Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement

Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 30; no. 6; pp. 1290 - 1305
Main Author 赵彦超 吴杰 李文中 陆桑璐
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2015
Springer Nature B.V
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-015-1599-x

Cover

Abstract Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
AbstractList Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 − ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 - epsilon )-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
Author 赵彦超 吴杰 李文中 陆桑璐
AuthorAffiliation State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
AuthorAffiliation_xml – name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A
Author_xml – sequence: 1
  fullname: 赵彦超 吴杰 李文中 陆桑璐
BookMark eNp9kc1u1DAUhS1UJNqBB2BnwYYFgevYseMlGpUfaaAIlQUry8k4GaeJPbUdOsPT45KqQl10Y9_F-e49OucMnTjvDEIvCbwjAOJ9JIRKKIBUBamkLA5P0CmpORRMMHmSZwAoZH6eobMYBwAqgLFT9OtyF_zc7_Zzwhf7ZCf7RyfrHbYOr33vbLK_Df6ht9bjbybd-HAV8bmLZmpG63r8fXeMttUj3uijCfir0XEOZjIuPUdPOz1G8-LuX6GfH88v15-LzcWnL-sPm6JlhKaikZrWPI81K2lJteSVMY0ghMtyK6EpKxCdEJ1hHWmYEVASXm9FxwVjNQCjK_R22XujXaddrwY_B5cvqiEOV4chHhplyhwMcCCQ5W8W-T7469nEpCYbWzOO2hk_R0WEqIEymh2t0OsH0vvVJKdaSVYKkVViUbXBxxhMp1qb_mWYgrajIqBuG1JLQyobUbcNqUMmyQNyH-ykw_FRplyYmLWuN-E_T49Ar-4O7bzrrzN3f4lzLijnOZi_fqSv7A
CitedBy_id crossref_primary_10_1109_JIOT_2018_2792300
crossref_primary_10_1177_1550147717727713
Cites_doi 10.1109/JPROC.2009.2015704
10.1109/TIT.2006.871582
10.1016/j.comnet.2004.12.001
10.1109/TMC.2010.204
10.1109/PROC.1980.11899
10.1109/18.825799
10.1109/JSAC.2006.881641
10.1109/MWC.2009.4907554
10.1016/j.comnet.2006.05.001
10.1007/s00365-007-9003-x
10.1137/070697835
10.1007/s11276-011-0367-2
10.1109/TWC.2013.013013.120007
10.1145/1161089.1161119
10.1109/CROWNCOM.2007.4549824
10.1109/INFOCOM.2006.294
10.1007/978-1-4757-4388-3
10.1109/INFCOM.2009.5062048
10.1109/INFCOM.2004.1357030
10.1145/1288107.1288125
10.1109/VTCF.2006.257
10.1016/j.crma.2008.03.014
10.1109/WCNC.2012.6213962
10.1109/DYSPAN.2010.5457857
10.1109/ICPADS.2011.155
10.1145/1080829.1080836
10.1145/1288107.1288122
10.1109/TIT.2006.885507
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-015-1599-x
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement
EISSN 1860-4749
EndPage 1305
ExternalDocumentID jsjkxjsxb_e201506010
3897156031
10_1007_s11390_015_1599_x
666736610
GrantInformation_xml – fundername: This work was partially supported by the National Natural Science Foundation of China under Grant Nos.61373128, 91218302,61321491, the Fundamental Research Funds for the Central Universities of China under Grant No.20620140509, the EU FP7 IRSES MobileCloud Project under Grant No.612212, and the Collaborative Innovation Center of Novel Software Technology and Industrialization of China
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c413t-b9a386413842323a965eeb711692d90b2507f77fe4f1b4e702168d7f674480043
IEDL.DBID AGYKE
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Sun Sep 28 08:07:54 EDT 2025
Fri Jul 25 09:52:05 EDT 2025
Wed Oct 01 02:32:13 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:40:05 EST 2025
Wed Feb 14 10:28:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords distributed algorithm
throughput optimization
centralized algorithm
wireless mesh network
cognitive radio network
spectrum allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b9a386413842323a965eeb711692d90b2507f77fe4f1b4e702168d7f674480043
Notes Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh networks). In these paradigms, how to effectively allocate the spectrum to different transmission links with minimized mutual interference becomes the key concern. In this paper, we study the throughput optimization via spectrum allocation in cognitive radio networks (CRNs). The previous studies incorporate either the conflict graph or SINR model to characterize the interference relationship. However, the former model neglects the accumulative interference effect and leads to unwanted interference and sub-optimal results, while the work based on the latter model neglects its heavy reliance on the accuracy of estimated RSS (receiving signal strength) among all potential links. Both are inadequate to characterize the complex relationship between interference and throughput. To this end, by considering the feature of CRs, like spectrum diversity and non-continuous OFDM, we propose a measurement-assisted SINR-based cross-layer throughput optimization solution. Our work concerns features in different layers: in the physical layer, we present an efficient RSS estimation algorithm to improve the accuracy of the SINR model; in the upper layer, a flow level SINR-based throughput optimization problem for WMNs is modelled as a mixed integer non-linear programming problem which is proved to be NP-hard. To solve this problem, a centralized (1 -ε)-optimal algorithm and an efficient distributed algorithm are provided. To evaluate the algorithm performance, the real-world traces are used to illustrate the effectiveness of our scheme.
cognitive radio network, wireless mesh network, throughput optimization, centralized algorithm, distributedalgorithm, spectrum allocation
11-2296/TP
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1749594277
PQPubID 326258
PageCount 16
ParticipantIDs wanfang_journals_jsjkxjsxb_e201506010
proquest_miscellaneous_1778034341
proquest_journals_1749594277
crossref_citationtrail_10_1007_s11390_015_1599_x
crossref_primary_10_1007_s11390_015_1599_x
springer_journals_10_1007_s11390_015_1599_x
chongqing_primary_666736610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A
References Mahmoud, Yucek, Arslan (CR3) 2009; 16
Donoho (CR15) 2006; 52
Molisch, Greenstein, Shafi (CR20) 2009; 97
CR17
CR16
Recht, Fazel, Parrilo (CR19) 2010; 52
Akyildiz, Wang, Wang (CR1) 2005; 47
Hale (CR5) 1980; 68
CR13
CR12
CR11
CR33
CR10
CR31
CR30
Shi, Hou, Kompella, Sherali (CR8) 2011; 10
Alicherry, Bhatia, Li (CR22) 2006; 24
Gupta, Kumar (CR7) 2000; 46
Chafekar, Kumar, Marathe, Parthasarathy, Srinivasan (CR9) 2011; 17
Akyildiz, Lee, Vuran, Mohanty (CR2) 2006; 50
CR4
CR6
CR29
CR28
CR27
CR26
CR25
CR24
CR23
CR21
Cramer (CR14) 1750
Baraniuk, Davenport, De Vore, Wakin (CR18) 2008; 28
Chen, Dai, Li, Hu, Wu, Shi, Lu (CR32) 2013; 12
D Donoho (1599_CR15) 2006; 52
1599_CR29
1599_CR28
Y Shi (1599_CR8) 2011; 10
1599_CR21
X Chen (1599_CR32) 2013; 12
1599_CR23
W Hale (1599_CR5) 1980; 68
1599_CR25
1599_CR24
1599_CR27
1599_CR26
R Baraniuk (1599_CR18) 2008; 28
B Recht (1599_CR19) 2010; 52
H Mahmoud (1599_CR3) 2009; 16
1599_CR17
AF Molisch (1599_CR20) 2009; 97
IF Akyildiz (1599_CR2) 2006; 50
1599_CR10
1599_CR31
1599_CR12
P Gupta (1599_CR7) 2000; 46
1599_CR11
1599_CR33
1599_CR13
1599_CR16
M Alicherry (1599_CR22) 2006; 24
1599_CR6
G Cramer (1599_CR14) 1750
1599_CR4
IF Akyildiz (1599_CR1) 2005; 47
D Chafekar (1599_CR9) 2011; 17
1599_CR30
References_xml – volume: 97
  start-page: 787
  issue: 5
  year: 2009
  end-page: 804
  ident: CR20
  article-title: Propagation issues for cognitive radio
  publication-title: Proc. the IEEE
  doi: 10.1109/JPROC.2009.2015704
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR15
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.871582
– volume: 47
  start-page: 445
  issue: 4
  year: 2005
  end-page: 487
  ident: CR1
  article-title: Wireless mesh networks: A survey
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2004.12.001
– ident: CR4
– volume: 10
  start-page: 954
  issue: 7
  year: 2011
  end-page: 967
  ident: CR8
  article-title: Maximizing capacity in multihop cognitive radio networks under the SINR model
  publication-title: IEEE Trans. Mobile Computing
  doi: 10.1109/TMC.2010.204
– ident: CR16
– ident: CR12
– start-page: 656
  year: 1750
  end-page: 659
  ident: CR14
  publication-title: Introduction to Algebraic Curves Lines Analysis
– ident: CR30
– volume: 68
  start-page: 1497
  issue: 12
  year: 1980
  end-page: 1514
  ident: CR5
  article-title: Frequency assignment: Theory and application
  publication-title: Proc. the IEEE
  doi: 10.1109/PROC.1980.11899
– ident: CR10
– ident: CR33
– ident: CR6
– ident: CR29
– ident: CR25
– ident: CR27
– volume: 46
  start-page: 388
  issue: 2
  year: 2000
  end-page: 404
  ident: CR7
  article-title: The capacity of wireless networks
  publication-title: IEEE Trans. Information Theory
  doi: 10.1109/18.825799
– ident: CR23
– ident: CR21
– volume: 24
  start-page: 1960
  issue: 11
  year: 2006
  end-page: 1971
  ident: CR22
  article-title: Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2006.881641
– volume: 16
  start-page: 6
  issue: 2
  year: 2009
  end-page: 15
  ident: CR3
  article-title: OFDM for cognitive radio: Merits and challenges
  publication-title: IEEE Wireless Communications
  doi: 10.1109/MWC.2009.4907554
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 50
  start-page: 2127
  issue: 13
  year: 2006
  end-page: 2159
  ident: CR2
  article-title: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2006.05.001
– volume: 28
  start-page: 253
  issue: 3
  year: 2008
  end-page: 263
  ident: CR18
  article-title: A simple proof of the restricted isometry property for random matrices
  publication-title: Constructive Approximation
  doi: 10.1007/s00365-007-9003-x
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  end-page: 501
  ident: CR19
  article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
  publication-title: SIAM Review
  doi: 10.1137/070697835
– volume: 17
  start-page: 1605
  issue: 7
  year: 2011
  end-page: 1624
  ident: CR9
  article-title: Capacity of wireless networks under SINR interference constraints
  publication-title: Wireless Networks
  doi: 10.1007/s11276-011-0367-2
– volume: 12
  start-page: 1524
  issue: 4
  year: 2013
  end-page: 1531
  ident: CR32
  article-title: ProHet: A probabilistic routing protocol with assured delivery rate in wireless heterogeneous sensor networks
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2013.013013.120007
– ident: CR28
– ident: CR26
– ident: CR24
– start-page: 656
  volume-title: Introduction to Algebraic Curves Lines Analysis
  year: 1750
  ident: 1599_CR14
– ident: 1599_CR11
  doi: 10.1145/1161089.1161119
– ident: 1599_CR23
– ident: 1599_CR21
– volume: 24
  start-page: 1960
  issue: 11
  year: 2006
  ident: 1599_CR22
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2006.881641
– ident: 1599_CR26
  doi: 10.1109/CROWNCOM.2007.4549824
– volume: 68
  start-page: 1497
  issue: 12
  year: 1980
  ident: 1599_CR5
  publication-title: Proc. the IEEE
  doi: 10.1109/PROC.1980.11899
– ident: 1599_CR33
  doi: 10.1109/INFOCOM.2006.294
– ident: 1599_CR13
  doi: 10.1007/978-1-4757-4388-3
– volume: 10
  start-page: 954
  issue: 7
  year: 2011
  ident: 1599_CR8
  publication-title: IEEE Trans. Mobile Computing
  doi: 10.1109/TMC.2010.204
– ident: 1599_CR28
  doi: 10.1109/INFCOM.2009.5062048
– ident: 1599_CR12
– ident: 1599_CR31
  doi: 10.1109/INFCOM.2004.1357030
– volume: 17
  start-page: 1605
  issue: 7
  year: 2011
  ident: 1599_CR9
  publication-title: Wireless Networks
  doi: 10.1007/s11276-011-0367-2
– volume: 50
  start-page: 2127
  issue: 13
  year: 2006
  ident: 1599_CR2
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2006.05.001
– volume: 46
  start-page: 388
  issue: 2
  year: 2000
  ident: 1599_CR7
  publication-title: IEEE Trans. Information Theory
  doi: 10.1109/18.825799
– ident: 1599_CR6
  doi: 10.1145/1288107.1288125
– ident: 1599_CR24
– ident: 1599_CR25
  doi: 10.1109/VTCF.2006.257
– volume: 97
  start-page: 787
  issue: 5
  year: 2009
  ident: 1599_CR20
  publication-title: Proc. the IEEE
  doi: 10.1109/JPROC.2009.2015704
– volume: 12
  start-page: 1524
  issue: 4
  year: 2013
  ident: 1599_CR32
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2013.013013.120007
– ident: 1599_CR16
  doi: 10.1016/j.crma.2008.03.014
– ident: 1599_CR30
  doi: 10.1109/WCNC.2012.6213962
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 1599_CR15
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.871582
– volume: 28
  start-page: 253
  issue: 3
  year: 2008
  ident: 1599_CR18
  publication-title: Constructive Approximation
  doi: 10.1007/s00365-007-9003-x
– ident: 1599_CR27
  doi: 10.1109/DYSPAN.2010.5457857
– ident: 1599_CR10
  doi: 10.1109/ICPADS.2011.155
– ident: 1599_CR4
  doi: 10.1145/1080829.1080836
– volume: 16
  start-page: 6
  issue: 2
  year: 2009
  ident: 1599_CR3
  publication-title: IEEE Wireless Communications
  doi: 10.1109/MWC.2009.4907554
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 1599_CR19
  publication-title: SIAM Review
  doi: 10.1137/070697835
– volume: 47
  start-page: 445
  issue: 4
  year: 2005
  ident: 1599_CR1
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2004.12.001
– ident: 1599_CR29
  doi: 10.1145/1288107.1288122
– ident: 1599_CR17
  doi: 10.1109/TIT.2006.885507
SSID ssj0037044
Score 2.0467737
Snippet Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh...
Wireless networks are developed under the fashion of wider spectrum utilization (e.g., cognitive radio) and multi-hop communication (e.g., wireless mesh...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1290
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Cognitive radio
Computer Science
Data Structures and Information Theory
Finite element method
Information Systems Applications (incl.Internet)
Interference
Internet access
Linear programming
Links
Mathematical models
Mixed integer
Networks
Nonlinear programming
Optimization
Radio networks
Regular Paper
Signal strength
Software
Software Engineering
Spectrum allocation
Theory of Computation
Wireless networks
优化组合
吞吐量
无线Mesh网络
无线电网络
测量
物理层
非线性规划问题
频谱利用率
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLjwRoQWZCS4gCzysh2fEKq6VIgWhFqpnCw7sUsX6rRkK-3PZyaxN-VAb1HiOJFn7G8845mPkNeyFY57LpgzNmc1Lw0DEM4ZF14q37nKOExwPjgU-8f15xN-Eh1uQzxWmdbEcaHu-hZ95O_BclZc1aWUHy4uGbJGYXQ1UmjcJneKEjQJM8UXn9JKXMl8JHNFFzZDcswU1RxT58D0wSNZnAGgK7bG2go_-3B6CYjxL0bNhucmVjpm-ARvwuk1MFo8IPeiFUk_TmJ_SG658IjcTwwNNE7Yx-TH0UTDA7fpV1gczmPWJT0LdDcdHKLfTXfW08PpQPhA98Lgzi2mqdNvUYr0iwHTnB7MDsUn5Hixd7S7zyKZAmsBp1bMKlM1Ai4bDM1WRgnunJVFIVTZqdyCKSS9lN7VvrC1k4D9oumkFxI2cBgvfEq2Qh_cM0I590q6ljemEsh2BTs-qzoJQN9WneEuI9ubodQXU9EMLZBfFIyBPCN5GlzdxjrkSIfxW88VlFE2GmSjUTZ6nZG3m1dSfzc03kkS03E-DnrWnoy82jyGmYThERNcf4VtZJNXNcB6Rt4lSV_r4v8ffBOVYW68HJa_1sthbbUrpyKORf785h_bJnfLUR3RvbNDtlZ_rtwLMHhW9uWo1X8BSLv7Bg
  priority: 102
  providerName: ProQuest
Title Throughput Optimization in Cognitive Radio Networks Ensembling Physical Layer Measurement
URI http://lib.cqvip.com/qk/85226X/201506/666736610.html
https://link.springer.com/article/10.1007/s11390-015-1599-x
https://www.proquest.com/docview/1749594277
https://www.proquest.com/docview/1778034341
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201506010
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7sKF8SnCxmQkuIA8pUlsx8cytZuAlWlqpe1k2YmzrWMpkFaq-Ot5buxmIEDaKZHj2In97Pd7fl8Ab0TBLasYp1abmGYs0RSZcEwZr4SsSptq6xycj8f8aJp9PGNn3o-7CdbuQSW53qk7ZzcEK86IilFkwZIicNxiTj7pwdbg8PzTMGzAqYjXOVzdyTV1OTGDMvNvjbiQCpfz-uI7dvg7a-rw5kZFunbsqStdX9ziQaNtmISvb01PrveXC7Nf_PwjsOMdf-8RPPSYlAxaInoM92z9BLZDvgfil_9TOJ-0SX2wmHzBrebG-3CSq5ocBDMkcqrLqzkZt-blDRnWjb0xzumdnHiaIJ81An1y3B1PPoPpaDg5OKI-NQMtkOstqJE6zTne5k7Rm2rJmbVG9PtcJqWMDQIrUQlR2azqm8wKRBI8L0XFBYqDTvv4HHr1vLYvgDBWSWELluuUu9xZKD8aWQqEDUVaamYj2NnMkPrWhuBQ3GUrRWgRRxCHOVOFj2rukmt8VV08ZjewCgdWuYFVqwjebV4J7f2n8m4gBOVXd6NQipNMZokQEbzePMZ16ZQturbzpasj8jjNECRE8D7M-K0m_t3hW09jXeVZM7tezZqVUTZpQ0L245d3anUHHiRr0nJnR7vQW_xY2leIphZmD-7no8M9v4bw-mE4PjnF0mky-AXSdBiL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOcCFb0RoASPRC8giG8d2fEAIlS5bursgtJXKyXUSp3ShSUu2YvlT_EZmknhTDvTWW5Q4TuQZzzx7PPMIeaEy6UQhJHM2DVksIsvACYdMyELpInfcOkxwnkzlaD_-eCAO1sgfnwuDxyq9TWwMdV5luEf-GpCzFjqOlHp7esaQNQqjq55Co1WLPff7FyzZ6je770G-W1E03Jltj1jHKsAyMNgLlmrLEwmXCcYoudVSOJeqwUDqKNdhCphAFUoVLi4GaewUOEGZ5KqQClYyGDiDfq-R6zHnHGv1J8MP3vJzFTbksbhlzpCM00dRm1Q9gFp4BEwwABCaLbGWw7eqPDoDD_WvT-yB7io222QUlYUtjy44v-EdcqtDrfRdq2Z3yZor75HbnhGCdgbiPvk6a2l_4Db9BMbopMvypMcl3fYHlegXmx9XdNoeQK_pTlm7kxTT4unnTmvo2MJSgE76DcwHZP9KhvkhWS-r0j0iVIhCK5eJxHKJ7Fqwwkx1rgBYZDy3wgVkYzWU5rQt0mEk8pkC-AgDEvrBNVlX9xzpN36YvmIzysaAbAzKxiwD8nL1iu_vksabXmKmm_-16bU1IM9Xj2HmYjjGlq46xzYqCXkMMCIgr7ykL3Tx_w9udcrQN57X8-_Leb1MjYvaopGD8PHlP_aM3BjNJmMz3p3ubZCbUaOauLW0SdYXP8_dEwBbi_Rpo-GUHF71lPoLVKM0zQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9SQXzxW1xbNYK-KKF7u5tk81hqj6rtWaQH9Skku0nt2eZa9wr35ztzm9xWUMG3ZTc7gUyS3yTz8SPkjWyE454L5ozNWcULwwCEc8aFl8q3rjQOE5wPJ2J_Wn064SeR57RL0e7JJdnnNGCVprDYvmz99pD4BoYLBlRxBnCsGBiRtyuAajx9TYudtBWXMl-xueIdNkN2zOTW_JMILK7wfR5Or6Dr30FqsDzXztJVik_wJpzeQKPxA3IvmpF0p9f7Q3LLhUfkfqJooHHFPibfjnseHnhNv8DucBHTLulZoLspcoh-Ne3ZnE76iPCO7oXOXVjMU6dHUY30wIBtTg-HG8UnZDreO97dZ5FNgTUAVAtmlSlrAY81-mZLowR3zsrRSKiiVbkFW0h6Kb2r_MhWTgL4i7qVXkg4waHD8CnZCPPgnhHKuVfSNbw2pUC6KzjyWdVKQPqmbA13GdlcD6W-7KtmaIEEo2AN5BnJ0-DqJhYiRz6Mcz2UUEbdaNCNRt3oZUberX9J8v7ReCtpTMcF2Wk4eCmuqkLKjLxef4alhP4RE9z8GtvIOi8rwPWMvE-aviHi7x2-jZNhaDzrZj-Ws25ptSv6Ko6j_Pl_SX1F7hx9GOuDj5PPm-RusZqoePOzRTYWP6_dC7CFFvblar7_ApoZ_zU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Optimization+in+Cognitive+Radio+Networks+Ensembling+Physical+Layer+Measurement&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Zhao%2C+Yan-Chao&rft.au=Wu%2C+Jie&rft.au=Li%2C+Wen-Zhong&rft.au=Lu%2C+Sang-Lu&rft.date=2015-11-01&rft.pub=Springer+US&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=30&rft.issue=6&rft.spage=1290&rft.epage=1305&rft_id=info:doi/10.1007%2Fs11390-015-1599-x&rft.externalDocID=10_1007_s11390_015_1599_x
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg