Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms

•Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, L...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 184; p. 106085
Main Authors He, Yuqing, Tiezzi, Francesco, Howard, Jeremy, Maltecca, Christian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
1872-7107
DOI10.1016/j.compag.2021.106085

Cover

Abstract •Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, Landrace, and Large White breeds. A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson’s correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study’s findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs.
AbstractList A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson's correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study's findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs.
•Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting longitudinal data.•Time dependency and the amount of data points showed effects in the prediction.•Predictive performance differed across the Duroc, Landrace, and Large White breeds. A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms (Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group-informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group-informed predictive scenario. We developed four models for each scenario: Model_Age included only age, Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior and feed intake measures on the basis of Model_Age as predictors. Pearson’s correlation, root mean squared error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in predictive performance. We also found differences in predictive performance associated with the time slices or pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study’s findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the involvement of feeding behavior data in predicting the body weight of group-housed pigs.
ArticleNumber 106085
Author Tiezzi, Francesco
He, Yuqing
Maltecca, Christian
Howard, Jeremy
Author_xml – sequence: 1
  givenname: Yuqing
  surname: He
  fullname: He, Yuqing
  email: yhe22@ncsu.edu
  organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA
– sequence: 2
  givenname: Francesco
  surname: Tiezzi
  fullname: Tiezzi, Francesco
  organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA
– sequence: 3
  givenname: Jeremy
  surname: Howard
  fullname: Howard, Jeremy
  organization: Smithfield Premium Genetics, Rose Hill, NC 28458, USA
– sequence: 4
  givenname: Christian
  surname: Maltecca
  fullname: Maltecca, Christian
  organization: Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA
BookMark eNqNkc1q3DAURkVJoJOkb9CFoZtuPJH8J6mLQglpUwi0i2Qt5OtrjwZbciU5w7x9ZdxVFm1XQh_nu-geXZEL6ywS8p7RPaOsuT3uwU2zHvYFLViKGirqN2THBC9yzii_ILuEiZw1Ur4lVyEcabpLwXcEfnrsDERjh6x13Tk7oRkOMTM2G7w7rfFshpD13k1Zj4ldQTzoF-N81umosyWs2aThYCxmI2pv10CPg_MmHqZwQy57PQZ89-e8Js9f75_uHvLHH9--3315zKFiZcwB2rLGUjSCSyooRyGLHqAEqGjdNz10mgPrmZQMW17XvCxaWbVtzXmHZQ3lNam3uYud9fmkx1HN3kzanxWjajWljmozpVZTajOVeh-33uzdrwVDVJMJgOOoLbolqKIpm6oUjMmEfniFHt3ibdpKFXUhRILoSn3aKPAuBI-9AhN1NM5Gr834r9dUr8r_ucTnrYbJ8ItBrwIYtJB-zCNE1Tnz9wG_AXWztZ0
CitedBy_id crossref_primary_10_1016_j_biosystemseng_2023_02_010
crossref_primary_10_1016_j_jia_2024_08_014
crossref_primary_10_3390_s23115092
crossref_primary_10_3390_agriculture13102027
crossref_primary_10_1016_j_biosystemseng_2022_05_016
crossref_primary_10_3390_ani14010031
crossref_primary_10_1093_jas_skad337
crossref_primary_10_3390_agriculture13020253
crossref_primary_10_3390_ani12101234
crossref_primary_10_35633_inmateh_69_09
crossref_primary_10_1016_j_jclepro_2021_129956
crossref_primary_10_3390_ani13091555
crossref_primary_10_1016_j_aiia_2024_03_001
crossref_primary_10_1016_j_jclepro_2025_145301
crossref_primary_10_3390_ani15020231
crossref_primary_10_1017_S0007485324000932
crossref_primary_10_1016_j_compag_2024_109791
crossref_primary_10_1016_j_compag_2023_107790
crossref_primary_10_1038_s41598_023_46925_z
crossref_primary_10_3390_agronomy13020328
crossref_primary_10_37496_rbz5320240001
crossref_primary_10_1016_j_postharvbio_2022_111848
crossref_primary_10_35633_inmateh_70_08
Cites_doi 10.1016/j.compag.2018.03.001
10.2527/jas.2013-7338
10.1093/jas/skaa216
10.1093/jas/sky014
10.1002/bimj.200410135
10.15232/pas.2015-01498
10.1038/nrendo.2016.150
10.1093/jas/skaa087
10.1007/s13748-011-0008-0
10.2527/jas.2009-2700
10.1051/animres:19990402
10.1111/j.2517-6161.1996.tb02080.x
10.2527/jas.2014-7337
10.1016/0301-6226(94)90097-3
10.2527/2002.803568x
10.1016/j.biosystemseng.2018.02.005
10.3389/fgene.2020.00923
10.13031/2013.19421
10.1109/MCOM.2019.1800155
10.1016/j.livsci.2019.103904
10.2527/jas.2010-2892
10.1016/j.compag.2013.06.002
10.1002/bjs.10895
10.1023/A:1010933404324
10.1186/s40168-020-00888-9
10.1371/journal.pone.0205572
10.1038/s41598-019-43031-x
10.21105/joss.00296
10.1017/S1751731107000572
10.1093/jas/sky418
10.2527/jas.2016-0392
10.1049/cp:19991218
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1016/j.eswa.2012.01.039
10.32614/CRAN.package.tfruns
10.2527/jas.2006-209
10.1109/ICDAR.1995.598994
10.1109/NNSP.1999.788120
10.1016/j.smallrumres.2009.04.003
10.1029/2012JD017864
10.1016/j.livsci.2019.03.007
10.1016/j.livsci.2014.05.036
10.1016/j.ins.2011.12.028
10.3168/jds.2014-8925
10.1109/34.709601
10.1007/s11250-016-1206-3
10.2527/2001.794803x
10.1080/10473289.1997.10463925
10.18637/jss.v077.i01
10.1016/j.neucom.2006.06.015
10.1007/978-981-10-7956-6_6
10.1038/323533a0
10.1016/j.applanim.2011.06.018
10.1016/j.compag.2014.06.003
10.1162/neco.1997.9.8.1735
10.2527/2005.835969x
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright Elsevier BV May 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.compag.2021.106085
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10.1016/j.compag.2021.106085
10_1016_j_compag_2021_106085
S0168169921001034
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEXOQ
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAYWO
AAYXX
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c413t-ccb35e3868790807e892fcc3cc405f6fcda7c1f1991eb755732b94bb577de35c3
IEDL.DBID .~1
ISSN 0168-1699
1872-7107
IngestDate Sun Oct 26 03:59:29 EDT 2025
Wed Oct 01 14:21:17 EDT 2025
Sun Jul 13 02:55:46 EDT 2025
Thu Oct 02 04:38:06 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Sun Apr 06 06:54:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LO
RPB
Body weight
Model_FB
LR
DFI
FN
FP
LW
DNV
DR
YI
RNN
BW
FIRE
LASSO
G_PS
I_PS
Model_Age_FB_FI
ML
Pigs
Acc
IG_PS
Feeding behavior
BS_IG_PS
LSTM
ROC
DOT
RFID
RMSE
Model_Age_FB
Se
RF
Machine learning
Model_Age
TN
TP
Sp
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-ccb35e3868790807e892fcc3cc405f6fcda7c1f1991eb755732b94bb577de35c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0168169921001034
PQID 2528881109
PQPubID 2045491
ParticipantIDs unpaywall_primary_10_1016_j_compag_2021_106085
proquest_miscellaneous_2636438119
proquest_journals_2528881109
crossref_citationtrail_10_1016_j_compag_2021_106085
crossref_primary_10_1016_j_compag_2021_106085
elsevier_sciencedirect_doi_10_1016_j_compag_2021_106085
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bergmeir, Benítez (b0030) 2012; 191
Ranstam, Cook (b0290) 2018; 105
Bergamaschi, Tiezzi, Howard, Huang, Gray, Schillebeeckx, McNulty, Maltecca (b0025) 2020; 8
Hoens, Polikar, Chawla (b0160) 2012
Jiao, Maltecca, Gray, Cassady (b0185) 2014; 92
Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings. International Conference on Learning Representations, ICLR.
Comrie (b0070) 1997; 47
de Freitas, N., Milo, M., Clarkson, P., Niranjan, M., Gee, A., 1999. Sequential support vector machines, in: Neural Networks for Signal Processing – Proceedings of the IEEE Workshop. IEEE, pp. 31–40.
Rumelhart, Hinton, Williams (b0300) 1986; 323
Fluss, Faraggi, Reiser (b0115) 2005; 47
Ho (b0145) 1998; 20
Labroue, Guéblez, Sellier, Meunier-Salaün (b0235) 1994; 40
Hua, Zhao, Li, Chen, Liu, Zhang (b0170) 2019; 57
Palmieri, de Carvalho, Tosto, Leite, Santos, Borja, Azevêdo, Júnior, Leite, de Almeida Rufino (b0280) 2017; 49
Young, Cai, Dekkers (b0345) 2011; 89
Kuhn (b0215) 2012
Hyun, Ellis (b0175) 2002; 80
Tibshirani (b0330) 1996; 58
Hammami, Lee, Ouarda, Lee (b0135) 2012; 117
Fernández, Fàbrega, Soler, Tibau, Ruiz, Puigvert, Manteca (b0100) 2011; 134
Ben Taieb, Bontempi, Atiya, Sorjamaa (b0020) 2012; 39
Breiman (b0035) 2001; 45
Casey, Stern, Dekkers (b0055) 2005; 83
Gal, Ghahramani (b0120) 2015
Maselyne, Saeys, Van (b0270) 2015
.
Brown-Brandl, Rohrer, Eigenberg (b0045) 2013; 96
Fernandes, Dórea, Fitzgerald, Herring, Rosa (b0095) 2019; 97
Hastie, T., Stanford, J.Q., 2016. Glmnet Vignette.
Chizzotti, Machado, Valente, Pereira, Campos, Tomich, Coelho, Ribas (b0060) 2015; 98
Liaw, Wiener (b0245) 2002; 2
Maltecca, Lu, Schillebeeckx, McNulty, Schwab, Shull, Tiezzi (b0260) 2019; 9
Hochreiter, Schmidhuber (b0155) 1997; 9
Jiao, Maltecca, Gray, Cassady (b0190) 2014; 92
Magowan, McCann, Beattie, McCracken, Henry, Smyth, Bradford, Gordon, Mayne (b0250) 2007; 1
Youden (b0340) 1950; 3
González-Recio, Rosa, Gianola (b0130) 2014; 166
Silvestre, Cruz, Owens, Pereira, Hicks, Millen (b0310) 2019; 223
Hosmer, Lemeshow, Sturdivant (b0165) 2013
Shahinfar, Kahn (b0305) 2018; 148
Que, Cabezon, Schinckel (b0285) 2016; 32
Sorjamaa, Hao, Reyhani, Ji, Lendasse (b0320) 2007; 70
Labroue, Guéblez, Meunier-Salaün, Sellier (b0230) 1999; 48
Andretta, Pomar, Kipper, Hauschild, Rivest (b0010) 2016; 94
Arnold (b0015) 2017; 2
Desnoyers, Béchet, Duvaux-Ponter, Morand-Fehr, Giger-Reverdin (b0085) 2009; 83
Kumar, S., Singh, S.K., Singh, R., Singh, A.K., Kumar, S., Singh, S.K., Singh, R., Singh, A.K., 2017. Deep Learning Framework for Recognition of Cattle Using Muzzle Point Image Pattern. In: Animal Biometrics. Springer Singapore, pp. 163–195.
Wright, Ziegler (b0335) 2017; 77
Allaire, J.J., 2018. tfruns: Training Run Tools for “TensorFlow.”.
Kuhn, Wickham (b0220) 2018
Eissen, Kanis, Merks (b0090) 1998; 14
Rauw, Soler, Tibau, Reixach, Gomez Raya (b0295) 2006; 84
Kelly, Sleator, Murphy, Conroy, Judge, Berry (b0205) 2020; 98
Bresolin, Dórea (b0040) 2020
Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction with LSTM, in: IEE Conference Publication. IEE, pp. 850–855.
Cominotte, Fernandes, Dórea, Rosa, Ladeira, van Cleef, Pereira, Baldassini, Neto (b0065) 2020; 232
Malhotra, Vig, Shroff, Agarwal (b0255) 2015
Carcò, Gallo, Bona, Latorre, Fondevila, Schiavon (b0050) 2018; 13
Kelly, McGee, Crews, Sweeney, Boland, Kenny (b0200) 2010; 88
Finkenzeller (b0110) 2010
Marinello, F., Pezzuolo, A., Cillis, D., Gasparini, F., Sartori, L., 2015. Application of Kinect-Sensor for three-dimensional body measurements of cows. In: Proc. 7th Eur. Precis. Livest. Farming, ECPLF.
Ho, T.K., 1995. Random decision forests, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR. IEEE Computer Society, pp. 278–282.
Morota, Ventura, Silva, Koyama, Fernando (b0275) 2018; 96
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0195) 2014; 107
Lewis, Emmans (b0240) 2020; 98
Smith, Pearson (b0315) 1986; 14
Cross, Rohrer, Brown-Brandl, Cassady, Keel (b0075) 2018; 173
Hyun, Ellis (b0180) 2001; 79
Fetissov (b0105) 2017; 13
Taylor, Moore, Thiessen (b0325) 1986; 42
10.1016/j.compag.2021.106085_b0225
Carcò (10.1016/j.compag.2021.106085_b0050) 2018; 13
Hammami (10.1016/j.compag.2021.106085_b0135) 2012; 117
Rumelhart (10.1016/j.compag.2021.106085_b0300) 1986; 323
Shahinfar (10.1016/j.compag.2021.106085_b0305) 2018; 148
Lewis (10.1016/j.compag.2021.106085_b0240) 2020; 98
Tibshirani (10.1016/j.compag.2021.106085_b0330) 1996; 58
10.1016/j.compag.2021.106085_b0265
Hosmer (10.1016/j.compag.2021.106085_b0165) 2013
Ranstam (10.1016/j.compag.2021.106085_b0290) 2018; 105
Taylor (10.1016/j.compag.2021.106085_b0325) 1986; 42
Breiman (10.1016/j.compag.2021.106085_b0035) 2001; 45
Casey (10.1016/j.compag.2021.106085_b0055) 2005; 83
Hyun (10.1016/j.compag.2021.106085_b0175) 2002; 80
Magowan (10.1016/j.compag.2021.106085_b0250) 2007; 1
Chizzotti (10.1016/j.compag.2021.106085_b0060) 2015; 98
Brown-Brandl (10.1016/j.compag.2021.106085_b0045) 2013; 96
Hua (10.1016/j.compag.2021.106085_b0170) 2019; 57
Morota (10.1016/j.compag.2021.106085_b0275) 2018; 96
10.1016/j.compag.2021.106085_b0140
Desnoyers (10.1016/j.compag.2021.106085_b0085) 2009; 83
Kashiha (10.1016/j.compag.2021.106085_b0195) 2014; 107
Jiao (10.1016/j.compag.2021.106085_b0190) 2014; 92
Smith (10.1016/j.compag.2021.106085_b0315) 1986; 14
Labroue (10.1016/j.compag.2021.106085_b0230) 1999; 48
10.1016/j.compag.2021.106085_b0210
Bergmeir (10.1016/j.compag.2021.106085_b0030) 2012; 191
Ben Taieb (10.1016/j.compag.2021.106085_b0020) 2012; 39
Que (10.1016/j.compag.2021.106085_b0285) 2016; 32
Arnold (10.1016/j.compag.2021.106085_b0015) 2017; 2
Gal (10.1016/j.compag.2021.106085_b0120) 2015
Kuhn (10.1016/j.compag.2021.106085_b0220) 2018
Rauw (10.1016/j.compag.2021.106085_b0295) 2006; 84
Kelly (10.1016/j.compag.2021.106085_b0205) 2020; 98
Labroue (10.1016/j.compag.2021.106085_b0235) 1994; 40
Kuhn (10.1016/j.compag.2021.106085_b0215) 2012
10.1016/j.compag.2021.106085_b0005
Jiao (10.1016/j.compag.2021.106085_b0185) 2014; 92
10.1016/j.compag.2021.106085_b0125
Maltecca (10.1016/j.compag.2021.106085_b0260) 2019; 9
Youden (10.1016/j.compag.2021.106085_b0340) 1950; 3
González-Recio (10.1016/j.compag.2021.106085_b0130) 2014; 166
Young (10.1016/j.compag.2021.106085_b0345) 2011; 89
Fernández (10.1016/j.compag.2021.106085_b0100) 2011; 134
Hochreiter (10.1016/j.compag.2021.106085_b0155) 1997; 9
Comrie (10.1016/j.compag.2021.106085_b0070) 1997; 47
Finkenzeller (10.1016/j.compag.2021.106085_b0110) 2010
Fernandes (10.1016/j.compag.2021.106085_b0095) 2019; 97
Hyun (10.1016/j.compag.2021.106085_b0180) 2001; 79
Cross (10.1016/j.compag.2021.106085_b0075) 2018; 173
10.1016/j.compag.2021.106085_b0080
Hoens (10.1016/j.compag.2021.106085_b0160) 2012
Palmieri (10.1016/j.compag.2021.106085_b0280) 2017; 49
Ho (10.1016/j.compag.2021.106085_b0145) 1998; 20
Malhotra (10.1016/j.compag.2021.106085_b0255) 2015
Andretta (10.1016/j.compag.2021.106085_b0010) 2016; 94
Fluss (10.1016/j.compag.2021.106085_b0115) 2005; 47
Wright (10.1016/j.compag.2021.106085_b0335) 2017; 77
Kelly (10.1016/j.compag.2021.106085_b0200) 2010; 88
Sorjamaa (10.1016/j.compag.2021.106085_b0320) 2007; 70
Fetissov (10.1016/j.compag.2021.106085_b0105) 2017; 13
Liaw (10.1016/j.compag.2021.106085_b0245) 2002; 2
Eissen (10.1016/j.compag.2021.106085_b0090) 1998; 14
Silvestre (10.1016/j.compag.2021.106085_b0310) 2019; 223
Bergamaschi (10.1016/j.compag.2021.106085_b0025) 2020; 8
Bresolin (10.1016/j.compag.2021.106085_b0040) 2020
Cominotte (10.1016/j.compag.2021.106085_b0065) 2020; 232
10.1016/j.compag.2021.106085_b0150
Maselyne (10.1016/j.compag.2021.106085_b0270) 2015
References_xml – reference: Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings. International Conference on Learning Representations, ICLR.
– volume: 70
  start-page: 2861
  year: 2007
  end-page: 2869
  ident: b0320
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
– volume: 47
  start-page: 653
  year: 1997
  end-page: 663
  ident: b0070
  article-title: Comparing neural networks and regression models for ozone forecasting
  publication-title: J. Air Waste Manag. Assoc.
– volume: 80
  start-page: 568
  year: 2002
  end-page: 574
  ident: b0175
  article-title: Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs
  publication-title: J. Anim. Sci.
– volume: 173
  start-page: 124
  year: 2018
  end-page: 133
  ident: b0075
  article-title: Feed-forward and generalised regression neural networks in modelling feeding behaviour of pigs in the grow-finish phase
  publication-title: Biosyst. Eng.
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: b0020
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 11
  year: 1986
  end-page: 18
  ident: b0325
  article-title: Voluntary food intake in relation to body weight among British breeds of cattle
  publication-title: Anim. Prod.
– volume: 57
  start-page: 114
  year: 2019
  end-page: 119
  ident: b0170
  article-title: Deep learning with long short-term memory for time series prediction
  publication-title: IEEE Commun. Mag.
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b0145
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 43
  year: 1986
  end-page: 50
  ident: b0315
  article-title: Comparative voluntary feed intakes, growth performance, carcass composition, and meat quality of large white, Landrace, and duroc pigs. New Zeal
  publication-title: J. Exp. Agric.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0300
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2015
  ident: b0270
  article-title: Nuffel Review: Quantifying animal feeding behaviour with a focus on pigs
  publication-title: Physiol. Behav.
– volume: 117
  start-page: n/a-n/a
  year: 2012
  ident: b0135
  article-title: Predictor selection for downscaling GCM data with LASSO
  publication-title: J. Geophys. Res. [Atmos.]
– volume: 9
  year: 2019
  ident: b0260
  article-title: Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms
  publication-title: Sci. Rep.
– volume: 134
  start-page: 109
  year: 2011
  end-page: 120
  ident: b0100
  article-title: Feeding strategy in group-housed growing pigs of four different breeds
  publication-title: Appl. Anim. Behav. Sci.
– year: 2013
  ident: b0165
  article-title: Applied Logistic Regression
– reference: Kumar, S., Singh, S.K., Singh, R., Singh, A.K., Kumar, S., Singh, S.K., Singh, R., Singh, A.K., 2017. Deep Learning Framework for Recognition of Cattle Using Muzzle Point Image Pattern. In: Animal Biometrics. Springer Singapore, pp. 163–195.
– volume: 2
  start-page: 296
  year: 2017
  ident: b0015
  article-title: kerasR: R interface to the keras deep learning library
  publication-title: J. Open Source Softw.
– volume: 92
  start-page: 2377
  year: 2014
  end-page: 2386
  ident: b0185
  article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: I. Genetic parameter estimation and accuracy of genomic prediction
  publication-title: J. Anim. Sci.
– volume: 89
  start-page: 639
  year: 2011
  end-page: 647
  ident: b0345
  article-title: Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in yorkshire swine
  publication-title: J. Anim. Sci.
– year: 2010
  ident: b0110
  article-title: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-field Communication
– volume: 32
  start-page: 507
  year: 2016
  end-page: 515
  ident: b0285
  article-title: CASE STUDY: Use of statistics to quantify the magnitude of errors in the sorting of pigs for marketing in 3 finishing barns
  publication-title: Prof. Anim. Sci.
– volume: 47
  start-page: 458
  year: 2005
  end-page: 472
  ident: b0115
  article-title: Estimation of the Youden Index and its associated cutoff point
  publication-title: Biometrical J.
– start-page: 1027
  year: 2015
  end-page: 1035
  ident: b0120
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0330
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 191
  start-page: 192
  year: 2012
  end-page: 213
  ident: b0030
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inf. Sci. (Ny)
– volume: 223
  start-page: 108
  year: 2019
  end-page: 115
  ident: b0310
  article-title: Predicting feedlot cattle performance from intake of dry matter and NEg early in the feeding period
  publication-title: Livest. Sci.
– volume: 107
  start-page: 38
  year: 2014
  end-page: 44
  ident: b0195
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
– volume: 98
  year: 2020
  ident: b0240
  article-title: The relationship between feed intake and liveweight in domestic animals
  publication-title: J. Anim. Sci.
– volume: 1
  start-page: 1219
  year: 2007
  end-page: 1226
  ident: b0250
  article-title: Investigation of growth rate variation between commercial pig herds
  publication-title: Animal
– volume: 166
  start-page: 217
  year: 2014
  end-page: 231
  ident: b0130
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
– start-page: 89
  year: 2015
  end-page: 94
  ident: b0255
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proc. Presses universitaires de Louvain
– volume: 14
  start-page: 667
  year: 1998
  end-page: 673
  ident: b0090
  article-title: Algorithms for identifying errors in individual feed intake data of growing pigs in group-housing
  publication-title: Appl. Eng. Agric.
– volume: 96
  start-page: 246
  year: 2013
  end-page: 252
  ident: b0045
  article-title: Analysis of feeding behavior of group housed growing–finishing pigs
  publication-title: Comput. Electron. Agric.
– start-page: 3
  year: 2018
  ident: b0220
  article-title: recipes: Preprocessing Tools to Create Design Matrices
  publication-title: R package version
– volume: 48
  start-page: 247
  year: 1999
  end-page: 261
  ident: b0230
  article-title: Feed intake behaviour of group-housed Piétrain and Large White growing pigs
  publication-title: Anim. Res.
– volume: 97
  start-page: 496
  year: 2019
  end-page: 508
  ident: b0095
  article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision
  publication-title: J. Anim. Sci.
– volume: 83
  start-page: 58
  year: 2009
  end-page: 63
  ident: b0085
  article-title: Comparison of video recording and a portable electronic device for measuring the feeding behaviour of individually housed dairy goats
  publication-title: Small Rumin. Res.
– year: 2020
  ident: b0040
  article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems
  publication-title: Front. Genet.
– volume: 94
  start-page: 3042
  year: 2016
  end-page: 3050
  ident: b0010
  article-title: Feeding behavior of growing–finishing pigs reared under precision feeding strategies1
  publication-title: J. Anim. Sci.
– volume: 88
  start-page: 3214
  year: 2010
  end-page: 3225
  ident: b0200
  article-title: Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake
  publication-title: J. Anim. Sci.
– reference: Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction with LSTM, in: IEE Conference Publication. IEE, pp. 850–855.
– volume: 8
  start-page: 110
  year: 2020
  ident: b0025
  article-title: Gut microbiome composition differences among breeds impact feed efficiency in swine
  publication-title: Microbiome
– reference: Ho, T.K., 1995. Random decision forests, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR. IEEE Computer Society, pp. 278–282.
– reference: Hastie, T., Stanford, J.Q., 2016. Glmnet Vignette.
– year: 2012
  ident: b0160
  article-title: Learning from streaming data with concept drift and imbalance: an overview
  publication-title: Prog. Artif. Intell.
– volume: 98
  start-page: 3438
  year: 2015
  end-page: 3442
  ident: b0060
  article-title: Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle
  publication-title: J. Dairy Sci.
– volume: 96
  start-page: 1540
  year: 2018
  end-page: 1550
  ident: b0275
  article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
  publication-title: J. Anim. Sci.
– volume: 49
  start-page: 389
  year: 2017
  end-page: 395
  ident: b0280
  article-title: Feeding behavior of finishing goats fed diets containing detoxified castor meal, co-product of the biodiesel industry
  publication-title: Trop. Anim. Health Prod.
– year: 2012
  ident: b0215
  article-title: The Caret Package
– volume: 40
  start-page: 303
  year: 1994
  end-page: 312
  ident: b0235
  article-title: Feeding behaviour of group-housed large white and landrace pigs in french central test stations
  publication-title: Livest. Prod. Sci.
– volume: 83
  start-page: 969
  year: 2005
  end-page: 982
  ident: b0055
  article-title: Identification of errors and factors associated with errors in data from electronic swine feeders
  publication-title: J. Anim. Sci.
– volume: 13
  year: 2018
  ident: b0050
  article-title: The influence of feeding behaviour on growth performance, carcass and meat characteristics of growing pigs
  publication-title: PLoS One
– volume: 98
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0205
  article-title: Large variability in feeding behavior among crossbred growing cattle
  publication-title: J. Anim. Sci.
– reference: Allaire, J.J., 2018. tfruns: Training Run Tools for “TensorFlow.”.
– reference: de Freitas, N., Milo, M., Clarkson, P., Niranjan, M., Gee, A., 1999. Sequential support vector machines, in: Neural Networks for Signal Processing – Proceedings of the IEEE Workshop. IEEE, pp. 31–40.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0245
  article-title: Classification and regression by randomForest
  publication-title: R news
– volume: 84
  start-page: 3404
  year: 2006
  end-page: 3409
  ident: b0295
  article-title: Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows1
  publication-title: J. Anim. Sci.
– volume: 105
  year: 2018
  ident: b0290
  article-title: LASSO regression
  publication-title: Br. J. Surg.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Marinello, F., Pezzuolo, A., Cillis, D., Gasparini, F., Sartori, L., 2015. Application of Kinect-Sensor for three-dimensional body measurements of cows. In: Proc. 7th Eur. Precis. Livest. Farming, ECPLF.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 148
  start-page: 72
  year: 2018
  end-page: 81
  ident: b0305
  article-title: Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 11
  year: 2017
  end-page: 25
  ident: b0105
  article-title: Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour
  publication-title: Nat. Rev. Endocrinol.
– reference: .
– volume: 77
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0335
  article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
– volume: 232
  start-page: 103904
  year: 2020
  ident: b0065
  article-title: Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases
  publication-title: Livest. Sci.
– volume: 92
  start-page: 2846
  year: 2014
  end-page: 2860
  ident: b0190
  article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association
  publication-title: J. Anim. Sci.
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: b0340
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 79
  start-page: 803
  year: 2001
  end-page: 810
  ident: b0180
  article-title: Effect of group size and feeder type on growth performance and feeding patterns in growing pigs
  publication-title: J. Anim. Sci.
– volume: 42
  start-page: 11
  year: 1986
  ident: 10.1016/j.compag.2021.106085_b0325
  article-title: Voluntary food intake in relation to body weight among British breeds of cattle
  publication-title: Anim. Prod.
– volume: 148
  start-page: 72
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0305
  article-title: Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.001
– volume: 92
  start-page: 2377
  year: 2014
  ident: 10.1016/j.compag.2021.106085_b0185
  article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: I. Genetic parameter estimation and accuracy of genomic prediction
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2013-7338
– ident: 10.1016/j.compag.2021.106085_b0140
– volume: 98
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2021.106085_b0205
  article-title: Large variability in feeding behavior among crossbred growing cattle
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skaa216
– volume: 96
  start-page: 1540
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0275
  article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/sky014
– volume: 47
  start-page: 458
  year: 2005
  ident: 10.1016/j.compag.2021.106085_b0115
  article-title: Estimation of the Youden Index and its associated cutoff point
  publication-title: Biometrical J.
  doi: 10.1002/bimj.200410135
– volume: 32
  start-page: 507
  year: 2016
  ident: 10.1016/j.compag.2021.106085_b0285
  article-title: CASE STUDY: Use of statistics to quantify the magnitude of errors in the sorting of pigs for marketing in 3 finishing barns
  publication-title: Prof. Anim. Sci.
  doi: 10.15232/pas.2015-01498
– volume: 13
  start-page: 11
  year: 2017
  ident: 10.1016/j.compag.2021.106085_b0105
  article-title: Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2016.150
– volume: 98
  year: 2020
  ident: 10.1016/j.compag.2021.106085_b0240
  article-title: The relationship between feed intake and liveweight in domestic animals
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skaa087
– year: 2012
  ident: 10.1016/j.compag.2021.106085_b0160
  article-title: Learning from streaming data with concept drift and imbalance: an overview
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-011-0008-0
– volume: 88
  start-page: 3214
  year: 2010
  ident: 10.1016/j.compag.2021.106085_b0200
  article-title: Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2009-2700
– ident: 10.1016/j.compag.2021.106085_b0210
– volume: 48
  start-page: 247
  year: 1999
  ident: 10.1016/j.compag.2021.106085_b0230
  article-title: Feed intake behaviour of group-housed Piétrain and Large White growing pigs
  publication-title: Anim. Res.
  doi: 10.1051/animres:19990402
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.compag.2021.106085_b0330
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 92
  start-page: 2846
  year: 2014
  ident: 10.1016/j.compag.2021.106085_b0190
  article-title: Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2014-7337
– year: 2013
  ident: 10.1016/j.compag.2021.106085_b0165
– volume: 40
  start-page: 303
  year: 1994
  ident: 10.1016/j.compag.2021.106085_b0235
  article-title: Feeding behaviour of group-housed large white and landrace pigs in french central test stations
  publication-title: Livest. Prod. Sci.
  doi: 10.1016/0301-6226(94)90097-3
– volume: 80
  start-page: 568
  year: 2002
  ident: 10.1016/j.compag.2021.106085_b0175
  article-title: Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs
  publication-title: J. Anim. Sci.
  doi: 10.2527/2002.803568x
– start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0220
  article-title: recipes: Preprocessing Tools to Create Design Matrices
  publication-title: R package version
– volume: 173
  start-page: 124
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0075
  article-title: Feed-forward and generalised regression neural networks in modelling feeding behaviour of pigs in the grow-finish phase
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.02.005
– year: 2020
  ident: 10.1016/j.compag.2021.106085_b0040
  article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00923
– start-page: 1027
  year: 2015
  ident: 10.1016/j.compag.2021.106085_b0120
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 667
  year: 1998
  ident: 10.1016/j.compag.2021.106085_b0090
  article-title: Algorithms for identifying errors in individual feed intake data of growing pigs in group-housing
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.19421
– volume: 57
  start-page: 114
  year: 2019
  ident: 10.1016/j.compag.2021.106085_b0170
  article-title: Deep learning with long short-term memory for time series prediction
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800155
– volume: 232
  start-page: 103904
  year: 2020
  ident: 10.1016/j.compag.2021.106085_b0065
  article-title: Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2019.103904
– volume: 89
  start-page: 639
  year: 2011
  ident: 10.1016/j.compag.2021.106085_b0345
  article-title: Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in yorkshire swine
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2010-2892
– volume: 96
  start-page: 246
  year: 2013
  ident: 10.1016/j.compag.2021.106085_b0045
  article-title: Analysis of feeding behavior of group housed growing–finishing pigs
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.06.002
– year: 2010
  ident: 10.1016/j.compag.2021.106085_b0110
– ident: 10.1016/j.compag.2021.106085_b0265
– volume: 105
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0290
  article-title: LASSO regression
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.10895
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.compag.2021.106085_b0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2015
  ident: 10.1016/j.compag.2021.106085_b0270
  article-title: Nuffel Review: Quantifying animal feeding behaviour with a focus on pigs
  publication-title: Physiol. Behav.
– start-page: 89
  year: 2015
  ident: 10.1016/j.compag.2021.106085_b0255
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proc. Presses universitaires de Louvain
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.compag.2021.106085_b0245
  article-title: Classification and regression by randomForest
  publication-title: R news
– volume: 8
  start-page: 110
  year: 2020
  ident: 10.1016/j.compag.2021.106085_b0025
  article-title: Gut microbiome composition differences among breeds impact feed efficiency in swine
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00888-9
– volume: 13
  year: 2018
  ident: 10.1016/j.compag.2021.106085_b0050
  article-title: The influence of feeding behaviour on growth performance, carcass and meat characteristics of growing pigs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205572
– volume: 9
  year: 2019
  ident: 10.1016/j.compag.2021.106085_b0260
  article-title: Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43031-x
– volume: 2
  start-page: 296
  year: 2017
  ident: 10.1016/j.compag.2021.106085_b0015
  article-title: kerasR: R interface to the keras deep learning library
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00296
– volume: 1
  start-page: 1219
  year: 2007
  ident: 10.1016/j.compag.2021.106085_b0250
  article-title: Investigation of growth rate variation between commercial pig herds
  publication-title: Animal
  doi: 10.1017/S1751731107000572
– volume: 97
  start-page: 496
  year: 2019
  ident: 10.1016/j.compag.2021.106085_b0095
  article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/sky418
– volume: 94
  start-page: 3042
  year: 2016
  ident: 10.1016/j.compag.2021.106085_b0010
  article-title: Feeding behavior of growing–finishing pigs reared under precision feeding strategies1
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2016-0392
– ident: 10.1016/j.compag.2021.106085_b0125
  doi: 10.1049/cp:19991218
– volume: 3
  start-page: 32
  year: 1950
  ident: 10.1016/j.compag.2021.106085_b0340
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 39
  start-page: 7067
  year: 2012
  ident: 10.1016/j.compag.2021.106085_b0020
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– ident: 10.1016/j.compag.2021.106085_b0005
  doi: 10.32614/CRAN.package.tfruns
– volume: 84
  start-page: 3404
  year: 2006
  ident: 10.1016/j.compag.2021.106085_b0295
  article-title: Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows1
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2006-209
– year: 2012
  ident: 10.1016/j.compag.2021.106085_b0215
– ident: 10.1016/j.compag.2021.106085_b0150
  doi: 10.1109/ICDAR.1995.598994
– ident: 10.1016/j.compag.2021.106085_b0080
  doi: 10.1109/NNSP.1999.788120
– volume: 83
  start-page: 58
  year: 2009
  ident: 10.1016/j.compag.2021.106085_b0085
  article-title: Comparison of video recording and a portable electronic device for measuring the feeding behaviour of individually housed dairy goats
  publication-title: Small Rumin. Res.
  doi: 10.1016/j.smallrumres.2009.04.003
– volume: 117
  start-page: n/a-n/a
  year: 2012
  ident: 10.1016/j.compag.2021.106085_b0135
  article-title: Predictor selection for downscaling GCM data with LASSO
  publication-title: J. Geophys. Res. [Atmos.]
  doi: 10.1029/2012JD017864
– volume: 223
  start-page: 108
  year: 2019
  ident: 10.1016/j.compag.2021.106085_b0310
  article-title: Predicting feedlot cattle performance from intake of dry matter and NEg early in the feeding period
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2019.03.007
– volume: 166
  start-page: 217
  year: 2014
  ident: 10.1016/j.compag.2021.106085_b0130
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2014.05.036
– volume: 191
  start-page: 192
  year: 2012
  ident: 10.1016/j.compag.2021.106085_b0030
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2011.12.028
– volume: 98
  start-page: 3438
  year: 2015
  ident: 10.1016/j.compag.2021.106085_b0060
  article-title: Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8925
– volume: 14
  start-page: 43
  year: 1986
  ident: 10.1016/j.compag.2021.106085_b0315
  article-title: Comparative voluntary feed intakes, growth performance, carcass composition, and meat quality of large white, Landrace, and duroc pigs. New Zeal
  publication-title: J. Exp. Agric.
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.compag.2021.106085_b0145
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 49
  start-page: 389
  year: 2017
  ident: 10.1016/j.compag.2021.106085_b0280
  article-title: Feeding behavior of finishing goats fed diets containing detoxified castor meal, co-product of the biodiesel industry
  publication-title: Trop. Anim. Health Prod.
  doi: 10.1007/s11250-016-1206-3
– volume: 79
  start-page: 803
  year: 2001
  ident: 10.1016/j.compag.2021.106085_b0180
  article-title: Effect of group size and feeder type on growth performance and feeding patterns in growing pigs
  publication-title: J. Anim. Sci.
  doi: 10.2527/2001.794803x
– volume: 47
  start-page: 653
  year: 1997
  ident: 10.1016/j.compag.2021.106085_b0070
  article-title: Comparing neural networks and regression models for ozone forecasting
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.1997.10463925
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2021.106085_b0335
  article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
– volume: 70
  start-page: 2861
  year: 2007
  ident: 10.1016/j.compag.2021.106085_b0320
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.015
– ident: 10.1016/j.compag.2021.106085_b0225
  doi: 10.1007/978-981-10-7956-6_6
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.compag.2021.106085_b0300
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 134
  start-page: 109
  year: 2011
  ident: 10.1016/j.compag.2021.106085_b0100
  article-title: Feeding strategy in group-housed growing pigs of four different breeds
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2011.06.018
– volume: 107
  start-page: 38
  year: 2014
  ident: 10.1016/j.compag.2021.106085_b0195
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.06.003
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.compag.2021.106085_b0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 83
  start-page: 969
  year: 2005
  ident: 10.1016/j.compag.2021.106085_b0055
  article-title: Identification of errors and factors associated with errors in data from electronic swine feeders
  publication-title: J. Anim. Sci.
  doi: 10.2527/2005.835969x
SSID ssj0016987
Score 2.4865675
Snippet •Feeding behavior data contributed to the prediction of finishing weight in swine.•Algorithms performed differently in their capability of predicting...
A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing pork producers to make informed marketing...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106085
SubjectTerms Age
agriculture
Algorithms
Animal behavior
Body weight
Decision trees
Duroc
electronics
feed intake
Feeding behavior
group housing
Hogs
labor
landraces
Large White
Machine learning
neural networks
Performance prediction
Pigs
Pork
prediction
Prediction models
Recording equipment
Root-mean-square errors
Swine
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SzaH00HfpljQo0GO91JL18HEpDSGQkEMW0pOQxrK77ca77HoJ6a_vyI8lLYSkV1sysjTyfGN98w3AJ-Ol5ih5wjFkSYZoEp9yClXyUpcqdblrq0ScnauTWXZ6Ja_24POQC_PX-X3Lw2q52BVFcjylS4ogwhPYV5KQ9wj2Z-cX0--dfDcFQ6otF5kazSPFUA-Zcvc85j5PdAdpPt3WK3d74xaLO07n-AWcDcPtuCa_JtvGT_D3P0qOj32fl_C8R59s2pnLK9gL9Wt4Nq3WvQJHeAN4sY5nN5ENzfyyuGU37c9TNq9ZRSF7vLyaVxsW81JY2fk-NiT7s0g4ZZFLX7HrlqYZWF-XomJuUS3X8-bH9eYtzI6_XX49SfpKDAmSk2sSRC9kEEYZnRPE1MHkvEQUiIT3SlVi4TSmZaRRBa-l1IL7PPNkB7oIQqJ4B6N6WYf3wIq8dFL5wsSiPz6TPnXcI8_NlyDoY5KNQQyrYrGXKY_VMhZ24KP9tN0U2jiFtpvCMSS7XqtOpuOB9npYcNtDjQ5CWFqwB3oeDPZh--2-sVxyY0wUbx3D0e42bdR4-uLqsNxSGyVU1FNLqc1kZ1ePGu2H_-1wAKNmvQ0fCS81_rDfJn8AT3cRZg
  priority: 102
  providerName: Unpaywall
Title Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms
URI https://dx.doi.org/10.1016/j.compag.2021.106085
https://www.proquest.com/docview/2528881109
https://www.proquest.com/docview/2636438119
https://doi.org/10.1016/j.compag.2021.106085
UnpaywallVersion publishedVersion
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbQ9lD7ptmlQoVdnY8l6HZfQsG3pEmgX0pOQZNl12HiXfRBy6W_vjC0vKRRSejKWRyBG0szI-mY-Qj5oLxQLgmUsxCIrQtCZzxkcVUylKpk74zqWiK8zOZ0Xny_F5QE5G3JhEFaZbH9v0ztrnVrGSZvjVdOMv0GwonNpDMs7sgKsCVoUClkMTn7tYR4goPuUaQmnJZAe0uc6jFeH867hlMhyaJKnyKj8d_d0J_x8uGtX7vbGLRZ3PNH5U_IkhZB00o_yGTmI7XPyeFKvUxmN-IKEizVewCCkmfpleUtvuj-gtGlpDedubF419YZicgmtegdGh4x9iqhRioD4ml53WMtIE7lETd2iXq6b7c_rzUsyP__4_WyaJTqFLICn2mYheC4i11IrA3GiitqwKgQeAgRtlaxC6VTIK8RCRa-EUJx5U3iYTFVGLgJ_RQ7bZRtfE1qaygnpS43MPb4QPnfMB2b0aeRgEYoR4YMWbUi1xpHyYmEHUNmV7XVvUfe21_2IZPteq77Wxj3yapgg-8easeAO7ul5NMynTXt2Y5lgWmuswDoi7_efYbfhFYpr43IHMpJLLIqWg8zJfh3802jf_Pdo35JH-NbDLI_I4Xa9i-8gFNr6426tH5MHk09fpjN4zmcXkx-_AWXPCic
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9JD2UPqk26atCr06G0vW6xhCw7ZNQqEJ5CYkWXZcNt5lH4Rc8tszsuUlhUJKr9IIxEiah_3NfABflOOSek4z6kORFd6rzOUUUxVdyUrkVtuOJeLkVEzOi-8X_GILDodamAirTLa_t-mdtU4j46TN8bxpxr8wWFG50JrmHVlB8QgeF5zKmIHt3W5wHiih-pppgekSig_1cx3IqwN615gm0hyHxH6kVP67f7oXf-6s27m9ubbT6T1XdPQcnqUYkhz023wBW6F9CU8P6kXqoxFegf-5iH9gIqaZuFl5Q667T6CkaUmNiXccnjf1ksTqElL1HowMJfskwkZJRMTX5KoDWwaS2CVqYqf1bNGsLq-Wr-H86OvZ4SRLfAqZR1e1yrx3jAemhJIaA0UZlKaV98x7jNoqUfnSSp9XEQwVnORcMup04fA0ZRkY9-wNbLezNrwFUurKcuFKFal7XMFdbqnzVKv9wNAkFCNggxaNT83GI-fF1Ayost-m172Juje97keQbVbN-2YbD8jL4YDMH5fGoD94YOXucJ4mPdqloZwqpWIL1hF83kzjc4v_UGwbZmuUEUzErmg5yuxt7sE_7fbdf-_2E-xMzk6OzfG30x_v4Umc6TGXu7C9WqzDB4yLVu5jd-_vACJrCgw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SzaH00HfpljQo0GO91JL18HEpDSGQkEMW0pOQxrK77ca77HoJ6a_vyI8lLYSkV1sysjTyfGN98w3AJ-Ol5ih5wjFkSYZoEp9yClXyUpcqdblrq0ScnauTWXZ6Ja_24POQC_PX-X3Lw2q52BVFcjylS4ogwhPYV5KQ9wj2Z-cX0--dfDcFQ6otF5kazSPFUA-Zcvc85j5PdAdpPt3WK3d74xaLO07n-AWcDcPtuCa_JtvGT_D3P0qOj32fl_C8R59s2pnLK9gL9Wt4Nq3WvQJHeAN4sY5nN5ENzfyyuGU37c9TNq9ZRSF7vLyaVxsW81JY2fk-NiT7s0g4ZZFLX7HrlqYZWF-XomJuUS3X8-bH9eYtzI6_XX49SfpKDAmSk2sSRC9kEEYZnRPE1MHkvEQUiIT3SlVi4TSmZaRRBa-l1IL7PPNkB7oIQqJ4B6N6WYf3wIq8dFL5wsSiPz6TPnXcI8_NlyDoY5KNQQyrYrGXKY_VMhZ24KP9tN0U2jiFtpvCMSS7XqtOpuOB9npYcNtDjQ5CWFqwB3oeDPZh--2-sVxyY0wUbx3D0e42bdR4-uLqsNxSGyVU1FNLqc1kZ1ePGu2H_-1wAKNmvQ0fCS81_rDfJn8AT3cRZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+body+weight+in+growing+pigs+from+feeding+behavior+data+using+machine+learning+algorithms&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=He%2C+Yuqing&rft.au=Tiezzi%2C+Francesco&rft.au=Howard%2C+Jeremy&rft.au=Maltecca%2C+Christian&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=184&rft_id=info:doi/10.1016%2Fj.compag.2021.106085&rft.externalDocID=S0168169921001034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon