A Two-Step Regularization Framework for Non-Local Means
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computin...
        Saved in:
      
    
          | Published in | Journal of computer science and technology Vol. 29; no. 6; pp. 1026 - 1037 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Springer US
    
        01.11.2014
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-9000 1860-4749  | 
| DOI | 10.1007/s11390-014-1487-9 | 
Cover
| Abstract | As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results. | 
    
|---|---|
| AbstractList | As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The implementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the framework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results. As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results.  | 
    
| Author | 孙忠贵 陈松灿 乔立山 | 
    
| AuthorAffiliation | Department of Mathematics Science, Liaocheng University, Liaocheng 252000, China College of Computer Science and Technology, Nanjing University of Aeronautics ~z Astronautics, Nanjing 210016, China | 
    
| Author_xml | – sequence: 1 fullname: 孙忠贵 陈松灿 乔立山  | 
    
| BookMark | eNp9kEtPGzEUha0qSATKD2A3ajdd1O31I34sI1RopQASj7XlzNjpDBM72BMF-utrOiiVWOCFfRffuef4HKFJiMEhdErgGwGQ3zMhTAMGwjHhSmL9AU2JEoC55HpSZgDAulyH6CjnDoBJ4HyK5Ly620V8O7hNdeNW296m9o8d2hiq82TXbhfTQ-Vjqq5iwItY2766dDbkj-jA2z67k9f3GN2f_7g7-4kX1xe_zuYLXHPCBry0klPScNo0jXIKauWY92q5nHkLthYefMknyvGUSadIiSsobxpNCaP1jB2jr-PenQ3ehpXp4jaF4mi63D08dflpaRwt3wYBoAr-ZcQ3KT5uXR7Mus2163sbXNxmQ8SsoFpJVtDPb9D9aqpLdXzGOS-UHKk6xZyT86Zuh3_9DMm2vSFgXvo3Y_-mBDEv_RtdlOSNcpPatU3P72roqMmFDSuX_md6T_Tp1eh3DKvHots7CUG1UACC_QVuY6JP | 
    
| CitedBy_id | crossref_primary_10_1109_LSP_2024_3352497 | 
    
| Cites_doi | 10.1109/ICCV.1998.710815 10.1007/978-3-540-68636-1_5 10.1109/34.56205 10.1109/TSP.2006.881199 10.1109/LSP.2009.2038956 10.1109/83.370679 10.1109/ICCV.1999.790383 10.1109/78.370615 10.1007/s10851-009-0169-7 10.1007/978-3-540-88690-7_5 10.1109/TIT.2007.903124 10.1145/358198.358222 10.1007/978-3-642-03641-5_26 10.1016/j.patcog.2009.12.022 10.1109/TMI.2012.2211378 10.1023/A:1007963824710 10.1109/TIP.2012.2216278 10.1016/j.optcom.2012.07.045 10.3233/IDA-2010-0433 10.1109/TIP.2007.901238 10.1007/978-3-642-81929-2 10.3934/ipi.2011.5.511 10.1002/9780470434697 10.1109/LSP.2013.2245322 10.1109/TPAMI.2006.64 10.1109/TPAMI.2010.114 10.1109/LSP.2012.2217329 10.1007/978-3-642-03641-5_25 10.1137/090773908 10.1016/0167-2789(92)90242-F 10.1109/CVPR.2005.38 10.1007/978-3-540-89197-0_36  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media New York 2014 Springer Science+Business Media New York 2014. Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Springer Science+Business Media New York 2014. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.1007/s11390-014-1487-9 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| DocumentTitleAlternate | A Two-Step Regularization Framework for Non-Local Means | 
    
| EISSN | 1860-4749 | 
    
| EndPage | 1037 | 
    
| ExternalDocumentID | jsjkxjsxb_e201406008 10_1007_s11390_014_1487_9 662968006  | 
    
| GrantInformation_xml | – fundername: The research was partially supported by the National Natural Science Foundation of China under Grant No.61300154, the Natural Science Foundations of Shandong Province of China under Grant Nos. NZR2010FL011, ZR2012FQ005, Jiangsu Qing Lan Projects, the Fundamental Research Funds for the Central Universities of China under Grant No. NZ2013306, and the Natural Science Foundation of Liaocheng University under Grant No.318011408 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 4A8 PMFND PSX  | 
    
| ID | FETCH-LOGICAL-c413t-ba7421d42ddd8e80c8e3ff8bb5fa0ac6f0f7496666f237e81474624dd92132c53 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1000-9000 | 
    
| IngestDate | Thu May 29 04:00:15 EDT 2025 Fri Sep 05 14:40:57 EDT 2025 Sat Aug 23 13:34:08 EDT 2025 Wed Oct 01 06:04:19 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Fri Feb 21 02:40:04 EST 2025 Wed Feb 14 10:33:19 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | non-local means framework non-local median image denoising regularization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c413t-ba7421d42ddd8e80c8e3ff8bb5fa0ac6f0f7496666f237e81474624dd92132c53 | 
    
| Notes | 11-2296/TP As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results. non-local means, non-local median, framework, image denoising, regularization Zhong-Gui Sun Song-Can Chen and Li-Shan Qiao(1Department of Mathematics Science, Liaocheng University, Liaocheng 252000, China 2 College of Computer Science and Technology, Nanjing University of Aeronautics ~z Astronautics, Nanjing 210016, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2918645444 | 
    
| PQPubID | 326258 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e201406008 proquest_miscellaneous_1651409873 proquest_journals_2918645444 crossref_citationtrail_10_1007_s11390_014_1487_9 crossref_primary_10_1007_s11390_014_1487_9 springer_journals_10_1007_s11390_014_1487_9 chongqing_primary_662968006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-11-01 | 
    
| PublicationDateYYYYMMDD | 2014-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Boston | 
    
| PublicationPlace_xml | – name: Boston – name: Beijing  | 
    
| PublicationTitle | Journal of computer science and technology | 
    
| PublicationTitleAbbrev | J. Comput. Sci. Technol | 
    
| PublicationTitleAlternate | Journal of Computer Science and Technology | 
    
| PublicationTitle_FL | Journal of Computer Science & Technology | 
    
| PublicationYear | 2014 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | VigneshRByungTOKuoCCJFast non-local means (NLM) computation with probabilistic early terminationIEEE Signal Processing Letters201017327728010.1109/LSP.2009.2038956 DabovKFoiAKatkovnikVEgiazarianKImage denoising by sparse 3-D transform-domain collaborative filteringIEEE Transactions on Image Processing20071682080209510.1109/TIP.2007.9012382460626 YangRYinLGabboujMAstolaJNeuvoTOptimal weighted median filtering under structural constraintsIEEE Transactions on Signal Processing199543359160410.1109/78.370615 Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conference Computer Vision and Pattern Recognition (CVPR), June 2005, Vol.2, pp.60–65. BrownriggDRKThe weighted median filterCommunications of the ACM198427880781810.1145/358198.358222 WangGQiJPenalized likelihood PET image reconstruction using patch-based edge-preserving regularizationIEEE Transactions on Medical Imaging201231122194220410.1109/TMI.2012.2211378 Facciolo G, Arias P, Caselles V, Sapiro G. Exemplar-based interpolation of sparsely sampled images. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.331–344. LuoPZhanGHeQShiZLuKOn defining partition entropy by inequalitiesIEEE Transactions on Information Theory20075393233323910.1109/TIT.2007.903124054557942417688 Malerba D, Esposito F, Gioviale V, Tamma V. Comparing dissimilarity measures for symbolic data analysis. In Proc. Techniques and Technologies for Statistics - Exchange of Technology and Know-How, June 2001, pp.473–481. ZhangLQiaoLChenSGraph-optimized locality preserving projectionsPattern Recognition20104361993200210.1016/j.patcog.2009.12.0221191.68611 Sun J, Zhao W, Xue J, Shen Z, Shen Y. Clustering with feature order preferences. In Lecture Notes in Computer Science 5351, Ho T B, Zhou Z H (eds.), Springer-Verlag, 2008, pp.382–393. Liu H, Song D, Stefan R, Hu R, Victoria U. Comparing dissimilarity measures for content-based image retrieval. In Lecture Notes in Computer Science 4993, Li H, Liu T, Ma W Y et al. (eds.), Springer-Verlag, 2008, pp.44–50. HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679 AharonMEladMBrucksteinAK-SVD: An algorithm for designing of overcomplete dictionaries for sparse representationIEEE Trans. Signal Processing200654114311432210.1109/TSP.2006.881199 SunZChenSModifying NL-means to a universal filterOptics Communications2012285244918492610.1016/j.optcom.2012.07.045 Tomasi C, Manduch R. Bilateral filtering for gray and color images. In Proc. the 6th International Conference on Computer Vision (ICCV), Jan. 1998, pp.839–846. SmithSMBradyJMSUSAN | A new approach to low level image processingInt. J. Computer Vision1997231457810.1023/A:1007963824710 Arias P, Caselles V, Sapiro G. A variational framework for non-local image inpainting. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.345–358. AwateSPWhitakerRTUnsupervised, information-theoretic, adaptive image filtering for image restorationIEEE Transactions on Pattern Analysis and Machine Intelligence200628336437610.1109/TPAMI.2006.64 Yaroslavsky L P. Digital Picture Processing: An Introduction (1st edition). Springer-Verlag, 1985. PeyréGBougleuxSCohenLNon-local regularization of inverse problemsInverse Problems and Imaging20115251153010.3934/ipi.2011.5.5111223.681162805365 ChaudhuryKNSingerANon-local Euclidean mediansIEEE Signal Processing Letters2012191174574810.1109/LSP.2012.2217329 BuadesACollBMorelJMImage denoising methods. A new nonlocal principleSIAM Review: Multiscale Modeling and Simulation201052111314710.1137/0907739081182.621842608636 Huber P J, Ronchetti E M. Robust Statistics (2nd edition). New Jersey: John Wiley & Sons, 2009. YangZJacobMNonlocal regularization of inverse problems: A unified variational frameworkIEEE Transactions on Image Processing20132283192320310.1109/TIP.2012.2216278 CaiJFChanRHNikolovaMFast two-phase image deblurring under impulse noiseJournal of Mathematical Imaging and Vision2010361465310.1007/s10851-009-0169-72579308 Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In Proc. the 7th International Conference on Computer Vision (ICCV), Sept. 1999, pp.1033–1038. Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In Lecture Notes in Computer Science 5304, Forsyth D, Torr P, Zisserman A (eds.), Springer-Verlag, 2008, pp.57–68. Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 1992, 60(1/2/3/4): 259–268. SunJZhaoWXueJShenZShenYClustering with feature order preferencesIntelligent Data Analysis201014479495 SunZChenSAnalysis of non-local Euclidean medians and its improvementIEEE Signal Processing Letters201320430330610.1109/LSP.2013.2245322 Bovik A. Handbook of Image and Video Processing. Academic Press, 2000. PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Transactions on Pattern Analysis and Machine Intelligence199012762963910.1109/34.56205 DowsonNSalvadoOHashed non-local means for rapid image filteringIEEE Transactions on Pattern Analysis and Machine Intelligence201133348549910.1109/TPAMI.2010.114 K Dabov (1487_CR9) 2007; 16 1487_CR20 1487_CR21 SM Smith (1487_CR4) 1997; 23 1487_CR22 KN Chaudhury (1487_CR15) 2012; 19 1487_CR25 M Aharon (1487_CR10) 2006; 54 R Vignesh (1487_CR18) 2010; 17 N Dowson (1487_CR17) 2011; 33 DRK Brownrigg (1487_CR28) 1984; 27 L Zhang (1487_CR16) 2010; 43 1487_CR30 1487_CR31 J Sun (1487_CR24) 2010; 14 Z Sun (1487_CR26) 2013; 20 1487_CR1 P Perona (1487_CR2) 1990; 12 A Buades (1487_CR7) 2010; 52 1487_CR12 P Luo (1487_CR23) 2007; 53 1487_CR13 1487_CR3 G Peyré (1487_CR11) 2011; 5 1487_CR14 1487_CR5 Z Sun (1487_CR19) 2012; 285 1487_CR6 H Hwang (1487_CR29) 1995; 4 R Yang (1487_CR32) 1995; 43 Z Yang (1487_CR34) 2013; 22 JF Cai (1487_CR27) 2010; 36 G Wang (1487_CR33) 2012; 31 SP Awate (1487_CR8) 2006; 28  | 
    
| References_xml | – reference: Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In Proc. the 7th International Conference on Computer Vision (ICCV), Sept. 1999, pp.1033–1038. – reference: SunZChenSAnalysis of non-local Euclidean medians and its improvementIEEE Signal Processing Letters201320430330610.1109/LSP.2013.2245322 – reference: YangZJacobMNonlocal regularization of inverse problems: A unified variational frameworkIEEE Transactions on Image Processing20132283192320310.1109/TIP.2012.2216278 – reference: HwangHHaddadRAAdaptive median filters: New algorithms and resultsIEEE Transactions on Image Processing19954449950210.1109/83.370679 – reference: Arias P, Caselles V, Sapiro G. A variational framework for non-local image inpainting. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.345–358. – reference: VigneshRByungTOKuoCCJFast non-local means (NLM) computation with probabilistic early terminationIEEE Signal Processing Letters201017327728010.1109/LSP.2009.2038956 – reference: LuoPZhanGHeQShiZLuKOn defining partition entropy by inequalitiesIEEE Transactions on Information Theory20075393233323910.1109/TIT.2007.903124054557942417688 – reference: AharonMEladMBrucksteinAK-SVD: An algorithm for designing of overcomplete dictionaries for sparse representationIEEE Trans. Signal Processing200654114311432210.1109/TSP.2006.881199 – reference: ChaudhuryKNSingerANon-local Euclidean mediansIEEE Signal Processing Letters2012191174574810.1109/LSP.2012.2217329 – reference: DowsonNSalvadoOHashed non-local means for rapid image filteringIEEE Transactions on Pattern Analysis and Machine Intelligence201133348549910.1109/TPAMI.2010.114 – reference: AwateSPWhitakerRTUnsupervised, information-theoretic, adaptive image filtering for image restorationIEEE Transactions on Pattern Analysis and Machine Intelligence200628336437610.1109/TPAMI.2006.64 – reference: WangGQiJPenalized likelihood PET image reconstruction using patch-based edge-preserving regularizationIEEE Transactions on Medical Imaging201231122194220410.1109/TMI.2012.2211378 – reference: SmithSMBradyJMSUSAN | A new approach to low level image processingInt. J. Computer Vision1997231457810.1023/A:1007963824710 – reference: ZhangLQiaoLChenSGraph-optimized locality preserving projectionsPattern Recognition20104361993200210.1016/j.patcog.2009.12.0221191.68611 – reference: Liu H, Song D, Stefan R, Hu R, Victoria U. Comparing dissimilarity measures for content-based image retrieval. In Lecture Notes in Computer Science 4993, Li H, Liu T, Ma W Y et al. (eds.), Springer-Verlag, 2008, pp.44–50. – reference: Yaroslavsky L P. Digital Picture Processing: An Introduction (1st edition). Springer-Verlag, 1985. – reference: Malerba D, Esposito F, Gioviale V, Tamma V. Comparing dissimilarity measures for symbolic data analysis. In Proc. Techniques and Technologies for Statistics - Exchange of Technology and Know-How, June 2001, pp.473–481. – reference: Huber P J, Ronchetti E M. Robust Statistics (2nd edition). New Jersey: John Wiley & Sons, 2009. – reference: Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 1992, 60(1/2/3/4): 259–268. – reference: YangRYinLGabboujMAstolaJNeuvoTOptimal weighted median filtering under structural constraintsIEEE Transactions on Signal Processing199543359160410.1109/78.370615 – reference: CaiJFChanRHNikolovaMFast two-phase image deblurring under impulse noiseJournal of Mathematical Imaging and Vision2010361465310.1007/s10851-009-0169-72579308 – reference: BuadesACollBMorelJMImage denoising methods. A new nonlocal principleSIAM Review: Multiscale Modeling and Simulation201052111314710.1137/0907739081182.621842608636 – reference: Tomasi C, Manduch R. Bilateral filtering for gray and color images. In Proc. the 6th International Conference on Computer Vision (ICCV), Jan. 1998, pp.839–846. – reference: BrownriggDRKThe weighted median filterCommunications of the ACM198427880781810.1145/358198.358222 – reference: DabovKFoiAKatkovnikVEgiazarianKImage denoising by sparse 3-D transform-domain collaborative filteringIEEE Transactions on Image Processing20071682080209510.1109/TIP.2007.9012382460626 – reference: Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In Lecture Notes in Computer Science 5304, Forsyth D, Torr P, Zisserman A (eds.), Springer-Verlag, 2008, pp.57–68. – reference: SunJZhaoWXueJShenZShenYClustering with feature order preferencesIntelligent Data Analysis201014479495 – reference: Facciolo G, Arias P, Caselles V, Sapiro G. Exemplar-based interpolation of sparsely sampled images. In Proc. the 7th Int. Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 2009, pp.331–344. – reference: PeronaPMalikJScale-space and edge detection using anisotropic diffusionIEEE Transactions on Pattern Analysis and Machine Intelligence199012762963910.1109/34.56205 – reference: Sun J, Zhao W, Xue J, Shen Z, Shen Y. Clustering with feature order preferences. In Lecture Notes in Computer Science 5351, Ho T B, Zhou Z H (eds.), Springer-Verlag, 2008, pp.382–393. – reference: Bovik A. Handbook of Image and Video Processing. Academic Press, 2000. – reference: Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conference Computer Vision and Pattern Recognition (CVPR), June 2005, Vol.2, pp.60–65. – reference: SunZChenSModifying NL-means to a universal filterOptics Communications2012285244918492610.1016/j.optcom.2012.07.045 – reference: PeyréGBougleuxSCohenLNon-local regularization of inverse problemsInverse Problems and Imaging20115251153010.3934/ipi.2011.5.5111223.681162805365 – ident: 1487_CR5 doi: 10.1109/ICCV.1998.710815 – ident: 1487_CR21 doi: 10.1007/978-3-540-68636-1_5 – volume: 12 start-page: 629 issue: 7 year: 1990 ident: 1487_CR2 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.56205 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 1487_CR10 publication-title: IEEE Trans. Signal Processing doi: 10.1109/TSP.2006.881199 – volume: 17 start-page: 277 issue: 3 year: 2010 ident: 1487_CR18 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2009.2038956 – volume: 4 start-page: 499 issue: 4 year: 1995 ident: 1487_CR29 publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.370679 – ident: 1487_CR6 doi: 10.1109/ICCV.1999.790383 – volume: 43 start-page: 591 issue: 3 year: 1995 ident: 1487_CR32 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.370615 – volume: 36 start-page: 46 issue: 1 year: 2010 ident: 1487_CR27 publication-title: Journal of Mathematical Imaging and Vision doi: 10.1007/s10851-009-0169-7 – ident: 1487_CR14 doi: 10.1007/978-3-540-88690-7_5 – volume: 53 start-page: 3233 issue: 9 year: 2007 ident: 1487_CR23 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2007.903124 – volume: 27 start-page: 807 issue: 8 year: 1984 ident: 1487_CR28 publication-title: Communications of the ACM doi: 10.1145/358198.358222 – ident: 1487_CR13 doi: 10.1007/978-3-642-03641-5_26 – volume: 43 start-page: 1993 issue: 6 year: 2010 ident: 1487_CR16 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.12.022 – volume: 31 start-page: 2194 issue: 12 year: 2012 ident: 1487_CR33 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2012.2211378 – ident: 1487_CR20 – volume: 23 start-page: 45 issue: 1 year: 1997 ident: 1487_CR4 publication-title: Int. J. Computer Vision doi: 10.1023/A:1007963824710 – volume: 22 start-page: 3192 issue: 8 year: 2013 ident: 1487_CR34 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2216278 – volume: 285 start-page: 4918 issue: 24 year: 2012 ident: 1487_CR19 publication-title: Optics Communications doi: 10.1016/j.optcom.2012.07.045 – volume: 14 start-page: 479 year: 2010 ident: 1487_CR24 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2010-0433 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 1487_CR9 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.901238 – ident: 1487_CR3 doi: 10.1007/978-3-642-81929-2 – volume: 5 start-page: 511 issue: 2 year: 2011 ident: 1487_CR11 publication-title: Inverse Problems and Imaging doi: 10.3934/ipi.2011.5.511 – ident: 1487_CR25 doi: 10.1002/9780470434697 – volume: 20 start-page: 303 issue: 4 year: 2013 ident: 1487_CR26 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2013.2245322 – ident: 1487_CR30 – volume: 28 start-page: 364 issue: 3 year: 2006 ident: 1487_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.64 – volume: 33 start-page: 485 issue: 3 year: 2011 ident: 1487_CR17 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.114 – volume: 19 start-page: 745 issue: 11 year: 2012 ident: 1487_CR15 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2012.2217329 – ident: 1487_CR12 doi: 10.1007/978-3-642-03641-5_25 – volume: 52 start-page: 113 issue: 1 year: 2010 ident: 1487_CR7 publication-title: SIAM Review: Multiscale Modeling and Simulation doi: 10.1137/090773908 – ident: 1487_CR31 doi: 10.1016/0167-2789(92)90242-F – ident: 1487_CR1 doi: 10.1109/CVPR.2005.38 – ident: 1487_CR22 doi: 10.1007/978-3-540-89197-0_36  | 
    
| SSID | ssj0037044 | 
    
| Score | 1.9837611 | 
    
| Snippet | As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn... As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn...  | 
    
| SourceID | wanfang proquest crossref springer chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1026 | 
    
| SubjectTerms | Artificial Intelligence Communities Computer Science Data Structures and Information Theory Image processing Information Systems Applications (incl.Internet) Least squares method NLM Noise Noise reduction Optimization Platforms Regular Paper Regularization Software Engineering Theory of Computation 中值滤波器 去噪方法 图像处理 最小二乘问题 框架 正规化 降噪性能  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VeuFCoRSRQpErwYXKUuL4Izmuqq4QKhwqVuJmxY4NWlBCN4vKz2cc4g1IFRLnOGNpxvY8e2beABxxxWyV-5oaIxzl1ktamkzQ0pU5R49fGxPeIc8v5OmMn12Jq6GOu4vZ7jEk2Z_UY7EbgpWQRMUpQnhFyzX4KAKbFy7iGZvE4zdXad_BNbxb09ARM4Yy_yciECrctM31X5zutWMa0eYqQNqX9TS-aq5feKDpFmwO0JFMnm29DR9c8xk-xbYMZNilO6Am5PJfS0P-FvnTt5pfDMWWZBpTsQhiVXLRNvR38GXk3KHH-gKz6a_Ln6d06I9ALbqeJTUV3muzmrO6rgtXpLZwufcFat1XaWWlT73ieJ2R0rNcuSLjikvG6xqVljMr8l1Yb9rG7QGRCmEAd8ozV3HmrHFlZq2wLLWsckIksL9SlL5_5sHQUrJSIuCUCaRRddoO1OKhw8WdHkmRg-Y1al4HzesygZPVL1HeG4MPoj30sMU6zcqsCHRknCfwffUZN0eIeFSNax86nUkRCL0KlSfwI9pxFPHGhMeDqcfB825--zjvHo12LFxLESkWX98ldR82WL_2wgPOAawvFw_uG0KapTnsl_AThh_qcw priority: 102 providerName: Springer Nature  | 
    
| Title | A Two-Step Regularization Framework for Non-Local Means | 
    
| URI | http://lib.cqvip.com/qk/85226X/201406/662968006.html https://link.springer.com/article/10.1007/s11390-014-1487-9 https://www.proquest.com/docview/2918645444 https://www.proquest.com/docview/1651409873 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201406008  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1860-4749 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxcuvBGhZRUkuIAsEsex4wNCC9ptBXSFqq5UTlb8KlpQ0na3oj8fTxpv4LLXPJxoZux5zwfwmglq6sJbonXpCDOeE6nzkkgnCxY0vtUa45AnC368ZF_Oy_M9WMReGCyrjGdid1Db1mCM_D2VeYXTpxj7eHlFEDUKs6sRQqPuoRXsh27E2D6MKU7GGsH402zx_TSezYXIOnhXDGoThMuMec6umS4YQ1ikxUhwEQSROG3hZ9tcXAUd8r_WGkzRbfa06_lpfN1c_KOe5g_hfm9XptM7QXgEe655DA8iZkPab-EnIKbp2Z-WYHFXetrh0F_3nZjpPNZppcGQTRdtQ76hoktPXFBnT2E5n519PiY9eAIxQS9tiK6D05tbRq21lasyU7nC-yqwxNdZbbjPvGDB1-Hc00K4KmeCccqslTQ4qKYsnsGoaRv3HFIugo3AnPDU1Yw6o53MjSkNzQytXVkmcLAllLq8G5KhOKeSB2uUJ5BF0inTzx1H-IvfapiYjJRXgfIKKa9kAm-3r8T1djx8GPmh-v23VoO0JPBqezvsHEyH1I1rb9Yq5yVO-6pEkcC7yMdhiR0ffNOzenh4tV79ul2tb7VyFH3WYEZWL3b_2AHco52wYTjnEEab6xv3Mhg4Gz2B_Wp-NIHx9OjH19mkl-FwdUmnfwHmUffY | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpL31VTaHGlcmllNXEcOz6gihZWS9ldVWiRuLmJH6BtlQBZBP1z_W0dB3u3veyNcxwnmhnPyzPzIfSeCaqr3BlS14UlTDtOZJ0VRFqZM7D4pq59HnI84cMT9u20OF1Df2IvjC-rjDqxV9Sm1T5H_onKrPTTpxj7fHFJPGqUv12NEBpVgFYwu_2IsdDYcWR_30AI1-0e7gO_dygdHEy_DklAGSAaFPic1BVEh5lh1BhT2jLVpc2dK-HfXZVWmrvUCQZBAeeO5sKWGROMU2aMpBDJaY8aASZgg-VMQvC38eVg8v042oJcpD2crE-iEw_PGe9V--Y9cL58URgjEJIIIv10h_O2ObsEm_W_lVy6vovb2r7HqHFVc_aPORw8QY-CH4v37gTvKVqzzTP0OGJE4KAyniOxh6c3LfHFZPi4x72_Cp2feBDrwjA4znjSNmTkDSseWzCfL9DJvZDxJVpv2sa-QpgL8EmYFY7ailGrayszrQtNU00rWxQJ2lwQSl3cDeVQnFPJwfvlCUoj6ZQOc8493MYvtZzQ7CmvgPLKU17JBH1YvBL3W7F4K_JDhfPeqaV0Jujd4jGcVH_9UjW2ve5Uxgs_XawUeYI-Rj4ut1jxwZ3A6uXiWTf7eTvrbmtlqY-RwW0tX6_-sW30YDgdj9TocHK0iR7SXvB8KmkLrc-vru0bcK7m9dsgwRj9uO9D8xdJUzFS | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLZgSIgXfiPKBgQJXkDR2jRNmscTcBqwnRDaSXuLmjTZdKB0rDexPx-n11xBQpN4butIdlJ_ju3PAK-5ZLYpfUuNqRzl1guqTFFR5VTJ0eO3xsR7yKOFOFjyzyfVyTjntE_V7ikluelpiCxNYb1_3vr9qfENgUssqOIU4byk6ibc4pEnATf0ks3Sr7iU-TDNNd5h0zgdM6U1_yUikiucdeH0Jy79t5OakOc2WTq0-ATfhNM_vNH8PtwdYSSZbez-AG648BDupRENZDyxj0DOyPGvjsZaLvJtGDt_MTZeknkqyyKIW8miC_Qw-jVy5NB7PYbl_OPx-wM6zkqgFt3QmpoGY9yi5axt29rVua1d6X2NFvBN3ljhcy85hjZCeFZKVxdccsF42yqG8aityiewE7rgngIREiEBd9Iz13DmrHGqsLayLLescVWVwe5WUfp8w4mhhWBKIPgUGeRJddqONONx2sUPPREkR81r1LyOmtcqg7fbT5K8a17eS_bQ43HrNVNFHanJOM_g1fYxHpSY_WiC6y57XYgqknvVsszgXbLjJOKaBd-Mpp5eXvWr71er_spox2KIiqixfvZfUl_C7a8f5vrw0-LLLtxhwzaM9zp7sLO-uHTPEemszYthN_8Ggl7xmw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Step+Regularization+Framework+for+Non-Local+Means&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Sun%2C+Zhong-Gui&rft.au=Chen%2C+Song-Can&rft.au=Qiao%2C+Li-Shan&rft.date=2014-11-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=29&rft.issue=6&rft.spage=1026&rft.epage=1037&rft_id=info:doi/10.1007%2Fs11390-014-1487-9&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg  |