Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes...
Saved in:
Published in | Journal of computer science and technology Vol. 30; no. 6; pp. 1290 - 1305 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2015
Springer Nature B.V State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1000-9000 1860-4749 |
DOI | 10.1007/s11390-015-1599-x |
Cover
Abstract | Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. |
---|---|
AbstractList | Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 − ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 - epsilon )-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. |
Author | 赵彦超 吴杰 李文中 陆桑璐 |
AuthorAffiliation | State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A. |
AuthorAffiliation_xml | – name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A |
Author_xml | – sequence: 1 fullname: 赵彦超 吴杰 李文中 陆桑璐 |
BookMark | eNp9kc1u1DAUhS1UJNqBB2BnwYYFgevYseMlGpUfaaAIlQUry8k4GaeJPbUdOsPT45KqQl10Y9_F-e49OucMnTjvDEIvCbwjAOJ9JIRKKIBUBamkLA5P0CmpORRMMHmSZwAoZH6eobMYBwAqgLFT9OtyF_zc7_Zzwhf7ZCf7RyfrHbYOr33vbLK_Df6ht9bjbybd-HAV8bmLZmpG63r8fXeMttUj3uijCfir0XEOZjIuPUdPOz1G8-LuX6GfH88v15-LzcWnL-sPm6JlhKaikZrWPI81K2lJteSVMY0ghMtyK6EpKxCdEJ1hHWmYEVASXm9FxwVjNQCjK_R22XujXaddrwY_B5cvqiEOV4chHhplyhwMcCCQ5W8W-T7469nEpCYbWzOO2hk_R0WEqIEymh2t0OsH0vvVJKdaSVYKkVViUbXBxxhMp1qb_mWYgrajIqBuG1JLQyobUbcNqUMmyQNyH-ykw_FRplyYmLWuN-E_T49Ar-4O7bzrrzN3f4lzLijnOZi_fqSv7A |
CitedBy_id | crossref_primary_10_1109_JIOT_2018_2792300 crossref_primary_10_1177_1550147717727713 |
Cites_doi | 10.1109/JPROC.2009.2015704 10.1109/TIT.2006.871582 10.1016/j.comnet.2004.12.001 10.1109/TMC.2010.204 10.1109/PROC.1980.11899 10.1109/18.825799 10.1109/JSAC.2006.881641 10.1109/MWC.2009.4907554 10.1016/j.comnet.2006.05.001 10.1007/s00365-007-9003-x 10.1137/070697835 10.1007/s11276-011-0367-2 10.1109/TWC.2013.013013.120007 10.1145/1161089.1161119 10.1109/CROWNCOM.2007.4549824 10.1109/INFOCOM.2006.294 10.1007/978-1-4757-4388-3 10.1109/INFCOM.2009.5062048 10.1109/INFCOM.2004.1357030 10.1145/1288107.1288125 10.1109/VTCF.2006.257 10.1016/j.crma.2008.03.014 10.1109/WCNC.2012.6213962 10.1109/DYSPAN.2010.5457857 10.1109/ICPADS.2011.155 10.1145/1080829.1080836 10.1145/1288107.1288122 10.1109/TIT.2006.885507 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2015. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2015. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11390-015-1599-x |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement |
EISSN | 1860-4749 |
EndPage | 1305 |
ExternalDocumentID | jsjkxjsxb_e201506010 3897156031 10_1007_s11390_015_1599_x 666736610 |
GrantInformation_xml | – fundername: This work was partially supported by the National Natural Science Foundation of China under Grant Nos.61373128, 91218302,61321491, the Fundamental Research Funds for the Central Universities of China under Grant No.20620140509, the EU FP7 IRSES MobileCloud Project under Grant No.612212, and the Collaborative Innovation Center of Novel Software Technology and Industrialization of China |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 4A8 PMFND PSX |
ID | FETCH-LOGICAL-c413t-b9a386413842323a965eeb711692d90b2507f77fe4f1b4e702168d7f674480043 |
IEDL.DBID | AGYKE |
ISSN | 1000-9000 |
IngestDate | Thu May 29 04:00:15 EDT 2025 Sun Sep 28 08:07:54 EDT 2025 Fri Jul 25 09:52:05 EDT 2025 Wed Oct 01 02:32:13 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Fri Feb 21 02:40:05 EST 2025 Wed Feb 14 10:28:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | distributed algorithm throughput optimization centralized algorithm wireless mesh network cognitive radio network spectrum allocation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-b9a386413842323a965eeb711692d90b2507f77fe4f1b4e702168d7f674480043 |
Notes | Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme. cognitive radio network, wireless mesh network, throughput optimization, centralized algorithm, distributedalgorithm, spectrum allocation 11-2296/TP ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1749594277 |
PQPubID | 326258 |
PageCount | 16 |
ParticipantIDs | wanfang_journals_jsjkxjsxb_e201506010 proquest_miscellaneous_1778034341 proquest_journals_1749594277 crossref_citationtrail_10_1007_s11390_015_1599_x crossref_primary_10_1007_s11390_015_1599_x springer_journals_10_1007_s11390_015_1599_x chongqing_primary_666736610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitleAlternate | Journal of Computer Science and Technology |
PublicationTitle_FL | Journal of Computer Science & Technology |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A |
References | Mahmoud, Yucek, Arslan (CR3) 2009; 16 Donoho (CR15) 2006; 52 Molisch, Greenstein, Shafi (CR20) 2009; 97 CR17 CR16 Recht, Fazel, Parrilo (CR19) 2010; 52 Akyildiz, Wang, Wang (CR1) 2005; 47 Hale (CR5) 1980; 68 CR13 CR12 CR11 CR33 CR10 CR31 CR30 Shi, Hou, Kompella, Sherali (CR8) 2011; 10 Alicherry, Bhatia, Li (CR22) 2006; 24 Gupta, Kumar (CR7) 2000; 46 Chafekar, Kumar, Marathe, Parthasarathy, Srinivasan (CR9) 2011; 17 Akyildiz, Lee, Vuran, Mohanty (CR2) 2006; 50 CR4 CR6 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR21 Cramer (CR14) 1750 Baraniuk, Davenport, De Vore, Wakin (CR18) 2008; 28 Chen, Dai, Li, Hu, Wu, Shi, Lu (CR32) 2013; 12 D Donoho (1599_CR15) 2006; 52 1599_CR29 1599_CR28 Y Shi (1599_CR8) 2011; 10 1599_CR21 X Chen (1599_CR32) 2013; 12 1599_CR23 W Hale (1599_CR5) 1980; 68 1599_CR25 1599_CR24 1599_CR27 1599_CR26 R Baraniuk (1599_CR18) 2008; 28 B Recht (1599_CR19) 2010; 52 H Mahmoud (1599_CR3) 2009; 16 1599_CR17 AF Molisch (1599_CR20) 2009; 97 IF Akyildiz (1599_CR2) 2006; 50 1599_CR10 1599_CR31 1599_CR12 P Gupta (1599_CR7) 2000; 46 1599_CR11 1599_CR33 1599_CR13 1599_CR16 M Alicherry (1599_CR22) 2006; 24 1599_CR6 G Cramer (1599_CR14) 1750 1599_CR4 IF Akyildiz (1599_CR1) 2005; 47 D Chafekar (1599_CR9) 2011; 17 1599_CR30 |
References_xml | – volume: 97 start-page: 787 issue: 5 year: 2009 end-page: 804 ident: CR20 article-title: Propagation issues for cognitive radio publication-title: Proc. the IEEE doi: 10.1109/JPROC.2009.2015704 – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: CR15 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – volume: 47 start-page: 445 issue: 4 year: 2005 end-page: 487 ident: CR1 article-title: Wireless mesh networks: A survey publication-title: Computer Networks doi: 10.1016/j.comnet.2004.12.001 – ident: CR4 – volume: 10 start-page: 954 issue: 7 year: 2011 end-page: 967 ident: CR8 article-title: Maximizing capacity in multihop cognitive radio networks under the SINR model publication-title: IEEE Trans. Mobile Computing doi: 10.1109/TMC.2010.204 – ident: CR16 – ident: CR12 – start-page: 656 year: 1750 end-page: 659 ident: CR14 publication-title: Introduction to Algebraic Curves Lines Analysis – ident: CR30 – volume: 68 start-page: 1497 issue: 12 year: 1980 end-page: 1514 ident: CR5 article-title: Frequency assignment: Theory and application publication-title: Proc. the IEEE doi: 10.1109/PROC.1980.11899 – ident: CR10 – ident: CR33 – ident: CR6 – ident: CR29 – ident: CR25 – ident: CR27 – volume: 46 start-page: 388 issue: 2 year: 2000 end-page: 404 ident: CR7 article-title: The capacity of wireless networks publication-title: IEEE Trans. Information Theory doi: 10.1109/18.825799 – ident: CR23 – ident: CR21 – volume: 24 start-page: 1960 issue: 11 year: 2006 end-page: 1971 ident: CR22 article-title: Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2006.881641 – volume: 16 start-page: 6 issue: 2 year: 2009 end-page: 15 ident: CR3 article-title: OFDM for cognitive radio: Merits and challenges publication-title: IEEE Wireless Communications doi: 10.1109/MWC.2009.4907554 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR11 – volume: 50 start-page: 2127 issue: 13 year: 2006 end-page: 2159 ident: CR2 article-title: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey publication-title: Computer Networks doi: 10.1016/j.comnet.2006.05.001 – volume: 28 start-page: 253 issue: 3 year: 2008 end-page: 263 ident: CR18 article-title: A simple proof of the restricted isometry property for random matrices publication-title: Constructive Approximation doi: 10.1007/s00365-007-9003-x – volume: 52 start-page: 471 issue: 3 year: 2010 end-page: 501 ident: CR19 article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization publication-title: SIAM Review doi: 10.1137/070697835 – volume: 17 start-page: 1605 issue: 7 year: 2011 end-page: 1624 ident: CR9 article-title: Capacity of wireless networks under SINR interference constraints publication-title: Wireless Networks doi: 10.1007/s11276-011-0367-2 – volume: 12 start-page: 1524 issue: 4 year: 2013 end-page: 1531 ident: CR32 article-title: ProHet: A probabilistic routing protocol with assured delivery rate in wireless heterogeneous sensor networks publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2013.013013.120007 – ident: CR28 – ident: CR26 – ident: CR24 – start-page: 656 volume-title: Introduction to Algebraic Curves Lines Analysis year: 1750 ident: 1599_CR14 – ident: 1599_CR11 doi: 10.1145/1161089.1161119 – ident: 1599_CR23 – ident: 1599_CR21 – volume: 24 start-page: 1960 issue: 11 year: 2006 ident: 1599_CR22 publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2006.881641 – ident: 1599_CR26 doi: 10.1109/CROWNCOM.2007.4549824 – volume: 68 start-page: 1497 issue: 12 year: 1980 ident: 1599_CR5 publication-title: Proc. the IEEE doi: 10.1109/PROC.1980.11899 – ident: 1599_CR33 doi: 10.1109/INFOCOM.2006.294 – ident: 1599_CR13 doi: 10.1007/978-1-4757-4388-3 – volume: 10 start-page: 954 issue: 7 year: 2011 ident: 1599_CR8 publication-title: IEEE Trans. Mobile Computing doi: 10.1109/TMC.2010.204 – ident: 1599_CR28 doi: 10.1109/INFCOM.2009.5062048 – ident: 1599_CR12 – ident: 1599_CR31 doi: 10.1109/INFCOM.2004.1357030 – volume: 17 start-page: 1605 issue: 7 year: 2011 ident: 1599_CR9 publication-title: Wireless Networks doi: 10.1007/s11276-011-0367-2 – volume: 50 start-page: 2127 issue: 13 year: 2006 ident: 1599_CR2 publication-title: Computer Networks doi: 10.1016/j.comnet.2006.05.001 – volume: 46 start-page: 388 issue: 2 year: 2000 ident: 1599_CR7 publication-title: IEEE Trans. Information Theory doi: 10.1109/18.825799 – ident: 1599_CR6 doi: 10.1145/1288107.1288125 – ident: 1599_CR24 – ident: 1599_CR25 doi: 10.1109/VTCF.2006.257 – volume: 97 start-page: 787 issue: 5 year: 2009 ident: 1599_CR20 publication-title: Proc. the IEEE doi: 10.1109/JPROC.2009.2015704 – volume: 12 start-page: 1524 issue: 4 year: 2013 ident: 1599_CR32 publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2013.013013.120007 – ident: 1599_CR16 doi: 10.1016/j.crma.2008.03.014 – ident: 1599_CR30 doi: 10.1109/WCNC.2012.6213962 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 1599_CR15 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – volume: 28 start-page: 253 issue: 3 year: 2008 ident: 1599_CR18 publication-title: Constructive Approximation doi: 10.1007/s00365-007-9003-x – ident: 1599_CR27 doi: 10.1109/DYSPAN.2010.5457857 – ident: 1599_CR10 doi: 10.1109/ICPADS.2011.155 – ident: 1599_CR4 doi: 10.1145/1080829.1080836 – volume: 16 start-page: 6 issue: 2 year: 2009 ident: 1599_CR3 publication-title: IEEE Wireless Communications doi: 10.1109/MWC.2009.4907554 – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 1599_CR19 publication-title: SIAM Review doi: 10.1137/070697835 – volume: 47 start-page: 445 issue: 4 year: 2005 ident: 1599_CR1 publication-title: Computer Networks doi: 10.1016/j.comnet.2004.12.001 – ident: 1599_CR29 doi: 10.1145/1288107.1288122 – ident: 1599_CR17 doi: 10.1109/TIT.2006.885507 |
SSID | ssj0037044 |
Score | 2.0467737 |
Snippet | Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh... Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1290 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Cognitive radio Computer Science Data Structures and Information Theory Finite element method Information Systems Applications (incl.Internet) Interference Internet access Linear programming Links Mathematical models Mixed integer Networks Nonlinear programming Optimization Radio networks Regular Paper Signal strength Software Software Engineering Spectrum allocation Theory of Computation Wireless networks 优化组合 吞吐量 无线Mesh网络 无线电网络 测量 物理层 非线性规划问题 频谱利用率 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLjwRoQWZCS4gCzysh2fEKq6VIgWhFqpnCw7sUsX6rRkK-3PZyaxN-VAb1HiOJFn7G8845mPkNeyFY57LpgzNmc1Lw0DEM4ZF14q37nKOExwPjgU-8f15xN-Eh1uQzxWmdbEcaHu-hZ95O_BclZc1aWUHy4uGbJGYXQ1UmjcJneKEjQJM8UXn9JKXMl8JHNFFzZDcswU1RxT58D0wSNZnAGgK7bG2go_-3B6CYjxL0bNhucmVjpm-ARvwuk1MFo8IPeiFUk_TmJ_SG658IjcTwwNNE7Yx-TH0UTDA7fpV1gczmPWJT0LdDcdHKLfTXfW08PpQPhA98Lgzi2mqdNvUYr0iwHTnB7MDsUn5Hixd7S7zyKZAmsBp1bMKlM1Ai4bDM1WRgnunJVFIVTZqdyCKSS9lN7VvrC1k4D9oumkFxI2cBgvfEq2Qh_cM0I590q6ljemEsh2BTs-qzoJQN9WneEuI9ubodQXU9EMLZBfFIyBPCN5GlzdxjrkSIfxW88VlFE2GmSjUTZ6nZG3m1dSfzc03kkS03E-DnrWnoy82jyGmYThERNcf4VtZJNXNcB6Rt4lSV_r4v8ffBOVYW68HJa_1sthbbUrpyKORf785h_bJnfLUR3RvbNDtlZ_rtwLMHhW9uWo1X8BSLv7Bg priority: 102 providerName: ProQuest |
Title | Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement |
URI | http://lib.cqvip.com/qk/85226X/201506/666736610.html https://link.springer.com/article/10.1007/s11390-015-1599-x https://www.proquest.com/docview/1749594277 https://www.proquest.com/docview/1778034341 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201506010 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1860-4749 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7sKF8SnCxmQkuIA8pUlsx8cytZuAlWlqpe1k2YmzrWMpkFaq-Ot5buxmIEDaKZHj2In97Pd7fl8Ab0TBLasYp1abmGYs0RSZcEwZr4SsSptq6xycj8f8aJp9PGNn3o-7CdbuQSW53qk7ZzcEK86IilFkwZIicNxiTj7pwdbg8PzTMGzAqYjXOVzdyTV1OTGDMvNvjbiQCpfz-uI7dvg7a-rw5kZFunbsqStdX9ziQaNtmISvb01PrveXC7Nf_PwjsOMdf-8RPPSYlAxaInoM92z9BLZDvgfil_9TOJ-0SX2wmHzBrebG-3CSq5ocBDMkcqrLqzkZt-blDRnWjb0xzumdnHiaIJ81An1y3B1PPoPpaDg5OKI-NQMtkOstqJE6zTne5k7Rm2rJmbVG9PtcJqWMDQIrUQlR2azqm8wKRBI8L0XFBYqDTvv4HHr1vLYvgDBWSWELluuUu9xZKD8aWQqEDUVaamYj2NnMkPrWhuBQ3GUrRWgRRxCHOVOFj2rukmt8VV08ZjewCgdWuYFVqwjebV4J7f2n8m4gBOVXd6NQipNMZokQEbzePMZ16ZQturbzpasj8jjNECRE8D7M-K0m_t3hW09jXeVZM7tezZqVUTZpQ0L245d3anUHHiRr0nJnR7vQW_xY2leIphZmD-7no8M9v4bw-mE4PjnF0mky-AXSdBiL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOcCFb0RoASPRC8giG8d2fEAIlS5bursgtJXKyXUSp3ShSUu2YvlT_EZmknhTDvTWW5Q4TuQZzzx7PPMIeaEy6UQhJHM2DVksIsvACYdMyELpInfcOkxwnkzlaD_-eCAO1sgfnwuDxyq9TWwMdV5luEf-GpCzFjqOlHp7esaQNQqjq55Co1WLPff7FyzZ6je770G-W1E03Jltj1jHKsAyMNgLlmrLEwmXCcYoudVSOJeqwUDqKNdhCphAFUoVLi4GaewUOEGZ5KqQClYyGDiDfq-R6zHnHGv1J8MP3vJzFTbksbhlzpCM00dRm1Q9gFp4BEwwABCaLbGWw7eqPDoDD_WvT-yB7io222QUlYUtjy44v-EdcqtDrfRdq2Z3yZor75HbnhGCdgbiPvk6a2l_4Db9BMbopMvypMcl3fYHlegXmx9XdNoeQK_pTlm7kxTT4unnTmvo2MJSgE76DcwHZP9KhvkhWS-r0j0iVIhCK5eJxHKJ7Fqwwkx1rgBYZDy3wgVkYzWU5rQt0mEk8pkC-AgDEvrBNVlX9xzpN36YvmIzysaAbAzKxiwD8nL1iu_vksabXmKmm_-16bU1IM9Xj2HmYjjGlq46xzYqCXkMMCIgr7ykL3Tx_w9udcrQN57X8-_Leb1MjYvaopGD8PHlP_aM3BjNJmMz3p3ubZCbUaOauLW0SdYXP8_dEwBbi_Rpo-GUHF71lPoLVKM0zQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9SQXzxW1xbNYK-KKF7u5tk81hqj6rtWaQH9Skku0nt2eZa9wr35ztzm9xWUMG3ZTc7gUyS3yTz8SPkjWyE454L5ozNWcULwwCEc8aFl8q3rjQOE5wPJ2J_Wn064SeR57RL0e7JJdnnNGCVprDYvmz99pD4BoYLBlRxBnCsGBiRtyuAajx9TYudtBWXMl-xueIdNkN2zOTW_JMILK7wfR5Or6Dr30FqsDzXztJVik_wJpzeQKPxA3IvmpF0p9f7Q3LLhUfkfqJooHHFPibfjnseHnhNv8DucBHTLulZoLspcoh-Ne3ZnE76iPCO7oXOXVjMU6dHUY30wIBtTg-HG8UnZDreO97dZ5FNgTUAVAtmlSlrAY81-mZLowR3zsrRSKiiVbkFW0h6Kb2r_MhWTgL4i7qVXkg4waHD8CnZCPPgnhHKuVfSNbw2pUC6KzjyWdVKQPqmbA13GdlcD6W-7KtmaIEEo2AN5BnJ0-DqJhYiRz6Mcz2UUEbdaNCNRt3oZUberX9J8v7ReCtpTMcF2Wk4eCmuqkLKjLxef4alhP4RE9z8GtvIOi8rwPWMvE-aviHi7x2-jZNhaDzrZj-Ws25ptSv6Ko6j_Pl_SX1F7hx9GOuDj5PPm-RusZqoePOzRTYWP6_dC7CFFvblar7_ApoZ_zU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Optimization+in+Cognitive+Radio+Networks+Ensembling+Physical+Layer+Measurement&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Zhao%2C+Yan-Chao&rft.au=Wu%2C+Jie&rft.au=Li%2C+Wen-Zhong&rft.au=Lu%2C+Sang-Lu&rft.date=2015-11-01&rft.pub=Springer+US&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=30&rft.issue=6&rft.spage=1290&rft.epage=1305&rft_id=info:doi/10.1007%2Fs11390-015-1599-x&rft.externalDocID=10_1007_s11390_015_1599_x |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |