PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It sh...
Saved in:
Published in | Chemical Society reviews Vol. 5; no. 14; pp. 8248 - 8278 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
21.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/c9cs00504h |
Cover
Abstract | With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics. |
---|---|
AbstractList | With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics. With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. |
Author | Chen, Xiao-Gang Mu, Xin Peng, Hang Xiong, Ren-Gen Zhang, Han-Yue Tang, Yuan-Yuan Liao, Wei-Qiang Di, Fang-Fang |
AuthorAffiliation | Ordered Matter Science Research Center Nanchang University |
AuthorAffiliation_xml | – name: Ordered Matter Science Research Center – name: Nanchang University |
Author_xml | – sequence: 1 givenname: Han-Yue surname: Zhang fullname: Zhang, Han-Yue – sequence: 2 givenname: Xiao-Gang surname: Chen fullname: Chen, Xiao-Gang – sequence: 3 givenname: Yuan-Yuan surname: Tang fullname: Tang, Yuan-Yuan – sequence: 4 givenname: Wei-Qiang surname: Liao fullname: Liao, Wei-Qiang – sequence: 5 givenname: Fang-Fang surname: Di fullname: Di, Fang-Fang – sequence: 6 givenname: Xin surname: Mu fullname: Mu, Xin – sequence: 7 givenname: Hang surname: Peng fullname: Peng, Hang – sequence: 8 givenname: Ren-Gen surname: Xiong fullname: Xiong, Ren-Gen |
BookMark | eNqFkctLxDAQxoOs4O7qxbtQ8LIK1byaNEcpvmB9gHouaTrRSLepSfew_vV2XVEQwdPMML9vmJlvgkatbwGhfYJPCGbq1CgTMc4wf9lCY8IFTrnkfITGmGGRYkzoDprE-DpkRAo6Rrf3FzfJrHPw7gPEzrcREuuDgWThTPDR-G51lGpXQ53UEN1zu24nC9-AWTY6JBZC8DBUfXAm7qJtq5sIe19xip4uzh-Lq3R-d3ldnM1TwwnrU0lyKrgCVXFumTTc4qqqK6nBUMh1rmrIVC6pBWsUyyymSuJaKpGDFkpWbIpmm7ld8G9LiH25cNFA0-gW_DKWVDDBM0Gl-h_NmMgx4YoM6OEv9NUvQzscMlDZsAMlhA3U8YZa_ycGsGUX3EKHVUlwuXahLFTx8OnC1QDjX7Bxve6db_ugXfO35GAjCdF8j_4xln0Ah4CUuw |
CitedBy_id | crossref_primary_10_1007_s40843_023_2499_x crossref_primary_10_1002_adma_202414339 crossref_primary_10_1002_chem_202302671 crossref_primary_10_1021_jacs_3c01530 crossref_primary_10_1002_adma_202405981 crossref_primary_10_1002_anie_202215286 crossref_primary_10_1038_s41467_023_38590_7 crossref_primary_10_1021_acs_nanolett_3c01848 crossref_primary_10_1002_ifm2_10 crossref_primary_10_1039_D3MH00444A crossref_primary_10_1039_D2QI01824A crossref_primary_10_1002_adfm_202205918 crossref_primary_10_1038_s41467_024_52207_7 crossref_primary_10_1002_anie_202319650 crossref_primary_10_1039_D1QI00736J crossref_primary_10_1002_slct_202104332 crossref_primary_10_1039_D2CC03881A crossref_primary_10_1021_jacs_4c06929 crossref_primary_10_1002_adma_202410585 crossref_primary_10_1021_jacs_4c09955 crossref_primary_10_1038_s41467_023_41560_8 crossref_primary_10_1016_j_cclet_2022_05_053 crossref_primary_10_1002_anie_202413726 crossref_primary_10_1016_j_cej_2024_159027 crossref_primary_10_1002_adma_202401392 crossref_primary_10_1021_acsaelm_3c01613 crossref_primary_10_1002_adfm_202109492 crossref_primary_10_1002_adma_202308051 crossref_primary_10_1039_D1QM01157J crossref_primary_10_1039_D1SC04322F crossref_primary_10_1016_j_chempr_2023_12_006 crossref_primary_10_1021_acsmaterialslett_2c00331 crossref_primary_10_1039_D2SC00689H crossref_primary_10_1002_adfm_202501546 crossref_primary_10_1002_anie_202501238 crossref_primary_10_1039_D1SC06781H crossref_primary_10_1002_anie_202500027 crossref_primary_10_1016_j_nanoen_2022_108093 crossref_primary_10_1039_D3NJ03461E crossref_primary_10_1002_slct_202304533 crossref_primary_10_1016_j_snb_2023_134170 crossref_primary_10_1021_acsomega_1c03829 crossref_primary_10_1021_jacs_4c07268 crossref_primary_10_1016_j_xcrp_2025_102498 crossref_primary_10_1021_jacs_2c12951 crossref_primary_10_1039_D1CE01567B crossref_primary_10_1007_s43939_023_00054_6 crossref_primary_10_1002_ange_202215286 crossref_primary_10_1021_acsnano_3c02167 crossref_primary_10_1021_jacs_1c06108 crossref_primary_10_1039_D1CC05278K crossref_primary_10_1002_aelm_202400933 crossref_primary_10_1002_ange_202306732 crossref_primary_10_1039_D2MH00698G crossref_primary_10_1039_D2QI01020H crossref_primary_10_1021_acsnano_4c02291 crossref_primary_10_1002_smtd_202200421 crossref_primary_10_1039_D2DT03939G crossref_primary_10_1039_D1NJ04470B crossref_primary_10_1002_ange_202500027 crossref_primary_10_1021_jacs_3c03921 crossref_primary_10_1039_D4CC06054G crossref_primary_10_1039_D2TC01330D crossref_primary_10_1016_j_molliq_2024_126415 crossref_primary_10_1002_ange_202501238 crossref_primary_10_1021_acs_cgd_2c00183 crossref_primary_10_1021_jacs_4c07676 crossref_primary_10_1039_D3QM00964E crossref_primary_10_1002_ange_202319650 crossref_primary_10_1002_adfm_202305852 crossref_primary_10_1002_ange_202413726 crossref_primary_10_1038_s41467_024_48405_y crossref_primary_10_1002_smll_202300792 crossref_primary_10_1039_D1CE00962A crossref_primary_10_1002_adfm_202407693 crossref_primary_10_1002_adma_202417073 crossref_primary_10_1002_anie_202306732 |
Cites_doi | 10.1103/PhysRevLett.105.197603 10.1038/nature08731 10.1063/1.351910 10.1021/jacs.6b10595 10.1002/adma.202003530 10.1021/jacs.0c05372 10.1021/jacs.7b06013 10.1002/adfm.201805038 10.1063/1.3327831 10.1063/1.4791573 10.1103/PhysRev.98.978 10.1021/jacs.0c03710 10.1021/jacs.7b12524 10.1063/1.1487901 10.1002/adma.201903848 10.1002/adma.201902163 10.1002/anie.202007660 10.1103/PhysRev.80.1082 10.1038/nmat1485 10.1088/1367-2630/11/3/033029 10.1038/nmat1257 10.1038/nnano.2012.69 10.1063/1.3207751 10.1021/cr030076o 10.1088/0022-3727/38/8/R01 10.1126/science.aai8535 10.1039/C1NR11099C 10.1038/srep00591 10.1038/s41563-018-0204-4 10.1038/358136a0 10.1038/nnano.2009.451 10.1038/s41467-019-09650-8 10.1002/adma.201505224 10.1103/PhysRevLett.103.257602 10.1002/anie.201709588 10.1021/acsami.8b01711 10.1063/1.4927811 10.1021/jacs.9b02558 10.1021/acs.jpclett.5b00389 10.1007/978-0-387-28668-6 10.1103/PhysRevLett.84.175 10.1098/rspa.2018.0782 10.1039/C8MH00097B 10.1063/1.4996350 10.1038/natrevmats.2017.4 10.1002/anie.201406466 10.1002/advs.201901391 10.1103/RevModPhys.84.119 10.1021/acs.jpclett.6b00803 10.1126/science.1200605 10.1016/j.jmat.2015.03.001 10.1023/A:1009926623551 10.1016/0167-5729(90)90007-Z 10.1080/00150193.2015.997146 10.1088/0034-4885/61/9/002 10.1038/s41563-019-0301-z 10.1080/00150193.2011.554269 10.1063/5.0004532 10.1080/00150198108238667 10.1038/nature05023 10.1002/aelm.201600038 10.1002/adma.201405027 10.1002/anie.201904305 10.1103/PhysRevLett.118.147601 10.1063/1.4979015 10.1039/C9CS00811J 10.1038/nmat800 10.1002/adfm.201706895 10.1002/adma.201901843 10.1126/science.246.4936.1400 10.1111/jace.16667 10.1021/jacs.9b13291 10.1021/jacs.5b04503 10.1038/nature06459 10.1038/ncomms1261 10.1021/nl035198a 10.1063/1.2172216 10.1126/science.aas9330 10.1002/adma.201902099 10.1126/science.1080615 10.1038/ncomms14934 10.1002/adma.201304308 10.3390/ma4020417 10.1021/jacs.8b03235 10.1103/PhysRevLett.112.247603 10.1002/anie.201915094 10.1021/jacs.9b12368 10.1016/j.progpolymsci.2013.07.006 10.1021/acs.inorgchem.7b01094 10.1063/1.357693 10.1021/acs.jpclett.5b01017 10.1126/science.1228604 10.1016/S0254-0584(02)00023-8 10.1143/APEX.1.061601 10.1126/science.1259869 10.1021/jacs.0c06936 10.1126/science.1103218 10.1021/jacs.6b12377 10.1038/nmat3649 10.1088/0022-3727/44/46/464003 10.1063/1.1497699 10.1038/nature08128 10.1038/353239a0 10.1002/adma.201400806 10.1038/nature03028 10.1063/1.4789854 10.1557/mrs2009.176 10.1016/j.apsusc.2020.148808 10.1038/380141a0 10.1002/cphc.201402428 10.1103/PhysRev.17.475 10.1063/1.2736276 10.1080/00150199408244735 10.1038/ncomms13635 10.1039/b511119f 10.1002/adfm.201000284 10.1103/PhysRevB.76.024116 10.1088/1361-6633/aa5e03 10.1063/1.2010605 10.1021/nl8036646 10.1038/s41586-019-1891-y 10.1063/1.5090591 10.1021/acsnano.7b07090 10.1038/nature16463 10.1021/acs.accounts.6b00541 10.1063/1.3486226 10.1021/jacs.0c00375 10.1063/1.4764939 10.1038/28998 10.1038/nmat1804 10.1038/nature02018 10.1007/s12274-017-1669-1 10.1073/pnas.1817866116 10.1103/PhysRevLett.119.207602 10.1063/1.1845594 10.1021/nl903377u 10.1021/jacs.9b11665 10.1038/ncomms1751 10.1021/jacs.9b11341 10.1038/ncomms1413 10.1021/jacs.9b10048 10.1063/1.116170 10.1209/0295-5075/108/27010 10.1002/adma.201303567 10.1002/adma.201102938 10.1021/jacs.0c00371 10.1038/nnano.2011.213 10.1103/PhysRevB.37.3751 10.1103/PhysRevLett.118.197601 10.1103/PhysRevLett.100.236104 10.1038/nmat2339 10.1016/j.pmatsci.2014.03.006 10.1109/JRPROC.1954.274752 10.1002/adfm.201905529 10.1038/nature05056 10.1063/1.4928591 10.1002/adma.201801619 10.1039/C8CS00563J 10.1007/s00340-005-1989-9 10.1021/jacs.8b05037 10.1038/44352 10.1021/nl302912t 10.1038/nature04854 10.1126/science.aav3057 10.1038/srep41657 10.1111/j.1551-2916.2005.00671.x 10.1126/sciadv.1701008 10.1002/adma.201700831 10.1063/5.0038744 10.1002/adma.201102254 10.1038/s41524-019-0157-4 10.1002/adma.201806661 10.1038/s41563-018-0034-4 10.1038/nphys2132 10.1016/j.surfrep.2005.08.003 10.1002/adma.201808088 10.1021/jacs.9b00886 10.1080/00150198908007915 10.1103/RevModPhys.84.1343 10.1038/d41586-020-00038-z 10.1021/jz502666j 10.1016/S0040-6090(98)01727-1 10.1002/anie.201914193 10.1021/jacs.8b04600 10.1021/nl901754t 10.1103/PhysRevB.65.125408 10.1126/science.aaw8109 10.1002/adma.201906224 10.1038/nmat3415 10.1103/PhysRevLett.56.930 10.1002/adma.201501026 10.1016/j.cap.2017.09.014 10.1073/pnas.1702429114 10.1021/acs.accounts.8b00677 10.1039/C8CS00614H 10.1038/am.2016.193 10.1007/BF01589823 10.1007/978-3-662-04307-3 10.1021/nn203879f 10.1002/adma.200900759 10.1021/jacs.0c10686 10.1038/am.2015.54 10.1007/978-1-4419-7598-0 10.1073/pnas.1806074116 10.1080/09506608.2016.1156301 10.1016/S0927-796X(00)00032-2 10.1021/jacs.8b12948 10.1126/sciadv.1700512 10.1038/nchem.2567 10.1002/anie.201400348 10.1126/science.1206980 10.1080/00150193.2016.1135694 10.1103/PhysRevLett.107.147601 10.1126/sciadv.1700919 10.1063/1.1957130 10.1021/jz501697b 10.1021/jacs.8b13109 10.1002/adfm.201908657 10.1021/jacs.7b01334 10.1039/C5CS00308C 10.1021/nl403828u 10.1038/s41586-019-1092-8 10.1021/jacs.0c09586 10.1126/science.aau0968 10.1002/crat.200610718 10.1063/1.4801975 10.1038/d41586-018-05807-5 10.1103/PhysRev.95.690 10.1007/s10853-005-5946-0 10.1021/jacs.0c00315 10.1021/jacs.7b07715 10.1111/j.1551-2916.2009.03240.x 10.1021/jacs.0c07055 10.1021/jacs.0c02924 10.1063/1.3460286 10.1063/1.2197264 10.1039/C8CS00928G 10.1021/jacs.6b08817 10.1039/c0cs00226g 10.1021/acsenergylett.8b00999 10.1080/00150198408017505 10.1038/nmat1805 10.1038/ncomms8338 10.1080/00150190802408457 10.1002/anie.201705836 10.1021/jacs.7b10449 10.1038/nature13763 10.1016/0261-3069(80)90019-9 10.1002/adma.201600160 10.1021/jacs.8b08286 10.1063/1.123266 10.1063/1.365983 10.1111/j.1151-2916.1999.tb01840.x 10.1021/jacs.7b00492 10.1080/00150199308211451 10.1021/nl9040719 10.1039/C7EE00420F 10.1002/adma.201502357 10.1126/science.1229675 10.1016/j.matt.2019.12.008 10.1021/cr200174w 10.1038/nmat2137 10.1126/science.aaz2795 10.1103/PhysRevLett.84.5423 10.1002/adma.201504019 10.1021/jacs.8b13223 10.1002/adma.201504299 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c9cs00504h |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 8278 |
ExternalDocumentID | 10_1039_C9CS00504H c9cs00504h |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-7182649e9b44f37c4f0bbdb7aec2e8a89de59872fefc935f02970d7968ea697b3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 14:17:38 EDT 2025 Fri Jul 11 05:39:55 EDT 2025 Mon Jun 30 06:57:13 EDT 2025 Tue Jul 01 04:18:46 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Mon Apr 11 02:55:58 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-7182649e9b44f37c4f0bbdb7aec2e8a89de59872fefc935f02970d7968ea697b3 |
Notes | 10.1039/c9cs00504h Han-Yue Zhang received her Bachelor's degree in Chemistry from Nanjing Normal University in 2018. She is currently a PhD candidate in Materials Physics and Chemistry, Southeast University, under the supervision of Prof. Ren-Gen Xiong. Her research interests include the chemical design of molecular ferroelectrics and their performance optimization under the guidelines of ferroelectrochemistry. Professor Ren-Gen Xiong is the head of the Ordered Matter Science Research Center at Nanchang University as well as the Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics in the Southeast University. He has more than 200 papers as a corresponding author, including those in Science (4 articles), J. Am. Chem. Soc. (over 40 articles), Angew. Chem., Int. Ed. (16 articles), Adv. Mater. (11 articles), and Chem. Soc. Rev. (5 articles). For more than 20 years, he has been conducting research focused on the synthesis and properties of non-centrosymmetric compound, especially in the field of molecular ferroelectrics, establishing ferroelectrochemistry. Xiao-Gang Chen received his BS degree (2016) from Southeast University Chengxian College. He is currently a PhD candidate of Material Physics and Chemistry at Southeast University and is supervised by Prof. Ren-Gen Xiong. His current research focuses on the design optimization of molecular-based ferroelectrics, especially in the field of halogen hybrid perovskites. Hang Peng graduated from Nanchang University with a Bachelor's degree in 2019. She is currently a PhD candidate at Nanchang University under the supervision of Prof. Xiong. Her research interests are focused on host-guest inclusion ferroelectrics. Electronic supplementary information (ESI) available. See DOI Professor Yuan-Yuan Tang received his PhD degree from Southeast University in 2019, and then became a professor at Ordered Matter Science Research Center, Nanchang University. His current research interests focus on the rational design of molecular ferroelectrics with the help of PFM. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5359-7037 0000-0003-2364-0193 0000-0002-8369-572X |
PQID | 2552972113 |
PQPubID | 2047503 |
PageCount | 31 |
ParticipantIDs | rsc_primary_c9cs00504h proquest_miscellaneous_2536801491 crossref_citationtrail_10_1039_C9CS00504H proquest_miscellaneous_2636456279 crossref_primary_10_1039_C9CS00504H proquest_journals_2552972113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-21 |
PublicationDateYYYYMMDD | 2021-07-21 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (C9CS00504H-(cit30)/*[position()=1]) 2017; 139 Martins (C9CS00504H-(cit238)/*[position()=1]) 2014; 39 Song (C9CS00504H-(cit276)/*[position()=1]) 2018; 11 Zhang (C9CS00504H-(cit130)/*[position()=1]) 2019; 48 Wang (C9CS00504H-(cit274)/*[position()=1]) 2003; 299 Powell (C9CS00504H-(cit169)/*[position()=1]) 2010 Naganuma (C9CS00504H-(cit25)/*[position()=1]) 2008; 1 Kagawa (C9CS00504H-(cit172)/*[position()=1]) 2014; 14 Jia (C9CS00504H-(cit150)/*[position()=1]) 2011; 331 Balke (C9CS00504H-(cit75)/*[position()=1]) 2009; 92 Taylor (C9CS00504H-(cit208)/*[position()=1]) 1996; 68 Zhang (C9CS00504H-(cit195)/*[position()=1]) 2015; 27 Miller (C9CS00504H-(cit206)/*[position()=1]) 1992; 72 Zeng (C9CS00504H-(cit245)/*[position()=1]) 2002; 92 Binnig (C9CS00504H-(cit41)/*[position()=1]) 1986; 56 Chen (C9CS00504H-(cit157)/*[position()=1]) 2017; 122 Li (C9CS00504H-(cit145)/*[position()=1]) 2017; 3 Ji (C9CS00504H-(cit131)/*[position()=1]) 2019; 29 Mason (C9CS00504H-(cit248)/*[position()=1]) 1954; 42 Newnham (C9CS00504H-(cit267)/*[position()=1]) 1984; 60 Harada (C9CS00504H-(cit220)/*[position()=1]) 2016; 8 Jesse (C9CS00504H-(cit223)/*[position()=1]) 2006; 88 Merz (C9CS00504H-(cit210)/*[position()=1]) 1954; 95 Pan (C9CS00504H-(cit192)/*[position()=1]) 2017; 139 Gates (C9CS00504H-(cit43)/*[position()=1]) 2005; 105 Hua (C9CS00504H-(cit175)/*[position()=1]) 2018; 140 Horiuchi (C9CS00504H-(cit16)/*[position()=1]) 2010; 463 Hong (C9CS00504H-(cit54)/*[position()=1]) 2021; 129 Govinda (C9CS00504H-(cit101)/*[position()=1]) 2018; 3 Little (C9CS00504H-(cit76)/*[position()=1]) 1955; 98 Saito (C9CS00504H-(cit13)/*[position()=1]) 2004; 432 Nagarajan (C9CS00504H-(cit59)/*[position()=1]) 2003; 2 Ye (C9CS00504H-(cit190)/*[position()=1]) 2016; 138 Ducharme (C9CS00504H-(cit196)/*[position()=1]) 2000; 84 Tang (C9CS00504H-(cit31)/*[position()=1]) 2020; 142 Rakita (C9CS00504H-(cit104)/*[position()=1]) 2017; 114 Gao (C9CS00504H-(cit114)/*[position()=1]) 2015; 7 Zhang (C9CS00504H-(cit171)/*[position()=1]) 2014; 53 Wen (C9CS00504H-(cit119)/*[position()=1]) 2013; 12 Kimura (C9CS00504H-(cit139)/*[position()=1]) 2003; 426 Wu (C9CS00504H-(cit2)/*[position()=1]) 2017; 50 Zhang (C9CS00504H-(cit23)/*[position()=1]) 2012; 112 Fu (C9CS00504H-(cit193)/*[position()=1]) 2011; 23 Zhao (C9CS00504H-(cit251)/*[position()=1]) 2004; 4 Sun (C9CS00504H-(cit81)/*[position()=1]) 2014; 65 Scott (C9CS00504H-(cit217)/*[position()=1]) 2000 Choudhury (C9CS00504H-(cit163)/*[position()=1]) 2006; 41 Bonnell (C9CS00504H-(cit252)/*[position()=1]) 2012; 84 Ducker (C9CS00504H-(cit47)/*[position()=1]) 1991; 353 Jungk (C9CS00504H-(cit71)/*[position()=1]) 2010; 97 Yuasa (C9CS00504H-(cit115)/*[position()=1]) 2004; 3 Ramesh (C9CS00504H-(cit207)/*[position()=1]) 2001; 32 Li (C9CS00504H-(cit242)/*[position()=1]) 2018; 17 Ahart (C9CS00504H-(cit259)/*[position()=1]) 2008; 451 Damjanovic (C9CS00504H-(cit233)/*[position()=1]) 2005; 88 Zheludev (C9CS00504H-(cit164)/*[position()=1]) 1971 Kalinin (C9CS00504H-(cit256)/*[position()=1]) 2007 Deutz (C9CS00504H-(cit266)/*[position()=1]) 2018; 5 Haefke (C9CS00504H-(cit161)/*[position()=1]) 1994; 151 Wang (C9CS00504H-(cit149)/*[position()=1]) 2018; 17 Gao (C9CS00504H-(cit111)/*[position()=1]) 2019; 48 Li (C9CS00504H-(cit113)/*[position()=1]) 2017; 9 Ye (C9CS00504H-(cit17)/*[position()=1]) 2018; 361 Fang (C9CS00504H-(cit226)/*[position()=1]) 2019; 102 Hu (C9CS00504H-(cit204)/*[position()=1]) 2009; 8 Wang (C9CS00504H-(cit79)/*[position()=1]) 2010; 20 Lee (C9CS00504H-(cit231)/*[position()=1]) 2012; 7 Park (C9CS00504H-(cit203)/*[position()=1]) 1999; 401 Haertling (C9CS00504H-(cit12)/*[position()=1]) 1999; 82 Zhang (C9CS00504H-(cit174)/*[position()=1]) 2014; 26 Holz (C9CS00504H-(cit144)/*[position()=1]) 1988; 37 Cohen (C9CS00504H-(cit11)/*[position()=1]) 1992; 358 Liu (C9CS00504H-(cit257)/*[position()=1]) 2013; 113 Kalinin (C9CS00504H-(cit27)/*[position()=1]) 2002; 65 Wei (C9CS00504H-(cit57)/*[position()=1]) 2020; 142 Shur (C9CS00504H-(cit78)/*[position()=1]) 2008; 373 Wang (C9CS00504H-(cit181)/*[position()=1]) 2019; 141 Nakatani (C9CS00504H-(cit37)/*[position()=1]) 2011; 413 Mahale (C9CS00504H-(cit98)/*[position()=1]) 2016; 7 Melzer (C9CS00504H-(cit4)/*[position()=1]) 2015; 27 Zikmund (C9CS00504H-(cit165)/*[position()=1]) 1984; 34 Shi (C9CS00504H-(cit183)/*[position()=1]) 2017; 139 Liu (C9CS00504H-(cit249)/*[position()=1]) 2002; 75 Song (C9CS00504H-(cit212)/*[position()=1]) 2020; 142 Chang (C9CS00504H-(cit239)/*[position()=1]) 2010; 10 Fesenko (C9CS00504H-(cit166)/*[position()=1]) 1989; 100 Yadav (C9CS00504H-(cit152)/*[position()=1]) 2016; 530 Ma (C9CS00504H-(cit222)/*[position()=1]) 2016; 2 Yang (C9CS00504H-(cit136)/*[position()=1]) 2010; 5 Nelson (C9CS00504H-(cit221)/*[position()=1]) 2011; 334 Prokhorenko (C9CS00504H-(cit143)/*[position()=1]) 2017; 118 Kholkin (C9CS00504H-(cit218)/*[position()=1]) 2007 Park (C9CS00504H-(cit247)/*[position()=1]) 2002; 80 Cross (C9CS00504H-(cit232)/*[position()=1]) 1984; 63 Peng (C9CS00504H-(cit137)/*[position()=1]) 2020; 59 Liu (C9CS00504H-(cit177)/*[position()=1]) 2020; 59 Soergel (C9CS00504H-(cit49)/*[position()=1]) 2011; 44 Lu (C9CS00504H-(cit162)/*[position()=1]) 2015; 27 Agronin (C9CS00504H-(cit211)/*[position()=1]) 2006; 99 Tang (C9CS00504H-(cit182)/*[position()=1]) 2016; 138 Fan (C9CS00504H-(cit240)/*[position()=1]) 2016; 28 Xiong (C9CS00504H-(cit189)/*[position()=1]) 2019; 58 Qiao (C9CS00504H-(cit66)/*[position()=1]) 2019; 114 Lebeugle (C9CS00504H-(cit275)/*[position()=1]) 2007; 76 Li (C9CS00504H-(cit129)/*[position()=1]) 2017; 56 Shi (C9CS00504H-(cit21)/*[position()=1]) 2016; 45 McQuaid (C9CS00504H-(cit146)/*[position()=1]) 2011; 2 Tang (C9CS00504H-(cit185)/*[position()=1]) 2017; 139 Nye (C9CS00504H-(cit197)/*[position()=1]) 2000 Wada (C9CS00504H-(cit235)/*[position()=1]) 2005; 98 Valasek (C9CS00504H-(cit9)/*[position()=1]) 1921; 17 Nath (C9CS00504H-(cit53)/*[position()=1]) 2010; 96 Payton (C9CS00504H-(cit39)/*[position()=1]) 2016; 61 You (C9CS00504H-(cit95)/*[position()=1]) 2017; 357 Strelcov (C9CS00504H-(cit213)/*[position()=1]) 2012; 101 Balke (C9CS00504H-(cit65)/*[position()=1]) 2015; 118 Potnis (C9CS00504H-(cit34)/*[position()=1]) 2011; 4 Wojdel (C9CS00504H-(cit35)/*[position()=1]) 2014; 112 Xie (C9CS00504H-(cit253)/*[position()=1]) 2012; 4 Birol (C9CS00504H-(cit5)/*[position()=1]) 2018; 560 Tang (C9CS00504H-(cit8)/*[position()=1]) 2020; 32 Li (C9CS00504H-(cit133)/*[position()=1]) 2019; 141 Chanthbouala (C9CS00504H-(cit68)/*[position()=1]) 2012; 7 Sharma (C9CS00504H-(cit272)/*[position()=1]) 2017; 3 Zhao (C9CS00504H-(cit64)/*[position()=1]) 2015; 6 Wang (C9CS00504H-(cit273)/*[position()=1]) 2019; 5 Li (C9CS00504H-(cit128)/*[position()=1]) 2020; 142 Kwon (C9CS00504H-(cit26)/*[position()=1]) 2020; 7 Gruverman (C9CS00504H-(cit92)/*[position()=1]) 2006; 41 Lefki (C9CS00504H-(cit250)/*[position()=1]) 1994; 76 Wang (C9CS00504H-(cit20)/*[position()=1]) 2020; 32 Tang (C9CS00504H-(cit73)/*[position()=1]) 2019; 31 Caspari (C9CS00504H-(cit255)/*[position()=1]) 1950; 80 Garcia (C9CS00504H-(cit118)/*[position()=1]) 2009; 460 Ai (C9CS00504H-(cit167)/*[position()=1]) 2019; 141 Liu (C9CS00504H-(cit234)/*[position()=1]) 2009; 103 Huang (C9CS00504H-(cit142)/*[position()=1]) 2017; 2 Kim (C9CS00504H-(cit28)/*[position()=1]) 2017; 7 Alsubaie (C9CS00504H-(cit62)/*[position()=1]) 2018; 10 Morozovska (C9CS00504H-(cit156)/*[position()=1]) 2016 Vasudevan (C9CS00504H-(cit224)/*[position()=1]) 2017; 4 Fiebig (C9CS00504H-(cit140)/*[position()=1]) 2005; 38 Chen (C9CS00504H-(cit270)/*[position()=1]) 2020; 142 Uršič (C9CS00504H-(cit44)/*[position()=1]) 2019; 475 Liao (C9CS00504H-(cit254)/*[position()=1]) 2019; 363 Qiu (C9CS00504H-(cit227)/*[position()=1]) 2020; 577 Kutes (C9CS00504H-(cit63)/*[position()=1]) 2014; 5 Yang (C9CS00504H-(cit188)/*[position()=1]) 2019; 141 Zhang (C9CS00504H-(cit134)/*[position()=1]) 2018; 57 Zhang (C9CS00504H-(cit19)/*[position()=1]) 2020; 142 Liao (C9CS00504H-(cit179)/*[position()=1]) 2018; 140 Xu (C9CS00504H-(cit191)/*[position()=1]) 2017; 139 Rossler (C9CS00504H-(cit154)/*[position()=1]) 2006; 442 Guo (C9CS00504H-(cit258)/*[position()=1]) 2000; 84 Zhang (C9CS00504H-(cit120)/*[position()=1]) 2017; 3 Chanthbouala (C9CS00504H-(cit69)/*[position()=1]) 2012; 11 Jungk (C9CS00504H-(cit52)/*[position()=1]) 2009; 11 Rao (C9CS00504H-(cit82)/*[position()=1]) 2007; 90 Zielinski (C9CS00504H-(cit168)/*[position()=1]) 1990; 11 Catalan (C9CS00504H-(cit91)/*[position()=1]) 2012; 84 Soergel (C9CS00504H-(cit36)/*[position()=1]) 2005; 81 Butt (C9CS00504H-(cit42)/*[position()=1]) 2005; 59 Long (C9CS00504H-(cit141)/*[position()=1]) 2020; 367 Gao (C9CS00504H-(cit18)/*[position()=1]) 2020; 142 Fu (C9CS00504H-(cit94)/*[position()=1]) 2013; 339 Du (C9CS00504H-(cit106)/*[position()=1]) 2017; 56 Zheludev (C9CS00504H-(cit170)/*[position()=1]) 1971 Rodriguez (C9CS00504H-(cit225)/*[position()=1]) 2005; 86 Ok (C9CS00504H-(cit244)/*[position()=1]) 2006; 35 Sluka (C9CS00504H-(cit83)/*[position()=1]) 2012; 3 Kim (C9CS00504H-(cit122)/*[position()=1]) 2012; 2 Cheong (C9CS00504H-(cit86)/*[position()=1]) 2007; 6 Qiao (C9CS00504H-(cit58)/*[position()=1]) 2020; 116 Shur (C9CS00504H-(cit77)/*[position()=1]) 2015; 2 Eng (C9CS00504H-(cit200)/*[position()=1]) 1999; 74 Liu (C9CS00504H-(cit135)/*[position()=1]) 2018; 30 Röhm (C9CS00504H-(cit112)/*[position()=1]) 2019; 31 Even (C9CS00504H-(cit124)/*[position()=1]) 2014; 15 Johann (C9CS00504H-(cit55)/*[position()=1]) 2010; 97 Liao (C9CS00504H-(cit105)/*[position()=1]) 2015; 6 Zheng (C9CS00504H-(cit159)/*[position()=1]) 2017; 80 Li (C9CS00504H-(cit219)/*[position()=1]) 2005; 4 Yan (C9CS00504H-(cit268)/*[position()=1]) 2013; 102 Newnham (C9CS00504H-(cit269)/*[position()=1]) 1980; 2 Zhang (C9CS00504H-(cit107)/*[position()=1]) 2020; 142 Choi (C9CS00504H-(cit209)/*[position()=1]) 2004; 306 Ji (C9CS00504H-(cit132)/*[position()=1]) 2020; 30 Wang (C9CS00504H-(cit138)/*[position()=1]) 2019; 141 Tressler (C9CS00504H-(cit263)/*[position()=1]) 1998; 2 Lee (C9CS00504H-(cit33)/*[position()=1]) 2012; 338 Pan (C9CS00504H-(cit201)/*[position()=1]) 2019; 365 Anderson (C9CS00504H-(cit243)/*[position()=1]) 1981; 32 Horiuchi (C9CS00504H-(cit14)/*[position()=1]) 2008; 7 Steffes (C9CS00504H-(cit214)/*[position()=1]) 2019 |
References_xml | – issn: 2000 publication-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices doi: Nye – issn: 1971 publication-title: Solid State Physics doi: Zheludev – issn: 2007 publication-title: Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy doi: Kholkin Kalinin Roelofs Gruverman – issn: 2000 publication-title: Ferroelectric Memories doi: Scott – issn: 1976 publication-title: An introduction to the physics of ferroelectrics doi: Mitsui Tatsuzaki Nakamura – issn: 2007 publication-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale doi: Kalinin Gruverman – issn: 2016 publication-title: Topological Defects in Ferroic Materials doi: Morozovska Eliseev Kalinin – issn: 2010 publication-title: Symmetry, Group Theory, and the Physical Properties of Crystals doi: Powell – issn: 1971 end-page: p 429-464 publication-title: Solid State Physics doi: Zheludev – volume: 105 start-page: 197603 year: 2010 ident: C9CS00504H-(cit88)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.197603 – volume: 463 start-page: 789 year: 2010 ident: C9CS00504H-(cit16)/*[position()=1] publication-title: Nature doi: 10.1038/nature08731 – volume: 72 start-page: 5999 year: 1992 ident: C9CS00504H-(cit206)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.351910 – volume: 138 start-page: 15784 year: 2016 ident: C9CS00504H-(cit182)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10595 – volume: 32 start-page: 2003530 year: 2020 ident: C9CS00504H-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.202003530 – volume: 142 start-page: 12486 year: 2020 ident: C9CS00504H-(cit108)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05372 – volume: 139 start-page: 10897 year: 2017 ident: C9CS00504H-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06013 – volume: 29 start-page: 1805038 year: 2019 ident: C9CS00504H-(cit131)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805038 – volume: 96 start-page: 163101 year: 2010 ident: C9CS00504H-(cit53)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3327831 – volume: 102 start-page: 061901 year: 2013 ident: C9CS00504H-(cit246)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4791573 – volume: 98 start-page: 978 year: 1955 ident: C9CS00504H-(cit76)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.98.978 – volume: 142 start-page: 10212 year: 2020 ident: C9CS00504H-(cit109)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03710 – volume: 140 start-page: 3975 year: 2018 ident: C9CS00504H-(cit179)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12524 – volume: 80 start-page: 4606 year: 2002 ident: C9CS00504H-(cit247)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1487901 – volume: 31 start-page: 1903848 year: 2019 ident: C9CS00504H-(cit126)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903848 – volume: 31 start-page: 1902163 year: 2019 ident: C9CS00504H-(cit73)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902163 – volume: 59 start-page: 17477 year: 2020 ident: C9CS00504H-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007660 – volume: 80 start-page: 1082 year: 1950 ident: C9CS00504H-(cit255)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.80.1082 – volume: 4 start-page: 776 year: 2005 ident: C9CS00504H-(cit219)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1485 – volume: 11 start-page: 033029 year: 2009 ident: C9CS00504H-(cit52)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/11/3/033029 – volume: 3 start-page: 868 year: 2004 ident: C9CS00504H-(cit115)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1257 – volume: 7 start-page: 351 year: 2012 ident: C9CS00504H-(cit231)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.69 – volume: 95 start-page: 072901 year: 2009 ident: C9CS00504H-(cit24)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3207751 – volume: 105 start-page: 1171 year: 2005 ident: C9CS00504H-(cit43)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030076o – volume: 38 start-page: R123 year: 2005 ident: C9CS00504H-(cit140)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/8/R01 – volume: 357 start-page: 306 year: 2017 ident: C9CS00504H-(cit95)/*[position()=1] publication-title: Science doi: 10.1126/science.aai8535 – volume: 4 start-page: 408 year: 2012 ident: C9CS00504H-(cit253)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C1NR11099C – volume: 2 start-page: 591 year: 2012 ident: C9CS00504H-(cit122)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 17 start-page: 1087 year: 2018 ident: C9CS00504H-(cit149)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0204-4 – volume: 358 start-page: 136 year: 1992 ident: C9CS00504H-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/358136a0 – volume: 5 start-page: 143 year: 2010 ident: C9CS00504H-(cit136)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.451 – volume: 10 start-page: 1661 year: 2019 ident: C9CS00504H-(cit61)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09650-8 – volume: 28 start-page: 2579 year: 2016 ident: C9CS00504H-(cit127)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505224 – volume: 103 start-page: 257602 year: 2009 ident: C9CS00504H-(cit234)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.257602 – volume: 57 start-page: 526 year: 2018 ident: C9CS00504H-(cit134)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709588 – volume: 10 start-page: 11768 year: 2018 ident: C9CS00504H-(cit62)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01711 – volume: 118 start-page: 072013 year: 2015 ident: C9CS00504H-(cit65)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4927811 – volume: 141 start-page: 7693 year: 2019 ident: C9CS00504H-(cit138)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02558 – volume: 6 start-page: 1155 year: 2015 ident: C9CS00504H-(cit103)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00389 – volume-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale year: 2007 ident: C9CS00504H-(cit256)/*[position()=1] doi: 10.1007/978-0-387-28668-6 – volume: 84 start-page: 175 year: 2000 ident: C9CS00504H-(cit196)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.175 – volume: 475 start-page: 20180782 year: 2019 ident: C9CS00504H-(cit44)/*[position()=1] publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2018.0782 – volume: 5 start-page: 444 year: 2018 ident: C9CS00504H-(cit266)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C8MH00097B – volume: 122 start-page: 044103 year: 2017 ident: C9CS00504H-(cit157)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4996350 – volume-title: Solid State Physics year: 1971 ident: C9CS00504H-(cit170)/*[position()=1] – volume: 2 start-page: 17004 year: 2017 ident: C9CS00504H-(cit142)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.4 – volume: 53 start-page: 11232 year: 2014 ident: C9CS00504H-(cit123)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406466 – volume: 7 start-page: 1901391 year: 2020 ident: C9CS00504H-(cit26)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201901391 – volume: 84 start-page: 119 year: 2012 ident: C9CS00504H-(cit91)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.119 – volume: 7 start-page: 2412 year: 2016 ident: C9CS00504H-(cit98)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00803 – volume: 331 start-page: 1420 year: 2011 ident: C9CS00504H-(cit150)/*[position()=1] publication-title: Science doi: 10.1126/science.1200605 – volume: 1 start-page: 3 year: 2015 ident: C9CS00504H-(cit50)/*[position()=1] publication-title: J. Materiomics doi: 10.1016/j.jmat.2015.03.001 – volume: 2 start-page: 257 year: 1998 ident: C9CS00504H-(cit263)/*[position()=1] publication-title: J. Electroceram. doi: 10.1023/A:1009926623551 – volume: 11 start-page: 179 year: 1990 ident: C9CS00504H-(cit168)/*[position()=1] publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(90)90007-Z – volume: 474 start-page: 128 year: 2015 ident: C9CS00504H-(cit229)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150193.2015.997146 – volume: 61 start-page: 1267 year: 1998 ident: C9CS00504H-(cit97)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/61/9/002 – volume: 18 start-page: 188 year: 2019 ident: C9CS00504H-(cit202)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-019-0301-z – volume: 413 start-page: 238 year: 2011 ident: C9CS00504H-(cit37)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150193.2011.554269 – volume: 116 start-page: 172901 year: 2020 ident: C9CS00504H-(cit58)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/5.0004532 – volume: 32 start-page: 13 year: 1981 ident: C9CS00504H-(cit243)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150198108238667 – volume: 442 start-page: 759 year: 2006 ident: C9CS00504H-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature05023 – volume: 2 start-page: 1600038 year: 2016 ident: C9CS00504H-(cit222)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600038 – volume: 27 start-page: 1274 year: 2015 ident: C9CS00504H-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405027 – volume: 58 start-page: 8857 year: 2019 ident: C9CS00504H-(cit189)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904305 – volume: 118 start-page: 147601 year: 2017 ident: C9CS00504H-(cit143)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.147601 – volume: 4 start-page: 021302 year: 2017 ident: C9CS00504H-(cit224)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.4979015 – volume: 49 start-page: 3423 year: 2020 ident: C9CS00504H-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00811J – volume: 2 start-page: 43 year: 2003 ident: C9CS00504H-(cit59)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat800 – volume: 28 start-page: 1706895 year: 2018 ident: C9CS00504H-(cit264)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706895 – volume: 31 start-page: 1901843 year: 2019 ident: C9CS00504H-(cit176)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901843 – volume: 246 start-page: 1400 year: 1989 ident: C9CS00504H-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.246.4936.1400 – volume: 102 start-page: 7710 year: 2019 ident: C9CS00504H-(cit226)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16667 – volume: 142 start-page: 4756 year: 2020 ident: C9CS00504H-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13291 – volume: 137 start-page: 10456 year: 2015 ident: C9CS00504H-(cit99)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04503 – volume: 451 start-page: 545 year: 2008 ident: C9CS00504H-(cit259)/*[position()=1] publication-title: Nature doi: 10.1038/nature06459 – volume: 2 start-page: 256 year: 2011 ident: C9CS00504H-(cit89)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1261 – volume: 4 start-page: 587 year: 2004 ident: C9CS00504H-(cit251)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl035198a – volume: 88 start-page: 062908 year: 2006 ident: C9CS00504H-(cit223)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2172216 – volume: 361 start-page: 151 year: 2018 ident: C9CS00504H-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.aas9330 – volume: 31 start-page: 1902099 year: 2019 ident: C9CS00504H-(cit90)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902099 – volume: 299 start-page: 1719 year: 2003 ident: C9CS00504H-(cit274)/*[position()=1] publication-title: Science doi: 10.1126/science.1080615 – volume: 8 start-page: 14934 year: 2017 ident: C9CS00504H-(cit198)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14934 – volume: 26 start-page: 1405 year: 2014 ident: C9CS00504H-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304308 – volume: 4 start-page: 417 year: 2011 ident: C9CS00504H-(cit34)/*[position()=1] publication-title: Materials doi: 10.3390/ma4020417 – volume-title: An introduction to the physics of ferroelectrics year: 1976 ident: C9CS00504H-(cit93)/*[position()=1] – volume: 140 start-page: 8198 year: 2018 ident: C9CS00504H-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03235 – volume: 112 start-page: 247603 year: 2014 ident: C9CS00504H-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.247603 – volume: 59 start-page: 3933 year: 2020 ident: C9CS00504H-(cit137)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915094 – volume: 142 start-page: 1077 year: 2020 ident: C9CS00504H-(cit270)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12368 – volume: 39 start-page: 683 year: 2014 ident: C9CS00504H-(cit238)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.07.006 – volume: 56 start-page: 9291 year: 2017 ident: C9CS00504H-(cit106)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01094 – volume: 76 start-page: 1764 year: 1994 ident: C9CS00504H-(cit250)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.357693 – volume: 6 start-page: 2622 year: 2015 ident: C9CS00504H-(cit64)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01017 – volume: 338 start-page: 643 year: 2012 ident: C9CS00504H-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1228604 – volume: 75 start-page: 12 year: 2002 ident: C9CS00504H-(cit249)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(02)00023-8 – volume: 1 start-page: 061601 year: 2008 ident: C9CS00504H-(cit25)/*[position()=1] publication-title: Appl. Phys. Express doi: 10.1143/APEX.1.061601 – volume: 348 start-page: 547 year: 2015 ident: C9CS00504H-(cit147)/*[position()=1] publication-title: Science doi: 10.1126/science.1259869 – volume: 142 start-page: 13989 year: 2020 ident: C9CS00504H-(cit160)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06936 – volume: 306 start-page: 1005 year: 2004 ident: C9CS00504H-(cit209)/*[position()=1] publication-title: Science doi: 10.1126/science.1103218 – volume: 139 start-page: 1319 year: 2017 ident: C9CS00504H-(cit183)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12377 – volume: 12 start-page: 617 year: 2013 ident: C9CS00504H-(cit119)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3649 – volume: 44 start-page: 464003 year: 2011 ident: C9CS00504H-(cit49)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/46/464003 – volume: 92 start-page: 2674 year: 2002 ident: C9CS00504H-(cit245)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1497699 – volume: 460 start-page: 81 year: 2009 ident: C9CS00504H-(cit118)/*[position()=1] publication-title: Nature doi: 10.1038/nature08128 – volume: 353 start-page: 239 year: 1991 ident: C9CS00504H-(cit47)/*[position()=1] publication-title: Nature doi: 10.1038/353239a0 – volume: 26 start-page: 4515 year: 2014 ident: C9CS00504H-(cit174)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400806 – volume: 432 start-page: 84 year: 2004 ident: C9CS00504H-(cit13)/*[position()=1] publication-title: Nature doi: 10.1038/nature03028 – volume-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices year: 2000 ident: C9CS00504H-(cit197)/*[position()=1] – volume: 102 start-page: 042903 year: 2013 ident: C9CS00504H-(cit268)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789854 – volume: 34 start-page: 648 year: 2009 ident: C9CS00504H-(cit51)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs2009.176 – volume: 543 start-page: 148808 year: 2021 ident: C9CS00504H-(cit56)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148808 – volume: 380 start-page: 141 year: 1996 ident: C9CS00504H-(cit116)/*[position()=1] publication-title: Nature doi: 10.1038/380141a0 – volume: 15 start-page: 3733 year: 2014 ident: C9CS00504H-(cit124)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201402428 – volume: 17 start-page: 475 year: 1921 ident: C9CS00504H-(cit9)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.475 – volume: 90 start-page: 182906 year: 2007 ident: C9CS00504H-(cit82)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2736276 – volume: 151 start-page: 143 year: 1994 ident: C9CS00504H-(cit161)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150199408244735 – volume: 7 start-page: 13635 year: 2016 ident: C9CS00504H-(cit184)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13635 – volume: 35 start-page: 710 year: 2006 ident: C9CS00504H-(cit244)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b511119f – volume: 20 start-page: 1924 year: 2010 ident: C9CS00504H-(cit79)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000284 – volume: 76 start-page: 024116 year: 2007 ident: C9CS00504H-(cit275)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.024116 – volume: 80 start-page: 086501 year: 2017 ident: C9CS00504H-(cit159)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa5e03 – volume: 87 start-page: 082902 year: 2005 ident: C9CS00504H-(cit60)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2010605 – volume: 9 start-page: 1127 year: 2009 ident: C9CS00504H-(cit158)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl8036646 – volume-title: Solid State Physics year: 1971 ident: C9CS00504H-(cit164)/*[position()=1] – volume: 577 start-page: 350 year: 2020 ident: C9CS00504H-(cit227)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1891-y – volume: 114 start-page: 152901 year: 2019 ident: C9CS00504H-(cit66)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5090591 – volume: 11 start-page: 11739 year: 2017 ident: C9CS00504H-(cit121)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07090 – volume: 530 start-page: 198 year: 2016 ident: C9CS00504H-(cit152)/*[position()=1] publication-title: Nature doi: 10.1038/nature16463 – volume: 50 start-page: 435 year: 2017 ident: C9CS00504H-(cit2)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00541 – volume: 97 start-page: 102902 year: 2010 ident: C9CS00504H-(cit55)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3486226 – volume: 142 start-page: 4604 year: 2020 ident: C9CS00504H-(cit178)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00375 – volume: 101 start-page: 192902 year: 2012 ident: C9CS00504H-(cit213)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4764939 – volume: 394 start-page: 539 year: 1998 ident: C9CS00504H-(cit46)/*[position()=1] publication-title: Nature doi: 10.1038/28998 – volume: 6 start-page: 13 year: 2007 ident: C9CS00504H-(cit86)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1804 – volume: 426 start-page: 55 year: 2003 ident: C9CS00504H-(cit139)/*[position()=1] publication-title: Nature doi: 10.1038/nature02018 – volume: 11 start-page: 642 year: 2018 ident: C9CS00504H-(cit276)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1669-1 – volume: 116 start-page: 5878 year: 2019 ident: C9CS00504H-(cit173)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1817866116 – volume: 119 start-page: 207602 year: 2017 ident: C9CS00504H-(cit187)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.207602 – volume: 86 start-page: 012906 year: 2005 ident: C9CS00504H-(cit225)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1845594 – volume-title: Topological Defects in Ferroic Materials year: 2016 ident: C9CS00504H-(cit156)/*[position()=1] – volume: 10 start-page: 524 year: 2010 ident: C9CS00504H-(cit230)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl903377u – volume: 142 start-page: 1995 year: 2020 ident: C9CS00504H-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11665 – volume: 3 start-page: 748 year: 2012 ident: C9CS00504H-(cit83)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1751 – volume: 142 start-page: 1159 year: 2020 ident: C9CS00504H-(cit128)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11341 – volume: 2 start-page: 404 year: 2011 ident: C9CS00504H-(cit146)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1413 – volume: 141 start-page: 18334 year: 2019 ident: C9CS00504H-(cit125)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10048 – volume: 68 start-page: 2300 year: 1996 ident: C9CS00504H-(cit208)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.116170 – volume: 108 start-page: 27010 year: 2014 ident: C9CS00504H-(cit67)/*[position()=1] publication-title: EPL doi: 10.1209/0295-5075/108/27010 – volume: 26 start-page: 293 year: 2014 ident: C9CS00504H-(cit87)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201303567 – volume: 23 start-page: 5658 year: 2011 ident: C9CS00504H-(cit193)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201102938 – volume: 142 start-page: 4925 year: 2020 ident: C9CS00504H-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00371 – volume: 7 start-page: 101 year: 2012 ident: C9CS00504H-(cit68)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.213 – volume: 37 start-page: 3751 year: 1988 ident: C9CS00504H-(cit144)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.3751 – volume: 118 start-page: 197601 year: 2017 ident: C9CS00504H-(cit216)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.197601 – volume: 100 start-page: 236104 year: 2008 ident: C9CS00504H-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.236104 – volume: 8 start-page: 62 year: 2009 ident: C9CS00504H-(cit204)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2339 – volume: 65 start-page: 124 year: 2014 ident: C9CS00504H-(cit81)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.03.006 – volume: 42 start-page: 921 year: 1954 ident: C9CS00504H-(cit248)/*[position()=1] publication-title: Proc. IRE doi: 10.1109/JRPROC.1954.274752 – volume: 30 start-page: 1905529 year: 2020 ident: C9CS00504H-(cit132)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905529 – volume: 442 start-page: 797 year: 2006 ident: C9CS00504H-(cit154)/*[position()=1] publication-title: Nature doi: 10.1038/nature05056 – volume: 2 start-page: 040604 year: 2015 ident: C9CS00504H-(cit77)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.4928591 – volume: 30 start-page: 1801619 year: 2018 ident: C9CS00504H-(cit135)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801619 – volume: 48 start-page: 517 year: 2019 ident: C9CS00504H-(cit130)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00563J – volume: 81 start-page: 729 year: 2005 ident: C9CS00504H-(cit36)/*[position()=1] publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-005-1989-9 – volume: 140 start-page: 8110 year: 2018 ident: C9CS00504H-(cit180)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05037 – volume: 401 start-page: 682 year: 1999 ident: C9CS00504H-(cit203)/*[position()=1] publication-title: Nature doi: 10.1038/44352 – volume: 12 start-page: 5697 year: 2012 ident: C9CS00504H-(cit70)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl302912t – volume: 441 start-page: 956 year: 2006 ident: C9CS00504H-(cit236)/*[position()=1] publication-title: Nature doi: 10.1038/nature04854 – volume: 363 start-page: 1206 year: 2019 ident: C9CS00504H-(cit254)/*[position()=1] publication-title: Science doi: 10.1126/science.aav3057 – volume: 7 start-page: 41657 year: 2017 ident: C9CS00504H-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep41657 – volume: 88 start-page: 2663 year: 2005 ident: C9CS00504H-(cit233)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00671.x – volume: 3 start-page: e1701008 year: 2017 ident: C9CS00504H-(cit120)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1701008 – volume: 29 start-page: 1700831 year: 2017 ident: C9CS00504H-(cit186)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700831 – volume: 129 start-page: 051101 year: 2021 ident: C9CS00504H-(cit54)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/5.0038744 – volume: 23 start-page: 5377 year: 2011 ident: C9CS00504H-(cit72)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201102254 – volume: 5 start-page: 17 year: 2019 ident: C9CS00504H-(cit273)/*[position()=1] publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0157-4 – volume: 31 start-page: 1806661 year: 2019 ident: C9CS00504H-(cit112)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806661 – volume: 17 start-page: 349 year: 2018 ident: C9CS00504H-(cit242)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0034-4 – volume: 8 start-page: 81 year: 2011 ident: C9CS00504H-(cit153)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2132 – volume: 59 start-page: 1 year: 2005 ident: C9CS00504H-(cit42)/*[position()=1] publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2005.08.003 – volume: 31 start-page: 1808088 year: 2019 ident: C9CS00504H-(cit74)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808088 – volume: 141 start-page: 4474 year: 2019 ident: C9CS00504H-(cit167)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00886 – volume: 100 start-page: 195 year: 1989 ident: C9CS00504H-(cit166)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150198908007915 – volume: 84 start-page: 1343 year: 2012 ident: C9CS00504H-(cit252)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1343 – volume: 577 start-page: 325 year: 2020 ident: C9CS00504H-(cit228)/*[position()=1] publication-title: Nature doi: 10.1038/d41586-020-00038-z – volume: 6 start-page: 693 year: 2015 ident: C9CS00504H-(cit271)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502666j – volume-title: Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy year: 2007 ident: C9CS00504H-(cit218)/*[position()=1] – volume: 347 start-page: 106 year: 1999 ident: C9CS00504H-(cit199)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/S0040-6090(98)01727-1 – volume: 59 start-page: 3495 year: 2020 ident: C9CS00504H-(cit177)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914193 – volume: 140 start-page: 8051 year: 2018 ident: C9CS00504H-(cit96)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04600 – volume: 9 start-page: 3539 year: 2009 ident: C9CS00504H-(cit205)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl901754t – volume: 65 start-page: 125408 year: 2002 ident: C9CS00504H-(cit27)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.65.125408 – volume: 365 start-page: 578 year: 2019 ident: C9CS00504H-(cit201)/*[position()=1] publication-title: Science doi: 10.1126/science.aaw8109 – volume: 142 start-page: 9634 year: 2020 ident: C9CS00504H-(cit262)/*[position()=1] publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 1906224 year: 2020 ident: C9CS00504H-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906224 – volume: 11 start-page: 860 year: 2012 ident: C9CS00504H-(cit69)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3415 – volume: 20 start-page: 342201 year: 2008 ident: C9CS00504H-(cit148)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 56 start-page: 930 year: 1986 ident: C9CS00504H-(cit41)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.930 – volume: 27 start-page: 3942 year: 2015 ident: C9CS00504H-(cit195)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501026 – volume: 17 start-page: 1721 year: 2017 ident: C9CS00504H-(cit40)/*[position()=1] publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2017.09.014 – volume: 114 start-page: E5504 year: 2017 ident: C9CS00504H-(cit104)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1702429114 – volume: 52 start-page: 1928 year: 2019 ident: C9CS00504H-(cit29)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00677 – volume: 48 start-page: 1531 year: 2019 ident: C9CS00504H-(cit111)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00614H – volume: 9 start-page: e342 year: 2017 ident: C9CS00504H-(cit113)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2016.193 – volume: 34 start-page: 932 year: 1984 ident: C9CS00504H-(cit165)/*[position()=1] publication-title: Czech J. Phys. doi: 10.1007/BF01589823 – volume-title: Ferroelectric Memories year: 2000 ident: C9CS00504H-(cit217)/*[position()=1] doi: 10.1007/978-3-662-04307-3 – volume: 5 start-page: 9703 year: 2011 ident: C9CS00504H-(cit48)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 22 start-page: 933 year: 2010 ident: C9CS00504H-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200900759 – volume: 142 start-page: 20208 year: 2020 ident: C9CS00504H-(cit107)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10686 – volume: 7 start-page: e189 year: 2015 ident: C9CS00504H-(cit114)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2015.54 – volume-title: Symmetry, Group Theory, and the Physical Properties of Crystals year: 2010 ident: C9CS00504H-(cit169)/*[position()=1] doi: 10.1007/978-1-4419-7598-0 – volume: 116 start-page: 2413 year: 2019 ident: C9CS00504H-(cit214)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1806074116 – volume: 61 start-page: 473 year: 2016 ident: C9CS00504H-(cit39)/*[position()=1] publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1156301 – volume: 32 start-page: 191 year: 2001 ident: C9CS00504H-(cit207)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/S0927-796X(00)00032-2 – volume: 141 start-page: 2623 year: 2019 ident: C9CS00504H-(cit133)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12948 – volume: 3 start-page: e1700512 year: 2017 ident: C9CS00504H-(cit272)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700512 – volume: 8 start-page: 946 year: 2016 ident: C9CS00504H-(cit220)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2567 – volume: 53 start-page: 5064 year: 2014 ident: C9CS00504H-(cit171)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400348 – volume: 334 start-page: 968 year: 2011 ident: C9CS00504H-(cit221)/*[position()=1] publication-title: Science doi: 10.1126/science.1206980 – volume: 493 start-page: 172 year: 2016 ident: C9CS00504H-(cit38)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150193.2016.1135694 – volume: 107 start-page: 147601 year: 2011 ident: C9CS00504H-(cit194)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.147601 – volume: 3 start-page: e1700919 year: 2017 ident: C9CS00504H-(cit145)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700919 – volume: 98 start-page: 014109 year: 2005 ident: C9CS00504H-(cit235)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1957130 – volume: 5 start-page: 3335 year: 2014 ident: C9CS00504H-(cit63)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501697b – volume: 141 start-page: 4372 year: 2019 ident: C9CS00504H-(cit181)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13109 – volume: 30 start-page: 1908657 year: 2020 ident: C9CS00504H-(cit102)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908657 – volume: 139 start-page: 6369 year: 2017 ident: C9CS00504H-(cit191)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01334 – volume: 45 start-page: 3811 year: 2016 ident: C9CS00504H-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00308C – volume: 14 start-page: 239 year: 2014 ident: C9CS00504H-(cit172)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl403828u – volume: 568 start-page: 368 year: 2019 ident: C9CS00504H-(cit155)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1092-8 – volume: 142 start-page: 19698 year: 2020 ident: C9CS00504H-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09586 – volume: 365 start-page: 914 year: 2019 ident: C9CS00504H-(cit151)/*[position()=1] publication-title: Science doi: 10.1126/science.aau0968 – volume: 41 start-page: 1045 year: 2006 ident: C9CS00504H-(cit163)/*[position()=1] publication-title: Cryst. Res. Technol. doi: 10.1002/crat.200610718 – volume: 113 start-page: 187205 year: 2013 ident: C9CS00504H-(cit257)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4801975 – volume: 560 start-page: 174 year: 2018 ident: C9CS00504H-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/d41586-018-05807-5 – volume: 95 start-page: 690 year: 1954 ident: C9CS00504H-(cit210)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.95.690 – volume: 41 start-page: 107 year: 2006 ident: C9CS00504H-(cit92)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-5946-0 – volume: 142 start-page: 6236 year: 2020 ident: C9CS00504H-(cit110)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00315 – volume: 139 start-page: 13903 year: 2017 ident: C9CS00504H-(cit185)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07715 – volume: 92 start-page: 1629 year: 2009 ident: C9CS00504H-(cit75)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03240.x – volume: 142 start-page: 15205 year: 2020 ident: C9CS00504H-(cit80)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07055 – volume: 142 start-page: 9000 year: 2020 ident: C9CS00504H-(cit212)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02924 – volume: 97 start-page: 012904 year: 2010 ident: C9CS00504H-(cit71)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3460286 – volume: 99 start-page: 104102 year: 2006 ident: C9CS00504H-(cit211)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2197264 – volume: 48 start-page: 1787 year: 2019 ident: C9CS00504H-(cit237)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00928G – volume: 138 start-page: 13175 year: 2016 ident: C9CS00504H-(cit190)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08817 – volume: 40 start-page: 3577 year: 2011 ident: C9CS00504H-(cit22)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00226g – volume: 3 start-page: 1887 year: 2018 ident: C9CS00504H-(cit101)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00999 – volume: 60 start-page: 15 year: 1984 ident: C9CS00504H-(cit267)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150198408017505 – volume: 6 start-page: 21 year: 2007 ident: C9CS00504H-(cit85)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1805 – volume: 6 start-page: 7338 year: 2015 ident: C9CS00504H-(cit105)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8338 – volume: 373 start-page: 1 year: 2008 ident: C9CS00504H-(cit78)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150190802408457 – volume: 56 start-page: 12150 year: 2017 ident: C9CS00504H-(cit129)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705836 – volume: 139 start-page: 18071 year: 2017 ident: C9CS00504H-(cit260)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10449 – volume: 514 start-page: 205 year: 2014 ident: C9CS00504H-(cit117)/*[position()=1] publication-title: Nature doi: 10.1038/nature13763 – volume: 2 start-page: 93 year: 1980 ident: C9CS00504H-(cit269)/*[position()=1] publication-title: Mater. Des. doi: 10.1016/0261-3069(80)90019-9 – volume: 28 start-page: 6574 year: 2016 ident: C9CS00504H-(cit84)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600160 – volume: 140 start-page: 12296 year: 2018 ident: C9CS00504H-(cit175)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08286 – volume: 74 start-page: 233 year: 1999 ident: C9CS00504H-(cit200)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.123266 – volume: 82 start-page: 1804 year: 1997 ident: C9CS00504H-(cit265)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.365983 – volume: 82 start-page: 797 year: 1999 ident: C9CS00504H-(cit12)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb01840.x – volume: 139 start-page: 3954 year: 2017 ident: C9CS00504H-(cit192)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00492 – volume: 150 start-page: 331 year: 1993 ident: C9CS00504H-(cit241)/*[position()=1] publication-title: Ferroelectrics doi: 10.1080/00150199308211451 – volume: 10 start-page: 726 year: 2010 ident: C9CS00504H-(cit239)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl9040719 – volume: 10 start-page: 950 year: 2017 ident: C9CS00504H-(cit100)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00420F – volume: 27 start-page: 6475 year: 2015 ident: C9CS00504H-(cit215)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502357 – volume: 339 start-page: 425 year: 2013 ident: C9CS00504H-(cit94)/*[position()=1] publication-title: Science doi: 10.1126/science.1229675 – volume: 2 start-page: 697 year: 2020 ident: C9CS00504H-(cit261)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2019.12.008 – volume: 63 start-page: 586 year: 1984 ident: C9CS00504H-(cit232)/*[position()=1] publication-title: Am. Ceram. Soc. Bull. – volume: 112 start-page: 1163 year: 2012 ident: C9CS00504H-(cit23)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200174w – volume: 7 start-page: 357 year: 2008 ident: C9CS00504H-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2137 – volume: 367 start-page: 671 year: 2020 ident: C9CS00504H-(cit141)/*[position()=1] publication-title: Science doi: 10.1126/science.aaz2795 – volume: 84 start-page: 5423 year: 2000 ident: C9CS00504H-(cit258)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5423 – volume: 27 start-page: 7832 year: 2015 ident: C9CS00504H-(cit162)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504019 – volume: 141 start-page: 1781 year: 2019 ident: C9CS00504H-(cit188)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13223 – volume: 28 start-page: 4283 year: 2016 ident: C9CS00504H-(cit240)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504299 |
SSID | ssj0011762 |
Score | 2.6143162 |
SecondaryResourceType | review_article |
Snippet | With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8248 |
SubjectTerms | atomic force microscopy Crystallography Design optimization electronics Ferroelectric domains Ferroelectric materials Ferroelectricity Ferroelectrics mechanics Microscopy Nondestructive testing optics Physical properties Piezoelectricity spring vigor |
Title | PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics |
URI | https://www.proquest.com/docview/2552972113 https://www.proquest.com/docview/2536801491 https://www.proquest.com/docview/2636456279 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYaAgODChQGK7dnycqpaCugKiFd0p8le0SqyZSnvZhX-d5zhOWjFNwCWqHMe13vvZfn5-_j2EXlPNrREqiw3hSez4S2KZmiS2mWQ4k0ZL6i44n03ZeE4_LfqLTufXTtTSdqPe6esb75X8j1ahDPTqbsn-g2abRqEAfoN-4Qkahudf6fjL6MxZiFdLe12ufbBrxeENY_XSBdq5KycgRBDM0oBhaapojSqw8DJkxX1b2PW69MlwQuB7IC4IXAIhsrNmLm0nrVV8vvXHG87tHMoXS1nGH2o_NDTSwO98W31RJ0Te-eK7XcZfAafuvpUsdx0ROHUeTtw6Iry7I_SoiiWpM9btTGnE-S-SOnDa-imXMgAJ9yyQYU72ZLQBe3Rnhs2wZ-YMqzX2GYD-WAkS4ohUtdAur3tCL9r1LpzxTz_no_lkks-Gi9kBOsScp_0uOjwdzj5OmoOolLP6IMp3PDDcEvG-bXvfpmk3KgfrkEWmslZm99G9epsRnXrMPEAdu3qI7jSyeoSmgJ3ozR5yogo5UYucE4-byOPGvY4a3ET7uHmM5qPhbDCO69wasQazZRNzt6-kwgpFaUG4pkWilFFcWo1hnGbC2L7IOC5soQXpFy7HWWK4YJmVTHBFjlB3Va7sExRZrYqCKGsxL2hipIJFgrOCSsOZxKLfQydBOrmuiedd_pMfeRUAQUQ-EINvlSTHPfSqqXvl6VZurHUchJzXw_FnDntj7KioUtJDL5vXIFV3AiZXtty6OoQ5uiSR3lKHuZN5hrnooSNQYNOPVt9Pb___Z-huOz6OUXez3trnYLpu1IsaXr8BoamdHQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFM+%28piezoresponse+force+microscopy%29-aided+design+for+molecular+ferroelectrics&rft.jtitle=Chemical+Society+reviews&rft.au=Han-Yue%2C+Zhang&rft.au=Xiao-Gang%2C+Chen&rft.au=Yuan-Yuan%2C+Tang&rft.au=Wei-Qiang+Liao&rft.date=2021-07-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=50&rft.issue=14&rft.spage=8248&rft.epage=8278&rft_id=info:doi/10.1039%2Fc9cs00504h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |