Global Optimization for Advertisement Selection in Sponsored Search

Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only c...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 30; no. 2; pp. 295 - 310
Main Author 崔卿 白峰杉 高斌 刘铁岩
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-015-1523-4

Cover

Abstract Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal. Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare, and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a commercial search engine. The experimental results show that our method can significantly outperform several ad selection algorithms on all the metrics under investigation.
AbstractList Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal. Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare, and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a commercial search engine. The experimental results show that our method can significantly outperform several ad selection algorithms on all the metrics under investigation.
Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal. Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare, and search engine revenue (we call the combination of these ob jective functions as the marketplace ob jective for ease of reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by maximizing the aforementioned marketplace ob jective. This formalization seems quite natural; however, it is technically di?cult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a commercial search engine. The experimental results show that our method can significantly outperform several ad selection algorithms on all the metrics under investigation.
Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal. Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare, and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a commercial search engine. The experimental results show that our method can significantly outperform several ad selection algorithms on all the metrics under investigation.
Author 崔卿 白峰杉 高斌 刘铁岩
AuthorAffiliation Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China Microsoft Research Asia, Beijing 100080, China
Author_xml – sequence: 1
  fullname: 崔卿 白峰杉 高斌 刘铁岩
BookMark eNp9UctO3DAUtRCVeLQf0F0EGxaEXj9iJ0s0aikSEgtgbXk814NDxh7sDKV8fT0EoYoFG9vyPS_dc0B2QwxIyHcKZxRA_ciU8g5qoE1NG8ZrsUP2aSuhFkp0u-UNAHVXjj1ykHMPwBUIsU9mF0Ocm6G6Xo9-5V_M6GOoXEzV-eIJ0-gzrjCM1Q0OaF9nPlQ36xhyTLgo3ybZ-6_kizNDxm9v9yG5-_Xzdva7vrq-uJydX9VWUD7W7UJQiZw1VijZoWPSguEAEpE5qcrINsJIM6eua4VgqlHQNmzuGHadcowfktNJ948JzoSl7uMmheKo-9w_PPf5ea6RlRUAA2gL_GSCr1N83GAe9cpni8NgAsZN1lQq1QFjaqt8_AH6Lk2l5FyCFE1B0QllU8w5odPr5Fcm_dUU9LYFPbWgSwS9bUGLwlEfONaPr1sek_HDp0w2MXNxCUtM_2X6hHT0Zncfw_Kx8N4zSilowTct_wcNeabH
CitedBy_id crossref_primary_10_1007_s13198_021_01085_z
crossref_primary_10_1016_j_eswa_2017_12_020
crossref_primary_10_1088_1755_1315_596_1_012071
Cites_doi 10.1016/j.ijindorg.2006.10.002
10.14778/1453856.1453903
10.1257/aer.97.1.242
10.1145/1367497.1367506
10.1007/978-3-540-70575-8_67
10.1145/775107.775126
10.1145/1993574.1993588
10.1145/1993574.1993587
10.1145/1772690.1772717
10.1109/FOCS.2010.75
10.1145/1526709.1526778
10.1145/1718487.1718532
10.1145/1341531.1341544
10.1145/1458082.1458217
10.1145/1571941.1571953
10.1137/1.9781611973075.46
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-015-1523-4
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Global Optimization for Advertisement Selection in Sponsored Search
EISSN 1860-4749
EndPage 310
ExternalDocumentID jsjkxjsxb_e201502008
3623888611
10_1007_s11390_015_1523_4
664111358
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c413t-8d416e325c4769ef26c0a3006ee2f676e3c54a6ab1f984427570852bf2e997f23
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Wed Oct 01 13:59:17 EDT 2025
Fri Jul 25 09:47:45 EDT 2025
Wed Oct 01 02:32:12 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:40:05 EST 2025
Wed Feb 14 10:31:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords probability model
advertisement selection
sponsored search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-8d416e325c4769ef26c0a3006ee2f676e3c54a6ab1f984427570852bf2e997f23
Notes advertisement selection, sponsored search, probability model
Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal. Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare, and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a commercial search engine. The experimental results show that our method can significantly outperform several ad selection algorithms on all the metrics under investigation.
11-2296/TP
Qing Cui, Feng-Shan Bai, Bin Gao, Tie-Yan Liu ( 1Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 2Microsoft Research Asia, Beijing 100080, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1663360645
PQPubID 326258
PageCount 16
ParticipantIDs wanfang_journals_jsjkxjsxb_e201502008
proquest_miscellaneous_1677902272
proquest_journals_1663360645
crossref_primary_10_1007_s11390_015_1523_4
crossref_citationtrail_10_1007_s11390_015_1523_4
springer_journals_10_1007_s11390_015_1523_4
chongqing_primary_664111358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Edelman, Ostrovsky, Schwarz (CR1) 2007; 97
CR4
CR3
CR6
Antonellis, Molina, Chang (CR9) 2008; 1
CR5
CR8
CR7
CR16
Brown, Pietra, Pietra, Mercer (CR18) 1993; 19
CR15
CR14
CR13
CR12
CR11
CR10
Joachims, Schölkopf, Burges, Smola (CR17) 1999
Varian (CR2) 2007; 25
HR Varian (1523_CR2) 2007; 25
PF Brown (1523_CR18) 1993; 19
I Antonellis (1523_CR9) 2008; 1
1523_CR10
1523_CR11
1523_CR4
1523_CR12
B Edelman (1523_CR1) 2007; 97
1523_CR3
1523_CR13
1523_CR6
1523_CR14
1523_CR5
1523_CR15
T Joachims (1523_CR17) 1999
1523_CR8
1523_CR16
1523_CR7
References_xml – volume: 25
  start-page: 1163
  issue: 6
  year: 2007
  end-page: 1178
  ident: CR2
  article-title: Position auctions
  publication-title: International Journal of Industrial Organization
  doi: 10.1016/j.ijindorg.2006.10.002
– ident: CR3
– ident: CR4
– volume: 1
  start-page: 408
  issue: 1
  year: 2008
  end-page: 421
  ident: CR9
  article-title: Simrank++: Query rewriting through link analysis of the click graph
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1453856.1453903
– ident: CR14
– ident: CR15
– ident: CR16
– ident: CR12
– ident: CR13
– ident: CR10
– ident: CR11
– ident: CR6
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 19
  start-page: 263
  issue: 2
  year: 1993
  end-page: 311
  ident: CR18
  article-title: The mathematics of statistical machine translation: Parameter estimation
  publication-title: Comput. Linguist.
– volume: 97
  start-page: 242
  issue: 1
  year: 2007
  end-page: 259
  ident: CR1
  article-title: Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords
  publication-title: American Economic Review
  doi: 10.1257/aer.97.1.242
– start-page: 169
  year: 1999
  end-page: 184
  ident: CR17
  article-title: Making large-scale support vector machine learning practical
  publication-title: Advances in Kernel Methods
– ident: 1523_CR6
  doi: 10.1145/1367497.1367506
– ident: 1523_CR13
  doi: 10.1007/978-3-540-70575-8_67
– ident: 1523_CR16
  doi: 10.1145/775107.775126
– ident: 1523_CR11
  doi: 10.1145/1993574.1993588
– ident: 1523_CR12
  doi: 10.1145/1993574.1993587
– volume: 97
  start-page: 242
  issue: 1
  year: 2007
  ident: 1523_CR1
  publication-title: American Economic Review
  doi: 10.1257/aer.97.1.242
– ident: 1523_CR4
  doi: 10.1145/1772690.1772717
– start-page: 169
  volume-title: Advances in Kernel Methods
  year: 1999
  ident: 1523_CR17
– ident: 1523_CR10
  doi: 10.1109/FOCS.2010.75
– ident: 1523_CR5
  doi: 10.1145/1526709.1526778
– volume: 25
  start-page: 1163
  issue: 6
  year: 2007
  ident: 1523_CR2
  publication-title: International Journal of Industrial Organization
  doi: 10.1016/j.ijindorg.2006.10.002
– ident: 1523_CR7
  doi: 10.1145/1718487.1718532
– ident: 1523_CR15
  doi: 10.1145/1341531.1341544
– volume: 19
  start-page: 263
  issue: 2
  year: 1993
  ident: 1523_CR18
  publication-title: Comput. Linguist.
– volume: 1
  start-page: 408
  issue: 1
  year: 2008
  ident: 1523_CR9
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1453856.1453903
– ident: 1523_CR3
  doi: 10.1145/1458082.1458217
– ident: 1523_CR8
  doi: 10.1145/1571941.1571953
– ident: 1523_CR14
  doi: 10.1137/1.9781611973075.46
SSID ssj0037044
Score 2.0539916
Snippet Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of...
Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component and will heavily influence the effectiveness of the...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms Advertisements
Algorithms
Analysis
Approximation
Artificial Intelligence
Computer Science
Data Structures and Information Theory
Global optimization
Information Systems Applications (incl.Internet)
Keywords
Machine learning
Mathematical analysis
Mathematical models
Maximization
Methods
Online advertising
Optimization
Optimization techniques
Queries
Random variables
Regular Paper
Search engines
Searching
Semantics
Software Engineering
Studies
Theory of Computation
Trains
付费
优化技术
全局优化
关键字
市场目标
广告
搜索引擎
特征映射
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5cKlLS2IFIpciV5AFlkntteHqgIEQpW6VAUkbpaT2MC2TWAfEj-_nsTO0kM5e-JEGc9D45nvA9jLZFUKzhlVI4cjOYzTQnJLU2UxuleZaQeFv4_F-XX-7YbfrMA4zsJgW2X0ia2jrpoSa-SHQx8aM4Hoal8fHimyRuHtaqTQMIFaofrSQoy9glWGyFgDWD0-Hf_4GX1zJtOW3hWL2hTpMuM9ZztM55MhbNLi1Me0jOaItnDX1LePPob8G7WWqWh_e9rO_NTO1LfPwtPZW3gd8kpy1B2EdVix9Tt4EzkbSDDh93DSgfyTC-8q_oQZTOITV9IzM2O5kFy29Di4dl-TS-yibaa2Il1z8gZcn51enZzTQKRASx-j5nRU-bTLej2UuRTKOibK1GTe3qxlTki_VPLcCFMMnRrlOZNc-kyMFY5ZpaRj2SYM6qa2W0CGRrJKKCdN6TOtKjWpyzgO71qjCiVMAtv9T9MPHWCGFiJHRns-SiCNv1GXAYMcqTB-6yV6MmpBey1o1ILOE9jvH4n7vSC8E3Wjgy3O9PLkJPCpX_ZWhFcjprbNAmUQd5ExyRI4iDp9tsX_X_g5qH0pPJlNfj1NZk-FtgzrSdhh8uHlD9uGNRTtett2YDCfLuxHn-zMi91wgv8CvR33mw
  priority: 102
  providerName: ProQuest
Title Global Optimization for Advertisement Selection in Sponsored Search
URI http://lib.cqvip.com/qk/85226X/201502/664111358.html
https://link.springer.com/article/10.1007/s11390-015-1523-4
https://www.proquest.com/docview/1663360645
https://www.proquest.com/docview/1677902272
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201502008
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9sKF8ilCy8pIcAFZyjqxHR-XarcViIIoK5WT5SR2YVuypbuV-vOZSeJskQCJUw62J5LH43nyzLwBeJnpulJSCm6KQCU5QvJSS89T48m715lrC4U_HKujef7uVJ72ddyrmO0eQ5LtTb0pdkOwQklUkqPPyXi-BTuS2LzwEM_FJF6_mU7bDq70bs2pI2YMZf5JBBEqfFs2Zz_xd787pg3aHAKkbVlPE1xzdssDze7DvR46skmn6wdwxzcPYTe2ZWC9lT6Cg47Hn33E2-BHX2bJEJuyofkyvQiyk7YDDo19b9gJJcour3zNuvzjxzCfTb8cHPG-VwKv0A2teVEjsvK41VWulfFBqCp1GZqU9yIojUOVzJ1y5TiYIs-FlhrBliiD8MboILInsN0sG_8U2NhpUSsTtKsQTNWpS0MmqT7XO1Ma5RLYGzbNXnacGFapnJrWyyKBNG6jrXqacep2cWE3BMmkBYtasKQFmyfwelgS5f1j8n7Uje3NbWXHiJsyRdR7CbwYhtFQKPrhGr-8pjlErSiEFgm8iTq9JeLvP3zVq30zebFanN8sVjel9YKejCiJ5Nl_Sd2Du7Syy2bbh-311bV_jvBmXY5gq5gdjmBncvj1_RS_b6fHnz6P2kP-C8B38aE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFG8IHPTit3EEtSZy0TTOdvqxPRCjCFkEViOQcKudmQ6y6AywS8R_zr_N92baWTzIjXM7nabv9b3X9_Uj5FWmy0JJyZkZVliSwyXLtfQsNR61e5m5tlB4d6xGB-LToTxcIH9iLQymVUaZ2ArqsinQR_52AKoxU9hd7d3pGUPUKIyuRggNF6AVyrW2xVgo7Nj2v3_BE266tvUR6L3K-ebG_vqIBZQBVoAAn7FhCTaJh00WQivjK66K1GXAjN7zSmkYKqRwyuWDygyF4FpqMFN4XnFvjK6w8QGogCWRCQOPv6UPG-MvX6MuyHTawsmiE50hPGeMq7bFe2B8YVKYZKBDMyawu8P3pj46A531r5acm759tLatMaorVx9dUYeb98idYMfS9x3j3ScLvn5A7kaMCBpExkOy3oEK0M8gmn6Gmk8KhjLtkaDRPUn3WjgeHDuu6R5m7TbnvqRdMvQjcnAjR_qYLNZN7Z8QOnCal8pU2hVg2ZWpS6tMYrGwdyY3yiVkuT80e9o16LBKCRDhmRwmJI3HaIvQ8xyhN37YebdmpIIFKlikghUJed1_Ete7ZvJKpI0Nd39q55yakJf9MNxaDMW42jcXOAf7PHKueULeRJpeWeL_P1wNZJ9PnkwnJ5eT6WVuPUf_FWa0PL1-Yy_IrdH-7o7d2RpvL5Pb-FmXV7dCFmfnF_4ZGFqz_HngZkq-3fQF-gsOfzMK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB7SBEpfcvQgbi4V2pcWEa-sY_UY0i5Jj7SQLuRNyLaUdtNq0-wG8vOjsS1vAk2hz5LHoNFoPqSZ7wN4Xai6kkIwqoceW3KYoKUSjubaYXavC9s0Cn85kUdj_vFMnHU6p7NU7Z6eJNueBmRpCvP9y9rvLxrfInDBgipBY_4pKH8EKxx5EuKGHrODdBQXKm_UXPEOm6I6ZnrW_JsJJFf4MQ3nf-Kv7yepBfLsH0ubFp_gbTi_k41G67DawUhy0Pp9A5ZceAprSaKBdBH7DA5bTn_yNZ4Mv7uWSxJxKumFmPF2kJw2ajg49jOQUyyanV65mrS1yM9hPPrw_fCIdroJtIopaU6HdURZLi57xZXUzjNZ5baI4eUc81LFoUpwK2058HrIOVNCReDFSs-c1sqz4gUsh2lwm0AGVrFaaq9sFYFVndvcFwJ7dZ3VpZY2g61-0cxly49hpOQoYC-GGeRpGU3VUY6j8sUvsyBLRi-Y6AWDXjA8g7f9J8nePyZvJ9-YLvRmZhAxVCGRhi-DV_1wDBp8CbHBTa9xDtIsMqZYBu-ST--YePiHbzq3LyZPZpOLm8nspjSO4fURFpS8_C-re_D42_uR-Xx88mkLnqCRtshtG5bnV9duJ6Keebnb7Oxbcv70tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Optimization+for+Advertisement+Selection+in+Sponsored+Search&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Qing+Cui&rft.au=Feng-Shan+Bai&rft.au=Bin+Gao&rft.au=Tie-Yan+Liu&rft.date=2015-03-01&rft.issn=1000-9000&rft.issue=2&rft.spage=295&rft.epage=310&rft_id=info:doi/10.1007%2Fs11390-015-1523-4&rft.externalDocID=jsjkxjsxb_e201502008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg