A Two-Step Regularization Framework for Non-Local Means

As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computin...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 29; no. 6; pp. 1026 - 1037
Main Author 孙忠贵 陈松灿 乔立山
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.11.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-014-1487-9

Cover

Abstract As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results.
AbstractList As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The implementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the framework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results.
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results.
Author 孙忠贵 陈松灿 乔立山
AuthorAffiliation Department of Mathematics Science, Liaocheng University, Liaocheng 252000, China College of Computer Science and Technology, Nanjing University of Aeronautics ~z Astronautics, Nanjing 210016, China
Author_xml – sequence: 1
  fullname: 孙忠贵 陈松灿 乔立山
BookMark eNp9kEtPGzEUha0qSATKD2A3ajdd1O31I34sI1RopQASj7XlzNjpDBM72BMF-utrOiiVWOCFfRffuef4HKFJiMEhdErgGwGQ3zMhTAMGwjHhSmL9AU2JEoC55HpSZgDAulyH6CjnDoBJ4HyK5Ly620V8O7hNdeNW296m9o8d2hiq82TXbhfTQ-Vjqq5iwItY2766dDbkj-jA2z67k9f3GN2f_7g7-4kX1xe_zuYLXHPCBry0klPScNo0jXIKauWY92q5nHkLthYefMknyvGUSadIiSsobxpNCaP1jB2jr-PenQ3ehpXp4jaF4mi63D08dflpaRwt3wYBoAr-ZcQ3KT5uXR7Mus2163sbXNxmQ8SsoFpJVtDPb9D9aqpLdXzGOS-UHKk6xZyT86Zuh3_9DMm2vSFgXvo3Y_-mBDEv_RtdlOSNcpPatU3P72roqMmFDSuX_md6T_Tp1eh3DKvHots7CUG1UACC_QVuY6JP
CitedBy_id crossref_primary_10_1109_LSP_2024_3352497
Cites_doi 10.1109/ICCV.1998.710815
10.1007/978-3-540-68636-1_5
10.1109/34.56205
10.1109/TSP.2006.881199
10.1109/LSP.2009.2038956
10.1109/83.370679
10.1109/ICCV.1999.790383
10.1109/78.370615
10.1007/s10851-009-0169-7
10.1007/978-3-540-88690-7_5
10.1109/TIT.2007.903124
10.1145/358198.358222
10.1007/978-3-642-03641-5_26
10.1016/j.patcog.2009.12.022
10.1109/TMI.2012.2211378
10.1023/A:1007963824710
10.1109/TIP.2012.2216278
10.1016/j.optcom.2012.07.045
10.3233/IDA-2010-0433
10.1109/TIP.2007.901238
10.1007/978-3-642-81929-2
10.3934/ipi.2011.5.511
10.1002/9780470434697
10.1109/LSP.2013.2245322
10.1109/TPAMI.2006.64
10.1109/TPAMI.2010.114
10.1109/LSP.2012.2217329
10.1007/978-3-642-03641-5_25
10.1137/090773908
10.1016/0167-2789(92)90242-F
10.1109/CVPR.2005.38
10.1007/978-3-540-89197-0_36
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2014.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2014.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-014-1487-9
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)


Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate A Two-Step Regularization Framework for Non-Local Means
EISSN 1860-4749
EndPage 1037
ExternalDocumentID jsjkxjsxb_e201406008
10_1007_s11390_014_1487_9
662968006
GrantInformation_xml – fundername: The research was partially supported by the National Natural Science Foundation of China under Grant No.61300154, the Natural Science Foundations of Shandong Province of China under Grant Nos. NZR2010FL011, ZR2012FQ005, Jiangsu Qing Lan Projects, the Fundamental Research Funds for the Central Universities of China under Grant No. NZ2013306, and the Natural Science Foundation of Liaocheng University under Grant No.318011408
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c413t-ba7421d42ddd8e80c8e3ff8bb5fa0ac6f0f7496666f237e81474624dd92132c53
IEDL.DBID BENPR
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Fri Sep 05 14:40:57 EDT 2025
Sat Aug 23 13:34:08 EDT 2025
Wed Oct 01 06:04:19 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Fri Feb 21 02:40:04 EST 2025
Wed Feb 14 10:33:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords non-local means
framework
non-local median
image denoising
regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-ba7421d42ddd8e80c8e3ff8bb5fa0ac6f0f7496666f237e81474624dd92132c53
Notes 11-2296/TP
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results.
non-local means, non-local median, framework, image denoising, regularization
Zhong-Gui Sun Song-Can Chen and Li-Shan Qiao(1Department of Mathematics Science, Liaocheng University, Liaocheng 252000, China 2 College of Computer Science and Technology, Nanjing University of Aeronautics ~z Astronautics, Nanjing 210016, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918645444
PQPubID 326258
PageCount 12
ParticipantIDs wanfang_journals_jsjkxjsxb_e201406008
proquest_miscellaneous_1651409873
proquest_journals_2918645444
crossref_citationtrail_10_1007_s11390_014_1487_9
crossref_primary_10_1007_s11390_014_1487_9
springer_journals_10_1007_s11390_014_1487_9
chongqing_primary_662968006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VigneshRByungTOKuoCCJFast non-local means (NLM) computation with probabilistic early terminationIEEE Signal Processing Letters201017327728010.1109/LSP.2009.2038956
DabovKFoiAKatkovnikVEgiazarianKImage denoising by sparse 3-D transform-domain collaborative filteringIEEE Transactions on Image Processing20071682080209510.1109/TIP.2007.9012382460626
YangRYinLGabboujMAstolaJNeuvoTOptimal weighted median filtering under structural constraintsIEEE Transactions on Signal Processing199543359160410.1109/78.370615
Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conference Computer Vision and Pattern Recognition (CVPR), June 2005, Vol.2, pp.60–65.
BrownriggDRKThe weighted median filterCommunications of the ACM198427880781810.1145/358198.358222
WangGQiJPenalized likelihood PET image reconstruction using patch-based edge-preserving regularizationIEEE Transactions on Medical Imaging201231122194220410.1109/TMI.2012.2211378
Facciolo G, Arias P, Caselles V, Sapiro G. Exemplar-based interpolation of sparsely sampled images. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.331–344.
LuoPZhanGHeQShiZLuKOn defining partition entropy by inequalitiesIEEE Transactions on Information Theory20075393233323910.1109/TIT.2007.903124054557942417688
Malerba D, Esposito F, Gioviale V, Tamma V. Comparing dissimilarity measures for symbolic data analysis. In Proc. Techniques and Technologies for Statistics - Exchange of Technology and Know-How, June 2001, pp.473–481.
ZhangLQiaoLChenSGraph-optimized locality preserving projectionsPattern Recognition20104361993200210.1016/j.patcog.2009.12.0221191.68611
Sun J, Zhao W, Xue J, Shen Z, Shen Y. Clustering with feature order preferences. In Lecture Notes in Computer Science 5351, Ho T B, Zhou Z H (eds.), Springer-Verlag, 2008, pp.382–393.
Liu H, Song D, Stefan R, Hu R, Victoria U. Comparing dissimilarity measures for content-based image retrieval. In Lecture Notes in Computer Science 4993, Li H, Liu T, Ma W Y et al. (eds.), Springer-Verlag, 2008, pp.44–50.
HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679
AharonMEladMBrucksteinAK-SVD: An algorithm for designing of overcomplete dictionaries for sparse representationIEEE Trans. Signal Processing200654114311432210.1109/TSP.2006.881199
SunZChenSModifying NL-means to a universal filterOptics Communications2012285244918492610.1016/j.optcom.2012.07.045
Tomasi C, Manduch R. Bilateral filtering for gray and color images. In Proc. the 6th International Conference on Computer Vision (ICCV), Jan. 1998, pp.839–846.
SmithSMBradyJMSUSAN | A new approach to low level image processingInt. J. Computer Vision1997231457810.1023/A:1007963824710
Arias P, Caselles V, Sapiro G. A variational framework for non-local image inpainting. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.345–358.
AwateSPWhitakerRTUnsupervised, information-theoretic, adaptive image filtering for image restorationIEEE Transactions on Pattern Analysis and Machine Intelligence200628336437610.1109/TPAMI.2006.64
Yaroslavsky L P. Digital Picture Processing: An Introduction (1st edition). Springer-Verlag, 1985.
PeyréGBougleuxSCohenLNon-local regularization of inverse problemsInverse Problems and Imaging20115251153010.3934/ipi.2011.5.5111223.681162805365
ChaudhuryKNSingerANon-local Euclidean mediansIEEE Signal Processing Letters2012191174574810.1109/LSP.2012.2217329
BuadesACollBMorelJMImage denoising methods. A new nonlocal principleSIAM Review: Multiscale Modeling and Simulation201052111314710.1137/0907739081182.621842608636
Huber P J, Ronchetti E M. Robust Statistics (2nd edition). New Jersey: John Wiley & Sons, 2009.
YangZJacobMNonlocal regularization of inverse problems: A unified variational frameworkIEEE Transactions on Image Processing20132283192320310.1109/TIP.2012.2216278
CaiJFChanRHNikolovaMFast two-phase image deblurring under impulse noiseJournal of Mathematical Imaging and Vision2010361465310.1007/s10851-009-0169-72579308
Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In Proc. the 7th International Conference on Computer Vision (ICCV), Sept. 1999, pp.1033–1038.
Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In Lecture Notes in Computer Science 5304, Forsyth D, Torr P, Zisserman A (eds.), Springer-Verlag, 2008, pp.57–68.
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 1992, 60(1/2/3/4): 259–268.
SunJZhaoWXueJShenZShenYClustering with feature order preferencesIntelligent Data Analysis201014479495
SunZChenSAnalysis of non-local Euclidean medians and its improvementIEEE Signal Processing Letters201320430330610.1109/LSP.2013.2245322
Bovik A. Handbook of Image and Video Processing. Academic Press, 2000.
PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Transactions on Pattern Analysis and Machine Intelligence199012762963910.1109/34.56205
DowsonNSalvadoOHashed non-local means for rapid image filteringIEEE Transactions on Pattern Analysis and Machine Intelligence201133348549910.1109/TPAMI.2010.114
K Dabov (1487_CR9) 2007; 16
1487_CR20
1487_CR21
SM Smith (1487_CR4) 1997; 23
1487_CR22
KN Chaudhury (1487_CR15) 2012; 19
1487_CR25
M Aharon (1487_CR10) 2006; 54
R Vignesh (1487_CR18) 2010; 17
N Dowson (1487_CR17) 2011; 33
DRK Brownrigg (1487_CR28) 1984; 27
L Zhang (1487_CR16) 2010; 43
1487_CR30
1487_CR31
J Sun (1487_CR24) 2010; 14
Z Sun (1487_CR26) 2013; 20
1487_CR1
P Perona (1487_CR2) 1990; 12
A Buades (1487_CR7) 2010; 52
1487_CR12
P Luo (1487_CR23) 2007; 53
1487_CR13
1487_CR3
G Peyré (1487_CR11) 2011; 5
1487_CR14
1487_CR5
Z Sun (1487_CR19) 2012; 285
1487_CR6
H Hwang (1487_CR29) 1995; 4
R Yang (1487_CR32) 1995; 43
Z Yang (1487_CR34) 2013; 22
JF Cai (1487_CR27) 2010; 36
G Wang (1487_CR33) 2012; 31
SP Awate (1487_CR8) 2006; 28
References_xml – reference: Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In Proc. the 7th International Conference on Computer Vision (ICCV), Sept. 1999, pp.1033–1038.
– reference: SunZChenSAnalysis of non-local Euclidean medians and its improvementIEEE Signal Processing Letters201320430330610.1109/LSP.2013.2245322
– reference: YangZJacobMNonlocal regularization of inverse problems: A unified variational frameworkIEEE Transactions on Image Processing20132283192320310.1109/TIP.2012.2216278
– reference: HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679
– reference: Arias P, Caselles V, Sapiro G. A variational framework for non-local image inpainting. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.345–358.
– reference: VigneshRByungTOKuoCCJFast non-local means (NLM) computation with probabilistic early terminationIEEE Signal Processing Letters201017327728010.1109/LSP.2009.2038956
– reference: LuoPZhanGHeQShiZLuKOn defining partition entropy by inequalitiesIEEE Transactions on Information Theory20075393233323910.1109/TIT.2007.903124054557942417688
– reference: AharonMEladMBrucksteinAK-SVD: An algorithm for designing of overcomplete dictionaries for sparse representationIEEE Trans. Signal Processing200654114311432210.1109/TSP.2006.881199
– reference: ChaudhuryKNSingerANon-local Euclidean mediansIEEE Signal Processing Letters2012191174574810.1109/LSP.2012.2217329
– reference: DowsonNSalvadoOHashed non-local means for rapid image filteringIEEE Transactions on Pattern Analysis and Machine Intelligence201133348549910.1109/TPAMI.2010.114
– reference: AwateSPWhitakerRTUnsupervised, information-theoretic, adaptive image filtering for image restorationIEEE Transactions on Pattern Analysis and Machine Intelligence200628336437610.1109/TPAMI.2006.64
– reference: WangGQiJPenalized likelihood PET image reconstruction using patch-based edge-preserving regularizationIEEE Transactions on Medical Imaging201231122194220410.1109/TMI.2012.2211378
– reference: SmithSMBradyJMSUSAN | A new approach to low level image processingInt. J. Computer Vision1997231457810.1023/A:1007963824710
– reference: ZhangLQiaoLChenSGraph-optimized locality preserving projectionsPattern Recognition20104361993200210.1016/j.patcog.2009.12.0221191.68611
– reference: Liu H, Song D, Stefan R, Hu R, Victoria U. Comparing dissimilarity measures for content-based image retrieval. In Lecture Notes in Computer Science 4993, Li H, Liu T, Ma W Y et al. (eds.), Springer-Verlag, 2008, pp.44–50.
– reference: Yaroslavsky L P. Digital Picture Processing: An Introduction (1st edition). Springer-Verlag, 1985.
– reference: Malerba D, Esposito F, Gioviale V, Tamma V. Comparing dissimilarity measures for symbolic data analysis. In Proc. Techniques and Technologies for Statistics - Exchange of Technology and Know-How, June 2001, pp.473–481.
– reference: Huber P J, Ronchetti E M. Robust Statistics (2nd edition). New Jersey: John Wiley & Sons, 2009.
– reference: Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 1992, 60(1/2/3/4): 259–268.
– reference: YangRYinLGabboujMAstolaJNeuvoTOptimal weighted median filtering under structural constraintsIEEE Transactions on Signal Processing199543359160410.1109/78.370615
– reference: CaiJFChanRHNikolovaMFast two-phase image deblurring under impulse noiseJournal of Mathematical Imaging and Vision2010361465310.1007/s10851-009-0169-72579308
– reference: BuadesACollBMorelJMImage denoising methods. A new nonlocal principleSIAM Review: Multiscale Modeling and Simulation201052111314710.1137/0907739081182.621842608636
– reference: Tomasi C, Manduch R. Bilateral filtering for gray and color images. In Proc. the 6th International Conference on Computer Vision (ICCV), Jan. 1998, pp.839–846.
– reference: BrownriggDRKThe weighted median filterCommunications of the ACM198427880781810.1145/358198.358222
– reference: DabovKFoiAKatkovnikVEgiazarianKImage denoising by sparse 3-D transform-domain collaborative filteringIEEE Transactions on Image Processing20071682080209510.1109/TIP.2007.9012382460626
– reference: Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In Lecture Notes in Computer Science 5304, Forsyth D, Torr P, Zisserman A (eds.), Springer-Verlag, 2008, pp.57–68.
– reference: SunJZhaoWXueJShenZShenYClustering with feature order preferencesIntelligent Data Analysis201014479495
– reference: Facciolo G, Arias P, Caselles V, Sapiro G. Exemplar-based interpolation of sparsely sampled images. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.331–344.
– reference: PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Transactions on Pattern Analysis and Machine Intelligence199012762963910.1109/34.56205
– reference: Sun J, Zhao W, Xue J, Shen Z, Shen Y. Clustering with feature order preferences. In Lecture Notes in Computer Science 5351, Ho T B, Zhou Z H (eds.), Springer-Verlag, 2008, pp.382–393.
– reference: Bovik A. Handbook of Image and Video Processing. Academic Press, 2000.
– reference: Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conference Computer Vision and Pattern Recognition (CVPR), June 2005, Vol.2, pp.60–65.
– reference: SunZChenSModifying NL-means to a universal filterOptics Communications2012285244918492610.1016/j.optcom.2012.07.045
– reference: PeyréGBougleuxSCohenLNon-local regularization of inverse problemsInverse Problems and Imaging20115251153010.3934/ipi.2011.5.5111223.681162805365
– ident: 1487_CR5
  doi: 10.1109/ICCV.1998.710815
– ident: 1487_CR21
  doi: 10.1007/978-3-540-68636-1_5
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  ident: 1487_CR2
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.56205
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 1487_CR10
  publication-title: IEEE Trans. Signal Processing
  doi: 10.1109/TSP.2006.881199
– volume: 17
  start-page: 277
  issue: 3
  year: 2010
  ident: 1487_CR18
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2009.2038956
– volume: 4
  start-page: 499
  issue: 4
  year: 1995
  ident: 1487_CR29
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.370679
– ident: 1487_CR6
  doi: 10.1109/ICCV.1999.790383
– volume: 43
  start-page: 591
  issue: 3
  year: 1995
  ident: 1487_CR32
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.370615
– volume: 36
  start-page: 46
  issue: 1
  year: 2010
  ident: 1487_CR27
  publication-title: Journal of Mathematical Imaging and Vision
  doi: 10.1007/s10851-009-0169-7
– ident: 1487_CR14
  doi: 10.1007/978-3-540-88690-7_5
– volume: 53
  start-page: 3233
  issue: 9
  year: 2007
  ident: 1487_CR23
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2007.903124
– volume: 27
  start-page: 807
  issue: 8
  year: 1984
  ident: 1487_CR28
  publication-title: Communications of the ACM
  doi: 10.1145/358198.358222
– ident: 1487_CR13
  doi: 10.1007/978-3-642-03641-5_26
– volume: 43
  start-page: 1993
  issue: 6
  year: 2010
  ident: 1487_CR16
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.12.022
– volume: 31
  start-page: 2194
  issue: 12
  year: 2012
  ident: 1487_CR33
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2211378
– ident: 1487_CR20
– volume: 23
  start-page: 45
  issue: 1
  year: 1997
  ident: 1487_CR4
  publication-title: Int. J. Computer Vision
  doi: 10.1023/A:1007963824710
– volume: 22
  start-page: 3192
  issue: 8
  year: 2013
  ident: 1487_CR34
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2216278
– volume: 285
  start-page: 4918
  issue: 24
  year: 2012
  ident: 1487_CR19
  publication-title: Optics Communications
  doi: 10.1016/j.optcom.2012.07.045
– volume: 14
  start-page: 479
  year: 2010
  ident: 1487_CR24
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2010-0433
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 1487_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.901238
– ident: 1487_CR3
  doi: 10.1007/978-3-642-81929-2
– volume: 5
  start-page: 511
  issue: 2
  year: 2011
  ident: 1487_CR11
  publication-title: Inverse Problems and Imaging
  doi: 10.3934/ipi.2011.5.511
– ident: 1487_CR25
  doi: 10.1002/9780470434697
– volume: 20
  start-page: 303
  issue: 4
  year: 2013
  ident: 1487_CR26
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2013.2245322
– ident: 1487_CR30
– volume: 28
  start-page: 364
  issue: 3
  year: 2006
  ident: 1487_CR8
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.64
– volume: 33
  start-page: 485
  issue: 3
  year: 2011
  ident: 1487_CR17
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.114
– volume: 19
  start-page: 745
  issue: 11
  year: 2012
  ident: 1487_CR15
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2012.2217329
– ident: 1487_CR12
  doi: 10.1007/978-3-642-03641-5_25
– volume: 52
  start-page: 113
  issue: 1
  year: 2010
  ident: 1487_CR7
  publication-title: SIAM Review: Multiscale Modeling and Simulation
  doi: 10.1137/090773908
– ident: 1487_CR31
  doi: 10.1016/0167-2789(92)90242-F
– ident: 1487_CR1
  doi: 10.1109/CVPR.2005.38
– ident: 1487_CR22
  doi: 10.1007/978-3-540-89197-0_36
SSID ssj0037044
Score 1.9837611
Snippet As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn...
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1026
SubjectTerms Artificial Intelligence
Communities
Computer Science
Data Structures and Information Theory
Image processing
Information Systems Applications (incl.Internet)
Least squares method
NLM
Noise
Noise reduction
Optimization
Platforms
Regular Paper
Regularization
Software Engineering
Theory of Computation
中值滤波器
去噪方法
图像处理
最小二乘问题
框架
正规化
降噪性能
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VeuFCoRSRQpErwYXKUuL4Izmuqq4QKhwqVuJmxY4NWlBCN4vKz2cc4g1IFRLnOGNpxvY8e2beABxxxWyV-5oaIxzl1ktamkzQ0pU5R49fGxPeIc8v5OmMn12Jq6GOu4vZ7jEk2Z_UY7EbgpWQRMUpQnhFyzX4KAKbFy7iGZvE4zdXad_BNbxb09ARM4Yy_yciECrctM31X5zutWMa0eYqQNqX9TS-aq5feKDpFmwO0JFMnm29DR9c8xk-xbYMZNilO6Am5PJfS0P-FvnTt5pfDMWWZBpTsQhiVXLRNvR38GXk3KHH-gKz6a_Ln6d06I9ALbqeJTUV3muzmrO6rgtXpLZwufcFat1XaWWlT73ieJ2R0rNcuSLjikvG6xqVljMr8l1Yb9rG7QGRCmEAd8ozV3HmrHFlZq2wLLWsckIksL9SlL5_5sHQUrJSIuCUCaRRddoO1OKhw8WdHkmRg-Y1al4HzesygZPVL1HeG4MPoj30sMU6zcqsCHRknCfwffUZN0eIeFSNax86nUkRCL0KlSfwI9pxFPHGhMeDqcfB825--zjvHo12LFxLESkWX98ldR82WL_2wgPOAawvFw_uG0KapTnsl_AThh_qcw
  priority: 102
  providerName: Springer Nature
Title A Two-Step Regularization Framework for Non-Local Means
URI http://lib.cqvip.com/qk/85226X/201406/662968006.html
https://link.springer.com/article/10.1007/s11390-014-1487-9
https://www.proquest.com/docview/2918645444
https://www.proquest.com/docview/1651409873
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201406008
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxcuvBGhZRUkuIAsEsex4wNCC9ptBXSFqq5UTlb8KlpQ0na3oj8fTxpv4LLXPJxoZux5zwfwmglq6sJbonXpCDOeE6nzkkgnCxY0vtUa45AnC368ZF_Oy_M9WMReGCyrjGdid1Db1mCM_D2VeYXTpxj7eHlFEDUKs6sRQqPuoRXsh27E2D6MKU7GGsH402zx_TSezYXIOnhXDGoThMuMec6umS4YQ1ikxUhwEQSROG3hZ9tcXAUd8r_WGkzRbfa06_lpfN1c_KOe5g_hfm9XptM7QXgEe655DA8iZkPab-EnIKbp2Z-WYHFXetrh0F_3nZjpPNZppcGQTRdtQ76hoktPXFBnT2E5n519PiY9eAIxQS9tiK6D05tbRq21lasyU7nC-yqwxNdZbbjPvGDB1-Hc00K4KmeCccqslTQ4qKYsnsGoaRv3HFIugo3AnPDU1Yw6o53MjSkNzQytXVkmcLAllLq8G5KhOKeSB2uUJ5BF0inTzx1H-IvfapiYjJRXgfIKKa9kAm-3r8T1djx8GPmh-v23VoO0JPBqezvsHEyH1I1rb9Yq5yVO-6pEkcC7yMdhiR0ffNOzenh4tV79ul2tb7VyFH3WYEZWL3b_2AHco52wYTjnEEab6xv3Mhg4Gz2B_Wp-NIHx9OjH19mkl-FwdUmnfwHmUffY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpL31VTaHGlcmllNXEcOz6gihZWS9ldVWiRuLmJH6BtlQBZBP1z_W0dB3u3veyNcxwnmhnPyzPzIfSeCaqr3BlS14UlTDtOZJ0VRFqZM7D4pq59HnI84cMT9u20OF1Df2IvjC-rjDqxV9Sm1T5H_onKrPTTpxj7fHFJPGqUv12NEBpVgFYwu_2IsdDYcWR_30AI1-0e7gO_dygdHEy_DklAGSAaFPic1BVEh5lh1BhT2jLVpc2dK-HfXZVWmrvUCQZBAeeO5sKWGROMU2aMpBDJaY8aASZgg-VMQvC38eVg8v042oJcpD2crE-iEw_PGe9V--Y9cL58URgjEJIIIv10h_O2ObsEm_W_lVy6vovb2r7HqHFVc_aPORw8QY-CH4v37gTvKVqzzTP0OGJE4KAyniOxh6c3LfHFZPi4x72_Cp2feBDrwjA4znjSNmTkDSseWzCfL9DJvZDxJVpv2sa-QpgL8EmYFY7ailGrayszrQtNU00rWxQJ2lwQSl3cDeVQnFPJwfvlCUoj6ZQOc8493MYvtZzQ7CmvgPLKU17JBH1YvBL3W7F4K_JDhfPeqaV0Jujd4jGcVH_9UjW2ve5Uxgs_XawUeYI-Rj4ut1jxwZ3A6uXiWTf7eTvrbmtlqY-RwW0tX6_-sW30YDgdj9TocHK0iR7SXvB8KmkLrc-vru0bcK7m9dsgwRj9uO9D8xdJUzFS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLZgSIgXfiPKBgQJXkDR2jRNmscTcBqwnRDaSXuLmjTZdKB0rDexPx-n11xBQpN4butIdlJ_ju3PAK-5ZLYpfUuNqRzl1guqTFFR5VTJ0eO3xsR7yKOFOFjyzyfVyTjntE_V7ikluelpiCxNYb1_3vr9qfENgUssqOIU4byk6ibc4pEnATf0ks3Sr7iU-TDNNd5h0zgdM6U1_yUikiucdeH0Jy79t5OakOc2WTq0-ATfhNM_vNH8PtwdYSSZbez-AG648BDupRENZDyxj0DOyPGvjsZaLvJtGDt_MTZeknkqyyKIW8miC_Qw-jVy5NB7PYbl_OPx-wM6zkqgFt3QmpoGY9yi5axt29rVua1d6X2NFvBN3ljhcy85hjZCeFZKVxdccsF42yqG8aityiewE7rgngIREiEBd9Iz13DmrHGqsLayLLescVWVwe5WUfp8w4mhhWBKIPgUGeRJddqONONx2sUPPREkR81r1LyOmtcqg7fbT5K8a17eS_bQ43HrNVNFHanJOM_g1fYxHpSY_WiC6y57XYgqknvVsszgXbLjJOKaBd-Mpp5eXvWr71er_spox2KIiqixfvZfUl_C7a8f5vrw0-LLLtxhwzaM9zp7sLO-uHTPEemszYthN_8Ggl7xmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Regularization+Framework+for+Non-Local+Means&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Sun%2C+Zhong-Gui&rft.au=Chen%2C+Song-Can&rft.au=Qiao%2C+Li-Shan&rft.date=2014-11-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=29&rft.issue=6&rft.spage=1026&rft.epage=1037&rft_id=info:doi/10.1007%2Fs11390-014-1487-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg