Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms
Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to...
Saved in:
| Published in | Energy (Oxford) Vol. 215; p. 119076 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.01.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 1873-6785 |
| DOI | 10.1016/j.energy.2020.119076 |
Cover
| Abstract | Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms.
[Display omitted]
•The first study applying deep learning and kernel nearest neighbor algorithms in ICEs.•Emission and performance characteristics of a diesel engine doped with nanoparticles.•A reduction in CO, NOx, EGT, BSFC and an improvement in BTE with the presence of nanoparticles.•Deep learning is the best fitting algorithm, while k-NN is the worst one for the engine responses.•Smaller grain size of nanoparticles improves engine performance and emissions. |
|---|---|
| AbstractList | Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as "excellent" according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms. Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al₂O₃, CuO, and TiO₂) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOₓ), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R², RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOₓ emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOₓ is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO₂, Al₂O₃, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO₂, CuO, and Al₂O₃, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO₂, CuO, and Al₂O₃, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R² has changed between 0.901 and 0.994, and DL has given the highest R² value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms. Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields owing to their high-accuracy and ability to analyze the non-linear problems. In this study, these machine learning algorithms (MLAs) are used to predict emission and performance characteristics of a CI engine fuelled with various metal-oxide based nanoparticles (Al2O3, CuO, and TiO2) at a mass fractions of 200 ppm. Assessed parameters in the study are carbon dioxide (CO), nitrogen oxide (NOx), exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE). To evaluate the success of algorithms, four metrics (R2, RMSE, rRMSE, and MBE) are discussed in detail. Tests performed at varying engine speeds from 1500 rpm to 3400 rpm with the intervals of 100 rpm. The addition of nanoparticles simultaneously reduced CO and NOx emissions because they ensured more complete combustion thanks to their inherent oxygen, the higher surface to volume ratio, superior thermal conductivities and their catalytic activity role. Further, the nano-sized particles ensured an accelerated heat transfer from the combustion chamber. In comparison with that of neat diesel fuel, the reduction in NOx is found to be 3.28, 7.53, and 10.05%, and the reduction in CO is found to be 8.3, 11.6, and 15.5% for TiO2, Al2O3, and CuO test fuels, respectively. Moreover, the presence of nanoparticles in test fuels has improved engine performance. As compared with those of neat diesel fuel, the doping of nanoparticles drops the BSFC value by 5.54, 7.89, and 9.96% for TiO2, CuO, and Al2O3, respectively, and enhanced BTE value to be 6.15, 8.87, and 11.23% for TiO2, CuO, and Al2O3, respectively. On the other hand, it can be said that all algorithms presented very satisfying results in the prediction of CI engine responses. All R2 has changed between 0.901 and 0.994, and DL has given the highest R2 value for each engine response. In terms of rRMSE, all results (except for one result in k-NN) are categorized as “excellent” according to the classification in the literature. Considering all metrics together, DL is giving the best results in the prediction of engine responses for the dataset used in this paper. Then it is closely followed by ANN, SVM, and k-NN algorithms, respectively. In conclusion, this paper is proving that the nanoparticle addition for ICEs is significantly dropping the exhaust pollutants, and improving the engine performance, and further the results can be successfully predicted with the machine learning algorithms. [Display omitted] •The first study applying deep learning and kernel nearest neighbor algorithms in ICEs.•Emission and performance characteristics of a diesel engine doped with nanoparticles.•A reduction in CO, NOx, EGT, BSFC and an improvement in BTE with the presence of nanoparticles.•Deep learning is the best fitting algorithm, while k-NN is the worst one for the engine responses.•Smaller grain size of nanoparticles improves engine performance and emissions. |
| ArticleNumber | 119076 |
| Author | Ağbulut, Ümit Gürel, Ali Etem Sarıdemir, Suat |
| Author_xml | – sequence: 1 givenname: Ümit surname: Ağbulut fullname: Ağbulut, Ümit email: umitagbulut@duzce.edu.tr organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey – sequence: 2 givenname: Ali Etem surname: Gürel fullname: Gürel, Ali Etem organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey – sequence: 3 givenname: Suat surname: Sarıdemir fullname: Sarıdemir, Suat organization: Department of Mechanical Engineering, Düzce University, 81620, Düzce, Turkey |
| BookMark | eNqNks1u1DAUhSNUJKaFN2BhiQ2bDHbs_LFAQqMClSqxgbV1Y9-kHnnsYCdtZ9d34Ml4BZ4EZ8ICdQGsLPt-5177HJ9nZ847zLKXjG4ZZdWb_RYdhuG4LWiRjlhL6-pJtmFNzfOqbsqzbEN5RfNSiOJZdh7jnlJaNm27yX5c3o8YzAHdBJYYd4txMgNMxjsCTpMxoDbqtPU9SWjvwwGcwlMVDybGpRYwjt5FjAsFZHdF0A3GIelntBY1uTPTDdGm7zGkUeSAaVzu741G0kFMgAPnRwiTURbjz4fv2mBESzqLTkcyR-OGP_Wgbpb2FiG4pQR28CHNOMTn2dMebMQXv9eL7OuHyy-7T_n1549Xu_fXuRKMT3kDNRZtRbu-V7VoCyVUj5rxQrRQ6ZrTjqmSIVUVKxlA3UPHuqLitALd8o7yi6xc-85uhOMdWCvHZCSEo2RULrnIvVxzkUsucs0l6V6vujH4b3OyWyYTVXIJHPo5yqKsBedctHVCXz1C934OLr1KFqKpWdUIXiRKrJQKPsaA_f_e4-0jmTLTKfgpgLH_Er9bxZgcvjUYZFQG07fQJqCapPbm7w1-AZav4UY |
| CitedBy_id | crossref_primary_10_1016_j_scs_2022_103886 crossref_primary_10_1016_j_energy_2023_129582 crossref_primary_10_1016_j_seta_2023_103375 crossref_primary_10_1021_acsomega_2c07465 crossref_primary_10_1016_j_ijhydene_2022_03_268 crossref_primary_10_1007_s13204_021_02233_4 crossref_primary_10_1007_s40032_021_00750_3 crossref_primary_10_1016_j_energy_2024_131746 crossref_primary_10_1016_j_ijrefrig_2021_05_016 crossref_primary_10_1007_s11356_022_20496_4 crossref_primary_10_1016_j_renene_2025_122345 crossref_primary_10_1007_s10973_022_11288_6 crossref_primary_10_1016_j_psep_2024_01_052 crossref_primary_10_1016_j_heliyon_2023_e21365 crossref_primary_10_1016_j_ijhydene_2022_11_101 crossref_primary_10_1093_ijlct_ctad060 crossref_primary_10_1155_2024_7775139 crossref_primary_10_1016_j_fuel_2022_125167 crossref_primary_10_1007_s13762_022_04312_7 crossref_primary_10_1016_j_ijhydene_2022_04_152 crossref_primary_10_1080_17597269_2023_2256105 crossref_primary_10_1177_09544089221109723 crossref_primary_10_1007_s11356_022_21723_8 crossref_primary_10_1016_j_energy_2022_125334 crossref_primary_10_1186_s42397_024_00208_8 crossref_primary_10_1016_j_energy_2021_122424 crossref_primary_10_1177_09544089211060131 crossref_primary_10_29130_dubited_763009 crossref_primary_10_1016_j_energy_2021_122945 crossref_primary_10_35860_iarej_859423 crossref_primary_10_1021_acs_iecr_2c02059 crossref_primary_10_1080_10916466_2022_2120501 crossref_primary_10_1007_s11356_024_33939_x crossref_primary_10_1002_ese3_1065 crossref_primary_10_18311_jmmf_2024_46264 crossref_primary_10_1016_j_ijhydene_2024_11_032 crossref_primary_10_1016_j_apr_2023_101721 crossref_primary_10_1007_s10668_022_02358_8 crossref_primary_10_2516_stet_2022011 crossref_primary_10_1155_2021_3728852 crossref_primary_10_1016_j_fuel_2023_127578 crossref_primary_10_1016_j_ijft_2024_100637 crossref_primary_10_1016_j_energy_2021_121123 crossref_primary_10_1016_j_psep_2022_03_003 crossref_primary_10_1016_j_aei_2022_101593 crossref_primary_10_1007_s11831_024_10144_0 crossref_primary_10_1016_j_egyai_2023_100273 crossref_primary_10_1016_j_fuel_2022_126827 crossref_primary_10_3390_su151813825 crossref_primary_10_1080_02726351_2021_2017088 crossref_primary_10_1016_j_asej_2024_103126 crossref_primary_10_1016_j_csite_2022_102645 crossref_primary_10_1016_j_energy_2025_135161 crossref_primary_10_1515_jnet_2024_0021 crossref_primary_10_1016_j_aej_2023_05_024 crossref_primary_10_1007_s11771_021_4856_x crossref_primary_10_1016_j_rser_2023_113854 crossref_primary_10_2516_stet_2023013 crossref_primary_10_1016_j_energy_2023_127067 crossref_primary_10_1016_j_fuel_2022_127164 crossref_primary_10_1016_j_seta_2022_102343 crossref_primary_10_1016_j_fuel_2022_123285 crossref_primary_10_1002_ep_13976 crossref_primary_10_1007_s10668_022_02897_0 crossref_primary_10_1021_acs_energyfuels_1c01957 crossref_primary_10_1007_s10973_024_13081_z crossref_primary_10_1108_HFF_11_2020_0743 crossref_primary_10_1007_s10098_025_03128_6 crossref_primary_10_1007_s42247_024_00957_x crossref_primary_10_1016_j_egyai_2021_100128 crossref_primary_10_1016_j_energy_2021_120548 crossref_primary_10_1016_j_jestch_2024_101733 crossref_primary_10_3390_su17020788 crossref_primary_10_3390_agriculture12091332 crossref_primary_10_3390_su15129362 crossref_primary_10_1016_j_energy_2021_119942 crossref_primary_10_1016_j_energy_2024_130267 crossref_primary_10_1016_j_ijft_2024_100652 crossref_primary_10_1016_j_sftr_2025_100456 crossref_primary_10_1115_1_4062526 crossref_primary_10_1016_j_asej_2022_102090 crossref_primary_10_1016_j_seta_2022_102973 crossref_primary_10_1177_09544062211052824 crossref_primary_10_1016_j_fuel_2022_124981 crossref_primary_10_1007_s11630_024_1926_z crossref_primary_10_1016_j_fuel_2023_128767 crossref_primary_10_1002_htj_22568 crossref_primary_10_1177_09544089231209139 crossref_primary_10_1016_j_ijhydene_2022_07_126 crossref_primary_10_1016_j_ecoinf_2022_101640 crossref_primary_10_1016_j_ijft_2024_100816 crossref_primary_10_1016_j_energy_2022_124553 crossref_primary_10_1615_JEnhHeatTransf_2024052726 crossref_primary_10_1016_j_energy_2021_120611 crossref_primary_10_1016_j_csite_2021_101710 |
| Cites_doi | 10.1016/j.energy.2017.09.006 10.1016/j.fuel.2020.117042 10.1016/j.energy.2017.02.109 10.1016/j.fuel.2019.115928 10.17694/bajece.410243 10.1016/j.rser.2018.03.096 10.1016/j.apr.2018.12.007 10.3390/app8010028 10.1016/j.ijhydene.2020.02.108 10.1016/j.energy.2018.07.130 10.1016/j.applthermaleng.2018.01.069 10.1016/j.applthermaleng.2007.01.030 10.1016/j.jclepro.2019.02.211 10.1016/j.applthermaleng.2017.03.126 10.1016/j.enconman.2014.12.050 10.1590/S0006-87052012000400016 10.1016/j.mehy.2020.109603 10.1016/j.energy.2017.03.049 10.1016/j.fuel.2020.117973 10.1016/j.energy.2018.01.123 10.1016/j.energy.2020.118830 10.1016/j.cep.2011.08.008 10.1016/j.fuel.2017.03.001 10.1016/j.eswa.2009.04.061 10.5545/sv-jme.2015.3170 10.1016/j.jclepro.2020.122353 10.1007/s00704-015-1398-x 10.1016/j.energy.2018.10.100 10.1016/j.rser.2020.110114 10.1016/j.fuel.2020.118252 10.1016/j.energy.2012.10.052 10.1615/HeatTransRes.2020034103 10.1016/j.applthermaleng.2019.114001 10.1007/s11356-018-2863-8 10.1016/j.energy.2016.07.040 10.1016/j.fuel.2020.117844 10.1016/j.enconman.2018.04.070 10.1016/j.energy.2018.07.062 10.1016/j.ijhydene.2020.05.181 10.1016/j.fuel.2020.118588 10.1016/j.fuel.2020.118516 10.1016/j.jclepro.2020.121724 10.1007/s11356-019-05523-1 10.1016/j.eswa.2008.12.005 10.26701/ems.320490 10.1016/j.chemosphere.2019.125079 10.29130/dubited.659106 10.1007/s00231-018-2509-x 10.1016/j.applthermaleng.2011.11.019 10.1016/j.enconman.2019.112355 10.1016/j.jastp.2017.02.002 10.1002/prep.200400025 10.1016/j.fuel.2019.117005 10.1016/j.energy.2018.10.098 10.1016/j.fuel.2020.117891 10.1063/1.2093936 10.5755/j01.mech.25.5.22954 10.1021/nl0522532 10.1016/j.agwat.2019.105875 10.1016/j.jclepro.2019.05.108 10.1016/j.icheatmasstransfer.2016.08.001 10.1016/j.energy.2020.117257 10.1016/j.energy.2009.02.005 10.3390/en12101856 10.1016/j.fuel.2020.117634 10.1109/TGRS.2017.2693346 10.1016/j.enconman.2009.03.035 10.1016/j.rser.2019.01.040 10.2478/rtuect-2018-0012 10.1016/j.renene.2019.10.041 10.1016/j.applthermaleng.2016.11.044 10.1016/j.compag.2019.104928 10.1016/j.csite.2014.02.001 10.16984/saufenbilder.630482 10.1021/acs.energyfuels.9b01759 10.1016/j.compag.2019.03.022 10.1016/j.ijhydene.2019.05.049 10.1016/j.enconman.2013.06.034 10.9734/jerr/2020/v16i117157 10.1016/j.fuel.2019.115855 10.1016/j.eswa.2011.01.085 10.1504/IJEX.2020.107745 10.1016/j.fuel.2020.117521 10.1016/j.fuel.2019.116608 10.1007/s11051-008-9500-2 10.1016/j.fuel.2020.118176 10.1016/j.applthermaleng.2015.11.009 10.30939/ijastech..771789 10.1016/j.enconman.2017.11.085 10.1016/j.energy.2019.116198 10.1016/j.energy.2019.116502 10.1016/j.fuel.2019.115617 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.energy.2020.119076 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | oai:acikerisim.duzce.edu.tr:20.500.12684/10189 10_1016_j_energy_2020_119076 S0360544220321836 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c413t-8a7e2960bffc7492c4cfed13249a6d730b1c51e0c6151aa7fab1b26306ad93b03 |
| IEDL.DBID | UNPAY |
| ISSN | 0360-5442 1873-6785 |
| IngestDate | Sun Oct 26 04:10:22 EDT 2025 Sun Sep 28 16:16:19 EDT 2025 Mon Sep 29 14:40:49 EDT 2025 Thu Apr 24 22:53:32 EDT 2025 Thu Oct 09 00:40:24 EDT 2025 Fri Feb 23 02:46:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Emission Nanodiesel Nanoparticle Engine performance Machine learning Prediction |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-8a7e2960bffc7492c4cfed13249a6d730b1c51e0c6151aa7fab1b26306ad93b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/20.500.12684/10189 |
| PQID | 2487168432 |
| PQPubID | 2045484 |
| ParticipantIDs | unpaywall_primary_10_1016_j_energy_2020_119076 proquest_miscellaneous_2574333497 proquest_journals_2487168432 crossref_primary_10_1016_j_energy_2020_119076 crossref_citationtrail_10_1016_j_energy_2020_119076 elsevier_sciencedirect_doi_10_1016_j_energy_2020_119076 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-15 |
| PublicationDateYYYYMMDD | 2021-01-15 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Radhakrishnan, Munuswamy, Devarajan, Mahalingam (bib94) 2019; 55 Qin, Wang, Huang (bib76) 2017 Quej, Almorox, Arnaldo, Saito (bib64) 2017; 155 Anto, Mukherjee, Muthappa, Mathimani, Deviram, Kumar, Pugazhendhi (bib5) 2020; 242 Ağbulut, Sarıdemir, Albayrak (bib7) 2019; 41 Husein, Chung (bib79) 2019; 12 Torabi, Mosavi, Ozturk, Varkonyi-Koczy, Istvan (bib71) 2018 Khanlari (bib27) 2020; 51 Yilmaz, Atik (bib66) 2007; 27 Ardebili, Solmaz, İpci, Calam, Mostafaei (bib17) 2020; 279 Gürbüz, Variyenli, Sözen, Khanlari, Ökten (bib33) 2020 Imandoust, Bolandraftar (bib78) 2013; 3 Basarslan, Kayaalp (bib49) 2018; 6 Gülüm, Onay, Bilgin (bib8) 2018; 161 Dogan, Cakmak, Yesilyurt, Erol (bib10) 2020; 275 Yıldırım, Tosun, Çalık, Uluocak, Avşar (bib117) 2019; 41 Heinemann, Van Oort, Fernandes, Maia (bib87) 2012; 71 Gürbüz, Sözen, Variyenli, Khanlari, Tuncer (bib30) 2020; 42 Başarslan, Argun (bib48) 2019 Zang, Cheng, Ding, Cheung, Wang, Wei, Sun (bib86) 2020; 191 Uluer, Aktaş, Karaağaç, Durmuş, Khanlari, Ağbulut, Çelik (bib99) 2018; 4 Krishnamurthy, Bhattacharya, Phelan, Prasher (bib91) 2006; 6 Radhakrishnan, Munuswamy, Devarajan, Mahalingam (bib95) 2019; 55 Ağbulut, Sarıdemir (bib2) 2020; 19 Darvanjooghi, Esfahany (bib96) 2016; 77 Ceylan, Erkaymaz, Gedik, Gürel (bib54) 2014; 3 Yamaç, Todorovic (bib77) 2020; 228 Shrivastava, Salam, Verma, Samuel (bib114) 2020; 262 Ağbulut, Sarıdemir (bib118) 2019 Antonopoulos, Papamichail, Aschonitis, Antonopoulos (bib63) 2019; 160 Manigandan, Gunasekar, Nithya, Devipriya (bib19) 2020; 42 Berber (bib39) 2016; 5 Berber (bib105) 2019; 25 Ghaderi, Javadikia, Naderloo, Mostafaei, Rabbani (bib110) 2019; 26 Singh, Verma (bib116) 2019; 189 Premalatha, Naveen (bib68) 2018; 91 Sarıdemir, Gürel, Ağbulut, Bakan (bib1) 2020; 2020 Uysal, Arslan, Kurt (bib31) 2016; 62 Pandey, Nandgaonkar, Pandey, Suresh, Varghese (bib23) 2018 Gouda, Hussein, Luo, Yuan (bib88) 2019; 221 Şen (bib89) 2019; 254 Sheriff, Kumar, Mandhatha, Jambal, Sellappan, Ashok, Nanthagopal (bib18) 2020; 147 Manju, Sandeep (bib81) 2019; 230 Karagoz, Uysal, Agbulut, Saridemir (bib9) 2020 Ağbulut, Karagöz, Sarıdemir, Öztürk (bib26) 2020; 270 Güney, Aladağ (bib13) 2020 Rajak, Verma (bib101) 2018; 166 Çiftçi, Sözen (bib32) 2020 Chen, Li, Wu (bib73) 2013; 75 Bahmanyar, Khoobi, Mozdianfard, Bahmanyar (bib90) 2011; 50 Koca, Oztop, Varol, Koca (bib55) 2011; 38 Karagöz, Ağbulut, Sarıdemir (bib6) 2020; 275 Rezrazi, Hanini, Laidi (bib70) 2016; 123 Yilmaz, Koyuncu, Alcin, Tuna (bib65) 2019; 44 Rajak, Nashine, Verma (bib112) 2019; 166 Uluer, Karaağaç, Aktaş, Durmuş, Ağbulut, Khanlari, Çelik (bib100) 2018; 24 Gürel, Ağbulut, Biçen (bib67) 2020 Yesilyurt, Aydin (bib104) 2020; 205 Çay, Korkmaz, Çiçek, Kara (bib62) 2013; 50 Özçelik, Gültekin (bib11) 2019; 6 Karagöz (bib45) 2020; 4 Devarajan (bib106) 2019; 10 Uysal, Korkmaz (bib29) 2019; 22 Koyuncu, Yilmaz, Alcin, Tuna (bib61) 2020; 45 Senturk, Kara (bib50) 2014; 4 Fan, Wang, Wu, Zhang, Bai, Lu, Xiang (bib83) 2018; 156 Canakci, Ozsezen, Arcaklioglu, Erdil (bib108) 2009; 36 Tosun, Ozgur, Ozgur, Ozcanli, Serin, Aydin (bib40) 2017; 1 Shrivastava, Verma (bib103) 2020; 265 Soni, Gupta (bib36) 2017; 126 Cay, Çiçek, Kara, Sağiroğlu (bib60) 2012; 37 Chon, Kihm, Lee, Choi (bib98) 2005; 87 Sen, Emiroglu, Keskin (bib22) 2019; 33 Gulum, Onay, Bilgin (bib109) 2018; 22 Uyumaz, Aydoğan, Yılmaz, Solmaz, Aksoy, Mutlu, Calam (bib15) 2020; 280 Bakirci (bib85) 2009; 34 Karagoz, Uysal, Agbulut, Saridemir (bib25) 2021 Emiroğlu, Şen (bib21) 2018; 133 Gülüm, Bilgin (bib14) 2017; 199 Kenanoğlu, Baltacıoğlu, Demir, Özdemir (bib46) 2020; 45 Uluer, Kırmacı, Ataş (bib56) 2009; 36 Ağbulut, Sarıdemir, Karagöz (bib24) 2020; 267 Berber, Tinkir (bib44) 2011; 6 Berber, Gürdal, Bağırsakçı (bib53) 2020 Şentürk (bib57) 2020; 24 Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (bib72) 2015; 92 Mei, Ji, Hou, Li, Du (bib80) 2017; 55 Rajak, Nashine, Verma, Pugazhendhi (bib113) 2019; 255 Verma, Nashine, Singh, Singh, Panwar (bib59) 2017; 120 Pivkina, Ulyanova, Frolov, Zavyalov, Schoonman (bib92) 2004; 29 Adam, Heikal, Aziz, Yusup (bib107) 2018; 25 Najafi, Ghobadian, Moosavian, Yusaf, Mamat, Kettner, Azmi (bib111) 2016; 95 Wang, Zhen, Wang, Mi (bib75) 2018; 8 Gülüm, Bilgin (bib12) 2018; 148 Yesilyurt, Eryilmaz, Arslan (bib102) 2018; 165 Emiroğlu (bib93) 2019; 256 Hosseini, Taghizadeh-Alisaraei, Ghobadian, Abbaszadeh-Mayvan (bib35) 2017; 124 Senturk (bib47) 2020; 138 Fan, Wu, Zhang, Cai, Ma, Bai (bib84) 2019; 105 Ağbulut, Ayyıldız, Sarıdemir (bib43) 2020 Jafarmadar, Khalilaria, Saraee (bib41) 2018; 142 Ağbulut, Gürel, Biçen (bib82) 2021; 135 Shrivastava, Verma, Samuel, Pugazhendhi (bib115) 2020; 275 Ooi, Ismail, Tan, Wang (bib38) 2018; 161 Sözen, Gürü, Khanlari, Çiftçi (bib28) 2019; 160 Singh, Verma, Singh (bib4) 2020; 277 Sungur, Topaloglu, Ozcan (bib37) 2016; 113 Saraee, Taghavifar, Jafarmadar (bib42) 2017; 113 Sarıdemir, Ağbulut (bib16) 2019 Benghanem, Mellit, Alamri (bib69) 2009; 50 Krishania, Rajak, Verma, Birru, Pugazhendhi (bib3) 2020; 278 Ergün (bib34) 2020; 32 Yilmaz, Koyuncu (bib52) 2020 Kırbaş, Tuncer, Şirin, Usta (bib58) 2019; 165 Şentürk, Çekiç (bib51) 2020; 8 Mei, Zuo, Zhang, Gu, Yuan, Wang (bib20) 2020; 146 Vapnik, Golowich, Smola (bib74) 1997 Beck, Yuan, Warrier, Teja (bib97) 2009; 11 Dogan (10.1016/j.energy.2020.119076_bib10) 2020; 275 Cay (10.1016/j.energy.2020.119076_bib60) 2012; 37 Canakci (10.1016/j.energy.2020.119076_bib108) 2009; 36 Güney (10.1016/j.energy.2020.119076_bib13) 2020 Manigandan (10.1016/j.energy.2020.119076_bib19) 2020; 42 Bahmanyar (10.1016/j.energy.2020.119076_bib90) 2011; 50 Gulum (10.1016/j.energy.2020.119076_bib109) 2018; 22 Gülüm (10.1016/j.energy.2020.119076_bib12) 2018; 148 Sarıdemir (10.1016/j.energy.2020.119076_bib1) 2020; 2020 Karagöz (10.1016/j.energy.2020.119076_bib6) 2020; 275 Darvanjooghi (10.1016/j.energy.2020.119076_bib96) 2016; 77 Rajak (10.1016/j.energy.2020.119076_bib112) 2019; 166 Tosun (10.1016/j.energy.2020.119076_bib40) 2017; 1 Senturk (10.1016/j.energy.2020.119076_bib47) 2020; 138 Koyuncu (10.1016/j.energy.2020.119076_bib61) 2020; 45 Şentürk (10.1016/j.energy.2020.119076_bib51) 2020; 8 Sarıdemir (10.1016/j.energy.2020.119076_bib16) 2019 Shrivastava (10.1016/j.energy.2020.119076_bib103) 2020; 265 Yilmaz (10.1016/j.energy.2020.119076_bib66) 2007; 27 Zang (10.1016/j.energy.2020.119076_bib86) 2020; 191 Berber (10.1016/j.energy.2020.119076_bib44) 2011; 6 Ardebili (10.1016/j.energy.2020.119076_bib17) 2020; 279 Adam (10.1016/j.energy.2020.119076_bib107) 2018; 25 Ağbulut (10.1016/j.energy.2020.119076_bib43) 2020 Çay (10.1016/j.energy.2020.119076_bib62) 2013; 50 Najafi (10.1016/j.energy.2020.119076_bib111) 2016; 95 Kırbaş (10.1016/j.energy.2020.119076_bib58) 2019; 165 Uluer (10.1016/j.energy.2020.119076_bib100) 2018; 24 Gülüm (10.1016/j.energy.2020.119076_bib14) 2017; 199 Gürbüz (10.1016/j.energy.2020.119076_bib30) 2020; 42 Sheriff (10.1016/j.energy.2020.119076_bib18) 2020; 147 Yesilyurt (10.1016/j.energy.2020.119076_bib102) 2018; 165 Karagoz (10.1016/j.energy.2020.119076_bib25) 2021 Sözen (10.1016/j.energy.2020.119076_bib28) 2019; 160 Fan (10.1016/j.energy.2020.119076_bib83) 2018; 156 Yilmaz (10.1016/j.energy.2020.119076_bib52) 2020 Berber (10.1016/j.energy.2020.119076_bib53) 2020 Pandey (10.1016/j.energy.2020.119076_bib23) 2018 Pivkina (10.1016/j.energy.2020.119076_bib92) 2004; 29 Verma (10.1016/j.energy.2020.119076_bib59) 2017; 120 Emiroğlu (10.1016/j.energy.2020.119076_bib21) 2018; 133 Çiftçi (10.1016/j.energy.2020.119076_bib32) 2020 Krishnamurthy (10.1016/j.energy.2020.119076_bib91) 2006; 6 Hosseini (10.1016/j.energy.2020.119076_bib35) 2017; 124 Gürel (10.1016/j.energy.2020.119076_bib67) 2020 Radhakrishnan (10.1016/j.energy.2020.119076_bib94) 2019; 55 Ghaderi (10.1016/j.energy.2020.119076_bib110) 2019; 26 Chen (10.1016/j.energy.2020.119076_bib73) 2013; 75 Sen (10.1016/j.energy.2020.119076_bib22) 2019; 33 Mohammadi (10.1016/j.energy.2020.119076_bib72) 2015; 92 Başarslan (10.1016/j.energy.2020.119076_bib48) 2019 Anto (10.1016/j.energy.2020.119076_bib5) 2020; 242 Ağbulut (10.1016/j.energy.2020.119076_bib24) 2020; 267 Kenanoğlu (10.1016/j.energy.2020.119076_bib46) 2020; 45 Vapnik (10.1016/j.energy.2020.119076_bib74) 1997 Yıldırım (10.1016/j.energy.2020.119076_bib117) 2019; 41 Fan (10.1016/j.energy.2020.119076_bib84) 2019; 105 Beck (10.1016/j.energy.2020.119076_bib97) 2009; 11 Ağbulut (10.1016/j.energy.2020.119076_bib7) 2019; 41 Özçelik (10.1016/j.energy.2020.119076_bib11) 2019; 6 Gürbüz (10.1016/j.energy.2020.119076_bib33) 2020 Chon (10.1016/j.energy.2020.119076_bib98) 2005; 87 Soni (10.1016/j.energy.2020.119076_bib36) 2017; 126 Yamaç (10.1016/j.energy.2020.119076_bib77) 2020; 228 Şentürk (10.1016/j.energy.2020.119076_bib57) 2020; 24 Heinemann (10.1016/j.energy.2020.119076_bib87) 2012; 71 Shrivastava (10.1016/j.energy.2020.119076_bib115) 2020; 275 Singh (10.1016/j.energy.2020.119076_bib116) 2019; 189 Uysal (10.1016/j.energy.2020.119076_bib31) 2016; 62 Emiroğlu (10.1016/j.energy.2020.119076_bib93) 2019; 256 Ooi (10.1016/j.energy.2020.119076_bib38) 2018; 161 Karagoz (10.1016/j.energy.2020.119076_bib9) 2020 Uyumaz (10.1016/j.energy.2020.119076_bib15) 2020; 280 Mei (10.1016/j.energy.2020.119076_bib20) 2020; 146 Berber (10.1016/j.energy.2020.119076_bib105) 2019; 25 Ağbulut (10.1016/j.energy.2020.119076_bib118) 2019 Devarajan (10.1016/j.energy.2020.119076_bib106) 2019; 10 Wang (10.1016/j.energy.2020.119076_bib75) 2018; 8 Ağbulut (10.1016/j.energy.2020.119076_bib82) 2021; 135 Koca (10.1016/j.energy.2020.119076_bib55) 2011; 38 Rajak (10.1016/j.energy.2020.119076_bib101) 2018; 166 Ağbulut (10.1016/j.energy.2020.119076_bib26) 2020; 270 Mei (10.1016/j.energy.2020.119076_bib80) 2017; 55 Ergün (10.1016/j.energy.2020.119076_bib34) 2020; 32 Manju (10.1016/j.energy.2020.119076_bib81) 2019; 230 Rajak (10.1016/j.energy.2020.119076_bib113) 2019; 255 Ağbulut (10.1016/j.energy.2020.119076_bib2) 2020; 19 Yilmaz (10.1016/j.energy.2020.119076_bib65) 2019; 44 Shrivastava (10.1016/j.energy.2020.119076_bib114) 2020; 262 Singh (10.1016/j.energy.2020.119076_bib4) 2020; 277 Şen (10.1016/j.energy.2020.119076_bib89) 2019; 254 Benghanem (10.1016/j.energy.2020.119076_bib69) 2009; 50 Imandoust (10.1016/j.energy.2020.119076_bib78) 2013; 3 Bakirci (10.1016/j.energy.2020.119076_bib85) 2009; 34 Radhakrishnan (10.1016/j.energy.2020.119076_bib95) 2019; 55 Qin (10.1016/j.energy.2020.119076_bib76) 2017 Quej (10.1016/j.energy.2020.119076_bib64) 2017; 155 Uysal (10.1016/j.energy.2020.119076_bib29) 2019; 22 Basarslan (10.1016/j.energy.2020.119076_bib49) 2018; 6 Uluer (10.1016/j.energy.2020.119076_bib56) 2009; 36 Uluer (10.1016/j.energy.2020.119076_bib99) 2018; 4 Gülüm (10.1016/j.energy.2020.119076_bib8) 2018; 161 Karagöz (10.1016/j.energy.2020.119076_bib45) 2020; 4 Krishania (10.1016/j.energy.2020.119076_bib3) 2020; 278 Husein (10.1016/j.energy.2020.119076_bib79) 2019; 12 Khanlari (10.1016/j.energy.2020.119076_bib27) 2020; 51 Jafarmadar (10.1016/j.energy.2020.119076_bib41) 2018; 142 Ceylan (10.1016/j.energy.2020.119076_bib54) 2014; 3 Torabi (10.1016/j.energy.2020.119076_bib71) 2018 Sungur (10.1016/j.energy.2020.119076_bib37) 2016; 113 Saraee (10.1016/j.energy.2020.119076_bib42) 2017; 113 Premalatha (10.1016/j.energy.2020.119076_bib68) 2018; 91 Rezrazi (10.1016/j.energy.2020.119076_bib70) 2016; 123 Berber (10.1016/j.energy.2020.119076_bib39) 2016; 5 Senturk (10.1016/j.energy.2020.119076_bib50) 2014; 4 Antonopoulos (10.1016/j.energy.2020.119076_bib63) 2019; 160 Yesilyurt (10.1016/j.energy.2020.119076_bib104) 2020; 205 Gouda (10.1016/j.energy.2020.119076_bib88) 2019; 221 |
| References_xml | – volume: 191 start-page: 116502 year: 2020 ident: bib86 article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China publication-title: Energy – volume: 1 start-page: 15 year: 2017 end-page: 23 ident: bib40 article-title: Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives publication-title: European Mechanical Science – volume: 262 start-page: 116608 year: 2020 ident: bib114 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel – volume: 51 start-page: 991 year: 2020 end-page: 1005 ident: bib27 article-title: The effect of utilizing Al2O3-SiO2/deionized water hybrid nanofluid in a tube-type heat exchanger publication-title: Heat transfer research – volume: 77 start-page: 148 year: 2016 end-page: 154 ident: bib96 article-title: Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid publication-title: Int Commun Heat Mass Tran – volume: 277 start-page: 118176 year: 2020 ident: bib4 article-title: A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: engine emissions testing study publication-title: Fuel – year: 2020 ident: bib33 article-title: Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger publication-title: Int J Numer Methods Heat Fluid Flow – volume: 22 start-page: 179 year: 2018 end-page: 205 ident: bib109 article-title: Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends publication-title: Environmental and Climate Technologies – volume: 189 start-page: 116198 year: 2019 ident: bib116 article-title: Biodiesel production from momordica charantia (L.): extraction and engine characteristics publication-title: Energy – volume: 255 start-page: 115855 year: 2019 ident: bib113 article-title: Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine publication-title: Fuel – volume: 41 start-page: 2194 year: 2019 end-page: 2206 ident: bib117 article-title: Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 161 start-page: 70 year: 2018 end-page: 80 ident: bib38 article-title: Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine publication-title: Energy – volume: 36 start-page: 9268 year: 2009 end-page: 9280 ident: bib108 article-title: Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil publication-title: Expert Syst Appl – volume: 267 start-page: 117042 year: 2020 ident: bib24 article-title: Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine publication-title: Fuel – start-page: 122353 year: 2020 ident: bib67 article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation publication-title: J Clean Prod – volume: 91 start-page: 248 year: 2018 end-page: 258 ident: bib68 article-title: Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: a case study publication-title: Renew Sustain Energy Rev – volume: 270 start-page: 117521 year: 2020 ident: bib26 article-title: Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine publication-title: Fuel – volume: 280 start-page: 118588 year: 2020 ident: bib15 article-title: Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine publication-title: Fuel – volume: 11 start-page: 1129 year: 2009 end-page: 1136 ident: bib97 article-title: The effect of particle size on the thermal conductivity of alumina nanofluids publication-title: J Nanoparticle Res – volume: 22 start-page: 41 year: 2019 end-page: 51 ident: bib29 article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network publication-title: Politeknik Dergisi – volume: 113 start-page: 663 year: 2017 end-page: 672 ident: bib42 article-title: Experimental and numerical consideration of the effect of CeO publication-title: Appl Therm Eng – volume: 24 start-page: 424 year: 2020 end-page: 431 ident: bib57 article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi – volume: 29 start-page: 39 year: 2004 end-page: 48 ident: bib92 article-title: Nanomaterials for heterogeneous combustion publication-title: Propellants, Explos Pyrotech: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials – volume: 33 start-page: 9224 year: 2019 end-page: 9231 ident: bib22 article-title: Impact of pentanol addition and injection timing on the characteristics of a single-cylinder diesel engine publication-title: Energy Fuels – volume: 4 start-page: 2274 year: 2018 end-page: 2286 ident: bib99 article-title: Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values publication-title: J Therm Eng – volume: 279 start-page: 118516 year: 2020 ident: bib17 article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential publication-title: Fuel – volume: 36 start-page: 12256 year: 2009 end-page: 12263 ident: bib56 article-title: Using the artificial neural network model for modeling the performance of the counter flow vortex tube publication-title: Expert Syst Appl – volume: 50 start-page: 1198 year: 2011 end-page: 1206 ident: bib90 article-title: The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column publication-title: Chem Eng Process: Process Intensification – volume: 95 start-page: 186 year: 2016 end-page: 203 ident: bib111 article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels publication-title: Appl Therm Eng – volume: 6 start-page: 44 year: 2019 end-page: 48 ident: bib11 article-title: Effect of iridium spark plug gap on emission, noise, vibration of an internal combustion engine publication-title: Int J Eng Adv Technol – start-page: 29 year: 2020 end-page: 39 ident: bib13 article-title: Microstructural characterization of particulate matter from gasoline-fuelled vehicle emissions publication-title: Journal of Engineering Research and Reports – volume: 138 start-page: 109603 year: 2020 ident: bib47 article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms publication-title: Med Hypotheses – volume: 135 start-page: 110114 year: 2021 ident: bib82 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew Sustain Energy Rev – volume: 275 start-page: 117891 year: 2020 ident: bib115 article-title: An experimental investigation on engine characteristics, cost and energy analysis of CI engine fuelled with Roselle, Karanja biodiesel and its blends publication-title: Fuel – volume: 228 start-page: 105875 year: 2020 ident: bib77 article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data publication-title: Agric Water Manag – volume: 230 start-page: 116 year: 2019 end-page: 128 ident: bib81 article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data publication-title: J Clean Prod – volume: 25 start-page: 363 year: 2019 end-page: 369 ident: bib105 article-title: The effect of diesel-methanol blends with volumetric proportions on the performance and emissions of a diesel engine publication-title: Mechanics – volume: 32 start-page: 82 year: 2020 end-page: 101 ident: bib34 article-title: Energy and exergy analysis of a PV/thermal storage system design integrated with nano-enhanced phase changing material publication-title: Int J Exergy – volume: 26 start-page: 21682 year: 2019 end-page: 21692 ident: bib110 article-title: Analysis of noise pollution emitted by stationary MF285 tractor using different mixtures of biodiesel, bioethanol, and diesel through artificial intelligence publication-title: Environ Sci Pollut Control Ser – volume: 155 start-page: 62 year: 2017 end-page: 70 ident: bib64 article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment publication-title: J Atmos Sol Terr Phys – volume: 161 start-page: 361 year: 2018 end-page: 369 ident: bib8 article-title: Comparison of viscosity prediction capabilities of regression models and artificial neural networks publication-title: Energy – volume: 156 start-page: 618 year: 2018 end-page: 625 ident: bib83 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers Manag – volume: 71 start-page: 572 year: 2012 end-page: 582 ident: bib87 article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation publication-title: Bragantia – volume: 148 start-page: 341 year: 2018 end-page: 361 ident: bib12 article-title: A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends publication-title: Energy – volume: 6 start-page: 3979 year: 2011 end-page: 3992 ident: bib44 article-title: Prediction of a diesel engine characteristics by using different modelling techniques publication-title: Int J Phys Sci – volume: 126 start-page: 638 year: 2017 end-page: 648 ident: bib36 article-title: Application of nano emulsion method in a methanol powered diesel engine publication-title: Energy – volume: 113 start-page: 44 year: 2016 end-page: 51 ident: bib37 article-title: Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler publication-title: Energy – volume: 165 start-page: 104928 year: 2019 ident: bib58 article-title: Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches publication-title: Comput Electron Agric – volume: 256 start-page: 115928 year: 2019 ident: bib93 article-title: Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend publication-title: Fuel – volume: 37 start-page: 217 year: 2012 end-page: 225 ident: bib60 article-title: Prediction of engine performance for an alternative fuel using artificial neural network publication-title: Appl Therm Eng – volume: 45 start-page: 20709 year: 2020 end-page: 20720 ident: bib61 article-title: Design and implementation of hydrogen economy using artificial neural network on field programmable gate array publication-title: Int J Hydrogen Energy – start-page: 281 year: 1997 end-page: 287 ident: bib74 article-title: Support vector method for function approximation, regression estimation and signal processing publication-title: Advances in neural information processing systems – volume: 4 start-page: 180 year: 2020 end-page: 184 ident: bib45 article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends publication-title: International Journal of Automotive Science and Technology – volume: 6 start-page: 42 year: 2018 end-page: 45 ident: bib49 article-title: Data mining through data visualization: a case study on predicting churners on telecomunications data set publication-title: Balkan Journal of Electrical and Computer Engineering – volume: 221 start-page: 132 year: 2019 end-page: 144 ident: bib88 article-title: Model selection for accurate daily global solar radiation prediction in China publication-title: J Clean Prod – volume: 146 year: 2020 ident: bib20 article-title: Assessment on combustion and emissions of diesel engine fueled with partially hydrogenated biodiesel publication-title: J Energy Eng – volume: 133 start-page: 371 year: 2018 end-page: 380 ident: bib21 article-title: Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel) publication-title: Appl Therm Eng – volume: 55 start-page: 1229 year: 2019 end-page: 1237 ident: bib95 article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine publication-title: Heat Mass Tran – volume: 19 year: 2020 ident: bib2 article-title: Is the ethanol additive more environmentally friendly for a spark ignition (si) engine or for a compression ignition (ci) engine? publication-title: Environmental Engineering & Management Journal (EEMJ) – volume: 147 start-page: 2295 year: 2020 end-page: 2308 ident: bib18 article-title: Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement publication-title: Renew Energy – start-page: 1 year: 2019 end-page: 10 ident: bib16 article-title: Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine publication-title: Biofuels – volume: 199 start-page: 567 year: 2017 end-page: 577 ident: bib14 article-title: Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density publication-title: Fuel – volume: 87 start-page: 153107 year: 2005 ident: bib98 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement publication-title: Appl Phys Lett – volume: 10 start-page: 795 year: 2019 end-page: 801 ident: bib106 article-title: Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-carbonate and biodiesel blends publication-title: Atmospheric Pollution Research – volume: 242 start-page: 125079 year: 2020 ident: bib5 article-title: Algae as green energy reserve: technological outlook on biofuel production publication-title: Chemosphere – volume: 166 start-page: 1025 year: 2019 end-page: 1036 ident: bib112 article-title: Assessment of diesel engine performance using spirulina microalgae biodiesel publication-title: Energy – year: 2020 ident: bib52 article-title: Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant – volume: 275 start-page: 117973 year: 2020 ident: bib10 article-title: Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses publication-title: Fuel – year: 2020 ident: bib32 article-title: Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO2/DCM nanofluids: experimental and numerical comparison publication-title: Int J Numer Methods Heat Fluid Flow – volume: 55 start-page: 1229 year: 2019 end-page: 1237 ident: bib94 article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine publication-title: Heat Mass Tran – start-page: 118830 year: 2021 ident: bib25 article-title: Exergetic and exergoeconomic analyses of a CI engine fuelled with diesel-biodiesel blends containing various metal-oxide nanoparticles publication-title: Energy – volume: 55 start-page: 4520 year: 2017 end-page: 4533 ident: bib80 article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks publication-title: IEEE Trans Geosci Rem Sens – volume: 275 start-page: 117844 year: 2020 ident: bib6 article-title: Waste to energy: production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines publication-title: Fuel – volume: 3 start-page: 605 year: 2013 end-page: 610 ident: bib78 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background publication-title: Int J Eng Res Afr – volume: 165 start-page: 1332 year: 2018 end-page: 1351 ident: bib102 article-title: A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends publication-title: Energy – volume: 8 start-page: 1604 year: 2020 end-page: 1611 ident: bib51 article-title: Machine learning based early diagnosis system for mesothelioma disease publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi – volume: 44 start-page: 17443 year: 2019 end-page: 17459 ident: bib65 article-title: Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array publication-title: Int J Hydrogen Energy – volume: 25 start-page: 28500 year: 2018 end-page: 28516 ident: bib107 article-title: Mitigation of NOx emission using aromatic and phenolic antioxidant-treated biodiesel blends in a multi-cylinder diesel engine publication-title: Environ Sci Pollut Control Ser – volume: 12 start-page: 1856 year: 2019 ident: bib79 article-title: Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach publication-title: Energies – volume: 205 start-page: 112355 year: 2020 ident: bib104 article-title: Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends publication-title: Energy Convers Manag – start-page: 121724 year: 2020 ident: bib9 article-title: Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil− diesel blends publication-title: J Clean Prod – volume: 160 start-page: 114001 year: 2019 ident: bib28 article-title: Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid publication-title: Appl Therm Eng – start-page: 96 year: 2019 end-page: 106 ident: bib48 article-title: April). Prediction of potential bank customers: application on data mining publication-title: The international conference on artificial intelligence and applied mathematics in engineering – volume: 124 start-page: 543 year: 2017 end-page: 552 ident: bib35 article-title: Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine publication-title: Energy – start-page: 1 year: 2020 end-page: 17 ident: bib53 article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network publication-title: Exp Heat Tran – volume: 5 start-page: 17 year: 2016 end-page: 24 ident: bib39 article-title: Mathematical model for fuel flow performance of diesel engine publication-title: Int J Adv Eng Technol – volume: 142 start-page: 1128 year: 2018 end-page: 1138 ident: bib41 article-title: Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm publication-title: Energy – volume: 27 start-page: 2308 year: 2007 end-page: 2313 ident: bib66 article-title: Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network publication-title: Appl Therm Eng – volume: 123 start-page: 769 year: 2016 end-page: 783 ident: bib70 article-title: An optimisation methodology of artificial neural network models for predicting solar radiation: a case study publication-title: Theor Appl Climatol – volume: 265 start-page: 117005 year: 2020 ident: bib103 article-title: Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil publication-title: Fuel – start-page: 117257 year: 2020 ident: bib43 article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures publication-title: Energy – volume: 42 start-page: 1 year: 2020 end-page: 9 ident: bib19 article-title: Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 41 start-page: 389 year: 2019 ident: bib7 article-title: Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends publication-title: J Braz Soc Mech Sci Eng – volume: 92 start-page: 162 year: 2015 end-page: 171 ident: bib72 article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation publication-title: Energy Convers Manag – volume: 34 start-page: 485 year: 2009 end-page: 501 ident: bib85 article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey publication-title: Energy – volume: 50 start-page: 1644 year: 2009 end-page: 1655 ident: bib69 article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study publication-title: Energy Convers Manag – start-page: 1 year: 2017 end-page: 4 ident: bib76 article-title: Research on fault diagnosis method of spacecraft solar array based on f-KNN algorithm publication-title: 2017 prognostics and system health management conference (PHM-Harbin) – volume: 160 start-page: 160 year: 2019 end-page: 167 ident: bib63 article-title: Solar radiation estimation methods using ANN and empirical models publication-title: Comput Electron Agric – volume: 105 start-page: 168 year: 2019 end-page: 186 ident: bib84 article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China publication-title: Renew Sustain Energy Rev – volume: 42 start-page: 1 year: 2020 end-page: 13 ident: bib30 article-title: A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates publication-title: J Braz Soc Mech Sci Eng – volume: 24 start-page: 36 year: 2018 end-page: 42 ident: bib100 article-title: Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi publication-title: Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi – volume: 3 start-page: 11 year: 2014 end-page: 20 ident: bib54 article-title: The prediction of photovoltaic module temperature with artificial neural networks publication-title: Case Studies in Thermal Engineering – volume: 45 start-page: 26357 year: 2020 end-page: 26369 ident: bib46 article-title: Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches publication-title: Int J Hydrogen Energy – volume: 2020 start-page: 117634 year: 2020 ident: bib1 article-title: Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester publication-title: Fuel – volume: 4 start-page: 35 year: 2014 ident: bib50 article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms publication-title: Comput Sci Eng – volume: 278 start-page: 118252 year: 2020 ident: bib3 article-title: Effect of microalgae, tyre pyrolysis oil and Jatropha biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine publication-title: Fuel – volume: 8 start-page: 28 year: 2018 ident: bib75 article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting publication-title: Appl Sci – volume: 166 start-page: 704 year: 2018 end-page: 718 ident: bib101 article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine publication-title: Energy Convers Manag – start-page: 1 year: 2019 end-page: 6 ident: bib118 article-title: A general view to converting fossil fuels to cleaner energy source by adding nanoparticles publication-title: International Journal of Ambient Energy – volume: 50 start-page: 177 year: 2013 end-page: 186 ident: bib62 article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network publication-title: Energy – year: 2018 ident: bib23 article-title: The effect of cerium oxide nano particles fuel additive on performance and emission of karanja biodiesel fueled compression ignition military 585kW heavy duty diesel engine (No. 2018-01-1818) – volume: 62 start-page: 603 year: 2016 end-page: 613 ident: bib31 article-title: A numerical analysis of fluid flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in rectangular microchannels publication-title: Strojniški vestnik-Journal of Mechanical Engineering – volume: 254 start-page: 115617 year: 2019 ident: bib89 article-title: The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend publication-title: Fuel – start-page: 266 year: 2018 end-page: 274 ident: bib71 article-title: A hybrid machine learning approach for daily prediction of solar radiation publication-title: International conference on global research and education – volume: 120 start-page: 219 year: 2017 end-page: 227 ident: bib59 article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes publication-title: Appl Therm Eng – volume: 75 start-page: 311 year: 2013 end-page: 318 ident: bib73 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers Manag – volume: 38 start-page: 8756 year: 2011 end-page: 8762 ident: bib55 article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey publication-title: Expert Syst Appl – volume: 6 start-page: 419 year: 2006 end-page: 423 ident: bib91 article-title: Enhanced mass transport in nanofluids publication-title: Nano Lett – volume: 142 start-page: 1128 year: 2018 ident: 10.1016/j.energy.2020.119076_bib41 article-title: Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm publication-title: Energy doi: 10.1016/j.energy.2017.09.006 – volume: 6 start-page: 3979 issue: 16 year: 2011 ident: 10.1016/j.energy.2020.119076_bib44 article-title: Prediction of a diesel engine characteristics by using different modelling techniques publication-title: Int J Phys Sci – volume: 267 start-page: 117042 year: 2020 ident: 10.1016/j.energy.2020.119076_bib24 article-title: Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine publication-title: Fuel doi: 10.1016/j.fuel.2020.117042 – start-page: 266 year: 2018 ident: 10.1016/j.energy.2020.119076_bib71 article-title: A hybrid machine learning approach for daily prediction of solar radiation – volume: 124 start-page: 543 year: 2017 ident: 10.1016/j.energy.2020.119076_bib35 article-title: Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine publication-title: Energy doi: 10.1016/j.energy.2017.02.109 – volume: 256 start-page: 115928 year: 2019 ident: 10.1016/j.energy.2020.119076_bib93 article-title: Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend publication-title: Fuel doi: 10.1016/j.fuel.2019.115928 – volume: 4 start-page: 2274 issue: 5 year: 2018 ident: 10.1016/j.energy.2020.119076_bib99 article-title: Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values publication-title: J Therm Eng – volume: 6 start-page: 42 year: 2018 ident: 10.1016/j.energy.2020.119076_bib49 article-title: Data mining through data visualization: a case study on predicting churners on telecomunications data set publication-title: Balkan Journal of Electrical and Computer Engineering doi: 10.17694/bajece.410243 – volume: 91 start-page: 248 year: 2018 ident: 10.1016/j.energy.2020.119076_bib68 article-title: Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: a case study publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.096 – volume: 41 start-page: 2194 issue: 18 year: 2019 ident: 10.1016/j.energy.2020.119076_bib117 article-title: Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 10 start-page: 795 issue: 3 year: 2019 ident: 10.1016/j.energy.2020.119076_bib106 article-title: Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-carbonate and biodiesel blends publication-title: Atmospheric Pollution Research doi: 10.1016/j.apr.2018.12.007 – volume: 8 start-page: 28 issue: 1 year: 2018 ident: 10.1016/j.energy.2020.119076_bib75 article-title: Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting publication-title: Appl Sci doi: 10.3390/app8010028 – volume: 24 start-page: 36 issue: 1 year: 2018 ident: 10.1016/j.energy.2020.119076_bib100 article-title: Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi publication-title: Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi – volume: 4 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.energy.2020.119076_bib50 article-title: Breast cancer diagnosis via data mining: performance analysis of seven different algorithms publication-title: Comput Sci Eng – volume: 45 start-page: 26357 issue: 49 year: 2020 ident: 10.1016/j.energy.2020.119076_bib46 article-title: Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.108 – volume: 161 start-page: 361 year: 2018 ident: 10.1016/j.energy.2020.119076_bib8 article-title: Comparison of viscosity prediction capabilities of regression models and artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2018.07.130 – volume: 133 start-page: 371 year: 2018 ident: 10.1016/j.energy.2020.119076_bib21 article-title: Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel) publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.01.069 – volume: 27 start-page: 2308 issue: 13 year: 2007 ident: 10.1016/j.energy.2020.119076_bib66 article-title: Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.01.030 – volume: 221 start-page: 132 year: 2019 ident: 10.1016/j.energy.2020.119076_bib88 article-title: Model selection for accurate daily global solar radiation prediction in China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.02.211 – volume: 120 start-page: 219 year: 2017 ident: 10.1016/j.energy.2020.119076_bib59 article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.126 – volume: 92 start-page: 162 year: 2015 ident: 10.1016/j.energy.2020.119076_bib72 article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.12.050 – volume: 71 start-page: 572 issue: 4 year: 2012 ident: 10.1016/j.energy.2020.119076_bib87 article-title: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation publication-title: Bragantia doi: 10.1590/S0006-87052012000400016 – volume: 138 start-page: 109603 year: 2020 ident: 10.1016/j.energy.2020.119076_bib47 article-title: Early diagnosis of Parkinson’s disease using machine learning algorithms publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109603 – volume: 126 start-page: 638 year: 2017 ident: 10.1016/j.energy.2020.119076_bib36 article-title: Application of nano emulsion method in a methanol powered diesel engine publication-title: Energy doi: 10.1016/j.energy.2017.03.049 – volume: 275 start-page: 117973 year: 2020 ident: 10.1016/j.energy.2020.119076_bib10 article-title: Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses publication-title: Fuel doi: 10.1016/j.fuel.2020.117973 – volume: 148 start-page: 341 year: 2018 ident: 10.1016/j.energy.2020.119076_bib12 article-title: A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends publication-title: Energy doi: 10.1016/j.energy.2018.01.123 – start-page: 118830 year: 2021 ident: 10.1016/j.energy.2020.119076_bib25 article-title: Exergetic and exergoeconomic analyses of a CI engine fuelled with diesel-biodiesel blends containing various metal-oxide nanoparticles publication-title: Energy doi: 10.1016/j.energy.2020.118830 – volume: 50 start-page: 1198 issue: 11–12 year: 2011 ident: 10.1016/j.energy.2020.119076_bib90 article-title: The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column publication-title: Chem Eng Process: Process Intensification doi: 10.1016/j.cep.2011.08.008 – volume: 199 start-page: 567 year: 2017 ident: 10.1016/j.energy.2020.119076_bib14 article-title: Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density publication-title: Fuel doi: 10.1016/j.fuel.2017.03.001 – volume: 36 start-page: 12256 issue: 10 year: 2009 ident: 10.1016/j.energy.2020.119076_bib56 article-title: Using the artificial neural network model for modeling the performance of the counter flow vortex tube publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.061 – volume: 146 issue: 1 year: 2020 ident: 10.1016/j.energy.2020.119076_bib20 article-title: Assessment on combustion and emissions of diesel engine fueled with partially hydrogenated biodiesel publication-title: J Energy Eng – volume: 62 start-page: 603 issue: 10 year: 2016 ident: 10.1016/j.energy.2020.119076_bib31 article-title: A numerical analysis of fluid flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in rectangular microchannels publication-title: Strojniški vestnik-Journal of Mechanical Engineering doi: 10.5545/sv-jme.2015.3170 – volume: 5 start-page: 17 issue: 1 year: 2016 ident: 10.1016/j.energy.2020.119076_bib39 article-title: Mathematical model for fuel flow performance of diesel engine publication-title: Int J Adv Eng Technol – start-page: 122353 year: 2020 ident: 10.1016/j.energy.2020.119076_bib67 article-title: Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122353 – volume: 123 start-page: 769 issue: 3–4 year: 2016 ident: 10.1016/j.energy.2020.119076_bib70 article-title: An optimisation methodology of artificial neural network models for predicting solar radiation: a case study publication-title: Theor Appl Climatol doi: 10.1007/s00704-015-1398-x – volume: 165 start-page: 1332 year: 2018 ident: 10.1016/j.energy.2020.119076_bib102 article-title: A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends publication-title: Energy doi: 10.1016/j.energy.2018.10.100 – volume: 135 start-page: 110114 year: 2021 ident: 10.1016/j.energy.2020.119076_bib82 article-title: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110114 – volume: 278 start-page: 118252 year: 2020 ident: 10.1016/j.energy.2020.119076_bib3 article-title: Effect of microalgae, tyre pyrolysis oil and Jatropha biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine publication-title: Fuel doi: 10.1016/j.fuel.2020.118252 – volume: 50 start-page: 177 year: 2013 ident: 10.1016/j.energy.2020.119076_bib62 article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network publication-title: Energy doi: 10.1016/j.energy.2012.10.052 – volume: 51 start-page: 991 issue: 11 year: 2020 ident: 10.1016/j.energy.2020.119076_bib27 article-title: The effect of utilizing Al2O3-SiO2/deionized water hybrid nanofluid in a tube-type heat exchanger publication-title: Heat transfer research doi: 10.1615/HeatTransRes.2020034103 – volume: 160 start-page: 114001 year: 2019 ident: 10.1016/j.energy.2020.119076_bib28 article-title: Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114001 – volume: 3 start-page: 605 issue: 5 year: 2013 ident: 10.1016/j.energy.2020.119076_bib78 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background publication-title: Int J Eng Res Afr – volume: 25 start-page: 28500 issue: 28 year: 2018 ident: 10.1016/j.energy.2020.119076_bib107 article-title: Mitigation of NOx emission using aromatic and phenolic antioxidant-treated biodiesel blends in a multi-cylinder diesel engine publication-title: Environ Sci Pollut Control Ser doi: 10.1007/s11356-018-2863-8 – volume: 113 start-page: 44 year: 2016 ident: 10.1016/j.energy.2020.119076_bib37 article-title: Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler publication-title: Energy doi: 10.1016/j.energy.2016.07.040 – volume: 275 start-page: 117844 year: 2020 ident: 10.1016/j.energy.2020.119076_bib6 article-title: Waste to energy: production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines publication-title: Fuel doi: 10.1016/j.fuel.2020.117844 – volume: 166 start-page: 704 year: 2018 ident: 10.1016/j.energy.2020.119076_bib101 article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.04.070 – volume: 161 start-page: 70 year: 2018 ident: 10.1016/j.energy.2020.119076_bib38 article-title: Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine publication-title: Energy doi: 10.1016/j.energy.2018.07.062 – volume: 45 start-page: 20709 issue: 41 year: 2020 ident: 10.1016/j.energy.2020.119076_bib61 article-title: Design and implementation of hydrogen economy using artificial neural network on field programmable gate array publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.181 – volume: 280 start-page: 118588 year: 2020 ident: 10.1016/j.energy.2020.119076_bib15 article-title: Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine publication-title: Fuel doi: 10.1016/j.fuel.2020.118588 – volume: 279 start-page: 118516 year: 2020 ident: 10.1016/j.energy.2020.119076_bib17 article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential publication-title: Fuel doi: 10.1016/j.fuel.2020.118516 – start-page: 121724 year: 2020 ident: 10.1016/j.energy.2020.119076_bib9 article-title: Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil− diesel blends publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121724 – volume: 26 start-page: 21682 issue: 21 year: 2019 ident: 10.1016/j.energy.2020.119076_bib110 article-title: Analysis of noise pollution emitted by stationary MF285 tractor using different mixtures of biodiesel, bioethanol, and diesel through artificial intelligence publication-title: Environ Sci Pollut Control Ser doi: 10.1007/s11356-019-05523-1 – volume: 36 start-page: 9268 issue: 5 year: 2009 ident: 10.1016/j.energy.2020.119076_bib108 article-title: Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.12.005 – volume: 1 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.energy.2020.119076_bib40 article-title: Comparative analysis of various modelling techniques for emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives publication-title: European Mechanical Science doi: 10.26701/ems.320490 – volume: 242 start-page: 125079 year: 2020 ident: 10.1016/j.energy.2020.119076_bib5 article-title: Algae as green energy reserve: technological outlook on biofuel production publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125079 – volume: 8 start-page: 1604 issue: 2 year: 2020 ident: 10.1016/j.energy.2020.119076_bib51 article-title: Machine learning based early diagnosis system for mesothelioma disease publication-title: Düzce Üniversitesi Bilim ve Teknoloji Dergisi doi: 10.29130/dubited.659106 – volume: 55 start-page: 1229 issue: 4 year: 2019 ident: 10.1016/j.energy.2020.119076_bib94 article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine publication-title: Heat Mass Tran doi: 10.1007/s00231-018-2509-x – year: 2020 ident: 10.1016/j.energy.2020.119076_bib33 article-title: Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger publication-title: Int J Numer Methods Heat Fluid Flow – volume: 37 start-page: 217 year: 2012 ident: 10.1016/j.energy.2020.119076_bib60 article-title: Prediction of engine performance for an alternative fuel using artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.11.019 – volume: 205 start-page: 112355 year: 2020 ident: 10.1016/j.energy.2020.119076_bib104 article-title: Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112355 – year: 2020 ident: 10.1016/j.energy.2020.119076_bib52 – volume: 155 start-page: 62 year: 2017 ident: 10.1016/j.energy.2020.119076_bib64 article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2017.02.002 – volume: 19 issue: 4 year: 2020 ident: 10.1016/j.energy.2020.119076_bib2 article-title: Is the ethanol additive more environmentally friendly for a spark ignition (si) engine or for a compression ignition (ci) engine? publication-title: Environmental Engineering & Management Journal (EEMJ) – volume: 29 start-page: 39 issue: 1 year: 2004 ident: 10.1016/j.energy.2020.119076_bib92 article-title: Nanomaterials for heterogeneous combustion publication-title: Propellants, Explos Pyrotech: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials doi: 10.1002/prep.200400025 – volume: 42 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.energy.2020.119076_bib19 article-title: Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 265 start-page: 117005 year: 2020 ident: 10.1016/j.energy.2020.119076_bib103 article-title: Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil publication-title: Fuel doi: 10.1016/j.fuel.2019.117005 – volume: 41 start-page: 389 issue: 9 year: 2019 ident: 10.1016/j.energy.2020.119076_bib7 article-title: Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends publication-title: J Braz Soc Mech Sci Eng – volume: 166 start-page: 1025 year: 2019 ident: 10.1016/j.energy.2020.119076_bib112 article-title: Assessment of diesel engine performance using spirulina microalgae biodiesel publication-title: Energy doi: 10.1016/j.energy.2018.10.098 – year: 2018 ident: 10.1016/j.energy.2020.119076_bib23 – start-page: 281 year: 1997 ident: 10.1016/j.energy.2020.119076_bib74 article-title: Support vector method for function approximation, regression estimation and signal processing – volume: 275 start-page: 117891 year: 2020 ident: 10.1016/j.energy.2020.119076_bib115 article-title: An experimental investigation on engine characteristics, cost and energy analysis of CI engine fuelled with Roselle, Karanja biodiesel and its blends publication-title: Fuel doi: 10.1016/j.fuel.2020.117891 – volume: 22 start-page: 41 issue: 1 year: 2019 ident: 10.1016/j.energy.2020.119076_bib29 article-title: Estimation of entropy generation for Ag-MgO/water hybrid nanofluid flow through rectangular minichannel by using artificial neural network publication-title: Politeknik Dergisi – volume: 87 start-page: 153107 issue: 15 year: 2005 ident: 10.1016/j.energy.2020.119076_bib98 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement publication-title: Appl Phys Lett doi: 10.1063/1.2093936 – volume: 25 start-page: 363 issue: 5 year: 2019 ident: 10.1016/j.energy.2020.119076_bib105 article-title: The effect of diesel-methanol blends with volumetric proportions on the performance and emissions of a diesel engine publication-title: Mechanics doi: 10.5755/j01.mech.25.5.22954 – volume: 6 start-page: 419 issue: 3 year: 2006 ident: 10.1016/j.energy.2020.119076_bib91 article-title: Enhanced mass transport in nanofluids publication-title: Nano Lett doi: 10.1021/nl0522532 – volume: 228 start-page: 105875 year: 2020 ident: 10.1016/j.energy.2020.119076_bib77 article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data publication-title: Agric Water Manag doi: 10.1016/j.agwat.2019.105875 – volume: 230 start-page: 116 year: 2019 ident: 10.1016/j.energy.2020.119076_bib81 article-title: Prediction and performance assessment of global solar radiation in Indian cities: a comparison of satellite and surface measured data publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.05.108 – volume: 77 start-page: 148 year: 2016 ident: 10.1016/j.energy.2020.119076_bib96 article-title: Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid publication-title: Int Commun Heat Mass Tran doi: 10.1016/j.icheatmasstransfer.2016.08.001 – start-page: 117257 year: 2020 ident: 10.1016/j.energy.2020.119076_bib43 article-title: Prediction of performance, combustion and emission characteristics for a dual fuel diesel engine at varying injection pressures publication-title: Energy doi: 10.1016/j.energy.2020.117257 – volume: 34 start-page: 485 issue: 4 year: 2009 ident: 10.1016/j.energy.2020.119076_bib85 article-title: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey publication-title: Energy doi: 10.1016/j.energy.2009.02.005 – start-page: 1 year: 2020 ident: 10.1016/j.energy.2020.119076_bib53 article-title: Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network publication-title: Exp Heat Tran – volume: 12 start-page: 1856 issue: 10 year: 2019 ident: 10.1016/j.energy.2020.119076_bib79 article-title: Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach publication-title: Energies doi: 10.3390/en12101856 – volume: 2020 start-page: 117634 year: 2020 ident: 10.1016/j.energy.2020.119076_bib1 article-title: Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester publication-title: Fuel doi: 10.1016/j.fuel.2020.117634 – start-page: 1 year: 2019 ident: 10.1016/j.energy.2020.119076_bib16 article-title: Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine publication-title: Biofuels – volume: 55 start-page: 4520 issue: 8 year: 2017 ident: 10.1016/j.energy.2020.119076_bib80 article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks publication-title: IEEE Trans Geosci Rem Sens doi: 10.1109/TGRS.2017.2693346 – volume: 50 start-page: 1644 issue: 7 year: 2009 ident: 10.1016/j.energy.2020.119076_bib69 article-title: ANN-based modelling and estimation of daily global solar radiation data: a case study publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.03.035 – volume: 105 start-page: 168 year: 2019 ident: 10.1016/j.energy.2020.119076_bib84 article-title: Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.01.040 – volume: 22 start-page: 179 issue: 1 year: 2018 ident: 10.1016/j.energy.2020.119076_bib109 article-title: Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends publication-title: Environmental and Climate Technologies doi: 10.2478/rtuect-2018-0012 – volume: 147 start-page: 2295 year: 2020 ident: 10.1016/j.energy.2020.119076_bib18 article-title: Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.041 – start-page: 96 year: 2019 ident: 10.1016/j.energy.2020.119076_bib48 article-title: April). Prediction of potential bank customers: application on data mining – volume: 113 start-page: 663 year: 2017 ident: 10.1016/j.energy.2020.119076_bib42 article-title: Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.044 – volume: 165 start-page: 104928 year: 2019 ident: 10.1016/j.energy.2020.119076_bib58 article-title: Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.104928 – start-page: 1 year: 2019 ident: 10.1016/j.energy.2020.119076_bib118 article-title: A general view to converting fossil fuels to cleaner energy source by adding nanoparticles publication-title: International Journal of Ambient Energy – volume: 3 start-page: 11 year: 2014 ident: 10.1016/j.energy.2020.119076_bib54 article-title: The prediction of photovoltaic module temperature with artificial neural networks publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2014.02.001 – volume: 24 start-page: 424 issue: 2 year: 2020 ident: 10.1016/j.energy.2020.119076_bib57 article-title: Artificial Neural Networks based decision support system for the detection of diabetic retinopathy publication-title: Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.16984/saufenbilder.630482 – volume: 6 start-page: 44 issue: 2 year: 2019 ident: 10.1016/j.energy.2020.119076_bib11 article-title: Effect of iridium spark plug gap on emission, noise, vibration of an internal combustion engine publication-title: Int J Eng Adv Technol – volume: 33 start-page: 9224 issue: 9 year: 2019 ident: 10.1016/j.energy.2020.119076_bib22 article-title: Impact of pentanol addition and injection timing on the characteristics of a single-cylinder diesel engine publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b01759 – volume: 160 start-page: 160 year: 2019 ident: 10.1016/j.energy.2020.119076_bib63 article-title: Solar radiation estimation methods using ANN and empirical models publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.03.022 – volume: 44 start-page: 17443 issue: 33 year: 2019 ident: 10.1016/j.energy.2020.119076_bib65 article-title: Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.049 – volume: 75 start-page: 311 year: 2013 ident: 10.1016/j.energy.2020.119076_bib73 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.06.034 – start-page: 29 year: 2020 ident: 10.1016/j.energy.2020.119076_bib13 article-title: Microstructural characterization of particulate matter from gasoline-fuelled vehicle emissions publication-title: Journal of Engineering Research and Reports doi: 10.9734/jerr/2020/v16i117157 – volume: 255 start-page: 115855 year: 2019 ident: 10.1016/j.energy.2020.119076_bib113 article-title: Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine publication-title: Fuel doi: 10.1016/j.fuel.2019.115855 – volume: 38 start-page: 8756 issue: 7 year: 2011 ident: 10.1016/j.energy.2020.119076_bib55 article-title: Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.085 – volume: 32 start-page: 82 issue: 1 year: 2020 ident: 10.1016/j.energy.2020.119076_bib34 article-title: Energy and exergy analysis of a PV/thermal storage system design integrated with nano-enhanced phase changing material publication-title: Int J Exergy doi: 10.1504/IJEX.2020.107745 – start-page: 1 year: 2017 ident: 10.1016/j.energy.2020.119076_bib76 article-title: Research on fault diagnosis method of spacecraft solar array based on f-KNN algorithm – volume: 270 start-page: 117521 year: 2020 ident: 10.1016/j.energy.2020.119076_bib26 article-title: Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine publication-title: Fuel doi: 10.1016/j.fuel.2020.117521 – volume: 262 start-page: 116608 year: 2020 ident: 10.1016/j.energy.2020.119076_bib114 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel doi: 10.1016/j.fuel.2019.116608 – year: 2020 ident: 10.1016/j.energy.2020.119076_bib32 article-title: Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO2/DCM nanofluids: experimental and numerical comparison publication-title: Int J Numer Methods Heat Fluid Flow – volume: 11 start-page: 1129 issue: 5 year: 2009 ident: 10.1016/j.energy.2020.119076_bib97 article-title: The effect of particle size on the thermal conductivity of alumina nanofluids publication-title: J Nanoparticle Res doi: 10.1007/s11051-008-9500-2 – volume: 277 start-page: 118176 year: 2020 ident: 10.1016/j.energy.2020.119076_bib4 article-title: A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: engine emissions testing study publication-title: Fuel doi: 10.1016/j.fuel.2020.118176 – volume: 95 start-page: 186 year: 2016 ident: 10.1016/j.energy.2020.119076_bib111 article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.11.009 – volume: 42 start-page: 1 issue: 10 year: 2020 ident: 10.1016/j.energy.2020.119076_bib30 article-title: A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates publication-title: J Braz Soc Mech Sci Eng – volume: 4 start-page: 180 issue: 3 year: 2020 ident: 10.1016/j.energy.2020.119076_bib45 article-title: ANN based prediction of engine performance and exhaust emission Re-sponses of a CI engine powered by ternary blends publication-title: International Journal of Automotive Science and Technology doi: 10.30939/ijastech..771789 – volume: 156 start-page: 618 year: 2018 ident: 10.1016/j.energy.2020.119076_bib83 article-title: New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.085 – volume: 55 start-page: 1229 issue: 4 year: 2019 ident: 10.1016/j.energy.2020.119076_bib95 article-title: Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine publication-title: Heat Mass Tran doi: 10.1007/s00231-018-2509-x – volume: 189 start-page: 116198 year: 2019 ident: 10.1016/j.energy.2020.119076_bib116 article-title: Biodiesel production from momordica charantia (L.): extraction and engine characteristics publication-title: Energy doi: 10.1016/j.energy.2019.116198 – volume: 191 start-page: 116502 year: 2020 ident: 10.1016/j.energy.2020.119076_bib86 article-title: Application of functional deep belief network for estimating daily global solar radiation: a case study in China publication-title: Energy doi: 10.1016/j.energy.2019.116502 – volume: 254 start-page: 115617 year: 2019 ident: 10.1016/j.energy.2020.119076_bib89 article-title: The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend publication-title: Fuel doi: 10.1016/j.fuel.2019.115617 |
| SSID | ssj0005899 |
| Score | 2.6220682 |
| Snippet | Deep learning (DL), Artificial Neural Network (ANN), Kernel Nearest Neighbor (k-NN), and Support Vector Machine (SVM) have been applied to numerous fields... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119076 |
| SubjectTerms | Algorithms Aluminum oxide Artificial neural networks Brakes Carbon dioxide Carbon monoxide Catalytic activity Combustion Combustion chambers Copper oxides data collection Deep learning Diesel Diesel engines diesel fuel Diesel fuels Emission Emission analysis Emissions energy energy use and consumption Engine performance Exhaust gases Fuels Gas temperature Heat transfer Learning algorithms Learning theory Machine learning Metal oxides Nanodiesel Nanoparticle Nanoparticles Neural networks Nitrogen oxides Nonlinear analysis oxygen Performance prediction Photochemicals Pollutants Prediction Predictions Support vector machines temperature Thermodynamic efficiency Titanium dioxide |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5VvZQLgkJFoKBB4rpNvF7_HVGUqiDBBSr1Zu1vFOTaUZwIuCDegSfjFXgSZux1Yg6oiKPtWXnl_Tw_u9_MMPbKoc-d5FryKMsUl05bnqOjzGOP3oFV8cwklDv87n16dS3f3iQ3R2w-5MIQrTLo_l6nd9o63JmGrzldr1bTD6h70d-QgnqAIzCp7LaUGXUxuPg2onnkXQ9JEuYkPaTPdRwv1-XXYZQoSHdgnJj-zTyN3M-TXb1WXz-rqhpZossH7H5wIeF1P8uH7MjVp-xkyDBuT9nZ4pC9hoLh920fsZ-LUT1_WB1KbDQ1qNrCekPHNt1l42F9yCnonlJnONpbg03Pq3UtSSmYvwHXVTUEv6NjAAu0uQtD65Ut3Dp8HW--rKwDspoWalVjsB44eb--_yAqo6tAV0TQBeLiL8fjO8Kng9DhYgmqWjYbfMdt-5hdXy4-zq946OnADZrLLc9V5gSCQXtvMlkII413FkNiWajUorrRkUkiNzPkaSmVeaUjLVIMbJQtYj2Lz9hx3dTuCQNPC5aILDEylUq7wgihpU8TTU0xvZ2weFjK0oSC59R3oyoHZtunsgdASQAoewBMGN-PWvcFP-6QzwaUlH8At0SbdMfI8wFUZVAcbSkkRbC5jMWEvdw_xvWlcxxVu2aHMgm6fXEsi2zCLvZg_KfZPv3v2T5j9wTReWYRj5Jzdrzd7Nxz9Me2-kX3w_0Gbyg6mw priority: 102 providerName: Elsevier |
| Title | Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.energy.2020.119076 https://www.proquest.com/docview/2487168432 https://www.proquest.com/docview/2574333497 https://hdl.handle.net/20.500.12684/10189 |
| UnpaywallVersion | submittedVersion |
| Volume | 215 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLWYdjFseAyMKAyVkdg6JI6dx7IaddQBUbGg0rCKbMephskkVdOIxwLxD3wZv8CXcG8ebQVCMyyj2HEi3_iea597LiEvLWBuGWnBvDBUTFidsgiAMvMzQAep8l0jMXf47TyYLcTrC3nRiUVXf-sLcNeRLkogBJF4heJS8QEZBhKeNiDDxfzd5EN7FukyKZpCOV4U-gwWYNmnyTVcLtvk0UE0yHGNgHgw-Jcb2oOZh3WxUl8-qTzf8zhn91uuVtUIFSLR5MqpN9oxX_-QcbzVxzwg9zrcSSetoTwkd2xxRA77tOTqiBxPdylv0LD756tH5Od0rwgAvdzpcpQFhVHpao1nPc1lmdHVLhGhuYvl5HBDjq5bMq6tsJWip-fUNlKINKvx7CCluCNM-3otG3ptYThWfr5MLUVXm9JCFRDhd0S-X99_IP_R5lTnyOqlSOBf7vdvWKKWdmUxllTly3INY1xXj8nibPr-dMa6QhDMgI_dsEiFlsOc6ywzoYi5ESazKcTRIlZBCmuU9oz0rGsQnikVZkp7mgcQDak09rXrH5NBURb2CaEZzr7koTQiEErb2HCuRRZIjZU0s3RE_N4uEtOppGOxjjzp6XAfk9aaErSmpLWmEWHbXqtWJeSG9mFvckmHdFoEk4Aju6HnSW-hSbfaVAkXGPZGwucj8mJ7G-YXD39UYcsa2kjAir4v4nBEnK1l3-ptn_5vh2fkLkfqj-sxT56QwWZd2-eA3TZ6TA6cb96YDCfnb2bzcfcP_wa7cEgg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6VcggXBIWK0AKLxHWbeL3-yRFFqVJoe6GVelvtn6Mg17biRNAL4h14Ml6BJ2HGXifmgIo42p6VV97P87P7zQwh7xz43FGqBQuSRDHhtGUpOMoszMA7sCocmwhzhy8u4_m1-HAT3eyRaZcLg7RKr_tbnd5oa39n5L_mqFouR59A94K_ITj2AAdgxg_IQxHxBCOwk289nkfaNJFEaYbiXf5cQ_JyTYIdhIkclQcEivHf7FPP_xxsikrdfVF53jNFp0_IY-9D0vftNJ-SPVcckEGXYlwfkMPZLn0NBP3_Wz8jP2e9gv50uauxURZUFZZWKzy3aS7LjFa7pILmKbaGw801umqJta5GKUWnZ9Q1ZQ1ptsFzAEtxd5d2vVfW9NbB61j5dWkdRbNpaaEKiNY9Ke_X9x_IZXQ51TkydCmS8Rf98Q3j01Hf4mJBVb4oV_CO2_o5uT6dXU3nzDd1YAbs5ZqlKnEc0KCzzCRiwo0wmbMQE4uJii3oGx2YKHBjg66WUkmmdKB5DJGNspNQj8NDsl-UhXtBaIYLBiseGRELpd3EcK5FFkcau2JmdkjCbiml8RXPsfFGLjtq22fZAkAiAGQLgCFh21FVW_HjHvmkQ4n8A7kSjNI9I487UEmvOWrJBYawqQj5kLzdPob1xYMcVbhyAzIR-H1hKCbJkJxswfhPs33537N9Qwbzq4tzeX52-fGIPOLI7RkHLIiOyf56tXGvwDlb69fNz_cbO8w9vg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZgeygXfgoVCwUZiauXxLHzc6yqrQoSFQdWKqfIduxVIU1Wm0T8nHgHnoxX4EmYSZzdFQi1HKPYcSJPPN_Y33xDyEsLmFumWrAwSRQTVhcsBaDMIgfooFBRYCTmDr89j88W4s2FvPBi0c3f-gI8mMkAJRDiVLxCcansNtmLJTxtQvYW5--OPwxnkQGToi-UE6ZJxGABlmOaXM_lsn0eHUSDHNcIiAfjf7mhHZi531Ur9fWzKssdj3N6b-BqNb1QIRJNPs26Vs_Mtz9kHG_0MffJXY876fFgKA_ILVsdkP0xLbk5IIfzbcobNPT_fPOQ_JzvFAGgl1tdjrqiMCpdrfGsp7-sHV1tExH6u1hODjfk6Hog49oGWyl68praXgqRug7PDgqKO8J0rNfS0isLw7H6y2VhKbraglaqggjfE_l-ff-B_EdbUl0iq5cigX-5279niVrqy2IsqSqX9RrGuGoekcXp_P3JGfOFIJgBH9uyVCWWw5xr50wiMm6EcbaAOFpkKi5gjdKhkaENDMIzpRKndKh5DNGQKrJIB9EhmVR1ZR8T6nD2JU-kEbFQ2maGcy1cLDVW0nTFlESjXeTGq6RjsY4yH-lwH_PBmnK0pnywpilhm16rQSXkmvbJaHK5RzoDgsnBkV3T82i00NyvNk3OBYa9qYj4lLzY3Ib5xcMfVdm6gzYSsGIUiSyZktnGsm_0tk_-t8NTcocj9ScIWSiPyKRdd_YZYLdWP_d_7W_gv0WU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+and+prediction+of+performance+and+emission+responses+of+a+CI+engine+fuelled+with+different+metal-oxide+based+nanoparticles%E2%80%93diesel+blends+using+different+machine+learning+algorithms&rft.jtitle=Energy+%28Oxford%29&rft.au=A%C4%9Fbulut%2C+%C3%9Cmit&rft.au=G%C3%BCrel%2C+Ali+Etem&rft.au=Sar%C4%B1demir%2C+Suat&rft.date=2021-01-15&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=215&rft.spage=119076&rft_id=info:doi/10.1016%2Fj.energy.2020.119076&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |