Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes
Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 365; no. 6451; pp. 360 - 366 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
26.07.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aaw3254 |
Cover
Abstract | Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon–hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity. |
---|---|
AbstractList | Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon–hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity. Two-for-one approach to photoredoxIn photoredox catalysis, an excited chromophore typically activates a single reactant either by oxidizing or reducing it. Ghosh et al. used a semiconductor catalyst to activate two reactants at once by quenching both an excited electron and the residual positive hole (see the Perspective by Swift). As such, two different reactive carbon or halide fragments could be appended to separate sites on an aryl ring. The catalyst also tolerated strong nucleophiles such as cyanide and could be recovered easily and reused.Science, this issue p. 360; see also p. 320Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon–hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity. Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon-hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity.Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon-hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity. In photoredox catalysis, an excited chromophore typically activates a single reactant either by oxidizing or reducing it. Ghosh et al. used a semiconductor catalyst to activate two reactants at once by quenching both an excited electron and the residual positive hole (see the Perspective by Swift). As such, two different reactive carbon or halide fragments could be appended to separate sites on an aryl ring. The catalyst also tolerated strong nucleophiles such as cyanide and could be recovered easily and reused. Science , this issue p. 360 ; see also p. 320 Formation of oxidizing and reducing sites on a semiconductor photocatalyst promotes double radical addition reactions. Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon–hydrogen functionalization of arenes and heteroarenes. The mpg-CN catalyst tolerates reactive radicals and strong nucleophiles, is straightforwardly recoverable by simple centrifugation of reaction mixtures, and is reusable for at least four catalytic transformations with conserved activity. |
Author | Khamrai, Jagadish König, Burkhard Shlapakov, Nikita Antonietti, Markus Ghosh, Indrajit Savateev, Aleksandr |
Author_xml | – sequence: 1 givenname: Indrajit surname: Ghosh fullname: Ghosh, Indrajit – sequence: 2 givenname: Jagadish surname: Khamrai fullname: Khamrai, Jagadish – sequence: 3 givenname: Aleksandr surname: Savateev fullname: Savateev, Aleksandr – sequence: 4 givenname: Nikita surname: Shlapakov fullname: Shlapakov, Nikita – sequence: 5 givenname: Markus surname: Antonietti fullname: Antonietti, Markus – sequence: 6 givenname: Burkhard surname: König fullname: König, Burkhard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31346061$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kbtrHDEQxoVxsM-P2lXMQpo0a-ut3TKYvMBwTVIL7WjW1rEnnSUtwfnrs86dUxhSDcz8vmHm-87IcUwRCbli9IYxrm8LBIyAN879ElzJI7JitFdtz6k4JitKhW47atQpOStlQ-ky68UJORVMSE01W5H1Oj-4GKApuA2Qop-hptzsHlNN4KqbnkttwMVmCOMcoYYU3RR-Y-MyRiyNi755xIo57RsX5N3opoKXh3pOfn75_OPuW3u__vr97tN9C5KJ2jraeW_EOHAnhEA00A9a4sAMH1nXARguvB-WI6GTTDLNhPJS90qNwD0DcU4-7vfucnqasVS7DQVwmlzENBfLuVZGGynNgn54g27SnJc3_lJS9J1ReqGuD9Q8bNHbXQ5bl5_tq1ULoPYA5FRKxtFCqO7FkJpdmCyj9iUSe4jEHiJZdLdvdK-r_694v1dsypLFP5xrozk3vfgDwmybZQ |
CitedBy_id | crossref_primary_10_1002_ajoc_202200195 crossref_primary_10_1021_jacs_4c06510 crossref_primary_10_1039_D0GC04234J crossref_primary_10_1038_s41467_022_29107_9 crossref_primary_10_1002_anie_202016310 crossref_primary_10_1016_j_jcat_2022_08_011 crossref_primary_10_1002_ange_202219107 crossref_primary_10_1039_D1GC00938A crossref_primary_10_1039_D0GC01727B crossref_primary_10_1021_acsanm_4c04909 crossref_primary_10_1021_jacs_0c12958 crossref_primary_10_1039_D1GC03665C crossref_primary_10_1039_D2TA00660J crossref_primary_10_1002_ange_202302994 crossref_primary_10_3762_bjoc_17_89 crossref_primary_10_1021_acscatal_4c06960 crossref_primary_10_1039_D2SE01455F crossref_primary_10_1016_j_xcrp_2020_100141 crossref_primary_10_1039_D4QO00786G crossref_primary_10_1021_acsomega_3c02654 crossref_primary_10_1002_anie_202110971 crossref_primary_10_1002_ange_202016511 crossref_primary_10_1021_acs_analchem_3c03221 crossref_primary_10_1002_slct_202500082 crossref_primary_10_1002_ange_202004747 crossref_primary_10_1002_advs_202303781 crossref_primary_10_1016_j_trechm_2021_02_006 crossref_primary_10_1016_j_chempr_2021_06_010 crossref_primary_10_1002_ange_202210640 crossref_primary_10_1039_D4QO00799A crossref_primary_10_1021_acscatal_2c04453 crossref_primary_10_1039_D0SC02131H crossref_primary_10_1021_acs_oprd_3c00515 crossref_primary_10_1002_ejoc_202101255 crossref_primary_10_1039_C9GC03580J crossref_primary_10_1021_acs_nanolett_0c00983 crossref_primary_10_1039_D2SC03964H crossref_primary_10_1002_ejoc_201901572 crossref_primary_10_1021_acsmaterialslett_3c01260 crossref_primary_10_1039_D4SC07817A crossref_primary_10_1002_anie_202002241 crossref_primary_10_1002_eem2_12515 crossref_primary_10_1038_s41557_022_00966_5 crossref_primary_10_1021_jacs_2c07410 crossref_primary_10_1016_j_colsurfa_2022_128931 crossref_primary_10_1021_acscatal_1c01222 crossref_primary_10_1002_chem_202002145 crossref_primary_10_1039_D3GC00669G crossref_primary_10_1002_chem_202404389 crossref_primary_10_1016_j_scib_2021_08_001 crossref_primary_10_1021_acscatal_2c03229 crossref_primary_10_1039_D0MA00327A crossref_primary_10_1021_acs_chemrev_2c00478 crossref_primary_10_1039_D0CC03230A crossref_primary_10_1039_D0OB01652G crossref_primary_10_1002_chem_201904169 crossref_primary_10_1016_j_cej_2023_142990 crossref_primary_10_1002_anie_202016511 crossref_primary_10_1002_cssc_202402064 crossref_primary_10_1002_ejoc_202000423 crossref_primary_10_1021_acscatal_9b03651 crossref_primary_10_1039_D1CY01386F crossref_primary_10_1002_adsc_202101012 crossref_primary_10_1002_ejoc_201901112 crossref_primary_10_1039_D1QM01077H crossref_primary_10_1134_S1070428022120028 crossref_primary_10_1021_aps_4c00018 crossref_primary_10_1002_cptc_202400227 crossref_primary_10_3390_molecules29163716 crossref_primary_10_1039_D0GC03792C crossref_primary_10_1021_acssuschemeng_0c02289 crossref_primary_10_1039_D0GC01187H crossref_primary_10_1016_j_apcatb_2022_122291 crossref_primary_10_1002_adfm_202400998 crossref_primary_10_1038_s41467_023_37113_8 crossref_primary_10_1039_D4NJ00395K crossref_primary_10_1021_jacs_2c01814 crossref_primary_10_1002_adsc_202000314 crossref_primary_10_1021_acsanm_2c00342 crossref_primary_10_1002_ange_202002241 crossref_primary_10_1021_acscatal_0c05211 crossref_primary_10_1021_acscatal_0c05694 crossref_primary_10_1002_anie_202302994 crossref_primary_10_1002_ange_202109849 crossref_primary_10_1039_D0TA01973A crossref_primary_10_1016_j_tetlet_2024_155102 crossref_primary_10_1002_anie_202014314 crossref_primary_10_1002_chem_202303382 crossref_primary_10_1039_D2GC04843D crossref_primary_10_1002_cctc_202401842 crossref_primary_10_1021_acssuschemeng_9b06010 crossref_primary_10_1002_cssc_202300377 crossref_primary_10_1002_tcr_202100010 crossref_primary_10_1039_D2NP00056C crossref_primary_10_1002_cctc_202401847 crossref_primary_10_1021_acssuschemeng_3c01055 crossref_primary_10_1021_jacs_0c11968 crossref_primary_10_1002_ange_202302979 crossref_primary_10_1002_anie_202109849 crossref_primary_10_1002_ange_202014314 crossref_primary_10_1016_j_mtphys_2020_100297 crossref_primary_10_1002_ange_202203176 crossref_primary_10_1002_ange_202310470 crossref_primary_10_1002_adsc_202400117 crossref_primary_10_1021_acsnano_0c09661 crossref_primary_10_1039_D2TC03866H crossref_primary_10_1002_anie_202004747 crossref_primary_10_1002_anie_202316444 crossref_primary_10_1021_jacs_0c08688 crossref_primary_10_6023_cjoc202300009 crossref_primary_10_1002_anie_202211587 crossref_primary_10_1002_ange_202110971 crossref_primary_10_1002_anie_202302979 crossref_primary_10_1002_cssc_202300361 crossref_primary_10_1021_acscatal_4c02395 crossref_primary_10_1021_acs_inorgchem_2c02371 crossref_primary_10_1002_marc_202400250 crossref_primary_10_1021_acs_joc_0c00038 crossref_primary_10_1039_D0CS00493F crossref_primary_10_1016_j_xcrp_2021_100491 crossref_primary_10_1021_acs_oprd_2c00361 crossref_primary_10_1039_D3GC01329D crossref_primary_10_1002_adsc_202001176 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1021_acs_joc_0c02576 crossref_primary_10_1039_D1QI01607E crossref_primary_10_1021_acscatal_3c03191 crossref_primary_10_1002_cssc_202401214 crossref_primary_10_1002_ange_202211587 crossref_primary_10_1038_s41467_022_29781_9 crossref_primary_10_1039_D2SC02174A crossref_primary_10_1039_D4CY00029C crossref_primary_10_1021_acs_orglett_2c03814 crossref_primary_10_1039_D0TA03749D crossref_primary_10_1039_D3GC04412B crossref_primary_10_3762_bjoc_16_125 crossref_primary_10_1002_cctc_202301728 crossref_primary_10_1002_ejoc_202000170 crossref_primary_10_1002_cctc_202401699 crossref_primary_10_1002_ange_202117738 crossref_primary_10_1016_j_envres_2023_116462 crossref_primary_10_1038_s41467_024_48349_3 crossref_primary_10_1126_sciadv_abc9923 crossref_primary_10_1002_cctc_202101737 crossref_primary_10_1021_acscatal_0c00881 crossref_primary_10_1002_ejoc_202300933 crossref_primary_10_1039_D1NJ00532D crossref_primary_10_1002_ange_202306846 crossref_primary_10_1039_D3SC02440G crossref_primary_10_1016_j_apsusc_2020_148003 crossref_primary_10_1016_j_cej_2021_132348 crossref_primary_10_1002_anie_202011815 crossref_primary_10_1016_j_apcatb_2025_125025 crossref_primary_10_1039_D2CY02104H crossref_primary_10_1002_chem_202004974 crossref_primary_10_1039_D0SC04285D crossref_primary_10_1021_acscatal_4c05208 crossref_primary_10_1021_jacs_0c02848 crossref_primary_10_1002_solr_202000444 crossref_primary_10_1016_j_jcat_2024_115461 crossref_primary_10_1039_D4TA01440E crossref_primary_10_3390_coatings13020358 crossref_primary_10_1002_adma_202405646 crossref_primary_10_1016_j_tetlet_2023_154385 crossref_primary_10_1016_j_seppur_2021_118691 crossref_primary_10_1016_j_ijhydene_2023_05_047 crossref_primary_10_1016_j_checat_2023_100877 crossref_primary_10_1055_a_1899_5409 crossref_primary_10_1002_chem_202303996 crossref_primary_10_1021_acsanm_2c00760 crossref_primary_10_1002_cctc_202201215 crossref_primary_10_3390_molecules29102166 crossref_primary_10_1021_acs_joc_3c00574 crossref_primary_10_1016_j_dyepig_2022_111042 crossref_primary_10_7498_aps_70_20201444 crossref_primary_10_1021_jacs_0c00365 crossref_primary_10_1039_D2GC04630J crossref_primary_10_1021_acs_langmuir_4c01714 crossref_primary_10_2139_ssrn_4160384 crossref_primary_10_1002_cssc_202301882 crossref_primary_10_1002_adsc_202000167 crossref_primary_10_1002_nano_202100065 crossref_primary_10_1021_acsami_1c02243 crossref_primary_10_1002_ejoc_202000144 crossref_primary_10_1002_ejoc_202100937 crossref_primary_10_1002_ange_202009288 crossref_primary_10_1016_j_jcat_2023_06_040 crossref_primary_10_1021_jacs_1c09141 crossref_primary_10_1038_s41467_023_39540_z crossref_primary_10_1002_anie_202425551 crossref_primary_10_1002_adsu_202100473 crossref_primary_10_1002_chem_202001439 crossref_primary_10_1021_jacs_4c08587 crossref_primary_10_1038_s41467_023_43328_6 crossref_primary_10_1016_j_ccr_2022_214516 crossref_primary_10_1021_acssensors_2c00961 crossref_primary_10_1002_advs_202417752 crossref_primary_10_1002_cplu_202000606 crossref_primary_10_1021_acsorginorgau_1c00038 crossref_primary_10_1002_adma_202003082 crossref_primary_10_1002_anie_202003042 crossref_primary_10_1002_ange_202013852 crossref_primary_10_1002_cptc_202000014 crossref_primary_10_1039_D1CS00360G crossref_primary_10_1002_cssc_202100313 crossref_primary_10_3390_nano12203631 crossref_primary_10_3390_molecules29163775 crossref_primary_10_1002_cssc_202101767 crossref_primary_10_1002_cctc_202401327 crossref_primary_10_1016_j_matt_2021_02_014 crossref_primary_10_1021_acscatal_2c05189 crossref_primary_10_1002_cssc_202201094 crossref_primary_10_1002_anie_202301815 crossref_primary_10_1002_cctc_202201388 crossref_primary_10_1002_adma_202105904 crossref_primary_10_1016_j_gresc_2022_12_007 crossref_primary_10_1002_adma_202206405 crossref_primary_10_1002_aenm_202400742 crossref_primary_10_1016_j_jcat_2024_115775 crossref_primary_10_1021_acs_joc_3c01698 crossref_primary_10_1021_acsami_0c13060 crossref_primary_10_1002_adom_202202737 crossref_primary_10_1002_anie_202003251 crossref_primary_10_1039_D2QO01700H crossref_primary_10_1021_jacs_3c10333 crossref_primary_10_1002_anie_202109342 crossref_primary_10_1038_s41565_023_01385_4 crossref_primary_10_1039_D2TA06479K crossref_primary_10_1002_ejoc_201901421 crossref_primary_10_1016_j_apcata_2023_119173 crossref_primary_10_1038_s41467_020_20521_5 crossref_primary_10_1021_acscatal_1c02909 crossref_primary_10_1016_j_jclepro_2022_134423 crossref_primary_10_1021_acs_orglett_2c00529 crossref_primary_10_1002_ange_202210789 crossref_primary_10_1002_solr_202100176 crossref_primary_10_1039_D1GC03490A crossref_primary_10_1021_acsnano_2c03778 crossref_primary_10_1021_acs_jpca_0c07702 crossref_primary_10_1038_s41467_022_29811_6 crossref_primary_10_3390_ma14247812 crossref_primary_10_1016_j_ces_2024_120007 crossref_primary_10_1021_acscatal_9b05598 crossref_primary_10_1039_D3GC01247F crossref_primary_10_1039_D0CY01881C crossref_primary_10_1039_D2RA01797K crossref_primary_10_1002_ajoc_202200643 crossref_primary_10_1002_adsc_202400819 crossref_primary_10_1002_ajoc_202000170 crossref_primary_10_3390_molecules25225270 crossref_primary_10_1038_s41467_023_38459_9 crossref_primary_10_1021_acsanm_3c01424 crossref_primary_10_1021_jacs_9b10857 crossref_primary_10_1039_D3QO01603J crossref_primary_10_1186_s40643_023_00724_6 crossref_primary_10_1016_j_chempr_2024_01_022 crossref_primary_10_1002_anie_202318377 crossref_primary_10_1002_adma_202406807 crossref_primary_10_1002_chem_202400443 crossref_primary_10_1021_acscatal_0c04725 crossref_primary_10_1002_adsu_202000265 crossref_primary_10_1002_ange_202412972 crossref_primary_10_1021_acs_joc_1c01867 crossref_primary_10_1021_acs_accounts_2c00477 crossref_primary_10_6023_cjoc202202018 crossref_primary_10_1016_j_cej_2021_130226 crossref_primary_10_1039_D3GC05089K crossref_primary_10_1002_adom_202101965 crossref_primary_10_1016_j_jece_2024_114099 crossref_primary_10_1021_acs_joc_2c01291 crossref_primary_10_1021_acsestengg_1c00453 crossref_primary_10_1021_acs_oprd_0c00367 crossref_primary_10_1038_s41467_023_40359_x crossref_primary_10_1038_s41929_020_0473_6 crossref_primary_10_3390_molecules29143361 crossref_primary_10_1039_D3GC04517J crossref_primary_10_1021_acsnano_1c00627 crossref_primary_10_1021_acscatal_1c04053 crossref_primary_10_1039_D3GC02897F crossref_primary_10_1002_ejoc_202200026 crossref_primary_10_1016_j_apsusc_2021_149809 crossref_primary_10_1002_nadc_20214112348 crossref_primary_10_1016_j_apcatb_2020_118982 crossref_primary_10_1016_j_tetlet_2023_154667 crossref_primary_10_1002_cpz1_984 crossref_primary_10_1016_j_gresc_2024_08_003 crossref_primary_10_1021_acs_orglett_1c02598 crossref_primary_10_1002_adfm_202002021 crossref_primary_10_1039_D1CC07315J crossref_primary_10_1002_chem_202404707 crossref_primary_10_1039_D2GC02254K crossref_primary_10_1039_D2QO00551D crossref_primary_10_1021_acsnano_3c06314 crossref_primary_10_1039_D1CC02745J crossref_primary_10_1021_acs_chemmater_0c03616 crossref_primary_10_1002_ange_201911822 crossref_primary_10_1021_acs_chemmater_0c01798 crossref_primary_10_3390_molecules28135030 crossref_primary_10_1016_j_ijhydene_2021_05_197 crossref_primary_10_1039_D4QO00955J crossref_primary_10_1021_acs_orglett_1c01571 crossref_primary_10_1039_D0SE01454K crossref_primary_10_1039_D3OB00161J crossref_primary_10_1002_ange_202316444 crossref_primary_10_1002_anie_202203176 crossref_primary_10_1039_C9TA09500D crossref_primary_10_1021_acs_orglett_9b04454 crossref_primary_10_3390_molecules28030934 crossref_primary_10_1038_s41467_021_27789_1 crossref_primary_10_1016_j_nwnano_2023_100019 crossref_primary_10_1016_j_jcat_2021_09_019 crossref_primary_10_1038_s41467_020_18458_w crossref_primary_10_1039_D2MA00308B crossref_primary_10_1039_D1GC01931G crossref_primary_10_1016_j_cis_2020_102229 crossref_primary_10_1002_ange_202011815 crossref_primary_10_1016_j_jcat_2021_09_010 crossref_primary_10_1021_jacs_1c00503 crossref_primary_10_1002_cctc_202400042 crossref_primary_10_1039_D1FD00007A crossref_primary_10_1039_D1TA00890K crossref_primary_10_1021_acscentsci_0c00549 crossref_primary_10_1038_s41467_024_48769_1 crossref_primary_10_1039_D3CS00889D crossref_primary_10_1016_j_cclet_2021_09_005 crossref_primary_10_1021_acs_orglett_1c00235 crossref_primary_10_1016_j_colsurfa_2021_126917 crossref_primary_10_1038_s41467_024_45217_y crossref_primary_10_1002_anie_202417099 crossref_primary_10_1002_adom_202201017 crossref_primary_10_3390_catal11121529 crossref_primary_10_1021_acs_inorgchem_1c00063 crossref_primary_10_1038_s41467_023_42851_w crossref_primary_10_1016_j_compscitech_2023_110137 crossref_primary_10_1002_cctc_201902276 crossref_primary_10_1039_D2NJ00571A crossref_primary_10_1002_solr_202300077 crossref_primary_10_1248_cpb_c19_00856 crossref_primary_10_1016_j_cej_2021_133540 crossref_primary_10_1002_chem_202000856 crossref_primary_10_1021_acscatal_0c01204 crossref_primary_10_1007_s42247_020_00086_1 crossref_primary_10_1002_cctc_201901076 crossref_primary_10_1039_D1CY01623G crossref_primary_10_1039_D1CC01339D crossref_primary_10_1002_ange_202417099 crossref_primary_10_1002_ejoc_202400937 crossref_primary_10_1016_j_apcatb_2020_119637 crossref_primary_10_1021_acssuschemeng_1c03384 crossref_primary_10_1002_anie_202412972 crossref_primary_10_1021_acscatal_2c02743 crossref_primary_10_1002_cctc_202200449 crossref_primary_10_1021_acscatal_0c04815 crossref_primary_10_1039_D1CY00328C crossref_primary_10_1039_D2OB01640K crossref_primary_10_1039_D0CY01773F crossref_primary_10_1021_acs_joc_1c01883 crossref_primary_10_1088_1361_6528_abb26e crossref_primary_10_1016_j_ccr_2023_215607 crossref_primary_10_1016_j_checat_2022_11_005 crossref_primary_10_1021_acs_joc_2c02041 crossref_primary_10_1055_s_0042_1752344 crossref_primary_10_1126_science_aax8940 crossref_primary_10_1016_j_apsusc_2022_155902 crossref_primary_10_1016_j_cej_2023_147970 crossref_primary_10_1038_s41467_021_26817_4 crossref_primary_10_1002_slct_202405537 crossref_primary_10_1002_smll_202306563 crossref_primary_10_1002_anie_202310470 crossref_primary_10_1016_j_checat_2022_10_012 crossref_primary_10_1021_acs_orglett_2c04210 crossref_primary_10_1002_adsc_202001614 crossref_primary_10_3390_catal13030620 crossref_primary_10_1002_adfm_202408213 crossref_primary_10_1021_acs_joc_9b03407 crossref_primary_10_1016_j_colsurfa_2024_134745 crossref_primary_10_1038_s41467_020_15131_0 crossref_primary_10_1039_D3SC00688C crossref_primary_10_1016_j_tetlet_2020_152010 crossref_primary_10_1021_acscatal_0c03480 crossref_primary_10_1038_s41467_023_38334_7 crossref_primary_10_1016_j_colsurfa_2020_125580 crossref_primary_10_3390_ijms22147637 crossref_primary_10_1002_anie_201911822 crossref_primary_10_1039_D1GC00454A crossref_primary_10_1016_j_jece_2023_110164 crossref_primary_10_1016_j_apcatb_2020_119773 crossref_primary_10_3390_pr12040672 crossref_primary_10_1002_cptc_202300306 crossref_primary_10_1002_ange_202318377 crossref_primary_10_1055_a_2124_4037 crossref_primary_10_1039_D0CP02741C crossref_primary_10_1016_j_apsusc_2024_159490 crossref_primary_10_1016_j_jssc_2024_124634 crossref_primary_10_1021_acs_orglett_3c01384 crossref_primary_10_1002_cssc_202101041 crossref_primary_10_1021_jacsau_4c00527 crossref_primary_10_1002_cjoc_202401153 crossref_primary_10_1021_acsami_1c02973 crossref_primary_10_1021_jacs_0c10945 crossref_primary_10_1002_ange_202003251 crossref_primary_10_1016_j_tet_2022_132711 crossref_primary_10_3390_nano9091321 crossref_primary_10_1002_ejoc_202000519 crossref_primary_10_1039_D1NJ02690A crossref_primary_10_1016_j_jcat_2020_06_032 crossref_primary_10_1021_acs_orglett_4c03884 crossref_primary_10_1021_jacs_2c06838 crossref_primary_10_1002_ente_202000945 crossref_primary_10_1002_cctc_202301399 crossref_primary_10_1039_D0RE00036A crossref_primary_10_1038_s41467_020_14983_w crossref_primary_10_1016_j_nwnano_2023_100026 crossref_primary_10_1016_j_jhazmat_2023_132471 crossref_primary_10_1002_cjoc_202100444 crossref_primary_10_1002_anie_202009288 crossref_primary_10_1002_chem_202402246 crossref_primary_10_1002_chem_202402003 crossref_primary_10_1021_acssuschemeng_0c08771 crossref_primary_10_1021_acscatal_2c01044 crossref_primary_10_1021_acscatal_3c03798 crossref_primary_10_1016_j_apcatb_2021_120957 crossref_primary_10_1002_ange_202109342 crossref_primary_10_1002_anie_202117738 crossref_primary_10_1002_asia_202200029 crossref_primary_10_1039_D2OB00807F crossref_primary_10_1039_D3OB00388D crossref_primary_10_1002_anie_202306846 crossref_primary_10_1002_anie_202210789 crossref_primary_10_1016_j_apcatb_2021_120964 crossref_primary_10_1039_D2QO00570K crossref_primary_10_1039_D2NJ05304G crossref_primary_10_1039_D3GC00931A crossref_primary_10_1080_14686996_2023_2188879 crossref_primary_10_1002_nadc_20194092532 crossref_primary_10_1039_D3CC00993A crossref_primary_10_1039_C9GC03679B crossref_primary_10_1002_adma_202203836 crossref_primary_10_1002_ange_202016310 crossref_primary_10_1007_s40242_020_0179_y crossref_primary_10_1002_ange_202425551 crossref_primary_10_1038_s41467_021_24048_1 crossref_primary_10_1039_C9OB01739A crossref_primary_10_1016_S1872_2067_22_64162_7 crossref_primary_10_1007_s11164_020_04345_y crossref_primary_10_1039_C9GC02870F crossref_primary_10_1039_D1SC01028J crossref_primary_10_1039_D3QO00458A crossref_primary_10_3390_M1620 crossref_primary_10_1039_D3SC00642E crossref_primary_10_1002_ajoc_202100804 crossref_primary_10_1021_acscatal_2c05862 crossref_primary_10_1039_D2EN00785A crossref_primary_10_1021_acsanm_4c00133 crossref_primary_10_1002_anie_202210640 crossref_primary_10_1002_ejoc_202000720 crossref_primary_10_1039_D2CY01090A crossref_primary_10_3390_molecules27155044 crossref_primary_10_1016_j_checat_2024_101151 crossref_primary_10_1039_D0GC03447A crossref_primary_10_1039_D0NR02556A crossref_primary_10_1002_ange_202003042 crossref_primary_10_1002_anie_202013852 crossref_primary_10_1016_j_cogsc_2020_05_001 crossref_primary_10_1021_acs_orglett_0c04225 crossref_primary_10_1002_ejoc_202100011 crossref_primary_10_1016_j_checat_2022_03_015 crossref_primary_10_1039_D3GC03069E crossref_primary_10_1016_S1872_2067_23_64391_8 crossref_primary_10_3390_ma16041630 crossref_primary_10_1002_ejoc_202401180 crossref_primary_10_1002_ange_202301815 crossref_primary_10_1039_D4GC00728J crossref_primary_10_1002_anie_202219107 crossref_primary_10_1002_smll_202303069 |
Cites_doi | 10.1021/ol201437g 10.1016/j.electacta.2010.02.099 10.1002/cctc.201800886 10.1021/jp4009338 10.1002/cctc.201601165 10.1021/ja211422g 10.1016/j.apcata.2008.03.009 10.1021/jo3018473 10.1016/j.tet.2010.01.007 10.1016/j.tet.2011.01.049 10.3762/bjoc.10.97 10.1021/acs.joc.6b01449 10.1126/science.aac9895 10.1021/acssuschemeng.8b05487 10.1002/anie.201511131 10.1007/s11244-010-9513-9 10.1021/ja501906x 10.1021/jo702219f 10.1021/acs.accounts.6b00229 10.1021/jacs.6b02782 10.1021/jo200443u 10.1021/ol3021836 10.1002/anie.201709690 10.1016/j.bmcl.2009.02.091 10.1021/acs.joc.8b01146 10.1021/jo0266285 10.1021/jacs.5b12081 10.1021/cr300503r 10.1021/ol301912a 10.1039/c0sc00535e 10.3762/bjoc.9.245 10.1038/s41570-017-0052 10.1038/nature11680 10.1039/B913880N 10.1002/chem.201601000 10.1002/anie.201800699 10.1002/chem.201503915 10.1021/jo048297x 10.1039/C6GC01582D 10.1016/j.tetlet.2009.11.016 10.1038/s41467-017-02527-8 10.1002/adma.201501939 10.1126/science.1161976 10.1002/anie.201707517 10.1021/ja501879c 10.1021/ol100437j 10.1016/j.tet.2016.07.032 10.1021/ja301553c 10.1002/anie.201707906 10.1002/ejoc.201600770 10.1002/anie.201201200 10.1126/science.1258232 10.1021/jo00125a047 10.1038/nmat2317 10.1021/ol101146f 10.1021/acscatal.5b02410 10.1039/C5SC02913A 10.1002/anie.201802472 10.1038/nchem.2888 10.1002/chem.201002547 10.1002/anie.201101182 10.1021/ja410823e 10.1039/C6GC02000C 10.1021/jo00061a041 10.1007/s40820-016-0121-5 10.1021/ja952600h 10.1021/acs.chemmater.7b02899 10.1021/acscatal.8b03199 10.1021/jacs.5b13450 10.1021/jo101589h 10.1039/C4SC03064H 10.1016/S1010-6030(96)04556-X 10.6028/jres.114.006 10.1021/jacs.6b12708 10.1021/jacs.8b03302 10.1002/anie.200903838 10.1002/anie.201103224 10.1021/ja00206a061 10.1002/adsc.201300199 10.1021/jo102063s 10.1073/pnas.1109059108 10.1038/s41586-018-0413-7 10.1126/science.1253647 10.1021/ol201713b 10.1021/ol4023084 10.1002/adsc.201200588 10.1126/science.aag0209 10.1002/anie.201407948 10.1038/nature10647 10.1021/jacs.8b01561 10.1021/acs.chemrev.6b00057 10.1021/jo8025884 10.1021/acs.accounts.7b00023 10.1016/S0022-328X(03)00503-5 10.1039/b800274f 10.1039/C5RA22167F 10.1039/C4RA05625F 10.1002/chem.201300229 10.1002/chem.201405505 |
ContentType | Journal Article |
Copyright | Copyright © 2019, American Association for the Advancement of Science. Copyright © 2019, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2019, American Association for the Advancement of Science. – notice: Copyright © 2019, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaw3254 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 366 |
ExternalDocumentID | 31346061 10_1126_science_aaw3254 26762279 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 0B8 ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD ABBHK AEXZC C1K DCCCD F28 FR3 H8D H8G H94 IPSME JAAYA JBMMH JG9 JHFFW JKQEH JLXEF JPM JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 SA0 7X8 |
ID | FETCH-LOGICAL-c413t-a08dd73fb2a333ee7c9b64eb172f188cc723ddb460c841416135d46955fc2d1c3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Sep 05 08:20:47 EDT 2025 Wed Aug 13 05:53:02 EDT 2025 Wed Feb 19 02:31:06 EST 2025 Thu Apr 24 22:55:11 EDT 2025 Tue Jul 01 01:51:33 EDT 2025 Thu Jul 03 21:42:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6451 |
Language | English |
License | Copyright © 2019, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-a08dd73fb2a333ee7c9b64eb172f188cc723ddb460c841416135d46955fc2d1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6131-4850 0000-0002-1874-8450 0000-0002-2883-0087 0000-0002-5127-2271 0000-0002-5760-6033 |
PMID | 31346061 |
PQID | 2264398756 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2265767447 proquest_journals_2264398756 pubmed_primary_31346061 crossref_citationtrail_10_1126_science_aaw3254 crossref_primary_10_1126_science_aaw3254 jstor_primary_26762279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190726 2019-07-26 |
PublicationDateYYYYMMDD | 2019-07-26 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190726 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 Wang Y. B. (e_1_3_2_104_2) 2015 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_81_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 Roth H. G. (e_1_3_2_56_2) 2016; 27 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_90_2 Liebig J. B. (e_1_3_2_21_2) 1834; 10 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 31346053 - Science. 2019 Jul 26;365(6451):320-321 |
References_xml | – ident: e_1_3_2_93_2 doi: 10.1021/ol201437g – ident: e_1_3_2_63_2 doi: 10.1016/j.electacta.2010.02.099 – ident: e_1_3_2_86_2 doi: 10.1002/cctc.201800886 – start-page: 4153 year: 2015 ident: e_1_3_2_104_2 publication-title: Eur. J. Org. Chem. – ident: e_1_3_2_53_2 doi: 10.1021/jp4009338 – ident: e_1_3_2_54_2 doi: 10.1002/cctc.201601165 – ident: e_1_3_2_74_2 doi: 10.1021/ja211422g – ident: e_1_3_2_72_2 doi: 10.1016/j.apcata.2008.03.009 – ident: e_1_3_2_95_2 doi: 10.1021/jo3018473 – ident: e_1_3_2_51_2 doi: 10.1016/j.tet.2010.01.007 – ident: e_1_3_2_78_2 doi: 10.1016/j.tet.2011.01.049 – ident: e_1_3_2_8_2 doi: 10.3762/bjoc.10.97 – ident: e_1_3_2_3_2 doi: 10.1021/acs.joc.6b01449 – ident: e_1_3_2_12_2 doi: 10.1126/science.aac9895 – ident: e_1_3_2_60_2 doi: 10.1021/acssuschemeng.8b05487 – ident: e_1_3_2_69_2 doi: 10.1002/anie.201511131 – ident: e_1_3_2_49_2 doi: 10.1007/s11244-010-9513-9 – ident: e_1_3_2_89_2 doi: 10.1021/ja501906x – ident: e_1_3_2_105_2 doi: 10.1021/jo702219f – ident: e_1_3_2_7_2 doi: 10.1021/acs.accounts.6b00229 – ident: e_1_3_2_67_2 doi: 10.1021/jacs.6b02782 – ident: e_1_3_2_106_2 doi: 10.1021/jo200443u – ident: e_1_3_2_97_2 doi: 10.1021/ol3021836 – ident: e_1_3_2_62_2 doi: 10.1002/anie.201709690 – ident: e_1_3_2_88_2 doi: 10.1016/j.bmcl.2009.02.091 – ident: e_1_3_2_10_2 doi: 10.1021/acs.joc.8b01146 – ident: e_1_3_2_85_2 doi: 10.1021/jo0266285 – ident: e_1_3_2_31_2 doi: 10.1021/jacs.5b12081 – ident: e_1_3_2_2_2 doi: 10.1021/cr300503r – ident: e_1_3_2_96_2 doi: 10.1021/ol301912a – ident: e_1_3_2_29_2 doi: 10.1039/c0sc00535e – ident: e_1_3_2_43_2 doi: 10.3762/bjoc.9.245 – ident: e_1_3_2_46_2 doi: 10.1038/s41570-017-0052 – ident: e_1_3_2_71_2 doi: 10.1038/nature11680 – ident: e_1_3_2_36_2 doi: 10.1039/B913880N – ident: e_1_3_2_57_2 doi: 10.1002/chem.201601000 – ident: e_1_3_2_47_2 doi: 10.1002/anie.201800699 – ident: e_1_3_2_83_2 doi: 10.1002/chem.201503915 – ident: e_1_3_2_87_2 doi: 10.1021/jo048297x – ident: e_1_3_2_15_2 doi: 10.1039/C6GC01582D – ident: e_1_3_2_79_2 doi: 10.1016/j.tetlet.2009.11.016 – ident: e_1_3_2_26_2 doi: 10.1038/s41467-017-02527-8 – ident: e_1_3_2_59_2 doi: 10.1002/adma.201501939 – ident: e_1_3_2_4_2 doi: 10.1126/science.1161976 – ident: e_1_3_2_98_2 doi: 10.1002/anie.201707517 – ident: e_1_3_2_42_2 doi: 10.1021/ja501879c – ident: e_1_3_2_94_2 doi: 10.1021/ol100437j – ident: e_1_3_2_66_2 doi: 10.1016/j.tet.2016.07.032 – ident: e_1_3_2_37_2 doi: 10.1021/ja301553c – ident: e_1_3_2_99_2 doi: 10.1002/anie.201707906 – ident: e_1_3_2_77_2 doi: 10.1002/ejoc.201600770 – ident: e_1_3_2_16_2 doi: 10.1002/anie.201201200 – ident: e_1_3_2_6_2 doi: 10.1126/science.1258232 – ident: e_1_3_2_81_2 doi: 10.1021/jo00125a047 – ident: e_1_3_2_13_2 doi: 10.1038/nmat2317 – ident: e_1_3_2_27_2 doi: 10.1021/ol101146f – ident: e_1_3_2_58_2 doi: 10.1021/acscatal.5b02410 – ident: e_1_3_2_34_2 doi: 10.1039/C5SC02913A – ident: e_1_3_2_23_2 doi: 10.1002/anie.201802472 – ident: e_1_3_2_65_2 doi: 10.1038/nchem.2888 – ident: e_1_3_2_90_2 doi: 10.1002/chem.201002547 – ident: e_1_3_2_14_2 doi: 10.1002/anie.201101182 – ident: e_1_3_2_100_2 doi: 10.1021/ja410823e – ident: e_1_3_2_70_2 doi: 10.1039/C6GC02000C – ident: e_1_3_2_76_2 doi: 10.1021/jo00061a041 – ident: e_1_3_2_24_2 doi: 10.1007/s40820-016-0121-5 – ident: e_1_3_2_35_2 doi: 10.1021/ja952600h – ident: e_1_3_2_20_2 doi: 10.1021/acs.chemmater.7b02899 – volume: 10 start-page: 10 year: 1834 ident: e_1_3_2_21_2 publication-title: Ann. Pharm. – ident: e_1_3_2_48_2 doi: 10.1021/acscatal.8b03199 – ident: e_1_3_2_40_2 doi: 10.1021/jacs.5b13450 – ident: e_1_3_2_50_2 doi: 10.1021/jo101589h – ident: e_1_3_2_9_2 doi: 10.1039/C4SC03064H – ident: e_1_3_2_19_2 doi: 10.1016/S1010-6030(96)04556-X – ident: e_1_3_2_61_2 doi: 10.6028/jres.114.006 – ident: e_1_3_2_11_2 doi: 10.1021/jacs.6b12708 – ident: e_1_3_2_32_2 doi: 10.1021/jacs.8b03302 – ident: e_1_3_2_80_2 doi: 10.1002/anie.200903838 – ident: e_1_3_2_92_2 doi: 10.1002/anie.201103224 – ident: e_1_3_2_18_2 doi: 10.1021/ja00206a061 – ident: e_1_3_2_68_2 doi: 10.1002/adsc.201300199 – ident: e_1_3_2_103_2 doi: 10.1021/jo102063s – ident: e_1_3_2_38_2 doi: 10.1073/pnas.1109059108 – ident: e_1_3_2_30_2 doi: 10.1038/s41586-018-0413-7 – ident: e_1_3_2_44_2 doi: 10.1126/science.1253647 – ident: e_1_3_2_84_2 doi: 10.1021/ol201713b – ident: e_1_3_2_101_2 doi: 10.1021/ol4023084 – ident: e_1_3_2_64_2 doi: 10.1002/adsc.201200588 – ident: e_1_3_2_45_2 doi: 10.1126/science.aag0209 – ident: e_1_3_2_75_2 doi: 10.1002/anie.201407948 – ident: e_1_3_2_39_2 doi: 10.1038/nature10647 – ident: e_1_3_2_33_2 doi: 10.1021/jacs.8b01561 – ident: e_1_3_2_5_2 doi: 10.1021/acs.chemrev.6b00057 – ident: e_1_3_2_82_2 doi: 10.1021/jo8025884 – ident: e_1_3_2_17_2 doi: 10.1021/acs.accounts.7b00023 – ident: e_1_3_2_41_2 doi: 10.1016/S0022-328X(03)00503-5 – ident: e_1_3_2_55_2 doi: 10.1039/b800274f – ident: e_1_3_2_52_2 doi: 10.1039/C5RA22167F – ident: e_1_3_2_91_2 doi: 10.1039/C4RA05625F – ident: e_1_3_2_102_2 doi: 10.1002/chem.201300229 – volume: 27 start-page: 714 year: 2016 ident: e_1_3_2_56_2 publication-title: Synlett – ident: e_1_3_2_73_2 doi: 10.1002/chem.201405505 – reference: 31346053 - Science. 2019 Jul 26;365(6451):320-321 |
SSID | ssj0009593 |
Score | 2.698527 |
Snippet | Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional... In photoredox catalysis, an excited chromophore typically activates a single reactant either by oxidizing or reducing it. Ghosh et al. used a semiconductor... Two-for-one approach to photoredoxIn photoredox catalysis, an excited chromophore typically activates a single reactant either by oxidizing or reducing it.... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 360 |
SubjectTerms | Aromatic compounds Carbon Carbon nitride Catalysis Catalysts Centrifugation Chromophores Cyanides Electrons Holes (electron deficiencies) Intermediates Nucleophiles Oxidation Photoredox catalysis Redox reactions Semiconductor materials Substrates |
Title | Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes |
URI | https://www.jstor.org/stable/26762279 https://www.ncbi.nlm.nih.gov/pubmed/31346061 https://www.proquest.com/docview/2264398756 https://www.proquest.com/docview/2265767447 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZKJyReEBsMug0UJB6GqlSp7TjJYweMaQh42CbtLXKcZCkdzdSkQ9sf4-9xzjkmHVQaSFVUOY5l-bucz5e77wh5Q700Z4pRN6Jp5nLBE1cmYeYmMsgDqrTNrP0dn7-IozN-fO6f93o_O1FLyzoZqdu_5pX8D6rQBrjqLNl_QNYOCg3wH_CFKyAM13thjImUaljpCPdyrqlby8XwqijrsnHL3FS1juoaJlO9faHXb3qbDXUCWIbkzIUOhymxoWuotu88GKD2o04HShudOMEYgjakwDzW8S98LMqqQE2ULuS3qQ2z-VTI7wsshn0sL2Q6raxn-kRegwkMq4EZOLMKZmqDiE-KS9jgZ-U1CvJsWsuu66LJlnIxP75Vx4YNGTcj1MCeLh5JPdZV0QzrSRhZFNxw1KLOZViQwGzfDIu4_LkzdGpZZiMpfzCK7NWrHNx39kYbsdiclaiIzQCxGeAB2aABGG19sjE5eH9wuJbv2bBKdfK12jmsGEQYE7v-tNNYPadPyGNzXHEmKHubpJfNt8hDLGB6s0U2Dd6Vs2_4y98-JV-NWDorYumsiKUD8uTcEUsHpdABsJ2uWD4jZ4cfTt8duaZuh6vAJKpd6YVpGrA8oZIxlmWBihLBwSgIaD4OQ6UCytI04cJTIR_rEzbzUy4i388VTceKbZP-vJxnL4jDQp4LmeQRFT6XeQQ_6Bd4MldKhGE6IKN28WJlSO11bZXLeA1gA7JvH7hCPpf1XbcbNGw_KsByoEE0IHstPLHRBlWsE9JZBKd_MSCv7W3Q1foDnJxn5bLp42vyLB4MyHOE1Q7OxgwWRIx37j_BXfLo91u1R_r1Ypm9BBO5Tl4ZcfwFPEXERw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+semiconductor+photocatalyst+can+bifunctionalize+arenes+and+heteroarenes&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ghosh%2C+Indrajit&rft.au=Khamrai%2C+Jagadish&rft.au=Savateev%2C+Aleksandr&rft.au=Shlapakov%2C+Nikita&rft.date=2019-07-26&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=365&rft.issue=6451&rft.spage=360&rft.epage=366&rft_id=info:doi/10.1126%2Fscience.aaw3254&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaw3254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |