10_1038_s41598_023_46925_z crossref_primary_10_3390_agronomy13020328 crossref_primary_10_37496_rbz5320240001 crossref_primary_10_1016_j_postharvbio_2022_111848 crossref_primary_10_35633_inmateh_70_08 |
| Cites_doi | 10.1016/j.compag.2018.03.001 10.2527/jas.2013-7338 10.1093/jas/skaa216 10.1093/jas/sky014 10.1002/bimj.200410135 10.15232/pas.2015-01498 10.1038/nrendo.2016.150 10.1093/jas/skaa087 10.1007/s13748-011-0008-0 10.2527/jas.2009-2700 10.1051/animres:19990402 10.1111/j.2517-6161.1996.tb02080.x 10.2527/jas.2014-7337 10.1016/0301-6226(94)90097-3 10.2527/2002.803568x 10.1016/j.biosystemseng.2018.02.005 10.3389/fgene.2020.00923 10.13031/2013.19421 10.1109/MCOM.2019.1800155 10.1016/j.livsci.2019.103904 10.2527/jas.2010-2892 10.1016/j.compag.2013.06.002 10.1002/bjs.10895 10.1023/A:1010933404324 10.1186/s40168-020-00888-9 10.1371/journal.pone.0205572 10.1038/s41598-019-43031-x 10.21105/joss.00296 10.1017/S1751731107000572 10.1093/jas/sky418 10.2527/jas.2016-0392 10.1049/cp:19991218 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1016/j.eswa.2012.01.039 10.32614/CRAN.package.tfruns 10.2527/jas.2006-209 10.1109/ICDAR.1995.598994 10.1109/NNSP.1999.788120 10.1016/j.smallrumres.2009.04.003 10.1029/2012JD017864 10.1016/j.livsci.2019.03.007 10.1016/j.livsci.2014.05.036 10.1016/j.ins.2011.12.028 10.3168/jds.2014-8925 10.1109/34.709601 10.1007/s11250-016-1206-3 10.2527/2001.794803x 10.1080/10473289.1997.10463925 10.18637/jss.v077.i01 10.1016/j.neucom.2006.06.015 10.1007/978-981-10-7956-6_6 10.1038/323533a0 10.1016/j.applanim.2011.06.018 10.1016/j.compag.2014.06.003 10.1162/neco.1997.9.8.1735 10.2527/2005.835969x |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Copyright Elsevier BV May 2021 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright Elsevier BV May 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.compag.2021.106085 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| ExternalDocumentID | 10.1016/j.compag.2021.106085 10_1016_j_compag_2021_106085 S0168169921001034 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEXOQ AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAYWO AAYXX ACIEU ACLOT ACMHX ACVFH ADCNI ADSLC AEUPX AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 7SP 8FD AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c413t-ccb35e3868790807e892fcc3cc405f6fcda7c1f1991eb755732b94bb577de35c3 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1699 1872-7107 |
| IngestDate | Sun Oct 26 03:59:29 EDT 2025 Wed Oct 01 14:21:17 EDT 2025 Sun Jul 13 02:55:46 EDT 2025 Thu Oct 02 04:38:06 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Sun Apr 06 06:54:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LO RPB Body weight Model_FB LR DFI FN FP LW DNV DR YI RNN BW FIRE LASSO G_PS I_PS Model_Age_FB_FI ML Pigs Acc IG_PS Feeding behavior BS_IG_PS LSTM ROC DOT RFID RMSE Model_Age_FB Se RF Machine learning Model_Age TN TP Sp |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-ccb35e3868790807e892fcc3cc405f6fcda7c1f1991eb755732b94bb577de35c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168169921001034 |
| PQID | 2528881109 |
| PQPubID | 2045491 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compag_2021_106085 proquest_miscellaneous_2636438119 proquest_journals_2528881109 crossref_citationtrail_10_1016_j_compag_2021_106085 crossref_primary_10_1016_j_compag_2021_106085 elsevier_sciencedirect_doi_10_1016_j_compag_2021_106085 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Bergmeir, Benítez (b0030) 2012; 191 Ranstam, Cook (b0290) 2018; 105 Bergamaschi, Tiezzi, Howard, Huang, Gray, Schillebeeckx, McNulty, Maltecca (b0025) 2020; 8 Hoens, Polikar, Chawla (b0160) 2012 Jiao, Maltecca, Gray, Cassady (b0185) 2014; 92 Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings. International Conference on Learning Representations, ICLR. Comrie (b0070) 1997; 47 de Freitas, N., Milo, M., Clarkson, P., Niranjan, M., Gee, A., 1999. Sequential support vector machines, in: Neural Networks for Signal Processing – Proceedings of the IEEE Workshop. IEEE, pp. 31–40. Rumelhart, Hinton, Williams (b0300) 1986; 323 Fluss, Faraggi, Reiser (b0115) 2005; 47 Ho (b0145) 1998; 20 Labroue, Guéblez, Sellier, Meunier-Salaün (b0235) 1994; 40 Hua, Zhao, Li, Chen, Liu, Zhang (b0170) 2019; 57 Palmieri, de Carvalho, Tosto, Leite, Santos, Borja, Azevêdo, Júnior, Leite, de Almeida Rufino (b0280) 2017; 49 Young, Cai, Dekkers (b0345) 2011; 89 Kuhn (b0215) 2012 Hyun, Ellis (b0175) 2002; 80 Tibshirani (b0330) 1996; 58 Hammami, Lee, Ouarda, Lee (b0135) 2012; 117 Fernández, Fàbrega, Soler, Tibau, Ruiz, Puigvert, Manteca (b0100) 2011; 134 Ben Taieb, Bontempi, Atiya, Sorjamaa (b0020) 2012; 39 Breiman (b0035) 2001; 45 Casey, Stern, Dekkers (b0055) 2005; 83 Gal, Ghahramani (b0120) 2015 Maselyne, Saeys, Van (b0270) 2015 . Brown-Brandl, Rohrer, Eigenberg (b0045) 2013; 96 Fernandes, Dórea, Fitzgerald, Herring, Rosa (b0095) 2019; 97 Hastie, T., Stanford, J.Q., 2016. Glmnet Vignette. Chizzotti, Machado, Valente, Pereira, Campos, Tomich, Coelho, Ribas (b0060) 2015; 98 Liaw, Wiener (b0245) 2002; 2 Maltecca, Lu, Schillebeeckx, McNulty, Schwab, Shull, Tiezzi (b0260) 2019; 9 Hochreiter, Schmidhuber (b0155) 1997; 9 Jiao, Maltecca, Gray, Cassady (b0190) 2014; 92 Magowan, McCann, Beattie, McCracken, Henry, Smyth, Bradford, Gordon, Mayne (b0250) 2007; 1 Youden (b0340) 1950; 3 González-Recio, Rosa, Gianola (b0130) 2014; 166 Silvestre, Cruz, Owens, Pereira, Hicks, Millen (b0310) 2019; 223 Hosmer, Lemeshow, Sturdivant (b0165) 2013 Shahinfar, Kahn (b0305) 2018; 148 Que, Cabezon, Schinckel (b0285) 2016; 32 Sorjamaa, Hao, Reyhani, Ji, Lendasse (b0320) 2007; 70 Labroue, Guéblez, Meunier-Salaün, Sellier (b0230) 1999; 48 Andretta, Pomar, Kipper, Hauschild, Rivest (b0010) 2016; 94 Arnold (b0015) 2017; 2 Desnoyers, Béchet, Duvaux-Ponter, Morand-Fehr, Giger-Reverdin (b0085) 2009; 83 Kumar, S., Singh, S.K., Singh, R., Singh, A.K., Kumar, S., Singh, S.K., Singh, R., Singh, A.K., 2017. Deep Learning Framework for Recognition of Cattle Using Muzzle Point Image Pattern. In: Animal Biometrics. Springer Singapore, pp. 163–195. Wright, Ziegler (b0335) 2017; 77 Allaire, J.J., 2018. tfruns: Training Run Tools for “TensorFlow.”. Kuhn, Wickham (b0220) 2018 Eissen, Kanis, Merks (b0090) 1998; 14 Rauw, Soler, Tibau, Reixach, Gomez Raya (b0295) 2006; 84 Kelly, Sleator, Murphy, Conroy, Judge, Berry (b0205) 2020; 98 Bresolin, Dórea (b0040) 2020 Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction with LSTM, in: IEE Conference Publication. IEE, pp. 850–855. Cominotte, Fernandes, Dórea, Rosa, Ladeira, van Cleef, Pereira, Baldassini, Neto (b0065) 2020; 232 Malhotra, Vig, Shroff, Agarwal (b0255) 2015 Carcò, Gallo, Bona, Latorre, Fondevila, Schiavon (b0050) 2018; 13 Kelly, McGee, Crews, Sweeney, Boland, Kenny (b0200) 2010; 88 Finkenzeller (b0110) 2010 Marinello, F., Pezzuolo, A., Cillis, D., Gasparini, F., Sartori, L., 2015. Application of Kinect-Sensor for three-dimensional body measurements of cows. In: Proc. 7th Eur. Precis. Livest. Farming, ECPLF. Ho, T.K., 1995. Random decision forests, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR. IEEE Computer Society, pp. 278–282. Morota, Ventura, Silva, Koyama, Fernando (b0275) 2018; 96 Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0195) 2014; 107 Lewis, Emmans (b0240) 2020; 98 Smith, Pearson (b0315) 1986; 14 Cross, Rohrer, Brown-Brandl, Cassady, Keel (b0075) 2018; 173 Hyun, Ellis (b0180) 2001; 79 Fetissov (b0105) 2017; 13 Taylor, Moore, Thiessen (b0325) 1986; 42 10.1016/j.compag.2021.106085_b0225 Carcò (10.1016/j.compag.2021.106085_b0050) 2018; 13 Hammami (10.1016/j.compag.2021.106085_b0135) 2012; 117 Rumelhart (10.1016/j.compag.2021.106085_b0300) 1986; 323 Shahinfar (10.1016/j.compag.2021.106085_b0305) 2018; 148 Lewis (10.1016/j.compag.2021.106085_b0240) 2020; 98 Tibshirani (10.1016/j.compag.2021.106085_b0330) 1996; 58 10.1016/j.compag.2021.106085_b0265 Hosmer (10.1016/j.compag.2021.106085_b0165) 2013 Ranstam (10.1016/j.compag.2021.106085_b0290) 2018; 105 Taylor (10.1016/j.compag.2021.106085_b0325) 1986; 42 Breiman (10.1016/j.compag.2021.106085_b0035) 2001; 45 Casey (10.1016/j.compag.2021.106085_b0055) 2005; 83 Hyun (10.1016/j.compag.2021.106085_b0175) 2002; 80 Magowan (10.1016/j.compag.2021.106085_b0250) 2007; 1 Chizzotti (10.1016/j.compag.2021.106085_b0060) 2015; 98 Brown-Brandl (10.1016/j.compag.2021.106085_b0045) 2013; 96 Hua (10.1016/j.compag.2021.106085_b0170) 2019; 57 Morota (10.1016/j.compag.2021.106085_b0275) 2018; 96 10.1016/j.compag.2021.106085_b0140 Desnoyers (10.1016/j.compag.2021.106085_b0085) 2009; 83 Kashiha (10.1016/j.compag.2021.106085_b0195) 2014; 107 Jiao (10.1016/j.compag.2021.106085_b0190) 2014; 92 Smith (10.1016/j.compag.2021.106085_b0315) 1986; 14 Labroue (10.1016/j.compag.2021.106085_b0230) 1999; 48 10.1016/j.compag.2021.106085_b0210 Bergmeir (10.1016/j.compag.2021.106085_b0030) 2012; 191 Ben Taieb (10.1016/j.compag.2021.106085_b0020) 2012; 39 Que (10.1016/j.compag.2021.106085_b0285) 2016; 32 Arnold (10.1016/j.compag.2021.106085_b0015) 2017; 2 Gal (10.1016/j.compag.2021.106085_b0120) 2015 Kuhn (10.1016/j.compag.2021.106085_b0220) 2018 Rauw (10.1016/j.compag.2021.106085_b0295) 2006; 84 Kelly (10.1016/j.compag.2021.106085_b0205) 2020; 98 Labroue (10.1016/j.compag.2021.106085_b0235) 1994; 40 Kuhn (10.1016/j.compag.2021.106085_b0215) 2012 10.1016/j.compag.2021.106085_b0005 Jiao (10.1016/j.compag.2021.106085_b0185) 2014; 92 10.1016/j.compag.2021.106085_b0125 Maltecca (10.1016/j.compag.2021.106085_b0260) 2019; 9 Youden (10.1016/j.compag.2021.106085_b0340) 1950; 3 González-Recio (10.1016/j.compag.2021.106085_b0130) 2014; 166 Young (10.1016/j.compag.2021.106085_b0345) 2011; 89 Fernández (10.1016/j.compag.2021.106085_b0100) 2011; 134 Hochreiter (10.1016/j.compag.2021.106085_b0155) 1997; 9 Comrie (10.1016/j.compag.2021.106085_b0070) 1997; 47 Finkenzeller (10.1016/j.compag.2021.106085_b0110) 2010 Fernandes (10.1016/j.compag.2021.106085_b0095) 2019; 97 Hyun (10.1016/j.compag.2021.106085_b0180) 2001; 79 Cross (10.1016/j.compag.2021.106085_b0075) 2018; 173 10.1016/j.compag.2021.106085_b0080 Hoens (10.1016/j.compag.2021.106085_b0160) 2012 Palmieri (10.1016/j.compag.2021.106085_b0280) 2017; 49 Ho (10.1016/j.compag.2021.106085_b0145) 1998; 20 Malhotra (10.1016/j.compag.2021.106085_b0255) 2015 Andretta (10.1016/j.compag.2021.106085_b0010) 2016; 94 Fluss (10.1016/j.compag.2021.106085_b0115) 2005; 47 Wright (10.1016/j.compag.2021.106085_b0335) 2017; 77 Kelly (10.1016/j.compag.2021.106085_b0200) 2010; 88 Sorjamaa (10.1016/j.compag.2021.106085_b0320) 2007; 70 Fetissov (10.1016/j.compag.2021.106085_b0105) 2017; 13 Liaw (10.1016/j.compag.2021.106085_b0245) 2002; 2 Eissen (10.1016/j.compag.2021.106085_b0090) 1998; 14 Silvestre (10.1016/j.compag.2021.106085_b0310) 2019; 223 Bergamaschi (10.1016/j.compag.2021.106085_b0025) 2020; 8 Bresolin (10.1016/j.compag.2021.106085_b0040) 2020 Cominotte (10.1016/j.compag.2021.106085_b0065) 2020; 232 10.1016/j.compag.2021.106085_b0150 Maselyne (10.1016/j.compag.2021.106085_b0270) 2015 |
| References_xml | – reference: Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings. International Conference on Learning Representations, ICLR. – volume: 70 start-page: 2861 year: 2007 end-page: 2869 ident: b0320 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing – volume: 47 start-page: 653 year: 1997 end-page: 663 ident: b0070 article-title: Comparing neural networks and regression models for ozone forecasting publication-title: J. Air Waste Manag. Assoc. – volume: 80 start-page: 568 year: 2002 end-page: 574 ident: b0175 article-title: Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs publication-title: J. Anim. Sci. – volume: 173 start-page: 124 year: 2018 end-page: 133 ident: b0075 article-title: Feed-forward and generalised regression neural networks in modelling feeding behaviour of pigs in the grow-finish phase publication-title: Biosyst. Eng. – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: b0020 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. – volume: 42 start-page: 11 year: 1986 end-page: 18 ident: b0325 article-title: Voluntary food intake in relation to body weight among British breeds of cattle publication-title: Anim. Prod. – volume: 57 start-page: 114 year: 2019 end-page: 119 ident: b0170 article-title: Deep learning with long short-term memory for time series prediction publication-title: IEEE Commun. Mag. – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: b0145 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 43 year: 1986 end-page: 50 ident: b0315 article-title: Comparative voluntary feed intakes, growth performance, carcass composition, and meat quality of large white, Landrace, and duroc pigs. New Zeal publication-title: J. Exp. Agric. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0300 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 2015 ident: b0270 article-title: Nuffel Review: Quantifying animal feeding behaviour with a focus on pigs publication-title: Physiol. Behav. – volume: 117 start-page: n/a-n/a year: 2012 ident: b0135 article-title: Predictor selection for downscaling GCM data with LASSO publication-title: J. Geophys. Res. [Atmos.] – volume: 9 year: 2019 ident: b0260 article-title: Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms publication-title: Sci. Rep. – volume: 134 start-page: 109 year: 2011 end-page: 120 ident: b0100 article-title: Feeding strategy in group-housed growing pigs of four different breeds publication-title: Appl. Anim. Behav. Sci. – year: 2013 ident: b0165 article-title: Applied Logistic Regression – reference: Kumar, S., Singh, S.K., Singh, R., Singh, A.K., Kumar, S., Singh, S.K., Singh, R., Singh, A.K., 2017. Deep Learning Framework for Recognition of Cattle Using Muzzle Point Image Pattern. In: Animal Biometrics. Springer Singapore, pp. 163–195. – volume: 2 start-page: 296 year: 2017 ident: b0015 article-title: kerasR: R interface to the keras deep learning library publication-title: J. Open Source Softw. – volume: 92 start-page: 2377 year: 2014 end-page: 2386 ident: b0185 article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: I. Genetic parameter estimation and accuracy of genomic prediction publication-title: J. Anim. Sci. – volume: 89 start-page: 639 year: 2011 end-page: 647 ident: b0345 article-title: Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in yorkshire swine publication-title: J. Anim. Sci. – year: 2010 ident: b0110 article-title: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-field Communication – volume: 32 start-page: 507 year: 2016 end-page: 515 ident: b0285 article-title: CASE STUDY: Use of statistics to quantify the magnitude of errors in the sorting of pigs for marketing in 3 finishing barns publication-title: Prof. Anim. Sci. – volume: 47 start-page: 458 year: 2005 end-page: 472 ident: b0115 article-title: Estimation of the Youden Index and its associated cutoff point publication-title: Biometrical J. – start-page: 1027 year: 2015 end-page: 1035 ident: b0120 article-title: A theoretically grounded application of dropout in recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0330 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 191 start-page: 192 year: 2012 end-page: 213 ident: b0030 article-title: On the use of cross-validation for time series predictor evaluation publication-title: Inf. Sci. (Ny) – volume: 223 start-page: 108 year: 2019 end-page: 115 ident: b0310 article-title: Predicting feedlot cattle performance from intake of dry matter and NEg early in the feeding period publication-title: Livest. Sci. – volume: 107 start-page: 38 year: 2014 end-page: 44 ident: b0195 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron. Agric. – volume: 98 year: 2020 ident: b0240 article-title: The relationship between feed intake and liveweight in domestic animals publication-title: J. Anim. Sci. – volume: 1 start-page: 1219 year: 2007 end-page: 1226 ident: b0250 article-title: Investigation of growth rate variation between commercial pig herds publication-title: Animal – volume: 166 start-page: 217 year: 2014 end-page: 231 ident: b0130 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. – start-page: 89 year: 2015 end-page: 94 ident: b0255 article-title: Long short term memory networks for anomaly detection in time series publication-title: Proc. Presses universitaires de Louvain – volume: 14 start-page: 667 year: 1998 end-page: 673 ident: b0090 article-title: Algorithms for identifying errors in individual feed intake data of growing pigs in group-housing publication-title: Appl. Eng. Agric. – volume: 96 start-page: 246 year: 2013 end-page: 252 ident: b0045 article-title: Analysis of feeding behavior of group housed growing–finishing pigs publication-title: Comput. Electron. Agric. – start-page: 3 year: 2018 ident: b0220 article-title: recipes: Preprocessing Tools to Create Design Matrices publication-title: R package version – volume: 48 start-page: 247 year: 1999 end-page: 261 ident: b0230 article-title: Feed intake behaviour of group-housed Piétrain and Large White growing pigs publication-title: Anim. Res. – volume: 97 start-page: 496 year: 2019 end-page: 508 ident: b0095 article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision publication-title: J. Anim. Sci. – volume: 83 start-page: 58 year: 2009 end-page: 63 ident: b0085 article-title: Comparison of video recording and a portable electronic device for measuring the feeding behaviour of individually housed dairy goats publication-title: Small Rumin. Res. – year: 2020 ident: b0040 article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems publication-title: Front. Genet. – volume: 94 start-page: 3042 year: 2016 end-page: 3050 ident: b0010 article-title: Feeding behavior of growing–finishing pigs reared under precision feeding strategies1 publication-title: J. Anim. Sci. – volume: 88 start-page: 3214 year: 2010 end-page: 3225 ident: b0200 article-title: Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake publication-title: J. Anim. Sci. – reference: Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction with LSTM, in: IEE Conference Publication. IEE, pp. 850–855. – volume: 8 start-page: 110 year: 2020 ident: b0025 article-title: Gut microbiome composition differences among breeds impact feed efficiency in swine publication-title: Microbiome – reference: Ho, T.K., 1995. Random decision forests, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR. IEEE Computer Society, pp. 278–282. – reference: Hastie, T., Stanford, J.Q., 2016. Glmnet Vignette. – year: 2012 ident: b0160 article-title: Learning from streaming data with concept drift and imbalance: an overview publication-title: Prog. Artif. Intell. – volume: 98 start-page: 3438 year: 2015 end-page: 3442 ident: b0060 article-title: Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle publication-title: J. Dairy Sci. – volume: 96 start-page: 1540 year: 2018 end-page: 1550 ident: b0275 article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture publication-title: J. Anim. Sci. – volume: 49 start-page: 389 year: 2017 end-page: 395 ident: b0280 article-title: Feeding behavior of finishing goats fed diets containing detoxified castor meal, co-product of the biodiesel industry publication-title: Trop. Anim. Health Prod. – year: 2012 ident: b0215 article-title: The Caret Package – volume: 40 start-page: 303 year: 1994 end-page: 312 ident: b0235 article-title: Feeding behaviour of group-housed large white and landrace pigs in french central test stations publication-title: Livest. Prod. Sci. – volume: 83 start-page: 969 year: 2005 end-page: 982 ident: b0055 article-title: Identification of errors and factors associated with errors in data from electronic swine feeders publication-title: J. Anim. Sci. – volume: 13 year: 2018 ident: b0050 article-title: The influence of feeding behaviour on growth performance, carcass and meat characteristics of growing pigs publication-title: PLoS One – volume: 98 start-page: 1 year: 2020 end-page: 10 ident: b0205 article-title: Large variability in feeding behavior among crossbred growing cattle publication-title: J. Anim. Sci. – reference: Allaire, J.J., 2018. tfruns: Training Run Tools for “TensorFlow.”. – reference: de Freitas, N., Milo, M., Clarkson, P., Niranjan, M., Gee, A., 1999. Sequential support vector machines, in: Neural Networks for Signal Processing – Proceedings of the IEEE Workshop. IEEE, pp. 31–40. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0245 article-title: Classification and regression by randomForest publication-title: R news – volume: 84 start-page: 3404 year: 2006 end-page: 3409 ident: b0295 article-title: Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows1 publication-title: J. Anim. Sci. – volume: 105 year: 2018 ident: b0290 article-title: LASSO regression publication-title: Br. J. Surg. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0155 article-title: Long short-term memory publication-title: Neural Comput. – reference: Marinello, F., Pezzuolo, A., Cillis, D., Gasparini, F., Sartori, L., 2015. Application of Kinect-Sensor for three-dimensional body measurements of cows. In: Proc. 7th Eur. Precis. Livest. Farming, ECPLF. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0035 article-title: Random forests publication-title: Mach. Learn. – volume: 148 start-page: 72 year: 2018 end-page: 81 ident: b0305 article-title: Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep publication-title: Comput. Electron. Agric. – volume: 13 start-page: 11 year: 2017 end-page: 25 ident: b0105 article-title: Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour publication-title: Nat. Rev. Endocrinol. – reference: . – volume: 77 start-page: 1 year: 2017 end-page: 17 ident: b0335 article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. – volume: 232 start-page: 103904 year: 2020 ident: b0065 article-title: Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases publication-title: Livest. Sci. – volume: 92 start-page: 2846 year: 2014 end-page: 2860 ident: b0190 article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association publication-title: J. Anim. Sci. – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: b0340 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 79 start-page: 803 year: 2001 end-page: 810 ident: b0180 article-title: Effect of group size and feeder type on growth performance and feeding patterns in growing pigs publication-title: J. Anim. Sci. – volume: 42 start-page: 11 year: 1986 ident: 10.1016/j.compag.2021.106085_b0325 article-title: Voluntary food intake in relation to body weight among British breeds of cattle publication-title: Anim. Prod. – volume: 148 start-page: 72 year: 2018 ident: 10.1016/j.compag.2021.106085_b0305 article-title: Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.001 – volume: 92 start-page: 2377 year: 2014 ident: 10.1016/j.compag.2021.106085_b0185 article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: I. Genetic parameter estimation and accuracy of genomic prediction publication-title: J. Anim. Sci. doi: 10.2527/jas.2013-7338 – ident: 10.1016/j.compag.2021.106085_b0140 – volume: 98 start-page: 1 year: 2020 ident: 10.1016/j.compag.2021.106085_b0205 article-title: Large variability in feeding behavior among crossbred growing cattle publication-title: J. Anim. Sci. doi: 10.1093/jas/skaa216 – volume: 96 start-page: 1540 year: 2018 ident: 10.1016/j.compag.2021.106085_b0275 article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture publication-title: J. Anim. Sci. doi: 10.1093/jas/sky014 – volume: 47 start-page: 458 year: 2005 ident: 10.1016/j.compag.2021.106085_b0115 article-title: Estimation of the Youden Index and its associated cutoff point publication-title: Biometrical J. doi: 10.1002/bimj.200410135 – volume: 32 start-page: 507 year: 2016 ident: 10.1016/j.compag.2021.106085_b0285 article-title: CASE STUDY: Use of statistics to quantify the magnitude of errors in the sorting of pigs for marketing in 3 finishing barns publication-title: Prof. Anim. Sci. doi: 10.15232/pas.2015-01498 – volume: 13 start-page: 11 year: 2017 ident: 10.1016/j.compag.2021.106085_b0105 article-title: Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2016.150 – volume: 98 year: 2020 ident: 10.1016/j.compag.2021.106085_b0240 article-title: The relationship between feed intake and liveweight in domestic animals publication-title: J. Anim. Sci. doi: 10.1093/jas/skaa087 – year: 2012 ident: 10.1016/j.compag.2021.106085_b0160 article-title: Learning from streaming data with concept drift and imbalance: an overview publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-011-0008-0 – volume: 88 start-page: 3214 year: 2010 ident: 10.1016/j.compag.2021.106085_b0200 article-title: Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake publication-title: J. Anim. Sci. doi: 10.2527/jas.2009-2700 – ident: 10.1016/j.compag.2021.106085_b0210 – volume: 48 start-page: 247 year: 1999 ident: 10.1016/j.compag.2021.106085_b0230 article-title: Feed intake behaviour of group-housed Piétrain and Large White growing pigs publication-title: Anim. Res. doi: 10.1051/animres:19990402 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.compag.2021.106085_b0330 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 92 start-page: 2846 year: 2014 ident: 10.1016/j.compag.2021.106085_b0190 article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association publication-title: J. Anim. Sci. doi: 10.2527/jas.2014-7337 – year: 2013 ident: 10.1016/j.compag.2021.106085_b0165 – volume: 40 start-page: 303 year: 1994 ident: 10.1016/j.compag.2021.106085_b0235 article-title: Feeding behaviour of group-housed large white and landrace pigs in french central test stations publication-title: Livest. Prod. Sci. doi: 10.1016/0301-6226(94)90097-3 – volume: 80 start-page: 568 year: 2002 ident: 10.1016/j.compag.2021.106085_b0175 article-title: Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs publication-title: J. Anim. Sci. doi: 10.2527/2002.803568x – start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.compag.2021.106085_b0220 article-title: recipes: Preprocessing Tools to Create Design Matrices publication-title: R package version – volume: 173 start-page: 124 year: 2018 ident: 10.1016/j.compag.2021.106085_b0075 article-title: Feed-forward and generalised regression neural networks in modelling feeding behaviour of pigs in the grow-finish phase publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.02.005 – year: 2020 ident: 10.1016/j.compag.2021.106085_b0040 article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems publication-title: Front. Genet. doi: 10.3389/fgene.2020.00923 – start-page: 1027 year: 2015 ident: 10.1016/j.compag.2021.106085_b0120 article-title: A theoretically grounded application of dropout in recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 667 year: 1998 ident: 10.1016/j.compag.2021.106085_b0090 article-title: Algorithms for identifying errors in individual feed intake data of growing pigs in group-housing publication-title: Appl. Eng. Agric. doi: 10.13031/2013.19421 – volume: 57 start-page: 114 year: 2019 ident: 10.1016/j.compag.2021.106085_b0170 article-title: Deep learning with long short-term memory for time series prediction publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800155 – volume: 232 start-page: 103904 year: 2020 ident: 10.1016/j.compag.2021.106085_b0065 article-title: Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases publication-title: Livest. Sci. doi: 10.1016/j.livsci.2019.103904 – volume: 89 start-page: 639 year: 2011 ident: 10.1016/j.compag.2021.106085_b0345 article-title: Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in yorkshire swine publication-title: J. Anim. Sci. doi: 10.2527/jas.2010-2892 – volume: 96 start-page: 246 year: 2013 ident: 10.1016/j.compag.2021.106085_b0045 article-title: Analysis of feeding behavior of group housed growing–finishing pigs publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.06.002 – year: 2010 ident: 10.1016/j.compag.2021.106085_b0110 – ident: 10.1016/j.compag.2021.106085_b0265 – volume: 105 year: 2018 ident: 10.1016/j.compag.2021.106085_b0290 article-title: LASSO regression publication-title: Br. J. Surg. doi: 10.1002/bjs.10895 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.compag.2021.106085_b0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2015 ident: 10.1016/j.compag.2021.106085_b0270 article-title: Nuffel Review: Quantifying animal feeding behaviour with a focus on pigs publication-title: Physiol. Behav. – start-page: 89 year: 2015 ident: 10.1016/j.compag.2021.106085_b0255 article-title: Long short term memory networks for anomaly detection in time series publication-title: Proc. Presses universitaires de Louvain – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.compag.2021.106085_b0245 article-title: Classification and regression by randomForest publication-title: R news – volume: 8 start-page: 110 year: 2020 ident: 10.1016/j.compag.2021.106085_b0025 article-title: Gut microbiome composition differences among breeds impact feed efficiency in swine publication-title: Microbiome doi: 10.1186/s40168-020-00888-9 – volume: 13 year: 2018 ident: 10.1016/j.compag.2021.106085_b0050 article-title: The influence of feeding behaviour on growth performance, carcass and meat characteristics of growing pigs publication-title: PLoS One doi: 10.1371/journal.pone.0205572 – volume: 9 year: 2019 ident: 10.1016/j.compag.2021.106085_b0260 article-title: Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-019-43031-x – volume: 2 start-page: 296 year: 2017 ident: 10.1016/j.compag.2021.106085_b0015 article-title: kerasR: R interface to the keras deep learning library publication-title: J. Open Source Softw. doi: 10.21105/joss.00296 – volume: 1 start-page: 1219 year: 2007 ident: 10.1016/j.compag.2021.106085_b0250 article-title: Investigation of growth rate variation between commercial pig herds publication-title: Animal doi: 10.1017/S1751731107000572 – volume: 97 start-page: 496 year: 2019 ident: 10.1016/j.compag.2021.106085_b0095 article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision publication-title: J. Anim. Sci. doi: 10.1093/jas/sky418 – volume: 94 start-page: 3042 year: 2016 ident: 10.1016/j.compag.2021.106085_b0010 article-title: Feeding behavior of growing–finishing pigs reared under precision feeding strategies1 publication-title: J. Anim. Sci. doi: 10.2527/jas.2016-0392 – ident: 10.1016/j.compag.2021.106085_b0125 doi: 10.1049/cp:19991218 – volume: 3 start-page: 32 year: 1950 ident: 10.1016/j.compag.2021.106085_b0340 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 39 start-page: 7067 year: 2012 ident: 10.1016/j.compag.2021.106085_b0020 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.039 – ident: 10.1016/j.compag.2021.106085_b0005 doi: 10.32614/CRAN.package.tfruns – volume: 84 start-page: 3404 year: 2006 ident: 10.1016/j.compag.2021.106085_b0295 article-title: Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows1 publication-title: J. Anim. Sci. doi: 10.2527/jas.2006-209 – year: 2012 ident: 10.1016/j.compag.2021.106085_b0215 – ident: 10.1016/j.compag.2021.106085_b0150 doi: 10.1109/ICDAR.1995.598994 – ident: 10.1016/j.compag.2021.106085_b0080 doi: 10.1109/NNSP.1999.788120 – volume: 83 start-page: 58 year: 2009 ident: 10.1016/j.compag.2021.106085_b0085 article-title: Comparison of video recording and a portable electronic device for measuring the feeding behaviour of individually housed dairy goats publication-title: Small Rumin. Res. doi: 10.1016/j.smallrumres.2009.04.003 – volume: 117 start-page: n/a-n/a year: 2012 ident: 10.1016/j.compag.2021.106085_b0135 article-title: Predictor selection for downscaling GCM data with LASSO publication-title: J. Geophys. Res. [Atmos.] doi: 10.1029/2012JD017864 – volume: 223 start-page: 108 year: 2019 ident: 10.1016/j.compag.2021.106085_b0310 article-title: Predicting feedlot cattle performance from intake of dry matter and NEg early in the feeding period publication-title: Livest. Sci. doi: 10.1016/j.livsci.2019.03.007 – volume: 166 start-page: 217 year: 2014 ident: 10.1016/j.compag.2021.106085_b0130 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. doi: 10.1016/j.livsci.2014.05.036 – volume: 191 start-page: 192 year: 2012 ident: 10.1016/j.compag.2021.106085_b0030 article-title: On the use of cross-validation for time series predictor evaluation publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2011.12.028 – volume: 98 start-page: 3438 year: 2015 ident: 10.1016/j.compag.2021.106085_b0060 article-title: Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8925 – volume: 14 start-page: 43 year: 1986 ident: 10.1016/j.compag.2021.106085_b0315 article-title: Comparative voluntary feed intakes, growth performance, carcass composition, and meat quality of large white, Landrace, and duroc pigs. New Zeal publication-title: J. Exp. Agric. – volume: 20 start-page: 832 year: 1998 ident: 10.1016/j.compag.2021.106085_b0145 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 49 start-page: 389 year: 2017 ident: 10.1016/j.compag.2021.106085_b0280 article-title: Feeding behavior of finishing goats fed diets containing detoxified castor meal, co-product of the biodiesel industry publication-title: Trop. Anim. Health Prod. doi: 10.1007/s11250-016-1206-3 – volume: 79 start-page: 803 year: 2001 ident: 10.1016/j.compag.2021.106085_b0180 article-title: Effect of group size and feeder type on growth performance and feeding patterns in growing pigs publication-title: J. Anim. Sci. doi: 10.2527/2001.794803x – volume: 47 start-page: 653 year: 1997 ident: 10.1016/j.compag.2021.106085_b0070 article-title: Comparing neural networks and regression models for ozone forecasting publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.1997.10463925 – volume: 77 start-page: 1 year: 2017 ident: 10.1016/j.compag.2021.106085_b0335 article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. doi: 10.18637/jss.v077.i01 – volume: 70 start-page: 2861 year: 2007 ident: 10.1016/j.compag.2021.106085_b0320 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.06.015 – ident: 10.1016/j.compag.2021.106085_b0225 doi: 10.1007/978-981-10-7956-6_6 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.compag.2021.106085_b0300 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 134 start-page: 109 year: 2011 ident: 10.1016/j.compag.2021.106085_b0100 article-title: Feeding strategy in group-housed growing pigs of four different breeds publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2011.06.018 – volume: 107 start-page: 38 year: 2014 ident: 10.1016/j.compag.2021.106085_b0195 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.06.003 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.compag.2021.106085_b0155 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 83 start-page: 969 year: 2005 ident: 10.1016/j.compag.2021.106085_b0055 article-title: Identification of errors and factors associated with errors in data from electronic swine feeders publication-title: J. Anim. Sci. doi: 10.2527/2005.835969x |
| SSID | ssj0016987 |
| Score | 2.4865675 |
| Snippet | •Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting... A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106085 |
| SubjectTerms | Age agriculture Algorithms Animal behavior Body weight Decision trees Duroc electronics feed intake Feeding behavior group housing Hogs labor landraces Large White Machine learning neural networks Performance prediction Pigs Pork prediction Prediction models Recording equipment Root-mean-square errors Swine |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SzaH00HfpljQo0GO91JL18HEpDSGQkEMW0pOQxrK77ca77HoJ6a_vyI8lLYSkV1sysjTyfGN98w3AJ-Ol5ih5wjFkSYZoEp9yClXyUpcqdblrq0ScnauTWXZ6Ja_24POQC_PX-X3Lw2q52BVFcjylS4ogwhPYV5KQ9wj2Z-cX0--dfDcFQ6otF5kazSPFUA-Zcvc85j5PdAdpPt3WK3d74xaLO07n-AWcDcPtuCa_JtvGT_D3P0qOj32fl_C8R59s2pnLK9gL9Wt4Nq3WvQJHeAN4sY5nN5ENzfyyuGU37c9TNq9ZRSF7vLyaVxsW81JY2fk-NiT7s0g4ZZFLX7HrlqYZWF-XomJuUS3X8-bH9eYtzI6_XX49SfpKDAmSk2sSRC9kEEYZnRPE1MHkvEQUiIT3SlVi4TSmZaRRBa-l1IL7PPNkB7oIQqJ4B6N6WYf3wIq8dFL5wsSiPz6TPnXcI8_NlyDoY5KNQQyrYrGXKY_VMhZ24KP9tN0U2jiFtpvCMSS7XqtOpuOB9npYcNtDjQ5CWFqwB3oeDPZh--2-sVxyY0wUbx3D0e42bdR4-uLqsNxSGyVU1FNLqc1kZ1ePGu2H_-1wAKNmvQ0fCS81_rDfJn8AT3cRZg priority: 102 providerName: Unpaywall |
| Title | Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.compag.2021.106085 https://www.proquest.com/docview/2528881109 https://www.proquest.com/docview/2636438119 https://doi.org/10.1016/j.compag.2021.106085 |
| UnpaywallVersion | publishedVersion |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbQ9lD7ptmlQoVdnY8l6HZfQsG3pEmgX0pOQZNl12HiXfRBy6W_vjC0vKRRSejKWRyBG0szI-mY-Qj5oLxQLgmUsxCIrQtCZzxkcVUylKpk74zqWiK8zOZ0Xny_F5QE5G3JhEFaZbH9v0ztrnVrGSZvjVdOMv0GwonNpDMs7sgKsCVoUClkMTn7tYR4goPuUaQmnJZAe0uc6jFeH867hlMhyaJKnyKj8d_d0J_x8uGtX7vbGLRZ3PNH5U_IkhZB00o_yGTmI7XPyeFKvUxmN-IKEizVewCCkmfpleUtvuj-gtGlpDedubF419YZicgmtegdGh4x9iqhRioD4ml53WMtIE7lETd2iXq6b7c_rzUsyP__4_WyaJTqFLICn2mYheC4i11IrA3GiitqwKgQeAgRtlaxC6VTIK8RCRa-EUJx5U3iYTFVGLgJ_RQ7bZRtfE1qaygnpS43MPb4QPnfMB2b0aeRgEYoR4YMWbUi1xpHyYmEHUNmV7XVvUfe21_2IZPteq77Wxj3yapgg-8easeAO7ul5NMynTXt2Y5lgWmuswDoi7_efYbfhFYpr43IHMpJLLIqWg8zJfh3802jf_Pdo35JH-NbDLI_I4Xa9i-8gFNr6426tH5MHk09fpjN4zmcXkx-_AWXPCic |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9JD2UPqk26atCr06G0vW6xhCw7ZNQqEJ5CYkWXZcNt5lH4Rc8tszsuUlhUJKr9IIxEiah_3NfABflOOSek4z6kORFd6rzOUUUxVdyUrkVtuOJeLkVEzOi-8X_GILDodamAirTLa_t-mdtU4j46TN8bxpxr8wWFG50JrmHVlB8QgeF5zKmIHt3W5wHiih-pppgekSig_1cx3IqwN615gm0hyHxH6kVP67f7oXf-6s27m9ubbT6T1XdPQcnqUYkhz023wBW6F9CU8P6kXqoxFegf-5iH9gIqaZuFl5Q667T6CkaUmNiXccnjf1ksTqElL1HowMJfskwkZJRMTX5KoDWwaS2CVqYqf1bNGsLq-Wr-H86OvZ4SRLfAqZR1e1yrx3jAemhJIaA0UZlKaV98x7jNoqUfnSSp9XEQwVnORcMup04fA0ZRkY9-wNbLezNrwFUurKcuFKFal7XMFdbqnzVKv9wNAkFCNggxaNT83GI-fF1Ayost-m172Juje97keQbVbN-2YbD8jL4YDMH5fGoD94YOXucJ4mPdqloZwqpWIL1hF83kzjc4v_UGwbZmuUEUzErmg5yuxt7sE_7fbdf-_2E-xMzk6OzfG30x_v4Umc6TGXu7C9WqzDB4yLVu5jd-_vACJrCgw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SzaH00HfpljQo0GO91JL18HEpDSGQkEMW0pOQxrK77ca77HoJ6a_vyI8lLYSkV1sysjTyfGN98w3AJ-Ol5ih5wjFkSYZoEp9yClXyUpcqdblrq0ScnauTWXZ6Ja_24POQC_PX-X3Lw2q52BVFcjylS4ogwhPYV5KQ9wj2Z-cX0--dfDcFQ6otF5kazSPFUA-Zcvc85j5PdAdpPt3WK3d74xaLO07n-AWcDcPtuCa_JtvGT_D3P0qOj32fl_C8R59s2pnLK9gL9Wt4Nq3WvQJHeAN4sY5nN5ENzfyyuGU37c9TNq9ZRSF7vLyaVxsW81JY2fk-NiT7s0g4ZZFLX7HrlqYZWF-XomJuUS3X8-bH9eYtzI6_XX49SfpKDAmSk2sSRC9kEEYZnRPE1MHkvEQUiIT3SlVi4TSmZaRRBa-l1IL7PPNkB7oIQqJ4B6N6WYf3wIq8dFL5wsSiPz6TPnXcI8_NlyDoY5KNQQyrYrGXKY_VMhZ24KP9tN0U2jiFtpvCMSS7XqtOpuOB9npYcNtDjQ5CWFqwB3oeDPZh--2-sVxyY0wUbx3D0e42bdR4-uLqsNxSGyVU1FNLqc1kZ1ePGu2H_-1wAKNmvQ0fCS81_rDfJn8AT3cRZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+body+weight+in+growing+pigs+from+feeding+behavior+data+using+machine+learning+algorithms&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=He%2C+Yuqing&rft.au=Tiezzi%2C+Francesco&rft.au=Howard%2C+Jeremy&rft.au=Maltecca%2C+Christian&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=184&rft_id=info:doi/10.1016%2Fj.compag.2021.106085&rft.externalDocID=S0168169921001034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |