Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms

Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 215; p. 119076
Main Authors Ağbulut, Ümit, Gürel, Ali Etem, Sarıdemir, Suat
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.01.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
1873-6785
DOI10.1016/j.energy.2020.119076

Cover

Abstract Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms. [Display omitted] •The first study applying deep learning and kernel nearest neighbor algorithms in ICEs.•Emission and performance characteristics of a diesel engine doped with nanoparticles.•A reduction in CO, NOx, EGT, BSFC and an improvement in BTE with the presence of nanoparticles.•Deep learning is the best fitting algorithm, while k-NN is the worst one for the engine responses.•Smaller grain size of nanoparticles improves engine performance and emissions.
AbstractList Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as "excellent" according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms.
Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al₂O₃, CuO, and TiO₂) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOₓ), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R², RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOₓ emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOₓ is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO₂, Al₂O₃, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO₂, CuO, and Al₂O₃, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO₂, CuO, and Al₂O₃, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R² has changed between 0.901 and 0.994, and DL has given the highest R² value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms.
Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms. [Display omitted] •The first study applying deep learning and kernel nearest neighbor algorithms in ICEs.•Emission and performance characteristics of a diesel engine doped with nanoparticles.•A reduction in CO, NOx, EGT, BSFC and an improvement in BTE with the presence of nanoparticles.•Deep learning is the best fitting algorithm, while k-NN is the worst one for the engine responses.•Smaller grain size of nanoparticles improves engine performance and emissions.
ArticleNumber 119076
Author Ağbulut, Ümit
Gürel, Ali Etem
Sarıdemir, Suat
Author_xml – sequence: 1
  givenname: Ümit
  surname: Ağbulut
  fullname: Ağbulut, Ümit
  email: umitagbulut@duzce.edu.tr
  organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey
– sequence: 2
  givenname: Ali Etem
  surname: Gürel
  fullname: Gürel, Ali Etem
  organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey
– sequence: 3
  givenname: Suat
  surname: Sarıdemir
  fullname: Sarıdemir, Suat
  organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey
BookMark eNqNks1u1DAUhSNUJKaFN2BhiQ2bDHbs_LFAQqMClSqxgbV1Y9-kHnnsYCdtZ9d34Ml4BZ4EZ8ICdQGsLPt-5177HJ9nZ847zLKXjG4ZZdWb_RYdhuG4LWiRjlhL6-pJtmFNzfOqbsqzbEN5RfNSiOJZdh7jnlJaNm27yX5c3o8YzAHdBJYYd4txMgNMxjsCTpMxoDbqtPU9SWjvwwGcwlMVDybGpRYwjt5FjAsFZHdF0A3GIelntBY1uTPTDdGm7zGkUeSAaVzu741G0kFMgAPnRwiTURbjz4fv2mBESzqLTkcyR-OGP_Wgbpb2FiG4pQR28CHNOMTn2dMebMQXv9eL7OuHyy-7T_n1549Xu_fXuRKMT3kDNRZtRbu-V7VoCyVUj5rxQrRQ6ZrTjqmSIVUVKxlA3UPHuqLitALd8o7yi6xc-85uhOMdWCvHZCSEo2RULrnIvVxzkUsucs0l6V6vujH4b3OyWyYTVXIJHPo5yqKsBedctHVCXz1C934OLr1KFqKpWdUIXiRKrJQKPsaA_f_e4-0jmTLTKfgpgLH_Er9bxZgcvjUYZFQG07fQJqCapPbm7w1-AZav4UY
CitedBy_id crossref_primary_10_1016_j_scs_2022_103886
crossref_primary_10_1016_j_energy_2023_129582
crossref_primary_10_1016_j_seta_2023_103375
crossref_primary_10_1021_acsomega_2c07465
crossref_primary_10_1016_j_ijhydene_2022_03_268
crossref_primary_10_1007_s13204_021_02233_4
crossref_primary_10_1007_s40032_021_00750_3
crossref_primary_10_1016_j_energy_2024_131746
crossref_primary_10_1016_j_ijrefrig_2021_05_016
crossref_primary_10_1007_s11356_022_20496_4
crossref_primary_10_1016_j_renene_2025_122345
crossref_primary_10_1007_s10973_022_11288_6
crossref_primary_10_1016_j_psep_2024_01_052
crossref_primary_10_1016_j_heliyon_2023_e21365
crossref_primary_10_1016_j_ijhydene_2022_11_101
crossref_primary_10_1093_ijlct_ctad060
crossref_primary_10_1155_2024_7775139
crossref_primary_10_1016_j_fuel_2022_125167
crossref_primary_10_1007_s13762_022_04312_7
crossref_primary_10_1016_j_ijhydene_2022_04_152
crossref_primary_10_1080_17597269_2023_2256105
crossref_primary_10_1177_09544089221109723
crossref_primary_10_1007_s11356_022_21723_8
crossref_primary_10_1016_j_energy_2022_125334
crossref_primary_10_1186_s42397_024_00208_8
crossref_primary_10_1016_j_energy_2021_122424
crossref_primary_10_1177_09544089211060131
crossref_primary_10_29130_dubited_763009
crossref_primary_10_1016_j_energy_2021_122945
crossref_primary_10_35860_iarej_859423
crossref_primary_10_1021_acs_iecr_2c02059
crossref_primary_10_1080_10916466_2022_2120501
crossref_primary_10_1007_s11356_024_33939_x
crossref_primary_10_1002_ese3_1065
crossref_primary_10_18311_jmmf_2024_46264
crossref_primary_10_1016_j_ijhydene_2024_11_032
crossref_primary_10_1016_j_apr_2023_101721
crossref_primary_10_1007_s10668_022_02358_8
crossref_primary_10_2516_stet_2022011
crossref_primary_10_1155_2021_3728852
crossref_primary_10_1016_j_fuel_2023_127578
crossref_primary_10_1016_j_ijft_2024_100637
crossref_primary_10_1016_j_energy_2021_121123
crossref_primary_10_1016_j_psep_2022_03_003
crossref_primary_10_1016_j_aei_2022_101593
crossref_primary_10_1007_s11831_024_10144_0
crossref_primary_10_1016_j_egyai_2023_100273
crossref_primary_10_1016_j_fuel_2022_126827
crossref_primary_10_3390_su151813825
crossref_primary_10_1080_02726351_2021_2017088
crossref_primary_10_1016_j_asej_2024_103126
crossref_primary_10_1016_j_csite_2022_102645
crossref_primary_10_1016_j_energy_2025_135161
crossref_primary_10_1515_jnet_2024_0021
crossref_primary_10_1016_j_aej_2023_05_024
crossref_primary_10_1007_s11771_021_4856_x
crossref_primary_10_1016_j_rser_2023_113854
crossref_primary_10_2516_stet_2023013
crossref_primary_10_1016_j_energy_2023_127067
crossref_primary_10_1016_j_fuel_2022_127164
crossref_primary_10_1016_j_seta_2022_102343
crossref_primary_10_1016_j_fuel_2022_123285
crossref_primary_10_1002_ep_13976
crossref_primary_10_1007_s10668_022_02897_0
crossref_primary_10_1021_acs_energyfuels_1c01957
crossref_primary_10_1007_s10973_024_13081_z
crossref_primary_10_1108_HFF_11_2020_0743
crossref_primary_10_1007_s10098_025_03128_6
crossref_primary_10_1007_s42247_024_00957_x
crossref_primary_10_1016_j_egyai_2021_100128
crossref_primary_10_1016_j_energy_2021_120548
crossref_primary_10_1016_j_jestch_2024_101733
crossref_primary_10_3390_su17020788
crossref_primary_10_3390_agriculture12091332
crossref_primary_10_3390_su15129362
crossref_primary_10_1016_j_energy_2021_119942
crossref_primary_10_1016_j_energy_2024_130267
crossref_primary_10_1016_j_ijft_2024_100652
crossref_primary_10_1016_j_sftr_2025_100456
crossref_primary_10_1115_1_4062526
crossref_primary_10_1016_j_asej_2022_102090
crossref_primary_10_1016_j_seta_2022_102973
crossref_primary_10_1177_09544062211052824
crossref_primary_10_1016_j_fuel_2022_124981
crossref_primary_10_1007_s11630_024_1926_z
crossref_primary_10_1016_j_fuel_2023_128767
crossref_primary_10_1002_htj_22568
crossref_primary_10_1177_09544089231209139
crossref_primary_10_1016_j_ijhydene_2022_07_126
crossref_primary_10_1016_j_ecoinf_2022_101640
crossref_primary_10_1016_j_ijft_2024_100816
crossref_primary_10_1016_j_energy_2022_124553
crossref_primary_10_1615_JEnhHeatTransf_2024052726
crossref_primary_10_1016_j_energy_2021_120611
crossref_primary_10_1016_j_csite_2021_101710
Cites_doi 10.1016/j.energy.2017.09.006
10.1016/j.fuel.2020.117042
10.1016/j.energy.2017.02.109
10.1016/j.fuel.2019.115928
10.17694/bajece.410243
10.1016/j.rser.2018.03.096
10.1016/j.apr.2018.12.007
10.3390/app8010028
10.1016/j.ijhydene.2020.02.108
10.1016/j.energy.2018.07.130
10.1016/j.applthermaleng.2018.01.069
10.1016/j.applthermaleng.2007.01.030
10.1016/j.jclepro.2019.02.211
10.1016/j.applthermaleng.2017.03.126
10.1016/j.enconman.2014.12.050
10.1590/S0006-87052012000400016
10.1016/j.mehy.2020.109603
10.1016/j.energy.2017.03.049
10.1016/j.fuel.2020.117973
10.1016/j.energy.2018.01.123
10.1016/j.energy.2020.118830
10.1016/j.cep.2011.08.008
10.1016/j.fuel.2017.03.001
10.1016/j.eswa.2009.04.061
10.5545/sv-jme.2015.3170
10.1016/j.jclepro.2020.122353
10.1007/s00704-015-1398-x
10.1016/j.energy.2018.10.100
10.1016/j.rser.2020.110114
10.1016/j.fuel.2020.118252
10.1016/j.energy.2012.10.052
10.1615/HeatTransRes.2020034103
10.1016/j.applthermaleng.2019.114001
10.1007/s11356-018-2863-8
10.1016/j.energy.2016.07.040
10.1016/j.fuel.2020.117844
10.1016/j.enconman.2018.04.070
10.1016/j.energy.2018.07.062
10.1016/j.ijhydene.2020.05.181
10.1016/j.fuel.2020.118588
10.1016/j.fuel.2020.118516
10.1016/j.jclepro.2020.121724
10.1007/s11356-019-05523-1
10.1016/j.eswa.2008.12.005
10.26701/ems.320490
10.1016/j.chemosphere.2019.125079
10.29130/dubited.659106
10.1007/s00231-018-2509-x
10.1016/j.applthermaleng.2011.11.019
10.1016/j.enconman.2019.112355
10.1016/j.jastp.2017.02.002
10.1002/prep.200400025
10.1016/j.fuel.2019.117005
10.1016/j.energy.2018.10.098
10.1016/j.fuel.2020.117891
10.1063/1.2093936
10.5755/j01.mech.25.5.22954
10.1021/nl0522532
10.1016/j.agwat.2019.105875
10.1016/j.jclepro.2019.05.108
10.1016/j.icheatmasstransfer.2016.08.001
10.1016/j.energy.2020.117257
10.1016/j.energy.2009.02.005
10.3390/en12101856
10.1016/j.fuel.2020.117634
10.1109/TGRS.2017.2693346
10.1016/j.enconman.2009.03.035
10.1016/j.rser.2019.01.040
10.2478/rtuect-2018-0012
10.1016/j.renene.2019.10.041
10.1016/j.applthermaleng.2016.11.044
10.1016/j.compag.2019.104928
10.1016/j.csite.2014.02.001
10.16984/saufenbilder.630482
10.1021/acs.energyfuels.9b01759
10.1016/j.compag.2019.03.022
10.1016/j.ijhydene.2019.05.049
10.1016/j.enconman.2013.06.034
10.9734/jerr/2020/v16i117157
10.1016/j.fuel.2019.115855
10.1016/j.eswa.2011.01.085
10.1504/IJEX.2020.107745
10.1016/j.fuel.2020.117521
10.1016/j.fuel.2019.116608
10.1007/s11051-008-9500-2
10.1016/j.fuel.2020.118176
10.1016/j.applthermaleng.2015.11.009
10.30939/ijastech..771789
10.1016/j.enconman.2017.11.085
10.1016/j.energy.2019.116198
10.1016/j.energy.2019.116502
10.1016/j.fuel.2019.115617
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.energy.2020.119076
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID oai:acikerisim.duzce.edu.tr:20.500.12684/10189
10_1016_j_energy_2020_119076
S0360544220321836
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c413t-8a7e2960bffc7492c4cfed13249a6d730b1c51e0c6151aa7fab1b26306ad93b03
IEDL.DBID UNPAY
ISSN 0360-5442
1873-6785
IngestDate Sun Oct 26 04:10:22 EDT 2025
Sun Sep 28 16:16:19 EDT 2025
Mon Sep 29 14:40:49 EDT 2025
Thu Apr 24 22:53:32 EDT 2025
Thu Oct 09 00:40:24 EDT 2025
Fri Feb 23 02:46:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Emission
Nanodiesel
Nanoparticle
Engine performance
Machine learning
Prediction
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-8a7e2960bffc7492c4cfed13249a6d730b1c51e0c6151aa7fab1b26306ad93b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/20.500.12684/10189
PQID 2487168432
PQPubID 2045484
ParticipantIDs unpaywall_primary_10_1016_j_energy_2020_119076
proquest_miscellaneous_2574333497
proquest_journals_2487168432
crossref_primary_10_1016_j_energy_2020_119076
crossref_citationtrail_10_1016_j_energy_2020_119076
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119076
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Radhakrishnan, Munuswamy, Devarajan, Mahalingam (bib94) 2019; 55
Qin, Wang, Huang (bib76) 2017
Quej, Almorox, Arnaldo, Saito (bib64) 2017; 155
Anto, Mukherjee, Muthappa, Mathimani, Deviram, Kumar, Pugazhendhi (bib5) 2020; 242
Ağbulut, Sarıdemir, Albayrak (bib7) 2019; 41
Husein, Chung (bib79) 2019; 12
Torabi, Mosavi, Ozturk, Varkonyi-Koczy, Istvan (bib71) 2018
Khanlari (bib27) 2020; 51
Yilmaz, Atik (bib66) 2007; 27
Ardebili, Solmaz, İpci, Calam, Mostafaei (bib17) 2020; 279
Gürbüz, Variyenli, Sözen, Khanlari, Ökten (bib33) 2020
Imandoust, Bolandraftar (bib78) 2013; 3
Basarslan, Kayaalp (bib49) 2018; 6
Gülüm, Onay, Bilgin (bib8) 2018; 161
Dogan, Cakmak, Yesilyurt, Erol (bib10) 2020; 275
Yıldırım, Tosun, Çalık, Uluocak, Avşar (bib117) 2019; 41
Heinemann, Van Oort, Fernandes, Maia (bib87) 2012; 71
Gürbüz, Sözen, Variyenli, Khanlari, Tuncer (bib30) 2020; 42
Başarslan, Argun (bib48) 2019
Zang, Cheng, Ding, Cheung, Wang, Wei, Sun (bib86) 2020; 191
Uluer, Aktaş, Karaağaç, Durmuş, Khanlari, Ağbulut, Çelik (bib99) 2018; 4
Krishnamurthy, Bhattacharya, Phelan, Prasher (bib91) 2006; 6
Radhakrishnan, Munuswamy, Devarajan, Mahalingam (bib95) 2019; 55
Ağbulut, Sarıdemir (bib2) 2020; 19
Darvanjooghi, Esfahany (bib96) 2016; 77
Ceylan, Erkaymaz, Gedik, Gürel (bib54) 2014; 3
Yamaç, Todorovic (bib77) 2020; 228
Shrivastava, Salam, Verma, Samuel (bib114) 2020; 262
Ağbulut, Sarıdemir (bib118) 2019
Antonopoulos, Papamichail, Aschonitis, Antonopoulos (bib63) 2019; 160
Manigandan, Gunasekar, Nithya, Devipriya (bib19) 2020; 42
Berber (bib39) 2016; 5
Berber (bib105) 2019; 25
Ghaderi, Javadikia, Naderloo, Mostafaei, Rabbani (bib110) 2019; 26
Singh, Verma (bib116) 2019; 189
Premalatha, Naveen (bib68) 2018; 91
Sarıdemir, Gürel, Ağbulut, Bakan (bib1) 2020; 2020
Uysal, Arslan, Kurt (bib31) 2016; 62
Pandey, Nandgaonkar, Pandey, Suresh, Varghese (bib23) 2018
Gouda, Hussein, Luo, Yuan (bib88) 2019; 221
Şen (bib89) 2019; 254
Sheriff, Kumar, Mandhatha, Jambal, Sellappan, Ashok, Nanthagopal (bib18) 2020; 147
Manju, Sandeep (bib81) 2019; 230
Karagoz, Uysal, Agbulut, Saridemir (bib9) 2020
Ağbulut, Karagöz, Sarıdemir, Öztürk (bib26) 2020; 270
Güney, Aladağ (bib13) 2020
Rajak, Verma (bib101) 2018; 166
Çiftçi, Sözen (bib32) 2020
Chen, Li, Wu (bib73) 2013; 75
Bahmanyar, Khoobi, Mozdianfard, Bahmanyar (bib90) 2011; 50
Koca, Oztop, Varol, Koca (bib55) 2011; 38
Karagöz, Ağbulut, Sarıdemir (bib6) 2020; 275
Rezrazi, Hanini, Laidi (bib70) 2016; 123
Yilmaz, Koyuncu, Alcin, Tuna (bib65) 2019; 44
Rajak, Nashine, Verma (bib112) 2019; 166
Uluer, Karaağaç, Aktaş, Durmuş, Ağbulut, Khanlari, Çelik (bib100) 2018; 24
Gürel, Ağbulut, Biçen (bib67) 2020
Yesilyurt, Aydin (bib104) 2020; 205
Çay, Korkmaz, Çiçek, Kara (bib62) 2013; 50
Özçelik, Gültekin (bib11) 2019; 6
Karagöz (bib45) 2020; 4
Devarajan (bib106) 2019; 10
Uysal, Korkmaz (bib29) 2019; 22
Koyuncu, Yilmaz, Alcin, Tuna (bib61) 2020; 45
Senturk, Kara (bib50) 2014; 4
Fan, Wang, Wu, Zhang, Bai, Lu, Xiang (bib83) 2018; 156
Canakci, Ozsezen, Arcaklioglu, Erdil (bib108) 2009; 36
Tosun, Ozgur, Ozgur, Ozcanli, Serin, Aydin (bib40) 2017; 1
Shrivastava, Verma (bib103) 2020; 265
Soni, Gupta (bib36) 2017; 126
Cay, Çiçek, Kara, Sağiroğlu (bib60) 2012; 37
Chon, Kihm, Lee, Choi (bib98) 2005; 87
Sen, Emiroglu, Keskin (bib22) 2019; 33
Gulum, Onay, Bilgin (bib109) 2018; 22
Uyumaz, Aydoğan, Yılmaz, Solmaz, Aksoy, Mutlu, Calam (bib15) 2020; 280
Bakirci (bib85) 2009; 34
Karagoz, Uysal, Agbulut, Saridemir (bib25) 2021
Emiroğlu, Şen (bib21) 2018; 133
Gülüm, Bilgin (bib14) 2017; 199
Kenanoğlu, Baltacıoğlu, Demir, Özdemir (bib46) 2020; 45
Uluer, Kırmacı, Ataş (bib56) 2009; 36
Ağbulut, Sarıdemir, Karagöz (bib24) 2020; 267
Berber, Tinkir (bib44) 2011; 6
Berber, Gürdal, Bağırsakçı (bib53) 2020
Şentürk (bib57) 2020; 24
Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (bib72) 2015; 92
Mei, Ji, Hou, Li, Du (bib80) 2017; 55
Rajak, Nashine, Verma, Pugazhendhi (bib113) 2019; 255
Verma, Nashine, Singh, Singh, Panwar (bib59) 2017; 120
Pivkina, Ulyanova, Frolov, Zavyalov, Schoonman (bib92) 2004; 29
Adam, Heikal, Aziz, Yusup (bib107) 2018; 25
Najafi, Ghobadian, Moosavian, Yusaf, Mamat, Kettner, Azmi (bib111) 2016; 95
Wang, Zhen, Wang, Mi (bib75) 2018; 8
Gülüm, Bilgin (bib12) 2018; 148
Yesilyurt, Eryilmaz, Arslan (bib102) 2018; 165
Emiroğlu (bib93) 2019; 256
Hosseini, Taghizadeh-Alisaraei, Ghobadian, Abbaszadeh-Mayvan (bib35) 2017; 124
Senturk (bib47) 2020; 138
Fan, Wu, Zhang, Cai, Ma, Bai (bib84) 2019; 105
Ağbulut, Ayyıldız, Sarıdemir (bib43) 2020
Jafarmadar, Khalilaria, Saraee (bib41) 2018; 142
Ağbulut, Gürel, Biçen (bib82) 2021; 135
Shrivastava, Verma, Samuel, Pugazhendhi (bib115) 2020; 275
Ooi, Ismail, Tan, Wang (bib38) 2018; 161
Sözen, Gürü, Khanlari, Çiftçi (bib28) 2019; 160
Singh, Verma, Singh (bib4) 2020; 277
Sungur, Topaloglu, Ozcan (bib37) 2016; 113
Saraee, Taghavifar, Jafarmadar (bib42) 2017; 113
Sarıdemir, Ağbulut (bib16) 2019
Benghanem, Mellit, Alamri (bib69) 2009; 50
Krishania, Rajak, Verma, Birru, Pugazhendhi (bib3) 2020; 278
Ergün (bib34) 2020; 32
Yilmaz, Koyuncu (bib52) 2020
Kırbaş, Tuncer, Şirin, Usta (bib58) 2019; 165
Şentürk, Çekiç (bib51) 2020; 8
Mei, Zuo, Zhang, Gu, Yuan, Wang (bib20) 2020; 146
Vapnik, Golowich, Smola (bib74) 1997
Beck, Yuan, Warrier, Teja (bib97) 2009; 11
Dogan (10.1016/j.energy.2020.119076_bib10) 2020; 275
Cay (10.1016/j.energy.2020.119076_bib60) 2012; 37
Canakci (10.1016/j.energy.2020.119076_bib108) 2009; 36
Güney (10.1016/j.energy.2020.119076_bib13) 2020
Manigandan (10.1016/j.energy.2020.119076_bib19) 2020; 42
Bahmanyar (10.1016/j.energy.2020.119076_bib90) 2011; 50
Gulum (10.1016/j.energy.2020.119076_bib109) 2018; 22
Gülüm (10.1016/j.energy.2020.119076_bib12) 2018; 148
Sarıdemir (10.1016/j.energy.2020.119076_bib1) 2020; 2020
Karagöz (10.1016/j.energy.2020.119076_bib6) 2020; 275
Darvanjooghi (10.1016/j.energy.2020.119076_bib96) 2016; 77
Rajak (10.1016/j.energy.2020.119076_bib112) 2019; 166
Tosun (10.1016/j.energy.2020.119076_bib40) 2017; 1
Senturk (10.1016/j.energy.2020.119076_bib47) 2020; 138
Koyuncu (10.1016/j.energy.2020.119076_bib61) 2020; 45
Şentürk (10.1016/j.energy.2020.119076_bib51) 2020; 8
Sarıdemir (10.1016/j.energy.2020.119076_bib16) 2019
Shrivastava (10.1016/j.energy.2020.119076_bib103) 2020; 265
Yilmaz (10.1016/j.energy.2020.119076_bib66) 2007; 27
Zang (10.1016/j.energy.2020.119076_bib86) 2020; 191
Berber (10.1016/j.energy.2020.119076_bib44) 2011; 6
Ardebili (10.1016/j.energy.2020.119076_bib17) 2020; 279
Adam (10.1016/j.energy.2020.119076_bib107) 2018; 25
Ağbulut (10.1016/j.energy.2020.119076_bib43) 2020
Çay (10.1016/j.energy.2020.119076_bib62) 2013; 50
Najafi (10.1016/j.energy.2020.119076_bib111) 2016; 95
Kırbaş (10.1016/j.energy.2020.119076_bib58) 2019; 165
Uluer (10.1016/j.energy.2020.119076_bib100) 2018; 24
Gülüm (10.1016/j.energy.2020.119076_bib14) 2017; 199
Gürbüz (10.1016/j.energy.2020.119076_bib30) 2020; 42
Sheriff (10.1016/j.energy.2020.119076_bib18) 2020; 147
Yesilyurt (10.1016/j.energy.2020.119076_bib102) 2018; 165
Karagoz (10.1016/j.energy.2020.119076_bib25) 2021
Sözen (10.1016/j.energy.2020.119076_bib28) 2019; 160
Fan (10.1016/j.energy.2020.119076_bib83) 2018; 156
Yilmaz (10.1016/j.energy.2020.119076_bib52) 2020
Berber (10.1016/j.energy.2020.119076_bib53) 2020
Pandey (10.1016/j.energy.2020.119076_bib23) 2018
Pivkina (10.1016/j.energy.2020.119076_bib92) 2004; 29
Verma (10.1016/j.energy.2020.119076_bib59) 2017; 120
Emiroğlu (10.1016/j.energy.2020.119076_bib21) 2018; 133
Çiftçi (10.1016/j.energy.2020.119076_bib32) 2020
Krishnamurthy (10.1016/j.energy.2020.119076_bib91) 2006; 6
Hosseini (10.1016/j.energy.2020.119076_bib35) 2017; 124
Gürel (10.1016/j.energy.2020.119076_bib67) 2020
Radhakrishnan (10.1016/j.energy.2020.119076_bib94) 2019; 55
Ghaderi (10.1016/j.energy.2020.119076_bib110) 2019; 26
Chen (10.1016/j.energy.2020.119076_bib73) 2013; 75
Sen (10.1016/j.energy.2020.119076_bib22) 2019; 33
Mohammadi (10.1016/j.energy.2020.119076_bib72) 2015; 92
Başarslan (10.1016/j.energy.2020.119076_bib48) 2019
Anto (10.1016/j.energy.2020.119076_bib5) 2020; 242
Ağbulut (10.1016/j.energy.2020.119076_bib24) 2020; 267
Kenanoğlu (10.1016/j.energy.2020.119076_bib46) 2020; 45
Vapnik (10.1016/j.energy.2020.119076_bib74) 1997
Yıldırım (10.1016/j.energy.2020.119076_bib117) 2019; 41
Fan (10.1016/j.energy.2020.119076_bib84) 2019; 105
Beck (10.1016/j.energy.2020.119076_bib97) 2009; 11
Ağbulut (10.1016/j.energy.2020.119076_bib7) 2019; 41
Özçelik (10.1016/j.energy.2020.119076_bib11) 2019; 6
Gürbüz (10.1016/j.energy.2020.119076_bib33) 2020
Chon (10.1016/j.energy.2020.119076_bib98) 2005; 87
Soni (10.1016/j.energy.2020.119076_bib36) 2017; 126
Yamaç (10.1016/j.energy.2020.119076_bib77) 2020; 228
Şentürk (10.1016/j.energy.2020.119076_bib57) 2020; 24
Heinemann (10.1016/j.energy.2020.119076_bib87) 2012; 71
Shrivastava (10.1016/j.energy.2020.119076_bib115) 2020; 275
Singh (10.1016/j.energy.2020.119076_bib116) 2019; 189
Uysal (10.1016/j.energy.2020.119076_bib31) 2016; 62
Emiroğlu (10.1016/j.energy.2020.119076_bib93) 2019; 256
Ooi (10.1016/j.energy.2020.119076_bib38) 2018; 161
Karagoz (10.1016/j.energy.2020.119076_bib9) 2020
Uyumaz (10.1016/j.energy.2020.119076_bib15) 2020; 280
Mei (10.1016/j.energy.2020.119076_bib20) 2020; 146
Berber (10.1016/j.energy.2020.119076_bib105) 2019; 25
Ağbulut (10.1016/j.energy.2020.119076_bib118) 2019
Devarajan (10.1016/j.energy.2020.119076_bib106) 2019; 10
Wang (10.1016/j.energy.2020.119076_bib75) 2018; 8
Ağbulut (10.1016/j.energy.2020.119076_bib82) 2021; 135
Koca (10.1016/j.energy.2020.119076_bib55) 2011; 38
Rajak (10.1016/j.energy.2020.119076_bib101) 2018; 166
Ağbulut (10.1016/j.energy.2020.119076_bib26) 2020; 270
Mei (10.1016/j.energy.2020.119076_bib80) 2017; 55
Ergün (10.1016/j.energy.2020.119076_bib34) 2020; 32
Manju (10.1016/j.energy.2020.119076_bib81) 2019; 230
Rajak (10.1016/j.energy.2020.119076_bib113) 2019; 255
Ağbulut (10.1016/j.energy.2020.119076_bib2) 2020; 19
Yilmaz (10.1016/j.energy.2020.119076_bib65) 2019; 44
Shrivastava (10.1016/j.energy.2020.119076_bib114) 2020; 262
Singh (10.1016/j.energy.2020.119076_bib4) 2020; 277
Şen (10.1016/j.energy.2020.119076_bib89) 2019; 254
Benghanem (10.1016/j.energy.2020.119076_bib69) 2009; 50
Imandoust (10.1016/j.energy.2020.119076_bib78) 2013; 3
Bakirci (10.1016/j.energy.2020.119076_bib85) 2009; 34
Radhakrishnan (10.1016/j.energy.2020.119076_bib95) 2019; 55
Qin (10.1016/j.energy.2020.119076_bib76) 2017
Quej (10.1016/j.energy.2020.119076_bib64) 2017; 155
Uysal (10.1016/j.energy.2020.119076_bib29) 2019; 22
Basarslan (10.1016/j.energy.2020.119076_bib49) 2018; 6
Uluer (10.1016/j.energy.2020.119076_bib56) 2009; 36
Uluer (10.1016/j.energy.2020.119076_bib99) 2018; 4
Gülüm (10.1016/j.energy.2020.119076_bib8) 2018; 161
Karagöz (10.1016/j.energy.2020.119076_bib45) 2020; 4
Krishania (10.1016/j.energy.2020.119076_bib3) 2020; 278
Husein (10.1016/j.energy.2020.119076_bib79) 2019; 12
Khanlari (10.1016/j.energy.2020.119076_bib27) 2020; 51
Jafarmadar (10.1016/j.energy.2020.119076_bib41) 2018; 142
Ceylan (10.1016/j.energy.2020.119076_bib54) 2014; 3
Torabi (10.1016/j.energy.2020.119076_bib71) 2018
Sungur (10.1016/j.energy.2020.119076_bib37) 2016; 113
Saraee (10.1016/j.energy.2020.119076_bib42) 2017; 113
Premalatha (10.1016/j.energy.2020.119076_bib68) 2018; 91
Rezrazi (10.1016/j.energy.2020.119076_bib70) 2016; 123
Berber (10.1016/j.energy.2020.119076_bib39) 2016; 5
Senturk (10.1016/j.energy.2020.119076_bib50) 2014; 4
Antonopoulos (10.1016/j.energy.2020.119076_bib63) 2019; 160
Yesilyurt (10.1016/j.energy.2020.119076_bib104) 2020; 205
Gouda (10.1016/j.energy.2020.119076_bib88) 2019; 221
References_xml – volume: 191
  start-page: 116502
  year: 2020
  ident: bib86
  article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China
  publication-title: Energy
– volume: 1
  start-page: 15
  year: 2017
  end-page: 23
  ident: bib40
  article-title: Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives
  publication-title: European Mechanical Science
– volume: 262
  start-page: 116608
  year: 2020
  ident: bib114
  article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel
  publication-title: Fuel
– volume: 51
  start-page: 991
  year: 2020
  end-page: 1005
  ident: bib27
  article-title: The effect of utilizing Al2O3-SiO2/deionized water hybrid nanofluid in a tube-type heat exchanger
  publication-title: Heat transfer research
– volume: 77
  start-page: 148
  year: 2016
  end-page: 154
  ident: bib96
  article-title: Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid
  publication-title: Int Commun Heat Mass Tran
– volume: 277
  start-page: 118176
  year: 2020
  ident: bib4
  article-title: A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: engine emissions testing study
  publication-title: Fuel
– year: 2020
  ident: bib33
  article-title: Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 22
  start-page: 179
  year: 2018
  end-page: 205
  ident: bib109
  article-title: Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends
  publication-title: Environmental and Climate Technologies
– volume: 189
  start-page: 116198
  year: 2019
  ident: bib116
  article-title: Biodiesel production from momordica charantia (L.): extraction and engine characteristics
  publication-title: Energy
– volume: 255
  start-page: 115855
  year: 2019
  ident: bib113
  article-title: Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine
  publication-title: Fuel
– volume: 41
  start-page: 2194
  year: 2019
  end-page: 2206
  ident: bib117
  article-title: Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 161
  start-page: 70
  year: 2018
  end-page: 80
  ident: bib38
  article-title: Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine
  publication-title: Energy
– volume: 36
  start-page: 9268
  year: 2009
  end-page: 9280
  ident: bib108
  article-title: Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil
  publication-title: Expert Syst Appl
– volume: 267
  start-page: 117042
  year: 2020
  ident: bib24
  article-title: Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine
  publication-title: Fuel
– start-page: 122353
  year: 2020
  ident: bib67
  article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation
  publication-title: J Clean Prod
– volume: 91
  start-page: 248
  year: 2018
  end-page: 258
  ident: bib68
  article-title: Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: a case study
  publication-title: Renew Sustain Energy Rev
– volume: 270
  start-page: 117521
  year: 2020
  ident: bib26
  article-title: Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine
  publication-title: Fuel
– volume: 280
  start-page: 118588
  year: 2020
  ident: bib15
  article-title: Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine
  publication-title: Fuel
– volume: 11
  start-page: 1129
  year: 2009
  end-page: 1136
  ident: bib97
  article-title: The effect of particle size on the thermal conductivity of alumina nanofluids
  publication-title: J Nanoparticle Res
– volume: 22
  start-page: 41
  year: 2019
  end-page: 51
  ident: bib29
  article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network
  publication-title: Politeknik Dergisi
– volume: 113
  start-page: 663
  year: 2017
  end-page: 672
  ident: bib42
  article-title: Experimental and numerical consideration of the effect of CeO
  publication-title: Appl Therm Eng
– volume: 24
  start-page: 424
  year: 2020
  end-page: 431
  ident: bib57
  article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy
  publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
– volume: 29
  start-page: 39
  year: 2004
  end-page: 48
  ident: bib92
  article-title: Nanomaterials for heterogeneous combustion
  publication-title: Propellants, Explos Pyrotech: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials
– volume: 33
  start-page: 9224
  year: 2019
  end-page: 9231
  ident: bib22
  article-title: Impact of pentanol addition and injection timing on the characteristics of a single-cylinder diesel engine
  publication-title: Energy Fuels
– volume: 4
  start-page: 2274
  year: 2018
  end-page: 2286
  ident: bib99
  article-title: Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values
  publication-title: J Therm Eng
– volume: 279
  start-page: 118516
  year: 2020
  ident: bib17
  article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential
  publication-title: Fuel
– volume: 36
  start-page: 12256
  year: 2009
  end-page: 12263
  ident: bib56
  article-title: Using the artificial neural network model for modeling the performance of the counter flow vortex tube
  publication-title: Expert Syst Appl
– volume: 50
  start-page: 1198
  year: 2011
  end-page: 1206
  ident: bib90
  article-title: The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column
  publication-title: Chem Eng Process: Process Intensification
– volume: 95
  start-page: 186
  year: 2016
  end-page: 203
  ident: bib111
  article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels
  publication-title: Appl Therm Eng
– volume: 6
  start-page: 44
  year: 2019
  end-page: 48
  ident: bib11
  article-title: Effect of iridium spark plug gap on emission, noise, vibration of an internal combustion engine
  publication-title: Int J Eng Adv Technol
– start-page: 29
  year: 2020
  end-page: 39
  ident: bib13
  article-title: Microstructural characterization of particulate matter from gasoline-fuelled vehicle emissions
  publication-title: Journal of Engineering Research and Reports
– volume: 138
  start-page: 109603
  year: 2020
  ident: bib47
  article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms
  publication-title: Med Hypotheses
– volume: 135
  start-page: 110114
  year: 2021
  ident: bib82
  article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison
  publication-title: Renew Sustain Energy Rev
– volume: 275
  start-page: 117891
  year: 2020
  ident: bib115
  article-title: An experimental investigation on engine characteristics, cost and energy analysis of CI engine fuelled with Roselle, Karanja biodiesel and its blends
  publication-title: Fuel
– volume: 228
  start-page: 105875
  year: 2020
  ident: bib77
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric Water Manag
– volume: 230
  start-page: 116
  year: 2019
  end-page: 128
  ident: bib81
  article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data
  publication-title: J Clean Prod
– volume: 25
  start-page: 363
  year: 2019
  end-page: 369
  ident: bib105
  article-title: The effect of diesel-methanol blends with volumetric proportions on the performance and emissions of a diesel engine
  publication-title: Mechanics
– volume: 32
  start-page: 82
  year: 2020
  end-page: 101
  ident: bib34
  article-title: Energy and exergy analysis of a PV/thermal storage system design integrated with nano-enhanced phase changing material
  publication-title: Int J Exergy
– volume: 26
  start-page: 21682
  year: 2019
  end-page: 21692
  ident: bib110
  article-title: Analysis of noise pollution emitted by stationary MF285 tractor using different mixtures of biodiesel, bioethanol, and diesel through artificial intelligence
  publication-title: Environ Sci Pollut Control Ser
– volume: 155
  start-page: 62
  year: 2017
  end-page: 70
  ident: bib64
  article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment
  publication-title: J Atmos Sol Terr Phys
– volume: 161
  start-page: 361
  year: 2018
  end-page: 369
  ident: bib8
  article-title: Comparison of viscosity prediction capabilities of regression models and artificial neural networks
  publication-title: Energy
– volume: 156
  start-page: 618
  year: 2018
  end-page: 625
  ident: bib83
  article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China
  publication-title: Energy Convers Manag
– volume: 71
  start-page: 572
  year: 2012
  end-page: 582
  ident: bib87
  article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation
  publication-title: Bragantia
– volume: 148
  start-page: 341
  year: 2018
  end-page: 361
  ident: bib12
  article-title: A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends
  publication-title: Energy
– volume: 6
  start-page: 3979
  year: 2011
  end-page: 3992
  ident: bib44
  article-title: Prediction of a diesel engine characteristics by using different modelling techniques
  publication-title: Int J Phys Sci
– volume: 126
  start-page: 638
  year: 2017
  end-page: 648
  ident: bib36
  article-title: Application of nano emulsion method in a methanol powered diesel engine
  publication-title: Energy
– volume: 113
  start-page: 44
  year: 2016
  end-page: 51
  ident: bib37
  article-title: Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler
  publication-title: Energy
– volume: 165
  start-page: 104928
  year: 2019
  ident: bib58
  article-title: Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches
  publication-title: Comput Electron Agric
– volume: 256
  start-page: 115928
  year: 2019
  ident: bib93
  article-title: Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend
  publication-title: Fuel
– volume: 37
  start-page: 217
  year: 2012
  end-page: 225
  ident: bib60
  article-title: Prediction of engine performance for an alternative fuel using artificial neural network
  publication-title: Appl Therm Eng
– volume: 45
  start-page: 20709
  year: 2020
  end-page: 20720
  ident: bib61
  article-title: Design and implementation of hydrogen economy using artificial neural network on field programmable gate array
  publication-title: Int J Hydrogen Energy
– start-page: 281
  year: 1997
  end-page: 287
  ident: bib74
  article-title: Support vector method for function approximation, regression estimation and signal processing
  publication-title: Advances in neural information processing systems
– volume: 4
  start-page: 180
  year: 2020
  end-page: 184
  ident: bib45
  article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends
  publication-title: International Journal of Automotive Science and Technology
– volume: 6
  start-page: 42
  year: 2018
  end-page: 45
  ident: bib49
  article-title: Data mining through data visualization: a case study on predicting churners on telecomunications data set
  publication-title: Balkan Journal of Electrical and Computer Engineering
– volume: 221
  start-page: 132
  year: 2019
  end-page: 144
  ident: bib88
  article-title: Model selection for accurate daily global solar radiation prediction in China
  publication-title: J Clean Prod
– volume: 146
  year: 2020
  ident: bib20
  article-title: Assessment on combustion and emissions of diesel engine fueled with partially hydrogenated biodiesel
  publication-title: J Energy Eng
– volume: 133
  start-page: 371
  year: 2018
  end-page: 380
  ident: bib21
  article-title: Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel)
  publication-title: Appl Therm Eng
– volume: 55
  start-page: 1229
  year: 2019
  end-page: 1237
  ident: bib95
  article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine
  publication-title: Heat Mass Tran
– volume: 19
  year: 2020
  ident: bib2
  article-title: Is the ethanol additive more environmentally friendly for a spark ignition (si) engine or for a compression ignition (ci) engine?
  publication-title: Environmental Engineering & Management Journal (EEMJ)
– volume: 147
  start-page: 2295
  year: 2020
  end-page: 2308
  ident: bib18
  article-title: Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement
  publication-title: Renew Energy
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib16
  article-title: Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine
  publication-title: Biofuels
– volume: 199
  start-page: 567
  year: 2017
  end-page: 577
  ident: bib14
  article-title: Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density
  publication-title: Fuel
– volume: 87
  start-page: 153107
  year: 2005
  ident: bib98
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement
  publication-title: Appl Phys Lett
– volume: 10
  start-page: 795
  year: 2019
  end-page: 801
  ident: bib106
  article-title: Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-carbonate and biodiesel blends
  publication-title: Atmospheric Pollution Research
– volume: 242
  start-page: 125079
  year: 2020
  ident: bib5
  article-title: Algae as green energy reserve: technological outlook on biofuel production
  publication-title: Chemosphere
– volume: 166
  start-page: 1025
  year: 2019
  end-page: 1036
  ident: bib112
  article-title: Assessment of diesel engine performance using spirulina microalgae biodiesel
  publication-title: Energy
– year: 2020
  ident: bib52
  article-title: Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant
– volume: 275
  start-page: 117973
  year: 2020
  ident: bib10
  article-title: Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses
  publication-title: Fuel
– year: 2020
  ident: bib32
  article-title: Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO2/DCM nanofluids: experimental and numerical comparison
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 55
  start-page: 1229
  year: 2019
  end-page: 1237
  ident: bib94
  article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine
  publication-title: Heat Mass Tran
– start-page: 118830
  year: 2021
  ident: bib25
  article-title: Exergetic and exergoeconomic analyses of a CI engine fuelled with diesel-biodiesel blends containing various metal-oxide nanoparticles
  publication-title: Energy
– volume: 55
  start-page: 4520
  year: 2017
  end-page: 4533
  ident: bib80
  article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
  publication-title: IEEE Trans Geosci Rem Sens
– volume: 275
  start-page: 117844
  year: 2020
  ident: bib6
  article-title: Waste to energy: production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines
  publication-title: Fuel
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: bib78
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background
  publication-title: Int J Eng Res Afr
– volume: 165
  start-page: 1332
  year: 2018
  end-page: 1351
  ident: bib102
  article-title: A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends
  publication-title: Energy
– volume: 8
  start-page: 1604
  year: 2020
  end-page: 1611
  ident: bib51
  article-title: Machine learning based early diagnosis system for mesothelioma disease
  publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi
– volume: 44
  start-page: 17443
  year: 2019
  end-page: 17459
  ident: bib65
  article-title: Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array
  publication-title: Int J Hydrogen Energy
– volume: 25
  start-page: 28500
  year: 2018
  end-page: 28516
  ident: bib107
  article-title: Mitigation of NOx emission using aromatic and phenolic antioxidant-treated biodiesel blends in a multi-cylinder diesel engine
  publication-title: Environ Sci Pollut Control Ser
– volume: 12
  start-page: 1856
  year: 2019
  ident: bib79
  article-title: Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach
  publication-title: Energies
– volume: 205
  start-page: 112355
  year: 2020
  ident: bib104
  article-title: Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends
  publication-title: Energy Convers Manag
– start-page: 121724
  year: 2020
  ident: bib9
  article-title: Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil− diesel blends
  publication-title: J Clean Prod
– volume: 160
  start-page: 114001
  year: 2019
  ident: bib28
  article-title: Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid
  publication-title: Appl Therm Eng
– start-page: 96
  year: 2019
  end-page: 106
  ident: bib48
  article-title: April). Prediction of potential bank customers: application on data mining
  publication-title: The international conference on artificial intelligence and applied mathematics in engineering
– volume: 124
  start-page: 543
  year: 2017
  end-page: 552
  ident: bib35
  article-title: Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine
  publication-title: Energy
– start-page: 1
  year: 2020
  end-page: 17
  ident: bib53
  article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network
  publication-title: Exp Heat Tran
– volume: 5
  start-page: 17
  year: 2016
  end-page: 24
  ident: bib39
  article-title: Mathematical model for fuel flow performance of diesel engine
  publication-title: Int J Adv Eng Technol
– volume: 142
  start-page: 1128
  year: 2018
  end-page: 1138
  ident: bib41
  article-title: Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm
  publication-title: Energy
– volume: 27
  start-page: 2308
  year: 2007
  end-page: 2313
  ident: bib66
  article-title: Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network
  publication-title: Appl Therm Eng
– volume: 123
  start-page: 769
  year: 2016
  end-page: 783
  ident: bib70
  article-title: An optimisation methodology of artificial neural network models for predicting solar radiation: a case study
  publication-title: Theor Appl Climatol
– volume: 265
  start-page: 117005
  year: 2020
  ident: bib103
  article-title: Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil
  publication-title: Fuel
– start-page: 117257
  year: 2020
  ident: bib43
  article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures
  publication-title: Energy
– volume: 42
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib19
  article-title: Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 41
  start-page: 389
  year: 2019
  ident: bib7
  article-title: Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends
  publication-title: J Braz Soc Mech Sci Eng
– volume: 92
  start-page: 162
  year: 2015
  end-page: 171
  ident: bib72
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers Manag
– volume: 34
  start-page: 485
  year: 2009
  end-page: 501
  ident: bib85
  article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey
  publication-title: Energy
– volume: 50
  start-page: 1644
  year: 2009
  end-page: 1655
  ident: bib69
  article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study
  publication-title: Energy Convers Manag
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib76
  article-title: Research on fault diagnosis method of spacecraft solar array based on f-KNN algorithm
  publication-title: 2017 prognostics and system health management conference (PHM-Harbin)
– volume: 160
  start-page: 160
  year: 2019
  end-page: 167
  ident: bib63
  article-title: Solar radiation estimation methods using ANN and empirical models
  publication-title: Comput Electron Agric
– volume: 105
  start-page: 168
  year: 2019
  end-page: 186
  ident: bib84
  article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib30
  article-title: A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates
  publication-title: J Braz Soc Mech Sci Eng
– volume: 24
  start-page: 36
  year: 2018
  end-page: 42
  ident: bib100
  article-title: Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi
  publication-title: Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
– volume: 3
  start-page: 11
  year: 2014
  end-page: 20
  ident: bib54
  article-title: The prediction of photovoltaic module temperature with artificial neural networks
  publication-title: Case Studies in Thermal Engineering
– volume: 45
  start-page: 26357
  year: 2020
  end-page: 26369
  ident: bib46
  article-title: Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches
  publication-title: Int J Hydrogen Energy
– volume: 2020
  start-page: 117634
  year: 2020
  ident: bib1
  article-title: Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester
  publication-title: Fuel
– volume: 4
  start-page: 35
  year: 2014
  ident: bib50
  article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms
  publication-title: Comput Sci Eng
– volume: 278
  start-page: 118252
  year: 2020
  ident: bib3
  article-title: Effect of microalgae, tyre pyrolysis oil and Jatropha biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine
  publication-title: Fuel
– volume: 8
  start-page: 28
  year: 2018
  ident: bib75
  article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting
  publication-title: Appl Sci
– volume: 166
  start-page: 704
  year: 2018
  end-page: 718
  ident: bib101
  article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine
  publication-title: Energy Convers Manag
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib118
  article-title: A general view to converting fossil fuels to cleaner energy source by adding nanoparticles
  publication-title: International Journal of Ambient Energy
– volume: 50
  start-page: 177
  year: 2013
  end-page: 186
  ident: bib62
  article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network
  publication-title: Energy
– year: 2018
  ident: bib23
  article-title: The effect of cerium oxide nano particles fuel additive on performance and emission of karanja biodiesel fueled compression ignition military 585kW heavy duty diesel engine (No. 2018-01-1818)
– volume: 62
  start-page: 603
  year: 2016
  end-page: 613
  ident: bib31
  article-title: A numerical analysis of fluid flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in rectangular microchannels
  publication-title: Strojniški vestnik-Journal of Mechanical Engineering
– volume: 254
  start-page: 115617
  year: 2019
  ident: bib89
  article-title: The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend
  publication-title: Fuel
– start-page: 266
  year: 2018
  end-page: 274
  ident: bib71
  article-title: A hybrid machine learning approach for daily prediction of solar radiation
  publication-title: International conference on global research and education
– volume: 120
  start-page: 219
  year: 2017
  end-page: 227
  ident: bib59
  article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes
  publication-title: Appl Therm Eng
– volume: 75
  start-page: 311
  year: 2013
  end-page: 318
  ident: bib73
  article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration
  publication-title: Energy Convers Manag
– volume: 38
  start-page: 8756
  year: 2011
  end-page: 8762
  ident: bib55
  article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey
  publication-title: Expert Syst Appl
– volume: 6
  start-page: 419
  year: 2006
  end-page: 423
  ident: bib91
  article-title: Enhanced mass transport in nanofluids
  publication-title: Nano Lett
– volume: 142
  start-page: 1128
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib41
  article-title: Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.006
– volume: 6
  start-page: 3979
  issue: 16
  year: 2011
  ident: 10.1016/j.energy.2020.119076_bib44
  article-title: Prediction of a diesel engine characteristics by using different modelling techniques
  publication-title: Int J Phys Sci
– volume: 267
  start-page: 117042
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib24
  article-title: Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117042
– start-page: 266
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib71
  article-title: A hybrid machine learning approach for daily prediction of solar radiation
– volume: 124
  start-page: 543
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib35
  article-title: Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.109
– volume: 256
  start-page: 115928
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib93
  article-title: Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115928
– volume: 4
  start-page: 2274
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib99
  article-title: Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values
  publication-title: J Therm Eng
– volume: 6
  start-page: 42
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib49
  article-title: Data mining through data visualization: a case study on predicting churners on telecomunications data set
  publication-title: Balkan Journal of Electrical and Computer Engineering
  doi: 10.17694/bajece.410243
– volume: 91
  start-page: 248
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib68
  article-title: Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: a case study
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.096
– volume: 41
  start-page: 2194
  issue: 18
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib117
  article-title: Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 10
  start-page: 795
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib106
  article-title: Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-carbonate and biodiesel blends
  publication-title: Atmospheric Pollution Research
  doi: 10.1016/j.apr.2018.12.007
– volume: 8
  start-page: 28
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib75
  article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting
  publication-title: Appl Sci
  doi: 10.3390/app8010028
– volume: 24
  start-page: 36
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib100
  article-title: Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi
  publication-title: Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
– volume: 4
  start-page: 35
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2020.119076_bib50
  article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms
  publication-title: Comput Sci Eng
– volume: 45
  start-page: 26357
  issue: 49
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib46
  article-title: Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.108
– volume: 161
  start-page: 361
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib8
  article-title: Comparison of viscosity prediction capabilities of regression models and artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.130
– volume: 133
  start-page: 371
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib21
  article-title: Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel)
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.01.069
– volume: 27
  start-page: 2308
  issue: 13
  year: 2007
  ident: 10.1016/j.energy.2020.119076_bib66
  article-title: Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.01.030
– volume: 221
  start-page: 132
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib88
  article-title: Model selection for accurate daily global solar radiation prediction in China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.02.211
– volume: 120
  start-page: 219
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib59
  article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.126
– volume: 92
  start-page: 162
  year: 2015
  ident: 10.1016/j.energy.2020.119076_bib72
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.050
– volume: 71
  start-page: 572
  issue: 4
  year: 2012
  ident: 10.1016/j.energy.2020.119076_bib87
  article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation
  publication-title: Bragantia
  doi: 10.1590/S0006-87052012000400016
– volume: 138
  start-page: 109603
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib47
  article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109603
– volume: 126
  start-page: 638
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib36
  article-title: Application of nano emulsion method in a methanol powered diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.049
– volume: 275
  start-page: 117973
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib10
  article-title: Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117973
– volume: 148
  start-page: 341
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib12
  article-title: A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.123
– start-page: 118830
  year: 2021
  ident: 10.1016/j.energy.2020.119076_bib25
  article-title: Exergetic and exergoeconomic analyses of a CI engine fuelled with diesel-biodiesel blends containing various metal-oxide nanoparticles
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118830
– volume: 50
  start-page: 1198
  issue: 11–12
  year: 2011
  ident: 10.1016/j.energy.2020.119076_bib90
  article-title: The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column
  publication-title: Chem Eng Process: Process Intensification
  doi: 10.1016/j.cep.2011.08.008
– volume: 199
  start-page: 567
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib14
  article-title: Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.03.001
– volume: 36
  start-page: 12256
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2020.119076_bib56
  article-title: Using the artificial neural network model for modeling the performance of the counter flow vortex tube
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.061
– volume: 146
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib20
  article-title: Assessment on combustion and emissions of diesel engine fueled with partially hydrogenated biodiesel
  publication-title: J Energy Eng
– volume: 62
  start-page: 603
  issue: 10
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib31
  article-title: A numerical analysis of fluid flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in rectangular microchannels
  publication-title: Strojniški vestnik-Journal of Mechanical Engineering
  doi: 10.5545/sv-jme.2015.3170
– volume: 5
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib39
  article-title: Mathematical model for fuel flow performance of diesel engine
  publication-title: Int J Adv Eng Technol
– start-page: 122353
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib67
  article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122353
– volume: 123
  start-page: 769
  issue: 3–4
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib70
  article-title: An optimisation methodology of artificial neural network models for predicting solar radiation: a case study
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-015-1398-x
– volume: 165
  start-page: 1332
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib102
  article-title: A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.100
– volume: 135
  start-page: 110114
  year: 2021
  ident: 10.1016/j.energy.2020.119076_bib82
  article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110114
– volume: 278
  start-page: 118252
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib3
  article-title: Effect of microalgae, tyre pyrolysis oil and Jatropha biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118252
– volume: 50
  start-page: 177
  year: 2013
  ident: 10.1016/j.energy.2020.119076_bib62
  article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.052
– volume: 51
  start-page: 991
  issue: 11
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib27
  article-title: The effect of utilizing Al2O3-SiO2/deionized water hybrid nanofluid in a tube-type heat exchanger
  publication-title: Heat transfer research
  doi: 10.1615/HeatTransRes.2020034103
– volume: 160
  start-page: 114001
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib28
  article-title: Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114001
– volume: 3
  start-page: 605
  issue: 5
  year: 2013
  ident: 10.1016/j.energy.2020.119076_bib78
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background
  publication-title: Int J Eng Res Afr
– volume: 25
  start-page: 28500
  issue: 28
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib107
  article-title: Mitigation of NOx emission using aromatic and phenolic antioxidant-treated biodiesel blends in a multi-cylinder diesel engine
  publication-title: Environ Sci Pollut Control Ser
  doi: 10.1007/s11356-018-2863-8
– volume: 113
  start-page: 44
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib37
  article-title: Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.040
– volume: 275
  start-page: 117844
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib6
  article-title: Waste to energy: production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117844
– volume: 166
  start-page: 704
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib101
  article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.04.070
– volume: 161
  start-page: 70
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib38
  article-title: Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.062
– volume: 45
  start-page: 20709
  issue: 41
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib61
  article-title: Design and implementation of hydrogen economy using artificial neural network on field programmable gate array
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.181
– volume: 280
  start-page: 118588
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib15
  article-title: Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118588
– volume: 279
  start-page: 118516
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib17
  article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118516
– start-page: 121724
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib9
  article-title: Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil− diesel blends
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121724
– volume: 26
  start-page: 21682
  issue: 21
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib110
  article-title: Analysis of noise pollution emitted by stationary MF285 tractor using different mixtures of biodiesel, bioethanol, and diesel through artificial intelligence
  publication-title: Environ Sci Pollut Control Ser
  doi: 10.1007/s11356-019-05523-1
– volume: 36
  start-page: 9268
  issue: 5
  year: 2009
  ident: 10.1016/j.energy.2020.119076_bib108
  article-title: Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.12.005
– volume: 1
  start-page: 15
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib40
  article-title: Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives
  publication-title: European Mechanical Science
  doi: 10.26701/ems.320490
– volume: 242
  start-page: 125079
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib5
  article-title: Algae as green energy reserve: technological outlook on biofuel production
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125079
– volume: 8
  start-page: 1604
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib51
  article-title: Machine learning based early diagnosis system for mesothelioma disease
  publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi
  doi: 10.29130/dubited.659106
– volume: 55
  start-page: 1229
  issue: 4
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib94
  article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine
  publication-title: Heat Mass Tran
  doi: 10.1007/s00231-018-2509-x
– year: 2020
  ident: 10.1016/j.energy.2020.119076_bib33
  article-title: Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 37
  start-page: 217
  year: 2012
  ident: 10.1016/j.energy.2020.119076_bib60
  article-title: Prediction of engine performance for an alternative fuel using artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.11.019
– volume: 205
  start-page: 112355
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib104
  article-title: Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112355
– year: 2020
  ident: 10.1016/j.energy.2020.119076_bib52
– volume: 155
  start-page: 62
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib64
  article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2017.02.002
– volume: 19
  issue: 4
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib2
  article-title: Is the ethanol additive more environmentally friendly for a spark ignition (si) engine or for a compression ignition (ci) engine?
  publication-title: Environmental Engineering & Management Journal (EEMJ)
– volume: 29
  start-page: 39
  issue: 1
  year: 2004
  ident: 10.1016/j.energy.2020.119076_bib92
  article-title: Nanomaterials for heterogeneous combustion
  publication-title: Propellants, Explos Pyrotech: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials
  doi: 10.1002/prep.200400025
– volume: 42
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib19
  article-title: Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 265
  start-page: 117005
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib103
  article-title: Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.117005
– volume: 41
  start-page: 389
  issue: 9
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib7
  article-title: Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends
  publication-title: J Braz Soc Mech Sci Eng
– volume: 166
  start-page: 1025
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib112
  article-title: Assessment of diesel engine performance using spirulina microalgae biodiesel
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.098
– year: 2018
  ident: 10.1016/j.energy.2020.119076_bib23
– start-page: 281
  year: 1997
  ident: 10.1016/j.energy.2020.119076_bib74
  article-title: Support vector method for function approximation, regression estimation and signal processing
– volume: 275
  start-page: 117891
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib115
  article-title: An experimental investigation on engine characteristics, cost and energy analysis of CI engine fuelled with Roselle, Karanja biodiesel and its blends
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117891
– volume: 22
  start-page: 41
  issue: 1
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib29
  article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network
  publication-title: Politeknik Dergisi
– volume: 87
  start-page: 153107
  issue: 15
  year: 2005
  ident: 10.1016/j.energy.2020.119076_bib98
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2093936
– volume: 25
  start-page: 363
  issue: 5
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib105
  article-title: The effect of diesel-methanol blends with volumetric proportions on the performance and emissions of a diesel engine
  publication-title: Mechanics
  doi: 10.5755/j01.mech.25.5.22954
– volume: 6
  start-page: 419
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2020.119076_bib91
  article-title: Enhanced mass transport in nanofluids
  publication-title: Nano Lett
  doi: 10.1021/nl0522532
– volume: 228
  start-page: 105875
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib77
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2019.105875
– volume: 230
  start-page: 116
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib81
  article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.108
– volume: 77
  start-page: 148
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib96
  article-title: Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid
  publication-title: Int Commun Heat Mass Tran
  doi: 10.1016/j.icheatmasstransfer.2016.08.001
– start-page: 117257
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib43
  article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117257
– volume: 34
  start-page: 485
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2020.119076_bib85
  article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2009.02.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib53
  article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network
  publication-title: Exp Heat Tran
– volume: 12
  start-page: 1856
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib79
  article-title: Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach
  publication-title: Energies
  doi: 10.3390/en12101856
– volume: 2020
  start-page: 117634
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib1
  article-title: Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117634
– start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib16
  article-title: Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine
  publication-title: Biofuels
– volume: 55
  start-page: 4520
  issue: 8
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib80
  article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
  publication-title: IEEE Trans Geosci Rem Sens
  doi: 10.1109/TGRS.2017.2693346
– volume: 50
  start-page: 1644
  issue: 7
  year: 2009
  ident: 10.1016/j.energy.2020.119076_bib69
  article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.03.035
– volume: 105
  start-page: 168
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib84
  article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.01.040
– volume: 22
  start-page: 179
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib109
  article-title: Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends
  publication-title: Environmental and Climate Technologies
  doi: 10.2478/rtuect-2018-0012
– volume: 147
  start-page: 2295
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib18
  article-title: Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.041
– start-page: 96
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib48
  article-title: April). Prediction of potential bank customers: application on data mining
– volume: 113
  start-page: 663
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib42
  article-title: Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.044
– volume: 165
  start-page: 104928
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib58
  article-title: Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.104928
– start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib118
  article-title: A general view to converting fossil fuels to cleaner energy source by adding nanoparticles
  publication-title: International Journal of Ambient Energy
– volume: 3
  start-page: 11
  year: 2014
  ident: 10.1016/j.energy.2020.119076_bib54
  article-title: The prediction of photovoltaic module temperature with artificial neural networks
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2014.02.001
– volume: 24
  start-page: 424
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib57
  article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy
  publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  doi: 10.16984/saufenbilder.630482
– volume: 6
  start-page: 44
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib11
  article-title: Effect of iridium spark plug gap on emission, noise, vibration of an internal combustion engine
  publication-title: Int J Eng Adv Technol
– volume: 33
  start-page: 9224
  issue: 9
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib22
  article-title: Impact of pentanol addition and injection timing on the characteristics of a single-cylinder diesel engine
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b01759
– volume: 160
  start-page: 160
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib63
  article-title: Solar radiation estimation methods using ANN and empirical models
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.03.022
– volume: 44
  start-page: 17443
  issue: 33
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib65
  article-title: Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.049
– volume: 75
  start-page: 311
  year: 2013
  ident: 10.1016/j.energy.2020.119076_bib73
  article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.06.034
– start-page: 29
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib13
  article-title: Microstructural characterization of particulate matter from gasoline-fuelled vehicle emissions
  publication-title: Journal of Engineering Research and Reports
  doi: 10.9734/jerr/2020/v16i117157
– volume: 255
  start-page: 115855
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib113
  article-title: Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115855
– volume: 38
  start-page: 8756
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2020.119076_bib55
  article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.085
– volume: 32
  start-page: 82
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib34
  article-title: Energy and exergy analysis of a PV/thermal storage system design integrated with nano-enhanced phase changing material
  publication-title: Int J Exergy
  doi: 10.1504/IJEX.2020.107745
– start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2020.119076_bib76
  article-title: Research on fault diagnosis method of spacecraft solar array based on f-KNN algorithm
– volume: 270
  start-page: 117521
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib26
  article-title: Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117521
– volume: 262
  start-page: 116608
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib114
  article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116608
– year: 2020
  ident: 10.1016/j.energy.2020.119076_bib32
  article-title: Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO2/DCM nanofluids: experimental and numerical comparison
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 11
  start-page: 1129
  issue: 5
  year: 2009
  ident: 10.1016/j.energy.2020.119076_bib97
  article-title: The effect of particle size on the thermal conductivity of alumina nanofluids
  publication-title: J Nanoparticle Res
  doi: 10.1007/s11051-008-9500-2
– volume: 277
  start-page: 118176
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib4
  article-title: A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: engine emissions testing study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118176
– volume: 95
  start-page: 186
  year: 2016
  ident: 10.1016/j.energy.2020.119076_bib111
  article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.11.009
– volume: 42
  start-page: 1
  issue: 10
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib30
  article-title: A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates
  publication-title: J Braz Soc Mech Sci Eng
– volume: 4
  start-page: 180
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib45
  article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends
  publication-title: International Journal of Automotive Science and Technology
  doi: 10.30939/ijastech..771789
– volume: 156
  start-page: 618
  year: 2018
  ident: 10.1016/j.energy.2020.119076_bib83
  article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.085
– volume: 55
  start-page: 1229
  issue: 4
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib95
  article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine
  publication-title: Heat Mass Tran
  doi: 10.1007/s00231-018-2509-x
– volume: 189
  start-page: 116198
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib116
  article-title: Biodiesel production from momordica charantia (L.): extraction and engine characteristics
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116198
– volume: 191
  start-page: 116502
  year: 2020
  ident: 10.1016/j.energy.2020.119076_bib86
  article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116502
– volume: 254
  start-page: 115617
  year: 2019
  ident: 10.1016/j.energy.2020.119076_bib89
  article-title: The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115617
SSID ssj0005899
Score 2.6220682
Snippet Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119076
SubjectTerms Algorithms
Aluminum oxide
Artificial neural networks
Brakes
Carbon dioxide
Carbon monoxide
Catalytic activity
Combustion
Combustion chambers
Copper oxides
data collection
Deep learning
Diesel
Diesel engines
diesel fuel
Diesel fuels
Emission
Emission analysis
Emissions
energy
energy use and consumption
Engine performance
Exhaust gases
Fuels
Gas temperature
Heat transfer
Learning algorithms
Learning theory
Machine learning
Metal oxides
Nanodiesel
Nanoparticle
Nanoparticles
Neural networks
Nitrogen oxides
Nonlinear analysis
oxygen
Performance prediction
Photochemicals
Pollutants
Prediction
Predictions
Support vector machines
temperature
Thermodynamic efficiency
Titanium dioxide
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5VvZQLgkJFoKBB4rpNvF7_HVGUqiDBBSr1Zu1vFOTaUZwIuCDegSfjFXgSZux1Yg6oiKPtWXnl_Tw_u9_MMPbKoc-d5FryKMsUl05bnqOjzGOP3oFV8cwklDv87n16dS3f3iQ3R2w-5MIQrTLo_l6nd9o63JmGrzldr1bTD6h70d-QgnqAIzCp7LaUGXUxuPg2onnkXQ9JEuYkPaTPdRwv1-XXYZQoSHdgnJj-zTyN3M-TXb1WXz-rqhpZossH7H5wIeF1P8uH7MjVp-xkyDBuT9nZ4pC9hoLh920fsZ-LUT1_WB1KbDQ1qNrCekPHNt1l42F9yCnonlJnONpbg03Pq3UtSSmYvwHXVTUEv6NjAAu0uQtD65Ut3Dp8HW--rKwDspoWalVjsB44eb--_yAqo6tAV0TQBeLiL8fjO8Kng9DhYgmqWjYbfMdt-5hdXy4-zq946OnADZrLLc9V5gSCQXtvMlkII413FkNiWajUorrRkUkiNzPkaSmVeaUjLVIMbJQtYj2Lz9hx3dTuCQNPC5aILDEylUq7wgihpU8TTU0xvZ2weFjK0oSC59R3oyoHZtunsgdASQAoewBMGN-PWvcFP-6QzwaUlH8At0SbdMfI8wFUZVAcbSkkRbC5jMWEvdw_xvWlcxxVu2aHMgm6fXEsi2zCLvZg_KfZPv3v2T5j9wTReWYRj5Jzdrzd7Nxz9Me2-kX3w_0Gbyg6mw
  priority: 102
  providerName: Elsevier
Title Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms
URI https://dx.doi.org/10.1016/j.energy.2020.119076
https://www.proquest.com/docview/2487168432
https://www.proquest.com/docview/2574333497
https://hdl.handle.net/20.500.12684/10189
UnpaywallVersion submittedVersion
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLWYdjFseAyMKAyVkdg6JI6dx7IaddQBUbGg0rCKbMephskkVdOIxwLxD3wZv8CXcG8ebQVCMyyj2HEi3_iea597LiEvLWBuGWnBvDBUTFidsgiAMvMzQAep8l0jMXf47TyYLcTrC3nRiUVXf-sLcNeRLkogBJF4heJS8QEZBhKeNiDDxfzd5EN7FukyKZpCOV4U-gwWYNmnyTVcLtvk0UE0yHGNgHgw-Jcb2oOZh3WxUl8-qTzf8zhn91uuVtUIFSLR5MqpN9oxX_-QcbzVxzwg9zrcSSetoTwkd2xxRA77tOTqiBxPdylv0LD756tH5Od0rwgAvdzpcpQFhVHpao1nPc1lmdHVLhGhuYvl5HBDjq5bMq6tsJWip-fUNlKINKvx7CCluCNM-3otG3ptYThWfr5MLUVXm9JCFRDhd0S-X99_IP_R5lTnyOqlSOBf7vdvWKKWdmUxllTly3INY1xXj8nibPr-dMa6QhDMgI_dsEiFlsOc6ywzoYi5ESazKcTRIlZBCmuU9oz0rGsQnikVZkp7mgcQDak09rXrH5NBURb2CaEZzr7koTQiEErb2HCuRRZIjZU0s3RE_N4uEtOppGOxjjzp6XAfk9aaErSmpLWmEWHbXqtWJeSG9mFvckmHdFoEk4Aju6HnSW-hSbfaVAkXGPZGwucj8mJ7G-YXD39UYcsa2kjAir4v4nBEnK1l3-ptn_5vh2fkLkfqj-sxT56QwWZd2-eA3TZ6TA6cb96YDCfnb2bzcfcP_wa7cEgg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6VcggXBIWK0AKLxHWbeL3-yRFFqVJoe6GVelvtn6Mg17biRNAL4h14Ml6BJ2HGXifmgIo42p6VV97P87P7zQwh7xz43FGqBQuSRDHhtGUpOMoszMA7sCocmwhzhy8u4_m1-HAT3eyRaZcLg7RKr_tbnd5oa39n5L_mqFouR59A94K_ITj2AAdgxg_IQxHxBCOwk289nkfaNJFEaYbiXf5cQ_JyTYIdhIkclQcEivHf7FPP_xxsikrdfVF53jNFp0_IY-9D0vftNJ-SPVcckEGXYlwfkMPZLn0NBP3_Wz8jP2e9gv50uauxURZUFZZWKzy3aS7LjFa7pILmKbaGw801umqJta5GKUWnZ9Q1ZQ1ptsFzAEtxd5d2vVfW9NbB61j5dWkdRbNpaaEKiNY9Ke_X9x_IZXQ51TkydCmS8Rf98Q3j01Hf4mJBVb4oV_CO2_o5uT6dXU3nzDd1YAbs5ZqlKnEc0KCzzCRiwo0wmbMQE4uJii3oGx2YKHBjg66WUkmmdKB5DJGNspNQj8NDsl-UhXtBaIYLBiseGRELpd3EcK5FFkcau2JmdkjCbiml8RXPsfFGLjtq22fZAkAiAGQLgCFh21FVW_HjHvmkQ4n8A7kSjNI9I487UEmvOWrJBYawqQj5kLzdPob1xYMcVbhyAzIR-H1hKCbJkJxswfhPs33537N9Qwbzq4tzeX52-fGIPOLI7RkHLIiOyf56tXGvwDlb69fNz_cbO8w9vg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZgeygXfgoVCwUZiauXxLHzc6yqrQoSFQdWKqfIduxVIU1Wm0T8nHgHnoxX4EmYSZzdFQi1HKPYcSJPPN_Y33xDyEsLmFumWrAwSRQTVhcsBaDMIgfooFBRYCTmDr89j88W4s2FvPBi0c3f-gI8mMkAJRDiVLxCcansNtmLJTxtQvYW5--OPwxnkQGToi-UE6ZJxGABlmOaXM_lsn0eHUSDHNcIiAfjf7mhHZi531Ur9fWzKssdj3N6b-BqNb1QIRJNPs26Vs_Mtz9kHG_0MffJXY876fFgKA_ILVsdkP0xLbk5IIfzbcobNPT_fPOQ_JzvFAGgl1tdjrqiMCpdrfGsp7-sHV1tExH6u1hODjfk6Hog49oGWyl68praXgqRug7PDgqKO8J0rNfS0isLw7H6y2VhKbraglaqggjfE_l-ff-B_EdbUl0iq5cigX-5279niVrqy2IsqSqX9RrGuGoekcXp_P3JGfOFIJgBH9uyVCWWw5xr50wiMm6EcbaAOFpkKi5gjdKhkaENDMIzpRKndKh5DNGQKrJIB9EhmVR1ZR8T6nD2JU-kEbFQ2maGcy1cLDVW0nTFlESjXeTGq6RjsY4yH-lwH_PBmnK0pnywpilhm16rQSXkmvbJaHK5RzoDgsnBkV3T82i00NyvNk3OBYa9qYj4lLzY3Ib5xcMfVdm6gzYSsGIUiSyZktnGsm_0tk_-t8NTcocj9ScIWSiPyKRdd_YZYLdWP_d_7W_gv0WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+and+prediction+of+performance+and+emission+responses+of+a+CI+engine+fuelled+with+different+metal-oxide+based+nanoparticles%E2%80%93diesel+blends+using+different+machine+learning+algorithms&rft.jtitle=Energy+%28Oxford%29&rft.au=A%C4%9Fbulut%2C+%C3%9Cmit&rft.au=G%C3%BCrel%2C+Ali+Etem&rft.au=Sar%C4%B1demir%2C+Suat&rft.date=2021-01-15&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=215&rft.spage=119076&rft_id=info:doi/10.1016%2Fj.energy.2020.119076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon