PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It sh...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 5; no. 14; pp. 8248 - 8278
Main Authors Zhang, Han-Yue, Chen, Xiao-Gang, Tang, Yuan-Yuan, Liao, Wei-Qiang, Di, Fang-Fang, Mu, Xin, Peng, Hang, Xiong, Ren-Gen
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 21.07.2021
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/c9cs00504h

Cover

Abstract With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.
AbstractList With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Author Chen, Xiao-Gang
Mu, Xin
Peng, Hang
Xiong, Ren-Gen
Zhang, Han-Yue
Tang, Yuan-Yuan
Liao, Wei-Qiang
Di, Fang-Fang
AuthorAffiliation Ordered Matter Science Research Center
Nanchang University
AuthorAffiliation_xml – name: Ordered Matter Science Research Center
– name: Nanchang University
Author_xml – sequence: 1
  givenname: Han-Yue
  surname: Zhang
  fullname: Zhang, Han-Yue
– sequence: 2
  givenname: Xiao-Gang
  surname: Chen
  fullname: Chen, Xiao-Gang
– sequence: 3
  givenname: Yuan-Yuan
  surname: Tang
  fullname: Tang, Yuan-Yuan
– sequence: 4
  givenname: Wei-Qiang
  surname: Liao
  fullname: Liao, Wei-Qiang
– sequence: 5
  givenname: Fang-Fang
  surname: Di
  fullname: Di, Fang-Fang
– sequence: 6
  givenname: Xin
  surname: Mu
  fullname: Mu, Xin
– sequence: 7
  givenname: Hang
  surname: Peng
  fullname: Peng, Hang
– sequence: 8
  givenname: Ren-Gen
  surname: Xiong
  fullname: Xiong, Ren-Gen
BookMark eNqFkctLxDAQxoOs4O7qxbtQ8LIK1byaNEcpvmB9gHouaTrRSLepSfew_vV2XVEQwdPMML9vmJlvgkatbwGhfYJPCGbq1CgTMc4wf9lCY8IFTrnkfITGmGGRYkzoDprE-DpkRAo6Rrf3FzfJrHPw7gPEzrcREuuDgWThTPDR-G51lGpXQ53UEN1zu24nC9-AWTY6JBZC8DBUfXAm7qJtq5sIe19xip4uzh-Lq3R-d3ldnM1TwwnrU0lyKrgCVXFumTTc4qqqK6nBUMh1rmrIVC6pBWsUyyymSuJaKpGDFkpWbIpmm7ld8G9LiH25cNFA0-gW_DKWVDDBM0Gl-h_NmMgx4YoM6OEv9NUvQzscMlDZsAMlhA3U8YZa_ycGsGUX3EKHVUlwuXahLFTx8OnC1QDjX7Bxve6db_ugXfO35GAjCdF8j_4xln0Ah4CUuw
CitedBy_id crossref_primary_10_1007_s40843_023_2499_x
crossref_primary_10_1002_adma_202414339
crossref_primary_10_1002_chem_202302671
crossref_primary_10_1021_jacs_3c01530
crossref_primary_10_1002_adma_202405981
crossref_primary_10_1002_anie_202215286
crossref_primary_10_1038_s41467_023_38590_7
crossref_primary_10_1021_acs_nanolett_3c01848
crossref_primary_10_1002_ifm2_10
crossref_primary_10_1039_D3MH00444A
crossref_primary_10_1039_D2QI01824A
crossref_primary_10_1002_adfm_202205918
crossref_primary_10_1038_s41467_024_52207_7
crossref_primary_10_1002_anie_202319650
crossref_primary_10_1039_D1QI00736J
crossref_primary_10_1002_slct_202104332
crossref_primary_10_1039_D2CC03881A
crossref_primary_10_1021_jacs_4c06929
crossref_primary_10_1002_adma_202410585
crossref_primary_10_1021_jacs_4c09955
crossref_primary_10_1038_s41467_023_41560_8
crossref_primary_10_1016_j_cclet_2022_05_053
crossref_primary_10_1002_anie_202413726
crossref_primary_10_1016_j_cej_2024_159027
crossref_primary_10_1002_adma_202401392
crossref_primary_10_1021_acsaelm_3c01613
crossref_primary_10_1002_adfm_202109492
crossref_primary_10_1002_adma_202308051
crossref_primary_10_1039_D1QM01157J
crossref_primary_10_1039_D1SC04322F
crossref_primary_10_1016_j_chempr_2023_12_006
crossref_primary_10_1021_acsmaterialslett_2c00331
crossref_primary_10_1039_D2SC00689H
crossref_primary_10_1002_adfm_202501546
crossref_primary_10_1002_anie_202501238
crossref_primary_10_1039_D1SC06781H
crossref_primary_10_1002_anie_202500027
crossref_primary_10_1016_j_nanoen_2022_108093
crossref_primary_10_1039_D3NJ03461E
crossref_primary_10_1002_slct_202304533
crossref_primary_10_1016_j_snb_2023_134170
crossref_primary_10_1021_acsomega_1c03829
crossref_primary_10_1021_jacs_4c07268
crossref_primary_10_1016_j_xcrp_2025_102498
crossref_primary_10_1021_jacs_2c12951
crossref_primary_10_1039_D1CE01567B
crossref_primary_10_1007_s43939_023_00054_6
crossref_primary_10_1002_ange_202215286
crossref_primary_10_1021_acsnano_3c02167
crossref_primary_10_1021_jacs_1c06108
crossref_primary_10_1039_D1CC05278K
crossref_primary_10_1002_aelm_202400933
crossref_primary_10_1002_ange_202306732
crossref_primary_10_1039_D2MH00698G
crossref_primary_10_1039_D2QI01020H
crossref_primary_10_1021_acsnano_4c02291
crossref_primary_10_1002_smtd_202200421
crossref_primary_10_1039_D2DT03939G
crossref_primary_10_1039_D1NJ04470B
crossref_primary_10_1002_ange_202500027
crossref_primary_10_1021_jacs_3c03921
crossref_primary_10_1039_D4CC06054G
crossref_primary_10_1039_D2TC01330D
crossref_primary_10_1016_j_molliq_2024_126415
crossref_primary_10_1002_ange_202501238
crossref_primary_10_1021_acs_cgd_2c00183
crossref_primary_10_1021_jacs_4c07676
crossref_primary_10_1039_D3QM00964E
crossref_primary_10_1002_ange_202319650
crossref_primary_10_1002_adfm_202305852
crossref_primary_10_1002_ange_202413726
crossref_primary_10_1038_s41467_024_48405_y
crossref_primary_10_1002_smll_202300792
crossref_primary_10_1039_D1CE00962A
crossref_primary_10_1002_adfm_202407693
crossref_primary_10_1002_adma_202417073
crossref_primary_10_1002_anie_202306732
Cites_doi 10.1103/PhysRevLett.105.197603
10.1038/nature08731
10.1063/1.351910
10.1021/jacs.6b10595
10.1002/adma.202003530
10.1021/jacs.0c05372
10.1021/jacs.7b06013
10.1002/adfm.201805038
10.1063/1.3327831
10.1063/1.4791573
10.1103/PhysRev.98.978
10.1021/jacs.0c03710
10.1021/jacs.7b12524
10.1063/1.1487901
10.1002/adma.201903848
10.1002/adma.201902163
10.1002/anie.202007660
10.1103/PhysRev.80.1082
10.1038/nmat1485
10.1088/1367-2630/11/3/033029
10.1038/nmat1257
10.1038/nnano.2012.69
10.1063/1.3207751
10.1021/cr030076o
10.1088/0022-3727/38/8/R01
10.1126/science.aai8535
10.1039/C1NR11099C
10.1038/srep00591
10.1038/s41563-018-0204-4
10.1038/358136a0
10.1038/nnano.2009.451
10.1038/s41467-019-09650-8
10.1002/adma.201505224
10.1103/PhysRevLett.103.257602
10.1002/anie.201709588
10.1021/acsami.8b01711
10.1063/1.4927811
10.1021/jacs.9b02558
10.1021/acs.jpclett.5b00389
10.1007/978-0-387-28668-6
10.1103/PhysRevLett.84.175
10.1098/rspa.2018.0782
10.1039/C8MH00097B
10.1063/1.4996350
10.1038/natrevmats.2017.4
10.1002/anie.201406466
10.1002/advs.201901391
10.1103/RevModPhys.84.119
10.1021/acs.jpclett.6b00803
10.1126/science.1200605
10.1016/j.jmat.2015.03.001
10.1023/A:1009926623551
10.1016/0167-5729(90)90007-Z
10.1080/00150193.2015.997146
10.1088/0034-4885/61/9/002
10.1038/s41563-019-0301-z
10.1080/00150193.2011.554269
10.1063/5.0004532
10.1080/00150198108238667
10.1038/nature05023
10.1002/aelm.201600038
10.1002/adma.201405027
10.1002/anie.201904305
10.1103/PhysRevLett.118.147601
10.1063/1.4979015
10.1039/C9CS00811J
10.1038/nmat800
10.1002/adfm.201706895
10.1002/adma.201901843
10.1126/science.246.4936.1400
10.1111/jace.16667
10.1021/jacs.9b13291
10.1021/jacs.5b04503
10.1038/nature06459
10.1038/ncomms1261
10.1021/nl035198a
10.1063/1.2172216
10.1126/science.aas9330
10.1002/adma.201902099
10.1126/science.1080615
10.1038/ncomms14934
10.1002/adma.201304308
10.3390/ma4020417
10.1021/jacs.8b03235
10.1103/PhysRevLett.112.247603
10.1002/anie.201915094
10.1021/jacs.9b12368
10.1016/j.progpolymsci.2013.07.006
10.1021/acs.inorgchem.7b01094
10.1063/1.357693
10.1021/acs.jpclett.5b01017
10.1126/science.1228604
10.1016/S0254-0584(02)00023-8
10.1143/APEX.1.061601
10.1126/science.1259869
10.1021/jacs.0c06936
10.1126/science.1103218
10.1021/jacs.6b12377
10.1038/nmat3649
10.1088/0022-3727/44/46/464003
10.1063/1.1497699
10.1038/nature08128
10.1038/353239a0
10.1002/adma.201400806
10.1038/nature03028
10.1063/1.4789854
10.1557/mrs2009.176
10.1016/j.apsusc.2020.148808
10.1038/380141a0
10.1002/cphc.201402428
10.1103/PhysRev.17.475
10.1063/1.2736276
10.1080/00150199408244735
10.1038/ncomms13635
10.1039/b511119f
10.1002/adfm.201000284
10.1103/PhysRevB.76.024116
10.1088/1361-6633/aa5e03
10.1063/1.2010605
10.1021/nl8036646
10.1038/s41586-019-1891-y
10.1063/1.5090591
10.1021/acsnano.7b07090
10.1038/nature16463
10.1021/acs.accounts.6b00541
10.1063/1.3486226
10.1021/jacs.0c00375
10.1063/1.4764939
10.1038/28998
10.1038/nmat1804
10.1038/nature02018
10.1007/s12274-017-1669-1
10.1073/pnas.1817866116
10.1103/PhysRevLett.119.207602
10.1063/1.1845594
10.1021/nl903377u
10.1021/jacs.9b11665
10.1038/ncomms1751
10.1021/jacs.9b11341
10.1038/ncomms1413
10.1021/jacs.9b10048
10.1063/1.116170
10.1209/0295-5075/108/27010
10.1002/adma.201303567
10.1002/adma.201102938
10.1021/jacs.0c00371
10.1038/nnano.2011.213
10.1103/PhysRevB.37.3751
10.1103/PhysRevLett.118.197601
10.1103/PhysRevLett.100.236104
10.1038/nmat2339
10.1016/j.pmatsci.2014.03.006
10.1109/JRPROC.1954.274752
10.1002/adfm.201905529
10.1038/nature05056
10.1063/1.4928591
10.1002/adma.201801619
10.1039/C8CS00563J
10.1007/s00340-005-1989-9
10.1021/jacs.8b05037
10.1038/44352
10.1021/nl302912t
10.1038/nature04854
10.1126/science.aav3057
10.1038/srep41657
10.1111/j.1551-2916.2005.00671.x
10.1126/sciadv.1701008
10.1002/adma.201700831
10.1063/5.0038744
10.1002/adma.201102254
10.1038/s41524-019-0157-4
10.1002/adma.201806661
10.1038/s41563-018-0034-4
10.1038/nphys2132
10.1016/j.surfrep.2005.08.003
10.1002/adma.201808088
10.1021/jacs.9b00886
10.1080/00150198908007915
10.1103/RevModPhys.84.1343
10.1038/d41586-020-00038-z
10.1021/jz502666j
10.1016/S0040-6090(98)01727-1
10.1002/anie.201914193
10.1021/jacs.8b04600
10.1021/nl901754t
10.1103/PhysRevB.65.125408
10.1126/science.aaw8109
10.1002/adma.201906224
10.1038/nmat3415
10.1103/PhysRevLett.56.930
10.1002/adma.201501026
10.1016/j.cap.2017.09.014
10.1073/pnas.1702429114
10.1021/acs.accounts.8b00677
10.1039/C8CS00614H
10.1038/am.2016.193
10.1007/BF01589823
10.1007/978-3-662-04307-3
10.1021/nn203879f
10.1002/adma.200900759
10.1021/jacs.0c10686
10.1038/am.2015.54
10.1007/978-1-4419-7598-0
10.1073/pnas.1806074116
10.1080/09506608.2016.1156301
10.1016/S0927-796X(00)00032-2
10.1021/jacs.8b12948
10.1126/sciadv.1700512
10.1038/nchem.2567
10.1002/anie.201400348
10.1126/science.1206980
10.1080/00150193.2016.1135694
10.1103/PhysRevLett.107.147601
10.1126/sciadv.1700919
10.1063/1.1957130
10.1021/jz501697b
10.1021/jacs.8b13109
10.1002/adfm.201908657
10.1021/jacs.7b01334
10.1039/C5CS00308C
10.1021/nl403828u
10.1038/s41586-019-1092-8
10.1021/jacs.0c09586
10.1126/science.aau0968
10.1002/crat.200610718
10.1063/1.4801975
10.1038/d41586-018-05807-5
10.1103/PhysRev.95.690
10.1007/s10853-005-5946-0
10.1021/jacs.0c00315
10.1021/jacs.7b07715
10.1111/j.1551-2916.2009.03240.x
10.1021/jacs.0c07055
10.1021/jacs.0c02924
10.1063/1.3460286
10.1063/1.2197264
10.1039/C8CS00928G
10.1021/jacs.6b08817
10.1039/c0cs00226g
10.1021/acsenergylett.8b00999
10.1080/00150198408017505
10.1038/nmat1805
10.1038/ncomms8338
10.1080/00150190802408457
10.1002/anie.201705836
10.1021/jacs.7b10449
10.1038/nature13763
10.1016/0261-3069(80)90019-9
10.1002/adma.201600160
10.1021/jacs.8b08286
10.1063/1.123266
10.1063/1.365983
10.1111/j.1151-2916.1999.tb01840.x
10.1021/jacs.7b00492
10.1080/00150199308211451
10.1021/nl9040719
10.1039/C7EE00420F
10.1002/adma.201502357
10.1126/science.1229675
10.1016/j.matt.2019.12.008
10.1021/cr200174w
10.1038/nmat2137
10.1126/science.aaz2795
10.1103/PhysRevLett.84.5423
10.1002/adma.201504019
10.1021/jacs.8b13223
10.1002/adma.201504299
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c9cs00504h
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 8278
ExternalDocumentID 10_1039_C9CS00504H
c9cs00504h
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c413t-7182649e9b44f37c4f0bbdb7aec2e8a89de59872fefc935f02970d7968ea697b3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 14:17:38 EDT 2025
Fri Jul 11 05:39:55 EDT 2025
Mon Jun 30 06:57:13 EDT 2025
Tue Jul 01 04:18:46 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Mon Apr 11 02:55:58 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-7182649e9b44f37c4f0bbdb7aec2e8a89de59872fefc935f02970d7968ea697b3
Notes 10.1039/c9cs00504h
Han-Yue Zhang received her Bachelor's degree in Chemistry from Nanjing Normal University in 2018. She is currently a PhD candidate in Materials Physics and Chemistry, Southeast University, under the supervision of Prof. Ren-Gen Xiong. Her research interests include the chemical design of molecular ferroelectrics and their performance optimization under the guidelines of ferroelectrochemistry.
Professor Ren-Gen Xiong is the head of the Ordered Matter Science Research Center at Nanchang University as well as the Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics in the Southeast University. He has more than 200 papers as a corresponding author, including those in Science (4 articles), J. Am. Chem. Soc. (over 40 articles), Angew. Chem., Int. Ed. (16 articles), Adv. Mater. (11 articles), and Chem. Soc. Rev. (5 articles). For more than 20 years, he has been conducting research focused on the synthesis and properties of non-centrosymmetric compound, especially in the field of molecular ferroelectrics, establishing ferroelectrochemistry.
Xiao-Gang Chen received his BS degree (2016) from Southeast University Chengxian College. He is currently a PhD candidate of Material Physics and Chemistry at Southeast University and is supervised by Prof. Ren-Gen Xiong. His current research focuses on the design optimization of molecular-based ferroelectrics, especially in the field of halogen hybrid perovskites.
Hang Peng graduated from Nanchang University with a Bachelor's degree in 2019. She is currently a PhD candidate at Nanchang University under the supervision of Prof. Xiong. Her research interests are focused on host-guest inclusion ferroelectrics.
Electronic supplementary information (ESI) available. See DOI
Professor Yuan-Yuan Tang received his PhD degree from Southeast University in 2019, and then became a professor at Ordered Matter Science Research Center, Nanchang University. His current research interests focus on the rational design of molecular ferroelectrics with the help of PFM.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5359-7037
0000-0003-2364-0193
0000-0002-8369-572X
PQID 2552972113
PQPubID 2047503
PageCount 31
ParticipantIDs rsc_primary_c9cs00504h
proquest_miscellaneous_2536801491
crossref_citationtrail_10_1039_C9CS00504H
proquest_miscellaneous_2636456279
crossref_primary_10_1039_C9CS00504H
proquest_journals_2552972113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-21
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Chemical Society reviews
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (C9CS00504H-(cit30)/*[position()=1]) 2017; 139
Martins (C9CS00504H-(cit238)/*[position()=1]) 2014; 39
Song (C9CS00504H-(cit276)/*[position()=1]) 2018; 11
Zhang (C9CS00504H-(cit130)/*[position()=1]) 2019; 48
Wang (C9CS00504H-(cit274)/*[position()=1]) 2003; 299
Powell (C9CS00504H-(cit169)/*[position()=1]) 2010
Naganuma (C9CS00504H-(cit25)/*[position()=1]) 2008; 1
Kagawa (C9CS00504H-(cit172)/*[position()=1]) 2014; 14
Jia (C9CS00504H-(cit150)/*[position()=1]) 2011; 331
Balke (C9CS00504H-(cit75)/*[position()=1]) 2009; 92
Taylor (C9CS00504H-(cit208)/*[position()=1]) 1996; 68
Zhang (C9CS00504H-(cit195)/*[position()=1]) 2015; 27
Miller (C9CS00504H-(cit206)/*[position()=1]) 1992; 72
Zeng (C9CS00504H-(cit245)/*[position()=1]) 2002; 92
Binnig (C9CS00504H-(cit41)/*[position()=1]) 1986; 56
Chen (C9CS00504H-(cit157)/*[position()=1]) 2017; 122
Li (C9CS00504H-(cit145)/*[position()=1]) 2017; 3
Ji (C9CS00504H-(cit131)/*[position()=1]) 2019; 29
Mason (C9CS00504H-(cit248)/*[position()=1]) 1954; 42
Newnham (C9CS00504H-(cit267)/*[position()=1]) 1984; 60
Harada (C9CS00504H-(cit220)/*[position()=1]) 2016; 8
Jesse (C9CS00504H-(cit223)/*[position()=1]) 2006; 88
Merz (C9CS00504H-(cit210)/*[position()=1]) 1954; 95
Pan (C9CS00504H-(cit192)/*[position()=1]) 2017; 139
Gates (C9CS00504H-(cit43)/*[position()=1]) 2005; 105
Hua (C9CS00504H-(cit175)/*[position()=1]) 2018; 140
Horiuchi (C9CS00504H-(cit16)/*[position()=1]) 2010; 463
Hong (C9CS00504H-(cit54)/*[position()=1]) 2021; 129
Govinda (C9CS00504H-(cit101)/*[position()=1]) 2018; 3
Little (C9CS00504H-(cit76)/*[position()=1]) 1955; 98
Saito (C9CS00504H-(cit13)/*[position()=1]) 2004; 432
Nagarajan (C9CS00504H-(cit59)/*[position()=1]) 2003; 2
Ye (C9CS00504H-(cit190)/*[position()=1]) 2016; 138
Ducharme (C9CS00504H-(cit196)/*[position()=1]) 2000; 84
Tang (C9CS00504H-(cit31)/*[position()=1]) 2020; 142
Rakita (C9CS00504H-(cit104)/*[position()=1]) 2017; 114
Gao (C9CS00504H-(cit114)/*[position()=1]) 2015; 7
Zhang (C9CS00504H-(cit171)/*[position()=1]) 2014; 53
Wen (C9CS00504H-(cit119)/*[position()=1]) 2013; 12
Kimura (C9CS00504H-(cit139)/*[position()=1]) 2003; 426
Wu (C9CS00504H-(cit2)/*[position()=1]) 2017; 50
Zhang (C9CS00504H-(cit23)/*[position()=1]) 2012; 112
Fu (C9CS00504H-(cit193)/*[position()=1]) 2011; 23
Zhao (C9CS00504H-(cit251)/*[position()=1]) 2004; 4
Sun (C9CS00504H-(cit81)/*[position()=1]) 2014; 65
Scott (C9CS00504H-(cit217)/*[position()=1]) 2000
Choudhury (C9CS00504H-(cit163)/*[position()=1]) 2006; 41
Bonnell (C9CS00504H-(cit252)/*[position()=1]) 2012; 84
Ducker (C9CS00504H-(cit47)/*[position()=1]) 1991; 353
Jungk (C9CS00504H-(cit71)/*[position()=1]) 2010; 97
Yuasa (C9CS00504H-(cit115)/*[position()=1]) 2004; 3
Ramesh (C9CS00504H-(cit207)/*[position()=1]) 2001; 32
Li (C9CS00504H-(cit242)/*[position()=1]) 2018; 17
Ahart (C9CS00504H-(cit259)/*[position()=1]) 2008; 451
Damjanovic (C9CS00504H-(cit233)/*[position()=1]) 2005; 88
Zheludev (C9CS00504H-(cit164)/*[position()=1]) 1971
Kalinin (C9CS00504H-(cit256)/*[position()=1]) 2007
Deutz (C9CS00504H-(cit266)/*[position()=1]) 2018; 5
Haefke (C9CS00504H-(cit161)/*[position()=1]) 1994; 151
Wang (C9CS00504H-(cit149)/*[position()=1]) 2018; 17
Gao (C9CS00504H-(cit111)/*[position()=1]) 2019; 48
Li (C9CS00504H-(cit113)/*[position()=1]) 2017; 9
Ye (C9CS00504H-(cit17)/*[position()=1]) 2018; 361
Fang (C9CS00504H-(cit226)/*[position()=1]) 2019; 102
Hu (C9CS00504H-(cit204)/*[position()=1]) 2009; 8
Wang (C9CS00504H-(cit79)/*[position()=1]) 2010; 20
Lee (C9CS00504H-(cit231)/*[position()=1]) 2012; 7
Park (C9CS00504H-(cit203)/*[position()=1]) 1999; 401
Haertling (C9CS00504H-(cit12)/*[position()=1]) 1999; 82
Zhang (C9CS00504H-(cit174)/*[position()=1]) 2014; 26
Holz (C9CS00504H-(cit144)/*[position()=1]) 1988; 37
Cohen (C9CS00504H-(cit11)/*[position()=1]) 1992; 358
Liu (C9CS00504H-(cit257)/*[position()=1]) 2013; 113
Kalinin (C9CS00504H-(cit27)/*[position()=1]) 2002; 65
Wei (C9CS00504H-(cit57)/*[position()=1]) 2020; 142
Shur (C9CS00504H-(cit78)/*[position()=1]) 2008; 373
Wang (C9CS00504H-(cit181)/*[position()=1]) 2019; 141
Nakatani (C9CS00504H-(cit37)/*[position()=1]) 2011; 413
Mahale (C9CS00504H-(cit98)/*[position()=1]) 2016; 7
Melzer (C9CS00504H-(cit4)/*[position()=1]) 2015; 27
Zikmund (C9CS00504H-(cit165)/*[position()=1]) 1984; 34
Shi (C9CS00504H-(cit183)/*[position()=1]) 2017; 139
Liu (C9CS00504H-(cit249)/*[position()=1]) 2002; 75
Song (C9CS00504H-(cit212)/*[position()=1]) 2020; 142
Chang (C9CS00504H-(cit239)/*[position()=1]) 2010; 10
Fesenko (C9CS00504H-(cit166)/*[position()=1]) 1989; 100
Yadav (C9CS00504H-(cit152)/*[position()=1]) 2016; 530
Ma (C9CS00504H-(cit222)/*[position()=1]) 2016; 2
Yang (C9CS00504H-(cit136)/*[position()=1]) 2010; 5
Nelson (C9CS00504H-(cit221)/*[position()=1]) 2011; 334
Prokhorenko (C9CS00504H-(cit143)/*[position()=1]) 2017; 118
Kholkin (C9CS00504H-(cit218)/*[position()=1]) 2007
Park (C9CS00504H-(cit247)/*[position()=1]) 2002; 80
Cross (C9CS00504H-(cit232)/*[position()=1]) 1984; 63
Peng (C9CS00504H-(cit137)/*[position()=1]) 2020; 59
Liu (C9CS00504H-(cit177)/*[position()=1]) 2020; 59
Soergel (C9CS00504H-(cit49)/*[position()=1]) 2011; 44
Lu (C9CS00504H-(cit162)/*[position()=1]) 2015; 27
Agronin (C9CS00504H-(cit211)/*[position()=1]) 2006; 99
Tang (C9CS00504H-(cit182)/*[position()=1]) 2016; 138
Fan (C9CS00504H-(cit240)/*[position()=1]) 2016; 28
Xiong (C9CS00504H-(cit189)/*[position()=1]) 2019; 58
Qiao (C9CS00504H-(cit66)/*[position()=1]) 2019; 114
Lebeugle (C9CS00504H-(cit275)/*[position()=1]) 2007; 76
Li (C9CS00504H-(cit129)/*[position()=1]) 2017; 56
Shi (C9CS00504H-(cit21)/*[position()=1]) 2016; 45
McQuaid (C9CS00504H-(cit146)/*[position()=1]) 2011; 2
Tang (C9CS00504H-(cit185)/*[position()=1]) 2017; 139
Nye (C9CS00504H-(cit197)/*[position()=1]) 2000
Wada (C9CS00504H-(cit235)/*[position()=1]) 2005; 98
Valasek (C9CS00504H-(cit9)/*[position()=1]) 1921; 17
Nath (C9CS00504H-(cit53)/*[position()=1]) 2010; 96
Payton (C9CS00504H-(cit39)/*[position()=1]) 2016; 61
You (C9CS00504H-(cit95)/*[position()=1]) 2017; 357
Strelcov (C9CS00504H-(cit213)/*[position()=1]) 2012; 101
Balke (C9CS00504H-(cit65)/*[position()=1]) 2015; 118
Potnis (C9CS00504H-(cit34)/*[position()=1]) 2011; 4
Wojdel (C9CS00504H-(cit35)/*[position()=1]) 2014; 112
Xie (C9CS00504H-(cit253)/*[position()=1]) 2012; 4
Birol (C9CS00504H-(cit5)/*[position()=1]) 2018; 560
Tang (C9CS00504H-(cit8)/*[position()=1]) 2020; 32
Li (C9CS00504H-(cit133)/*[position()=1]) 2019; 141
Chanthbouala (C9CS00504H-(cit68)/*[position()=1]) 2012; 7
Sharma (C9CS00504H-(cit272)/*[position()=1]) 2017; 3
Zhao (C9CS00504H-(cit64)/*[position()=1]) 2015; 6
Wang (C9CS00504H-(cit273)/*[position()=1]) 2019; 5
Li (C9CS00504H-(cit128)/*[position()=1]) 2020; 142
Kwon (C9CS00504H-(cit26)/*[position()=1]) 2020; 7
Gruverman (C9CS00504H-(cit92)/*[position()=1]) 2006; 41
Lefki (C9CS00504H-(cit250)/*[position()=1]) 1994; 76
Wang (C9CS00504H-(cit20)/*[position()=1]) 2020; 32
Tang (C9CS00504H-(cit73)/*[position()=1]) 2019; 31
Caspari (C9CS00504H-(cit255)/*[position()=1]) 1950; 80
Garcia (C9CS00504H-(cit118)/*[position()=1]) 2009; 460
Ai (C9CS00504H-(cit167)/*[position()=1]) 2019; 141
Liu (C9CS00504H-(cit234)/*[position()=1]) 2009; 103
Huang (C9CS00504H-(cit142)/*[position()=1]) 2017; 2
Kim (C9CS00504H-(cit28)/*[position()=1]) 2017; 7
Alsubaie (C9CS00504H-(cit62)/*[position()=1]) 2018; 10
Morozovska (C9CS00504H-(cit156)/*[position()=1]) 2016
Vasudevan (C9CS00504H-(cit224)/*[position()=1]) 2017; 4
Fiebig (C9CS00504H-(cit140)/*[position()=1]) 2005; 38
Chen (C9CS00504H-(cit270)/*[position()=1]) 2020; 142
Uršič (C9CS00504H-(cit44)/*[position()=1]) 2019; 475
Liao (C9CS00504H-(cit254)/*[position()=1]) 2019; 363
Qiu (C9CS00504H-(cit227)/*[position()=1]) 2020; 577
Kutes (C9CS00504H-(cit63)/*[position()=1]) 2014; 5
Yang (C9CS00504H-(cit188)/*[position()=1]) 2019; 141
Zhang (C9CS00504H-(cit134)/*[position()=1]) 2018; 57
Zhang (C9CS00504H-(cit19)/*[position()=1]) 2020; 142
Liao (C9CS00504H-(cit179)/*[position()=1]) 2018; 140
Xu (C9CS00504H-(cit191)/*[position()=1]) 2017; 139
Rossler (C9CS00504H-(cit154)/*[position()=1]) 2006; 442
Guo (C9CS00504H-(cit258)/*[position()=1]) 2000; 84
Zhang (C9CS00504H-(cit120)/*[position()=1]) 2017; 3
Chanthbouala (C9CS00504H-(cit69)/*[position()=1]) 2012; 11
Jungk (C9CS00504H-(cit52)/*[position()=1]) 2009; 11
Rao (C9CS00504H-(cit82)/*[position()=1]) 2007; 90
Zielinski (C9CS00504H-(cit168)/*[position()=1]) 1990; 11
Catalan (C9CS00504H-(cit91)/*[position()=1]) 2012; 84
Soergel (C9CS00504H-(cit36)/*[position()=1]) 2005; 81
Butt (C9CS00504H-(cit42)/*[position()=1]) 2005; 59
Long (C9CS00504H-(cit141)/*[position()=1]) 2020; 367
Gao (C9CS00504H-(cit18)/*[position()=1]) 2020; 142
Fu (C9CS00504H-(cit94)/*[position()=1]) 2013; 339
Du (C9CS00504H-(cit106)/*[position()=1]) 2017; 56
Zheludev (C9CS00504H-(cit170)/*[position()=1]) 1971
Rodriguez (C9CS00504H-(cit225)/*[position()=1]) 2005; 86
Ok (C9CS00504H-(cit244)/*[position()=1]) 2006; 35
Sluka (C9CS00504H-(cit83)/*[position()=1]) 2012; 3
Kim (C9CS00504H-(cit122)/*[position()=1]) 2012; 2
Cheong (C9CS00504H-(cit86)/*[position()=1]) 2007; 6
Qiao (C9CS00504H-(cit58)/*[position()=1]) 2020; 116
Shur (C9CS00504H-(cit77)/*[position()=1]) 2015; 2
Eng (C9CS00504H-(cit200)/*[position()=1]) 1999; 74
Liu (C9CS00504H-(cit135)/*[position()=1]) 2018; 30
Röhm (C9CS00504H-(cit112)/*[position()=1]) 2019; 31
Even (C9CS00504H-(cit124)/*[position()=1]) 2014; 15
Johann (C9CS00504H-(cit55)/*[position()=1]) 2010; 97
Liao (C9CS00504H-(cit105)/*[position()=1]) 2015; 6
Zheng (C9CS00504H-(cit159)/*[position()=1]) 2017; 80
Li (C9CS00504H-(cit219)/*[position()=1]) 2005; 4
Yan (C9CS00504H-(cit268)/*[position()=1]) 2013; 102
Newnham (C9CS00504H-(cit269)/*[position()=1]) 1980; 2
Zhang (C9CS00504H-(cit107)/*[position()=1]) 2020; 142
Choi (C9CS00504H-(cit209)/*[position()=1]) 2004; 306
Ji (C9CS00504H-(cit132)/*[position()=1]) 2020; 30
Wang (C9CS00504H-(cit138)/*[position()=1]) 2019; 141
Tressler (C9CS00504H-(cit263)/*[position()=1]) 1998; 2
Lee (C9CS00504H-(cit33)/*[position()=1]) 2012; 338
Pan (C9CS00504H-(cit201)/*[position()=1]) 2019; 365
Anderson (C9CS00504H-(cit243)/*[position()=1]) 1981; 32
Horiuchi (C9CS00504H-(cit14)/*[position()=1]) 2008; 7
Steffes (C9CS00504H-(cit214)/*[position()=1]) 2019
References_xml – issn: 2000
  publication-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
  doi: Nye
– issn: 1971
  publication-title: Solid State Physics
  doi: Zheludev
– issn: 2007
  publication-title: Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy
  doi: Kholkin Kalinin Roelofs Gruverman
– issn: 2000
  publication-title: Ferroelectric Memories
  doi: Scott
– issn: 1976
  publication-title: An introduction to the physics of ferroelectrics
  doi: Mitsui Tatsuzaki Nakamura
– issn: 2007
  publication-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale
  doi: Kalinin Gruverman
– issn: 2016
  publication-title: Topological Defects in Ferroic Materials
  doi: Morozovska Eliseev Kalinin
– issn: 2010
  publication-title: Symmetry, Group Theory, and the Physical Properties of Crystals
  doi: Powell
– issn: 1971
  end-page: p 429-464
  publication-title: Solid State Physics
  doi: Zheludev
– volume: 105
  start-page: 197603
  year: 2010
  ident: C9CS00504H-(cit88)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.197603
– volume: 463
  start-page: 789
  year: 2010
  ident: C9CS00504H-(cit16)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08731
– volume: 72
  start-page: 5999
  year: 1992
  ident: C9CS00504H-(cit206)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351910
– volume: 138
  start-page: 15784
  year: 2016
  ident: C9CS00504H-(cit182)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10595
– volume: 32
  start-page: 2003530
  year: 2020
  ident: C9CS00504H-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003530
– volume: 142
  start-page: 12486
  year: 2020
  ident: C9CS00504H-(cit108)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05372
– volume: 139
  start-page: 10897
  year: 2017
  ident: C9CS00504H-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06013
– volume: 29
  start-page: 1805038
  year: 2019
  ident: C9CS00504H-(cit131)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805038
– volume: 96
  start-page: 163101
  year: 2010
  ident: C9CS00504H-(cit53)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3327831
– volume: 102
  start-page: 061901
  year: 2013
  ident: C9CS00504H-(cit246)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4791573
– volume: 98
  start-page: 978
  year: 1955
  ident: C9CS00504H-(cit76)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.98.978
– volume: 142
  start-page: 10212
  year: 2020
  ident: C9CS00504H-(cit109)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03710
– volume: 140
  start-page: 3975
  year: 2018
  ident: C9CS00504H-(cit179)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12524
– volume: 80
  start-page: 4606
  year: 2002
  ident: C9CS00504H-(cit247)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1487901
– volume: 31
  start-page: 1903848
  year: 2019
  ident: C9CS00504H-(cit126)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903848
– volume: 31
  start-page: 1902163
  year: 2019
  ident: C9CS00504H-(cit73)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902163
– volume: 59
  start-page: 17477
  year: 2020
  ident: C9CS00504H-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007660
– volume: 80
  start-page: 1082
  year: 1950
  ident: C9CS00504H-(cit255)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.80.1082
– volume: 4
  start-page: 776
  year: 2005
  ident: C9CS00504H-(cit219)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1485
– volume: 11
  start-page: 033029
  year: 2009
  ident: C9CS00504H-(cit52)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/3/033029
– volume: 3
  start-page: 868
  year: 2004
  ident: C9CS00504H-(cit115)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1257
– volume: 7
  start-page: 351
  year: 2012
  ident: C9CS00504H-(cit231)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.69
– volume: 95
  start-page: 072901
  year: 2009
  ident: C9CS00504H-(cit24)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3207751
– volume: 105
  start-page: 1171
  year: 2005
  ident: C9CS00504H-(cit43)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030076o
– volume: 38
  start-page: R123
  year: 2005
  ident: C9CS00504H-(cit140)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/8/R01
– volume: 357
  start-page: 306
  year: 2017
  ident: C9CS00504H-(cit95)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aai8535
– volume: 4
  start-page: 408
  year: 2012
  ident: C9CS00504H-(cit253)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C1NR11099C
– volume: 2
  start-page: 591
  year: 2012
  ident: C9CS00504H-(cit122)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 17
  start-page: 1087
  year: 2018
  ident: C9CS00504H-(cit149)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0204-4
– volume: 358
  start-page: 136
  year: 1992
  ident: C9CS00504H-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 5
  start-page: 143
  year: 2010
  ident: C9CS00504H-(cit136)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.451
– volume: 10
  start-page: 1661
  year: 2019
  ident: C9CS00504H-(cit61)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09650-8
– volume: 28
  start-page: 2579
  year: 2016
  ident: C9CS00504H-(cit127)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505224
– volume: 103
  start-page: 257602
  year: 2009
  ident: C9CS00504H-(cit234)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.257602
– volume: 57
  start-page: 526
  year: 2018
  ident: C9CS00504H-(cit134)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709588
– volume: 10
  start-page: 11768
  year: 2018
  ident: C9CS00504H-(cit62)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01711
– volume: 118
  start-page: 072013
  year: 2015
  ident: C9CS00504H-(cit65)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4927811
– volume: 141
  start-page: 7693
  year: 2019
  ident: C9CS00504H-(cit138)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02558
– volume: 6
  start-page: 1155
  year: 2015
  ident: C9CS00504H-(cit103)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00389
– volume-title: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale
  year: 2007
  ident: C9CS00504H-(cit256)/*[position()=1]
  doi: 10.1007/978-0-387-28668-6
– volume: 84
  start-page: 175
  year: 2000
  ident: C9CS00504H-(cit196)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.175
– volume: 475
  start-page: 20180782
  year: 2019
  ident: C9CS00504H-(cit44)/*[position()=1]
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2018.0782
– volume: 5
  start-page: 444
  year: 2018
  ident: C9CS00504H-(cit266)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00097B
– volume: 122
  start-page: 044103
  year: 2017
  ident: C9CS00504H-(cit157)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4996350
– volume-title: Solid State Physics
  year: 1971
  ident: C9CS00504H-(cit170)/*[position()=1]
– volume: 2
  start-page: 17004
  year: 2017
  ident: C9CS00504H-(cit142)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.4
– volume: 53
  start-page: 11232
  year: 2014
  ident: C9CS00504H-(cit123)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406466
– volume: 7
  start-page: 1901391
  year: 2020
  ident: C9CS00504H-(cit26)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901391
– volume: 84
  start-page: 119
  year: 2012
  ident: C9CS00504H-(cit91)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.119
– volume: 7
  start-page: 2412
  year: 2016
  ident: C9CS00504H-(cit98)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00803
– volume: 331
  start-page: 1420
  year: 2011
  ident: C9CS00504H-(cit150)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200605
– volume: 1
  start-page: 3
  year: 2015
  ident: C9CS00504H-(cit50)/*[position()=1]
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2015.03.001
– volume: 2
  start-page: 257
  year: 1998
  ident: C9CS00504H-(cit263)/*[position()=1]
  publication-title: J. Electroceram.
  doi: 10.1023/A:1009926623551
– volume: 11
  start-page: 179
  year: 1990
  ident: C9CS00504H-(cit168)/*[position()=1]
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(90)90007-Z
– volume: 474
  start-page: 128
  year: 2015
  ident: C9CS00504H-(cit229)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2015.997146
– volume: 61
  start-page: 1267
  year: 1998
  ident: C9CS00504H-(cit97)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/61/9/002
– volume: 18
  start-page: 188
  year: 2019
  ident: C9CS00504H-(cit202)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0301-z
– volume: 413
  start-page: 238
  year: 2011
  ident: C9CS00504H-(cit37)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2011.554269
– volume: 116
  start-page: 172901
  year: 2020
  ident: C9CS00504H-(cit58)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0004532
– volume: 32
  start-page: 13
  year: 1981
  ident: C9CS00504H-(cit243)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150198108238667
– volume: 442
  start-page: 759
  year: 2006
  ident: C9CS00504H-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05023
– volume: 2
  start-page: 1600038
  year: 2016
  ident: C9CS00504H-(cit222)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600038
– volume: 27
  start-page: 1274
  year: 2015
  ident: C9CS00504H-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405027
– volume: 58
  start-page: 8857
  year: 2019
  ident: C9CS00504H-(cit189)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904305
– volume: 118
  start-page: 147601
  year: 2017
  ident: C9CS00504H-(cit143)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.147601
– volume: 4
  start-page: 021302
  year: 2017
  ident: C9CS00504H-(cit224)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4979015
– volume: 49
  start-page: 3423
  year: 2020
  ident: C9CS00504H-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00811J
– volume: 2
  start-page: 43
  year: 2003
  ident: C9CS00504H-(cit59)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat800
– volume: 28
  start-page: 1706895
  year: 2018
  ident: C9CS00504H-(cit264)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706895
– volume: 31
  start-page: 1901843
  year: 2019
  ident: C9CS00504H-(cit176)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901843
– volume: 246
  start-page: 1400
  year: 1989
  ident: C9CS00504H-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.246.4936.1400
– volume: 102
  start-page: 7710
  year: 2019
  ident: C9CS00504H-(cit226)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16667
– volume: 142
  start-page: 4756
  year: 2020
  ident: C9CS00504H-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13291
– volume: 137
  start-page: 10456
  year: 2015
  ident: C9CS00504H-(cit99)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04503
– volume: 451
  start-page: 545
  year: 2008
  ident: C9CS00504H-(cit259)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06459
– volume: 2
  start-page: 256
  year: 2011
  ident: C9CS00504H-(cit89)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1261
– volume: 4
  start-page: 587
  year: 2004
  ident: C9CS00504H-(cit251)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl035198a
– volume: 88
  start-page: 062908
  year: 2006
  ident: C9CS00504H-(cit223)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2172216
– volume: 361
  start-page: 151
  year: 2018
  ident: C9CS00504H-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aas9330
– volume: 31
  start-page: 1902099
  year: 2019
  ident: C9CS00504H-(cit90)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902099
– volume: 299
  start-page: 1719
  year: 2003
  ident: C9CS00504H-(cit274)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1080615
– volume: 8
  start-page: 14934
  year: 2017
  ident: C9CS00504H-(cit198)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14934
– volume: 26
  start-page: 1405
  year: 2014
  ident: C9CS00504H-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304308
– volume: 4
  start-page: 417
  year: 2011
  ident: C9CS00504H-(cit34)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma4020417
– volume-title: An introduction to the physics of ferroelectrics
  year: 1976
  ident: C9CS00504H-(cit93)/*[position()=1]
– volume: 140
  start-page: 8198
  year: 2018
  ident: C9CS00504H-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03235
– volume: 112
  start-page: 247603
  year: 2014
  ident: C9CS00504H-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.247603
– volume: 59
  start-page: 3933
  year: 2020
  ident: C9CS00504H-(cit137)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915094
– volume: 142
  start-page: 1077
  year: 2020
  ident: C9CS00504H-(cit270)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12368
– volume: 39
  start-page: 683
  year: 2014
  ident: C9CS00504H-(cit238)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.07.006
– volume: 56
  start-page: 9291
  year: 2017
  ident: C9CS00504H-(cit106)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01094
– volume: 76
  start-page: 1764
  year: 1994
  ident: C9CS00504H-(cit250)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.357693
– volume: 6
  start-page: 2622
  year: 2015
  ident: C9CS00504H-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01017
– volume: 338
  start-page: 643
  year: 2012
  ident: C9CS00504H-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 75
  start-page: 12
  year: 2002
  ident: C9CS00504H-(cit249)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(02)00023-8
– volume: 1
  start-page: 061601
  year: 2008
  ident: C9CS00504H-(cit25)/*[position()=1]
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.1.061601
– volume: 348
  start-page: 547
  year: 2015
  ident: C9CS00504H-(cit147)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1259869
– volume: 142
  start-page: 13989
  year: 2020
  ident: C9CS00504H-(cit160)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06936
– volume: 306
  start-page: 1005
  year: 2004
  ident: C9CS00504H-(cit209)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1103218
– volume: 139
  start-page: 1319
  year: 2017
  ident: C9CS00504H-(cit183)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12377
– volume: 12
  start-page: 617
  year: 2013
  ident: C9CS00504H-(cit119)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3649
– volume: 44
  start-page: 464003
  year: 2011
  ident: C9CS00504H-(cit49)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/46/464003
– volume: 92
  start-page: 2674
  year: 2002
  ident: C9CS00504H-(cit245)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1497699
– volume: 460
  start-page: 81
  year: 2009
  ident: C9CS00504H-(cit118)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08128
– volume: 353
  start-page: 239
  year: 1991
  ident: C9CS00504H-(cit47)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/353239a0
– volume: 26
  start-page: 4515
  year: 2014
  ident: C9CS00504H-(cit174)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400806
– volume: 432
  start-page: 84
  year: 2004
  ident: C9CS00504H-(cit13)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature03028
– volume-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
  year: 2000
  ident: C9CS00504H-(cit197)/*[position()=1]
– volume: 102
  start-page: 042903
  year: 2013
  ident: C9CS00504H-(cit268)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789854
– volume: 34
  start-page: 648
  year: 2009
  ident: C9CS00504H-(cit51)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs2009.176
– volume: 543
  start-page: 148808
  year: 2021
  ident: C9CS00504H-(cit56)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148808
– volume: 380
  start-page: 141
  year: 1996
  ident: C9CS00504H-(cit116)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/380141a0
– volume: 15
  start-page: 3733
  year: 2014
  ident: C9CS00504H-(cit124)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402428
– volume: 17
  start-page: 475
  year: 1921
  ident: C9CS00504H-(cit9)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.17.475
– volume: 90
  start-page: 182906
  year: 2007
  ident: C9CS00504H-(cit82)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2736276
– volume: 151
  start-page: 143
  year: 1994
  ident: C9CS00504H-(cit161)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150199408244735
– volume: 7
  start-page: 13635
  year: 2016
  ident: C9CS00504H-(cit184)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13635
– volume: 35
  start-page: 710
  year: 2006
  ident: C9CS00504H-(cit244)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b511119f
– volume: 20
  start-page: 1924
  year: 2010
  ident: C9CS00504H-(cit79)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000284
– volume: 76
  start-page: 024116
  year: 2007
  ident: C9CS00504H-(cit275)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.024116
– volume: 80
  start-page: 086501
  year: 2017
  ident: C9CS00504H-(cit159)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa5e03
– volume: 87
  start-page: 082902
  year: 2005
  ident: C9CS00504H-(cit60)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2010605
– volume: 9
  start-page: 1127
  year: 2009
  ident: C9CS00504H-(cit158)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8036646
– volume-title: Solid State Physics
  year: 1971
  ident: C9CS00504H-(cit164)/*[position()=1]
– volume: 577
  start-page: 350
  year: 2020
  ident: C9CS00504H-(cit227)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1891-y
– volume: 114
  start-page: 152901
  year: 2019
  ident: C9CS00504H-(cit66)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5090591
– volume: 11
  start-page: 11739
  year: 2017
  ident: C9CS00504H-(cit121)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07090
– volume: 530
  start-page: 198
  year: 2016
  ident: C9CS00504H-(cit152)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature16463
– volume: 50
  start-page: 435
  year: 2017
  ident: C9CS00504H-(cit2)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00541
– volume: 97
  start-page: 102902
  year: 2010
  ident: C9CS00504H-(cit55)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3486226
– volume: 142
  start-page: 4604
  year: 2020
  ident: C9CS00504H-(cit178)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00375
– volume: 101
  start-page: 192902
  year: 2012
  ident: C9CS00504H-(cit213)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4764939
– volume: 394
  start-page: 539
  year: 1998
  ident: C9CS00504H-(cit46)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/28998
– volume: 6
  start-page: 13
  year: 2007
  ident: C9CS00504H-(cit86)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1804
– volume: 426
  start-page: 55
  year: 2003
  ident: C9CS00504H-(cit139)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02018
– volume: 11
  start-page: 642
  year: 2018
  ident: C9CS00504H-(cit276)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1669-1
– volume: 116
  start-page: 5878
  year: 2019
  ident: C9CS00504H-(cit173)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1817866116
– volume: 119
  start-page: 207602
  year: 2017
  ident: C9CS00504H-(cit187)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.207602
– volume: 86
  start-page: 012906
  year: 2005
  ident: C9CS00504H-(cit225)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1845594
– volume-title: Topological Defects in Ferroic Materials
  year: 2016
  ident: C9CS00504H-(cit156)/*[position()=1]
– volume: 10
  start-page: 524
  year: 2010
  ident: C9CS00504H-(cit230)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl903377u
– volume: 142
  start-page: 1995
  year: 2020
  ident: C9CS00504H-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11665
– volume: 3
  start-page: 748
  year: 2012
  ident: C9CS00504H-(cit83)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1751
– volume: 142
  start-page: 1159
  year: 2020
  ident: C9CS00504H-(cit128)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11341
– volume: 2
  start-page: 404
  year: 2011
  ident: C9CS00504H-(cit146)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1413
– volume: 141
  start-page: 18334
  year: 2019
  ident: C9CS00504H-(cit125)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10048
– volume: 68
  start-page: 2300
  year: 1996
  ident: C9CS00504H-(cit208)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116170
– volume: 108
  start-page: 27010
  year: 2014
  ident: C9CS00504H-(cit67)/*[position()=1]
  publication-title: EPL
  doi: 10.1209/0295-5075/108/27010
– volume: 26
  start-page: 293
  year: 2014
  ident: C9CS00504H-(cit87)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303567
– volume: 23
  start-page: 5658
  year: 2011
  ident: C9CS00504H-(cit193)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102938
– volume: 142
  start-page: 4925
  year: 2020
  ident: C9CS00504H-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00371
– volume: 7
  start-page: 101
  year: 2012
  ident: C9CS00504H-(cit68)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.213
– volume: 37
  start-page: 3751
  year: 1988
  ident: C9CS00504H-(cit144)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.3751
– volume: 118
  start-page: 197601
  year: 2017
  ident: C9CS00504H-(cit216)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.197601
– volume: 100
  start-page: 236104
  year: 2008
  ident: C9CS00504H-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.236104
– volume: 8
  start-page: 62
  year: 2009
  ident: C9CS00504H-(cit204)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2339
– volume: 65
  start-page: 124
  year: 2014
  ident: C9CS00504H-(cit81)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.03.006
– volume: 42
  start-page: 921
  year: 1954
  ident: C9CS00504H-(cit248)/*[position()=1]
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1954.274752
– volume: 30
  start-page: 1905529
  year: 2020
  ident: C9CS00504H-(cit132)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905529
– volume: 442
  start-page: 797
  year: 2006
  ident: C9CS00504H-(cit154)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05056
– volume: 2
  start-page: 040604
  year: 2015
  ident: C9CS00504H-(cit77)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4928591
– volume: 30
  start-page: 1801619
  year: 2018
  ident: C9CS00504H-(cit135)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801619
– volume: 48
  start-page: 517
  year: 2019
  ident: C9CS00504H-(cit130)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00563J
– volume: 81
  start-page: 729
  year: 2005
  ident: C9CS00504H-(cit36)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-005-1989-9
– volume: 140
  start-page: 8110
  year: 2018
  ident: C9CS00504H-(cit180)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05037
– volume: 401
  start-page: 682
  year: 1999
  ident: C9CS00504H-(cit203)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/44352
– volume: 12
  start-page: 5697
  year: 2012
  ident: C9CS00504H-(cit70)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl302912t
– volume: 441
  start-page: 956
  year: 2006
  ident: C9CS00504H-(cit236)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04854
– volume: 363
  start-page: 1206
  year: 2019
  ident: C9CS00504H-(cit254)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aav3057
– volume: 7
  start-page: 41657
  year: 2017
  ident: C9CS00504H-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep41657
– volume: 88
  start-page: 2663
  year: 2005
  ident: C9CS00504H-(cit233)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00671.x
– volume: 3
  start-page: e1701008
  year: 2017
  ident: C9CS00504H-(cit120)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701008
– volume: 29
  start-page: 1700831
  year: 2017
  ident: C9CS00504H-(cit186)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700831
– volume: 129
  start-page: 051101
  year: 2021
  ident: C9CS00504H-(cit54)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0038744
– volume: 23
  start-page: 5377
  year: 2011
  ident: C9CS00504H-(cit72)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102254
– volume: 5
  start-page: 17
  year: 2019
  ident: C9CS00504H-(cit273)/*[position()=1]
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0157-4
– volume: 31
  start-page: 1806661
  year: 2019
  ident: C9CS00504H-(cit112)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806661
– volume: 17
  start-page: 349
  year: 2018
  ident: C9CS00504H-(cit242)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0034-4
– volume: 8
  start-page: 81
  year: 2011
  ident: C9CS00504H-(cit153)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2132
– volume: 59
  start-page: 1
  year: 2005
  ident: C9CS00504H-(cit42)/*[position()=1]
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2005.08.003
– volume: 31
  start-page: 1808088
  year: 2019
  ident: C9CS00504H-(cit74)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808088
– volume: 141
  start-page: 4474
  year: 2019
  ident: C9CS00504H-(cit167)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00886
– volume: 100
  start-page: 195
  year: 1989
  ident: C9CS00504H-(cit166)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150198908007915
– volume: 84
  start-page: 1343
  year: 2012
  ident: C9CS00504H-(cit252)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.1343
– volume: 577
  start-page: 325
  year: 2020
  ident: C9CS00504H-(cit228)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/d41586-020-00038-z
– volume: 6
  start-page: 693
  year: 2015
  ident: C9CS00504H-(cit271)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502666j
– volume-title: Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy
  year: 2007
  ident: C9CS00504H-(cit218)/*[position()=1]
– volume: 347
  start-page: 106
  year: 1999
  ident: C9CS00504H-(cit199)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(98)01727-1
– volume: 59
  start-page: 3495
  year: 2020
  ident: C9CS00504H-(cit177)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914193
– volume: 140
  start-page: 8051
  year: 2018
  ident: C9CS00504H-(cit96)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04600
– volume: 9
  start-page: 3539
  year: 2009
  ident: C9CS00504H-(cit205)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl901754t
– volume: 65
  start-page: 125408
  year: 2002
  ident: C9CS00504H-(cit27)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.125408
– volume: 365
  start-page: 578
  year: 2019
  ident: C9CS00504H-(cit201)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaw8109
– volume: 142
  start-page: 9634
  year: 2020
  ident: C9CS00504H-(cit262)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 1906224
  year: 2020
  ident: C9CS00504H-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906224
– volume: 11
  start-page: 860
  year: 2012
  ident: C9CS00504H-(cit69)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3415
– volume: 20
  start-page: 342201
  year: 2008
  ident: C9CS00504H-(cit148)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 56
  start-page: 930
  year: 1986
  ident: C9CS00504H-(cit41)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.930
– volume: 27
  start-page: 3942
  year: 2015
  ident: C9CS00504H-(cit195)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501026
– volume: 17
  start-page: 1721
  year: 2017
  ident: C9CS00504H-(cit40)/*[position()=1]
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2017.09.014
– volume: 114
  start-page: E5504
  year: 2017
  ident: C9CS00504H-(cit104)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1702429114
– volume: 52
  start-page: 1928
  year: 2019
  ident: C9CS00504H-(cit29)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00677
– volume: 48
  start-page: 1531
  year: 2019
  ident: C9CS00504H-(cit111)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00614H
– volume: 9
  start-page: e342
  year: 2017
  ident: C9CS00504H-(cit113)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.193
– volume: 34
  start-page: 932
  year: 1984
  ident: C9CS00504H-(cit165)/*[position()=1]
  publication-title: Czech J. Phys.
  doi: 10.1007/BF01589823
– volume-title: Ferroelectric Memories
  year: 2000
  ident: C9CS00504H-(cit217)/*[position()=1]
  doi: 10.1007/978-3-662-04307-3
– volume: 5
  start-page: 9703
  year: 2011
  ident: C9CS00504H-(cit48)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 22
  start-page: 933
  year: 2010
  ident: C9CS00504H-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900759
– volume: 142
  start-page: 20208
  year: 2020
  ident: C9CS00504H-(cit107)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10686
– volume: 7
  start-page: e189
  year: 2015
  ident: C9CS00504H-(cit114)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2015.54
– volume-title: Symmetry, Group Theory, and the Physical Properties of Crystals
  year: 2010
  ident: C9CS00504H-(cit169)/*[position()=1]
  doi: 10.1007/978-1-4419-7598-0
– volume: 116
  start-page: 2413
  year: 2019
  ident: C9CS00504H-(cit214)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1806074116
– volume: 61
  start-page: 473
  year: 2016
  ident: C9CS00504H-(cit39)/*[position()=1]
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1156301
– volume: 32
  start-page: 191
  year: 2001
  ident: C9CS00504H-(cit207)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/S0927-796X(00)00032-2
– volume: 141
  start-page: 2623
  year: 2019
  ident: C9CS00504H-(cit133)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12948
– volume: 3
  start-page: e1700512
  year: 2017
  ident: C9CS00504H-(cit272)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700512
– volume: 8
  start-page: 946
  year: 2016
  ident: C9CS00504H-(cit220)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2567
– volume: 53
  start-page: 5064
  year: 2014
  ident: C9CS00504H-(cit171)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201400348
– volume: 334
  start-page: 968
  year: 2011
  ident: C9CS00504H-(cit221)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1206980
– volume: 493
  start-page: 172
  year: 2016
  ident: C9CS00504H-(cit38)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2016.1135694
– volume: 107
  start-page: 147601
  year: 2011
  ident: C9CS00504H-(cit194)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.147601
– volume: 3
  start-page: e1700919
  year: 2017
  ident: C9CS00504H-(cit145)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700919
– volume: 98
  start-page: 014109
  year: 2005
  ident: C9CS00504H-(cit235)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1957130
– volume: 5
  start-page: 3335
  year: 2014
  ident: C9CS00504H-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501697b
– volume: 141
  start-page: 4372
  year: 2019
  ident: C9CS00504H-(cit181)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13109
– volume: 30
  start-page: 1908657
  year: 2020
  ident: C9CS00504H-(cit102)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908657
– volume: 139
  start-page: 6369
  year: 2017
  ident: C9CS00504H-(cit191)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01334
– volume: 45
  start-page: 3811
  year: 2016
  ident: C9CS00504H-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00308C
– volume: 14
  start-page: 239
  year: 2014
  ident: C9CS00504H-(cit172)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl403828u
– volume: 568
  start-page: 368
  year: 2019
  ident: C9CS00504H-(cit155)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1092-8
– volume: 142
  start-page: 19698
  year: 2020
  ident: C9CS00504H-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09586
– volume: 365
  start-page: 914
  year: 2019
  ident: C9CS00504H-(cit151)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aau0968
– volume: 41
  start-page: 1045
  year: 2006
  ident: C9CS00504H-(cit163)/*[position()=1]
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.200610718
– volume: 113
  start-page: 187205
  year: 2013
  ident: C9CS00504H-(cit257)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801975
– volume: 560
  start-page: 174
  year: 2018
  ident: C9CS00504H-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/d41586-018-05807-5
– volume: 95
  start-page: 690
  year: 1954
  ident: C9CS00504H-(cit210)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.95.690
– volume: 41
  start-page: 107
  year: 2006
  ident: C9CS00504H-(cit92)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-5946-0
– volume: 142
  start-page: 6236
  year: 2020
  ident: C9CS00504H-(cit110)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00315
– volume: 139
  start-page: 13903
  year: 2017
  ident: C9CS00504H-(cit185)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07715
– volume: 92
  start-page: 1629
  year: 2009
  ident: C9CS00504H-(cit75)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03240.x
– volume: 142
  start-page: 15205
  year: 2020
  ident: C9CS00504H-(cit80)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07055
– volume: 142
  start-page: 9000
  year: 2020
  ident: C9CS00504H-(cit212)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02924
– volume: 97
  start-page: 012904
  year: 2010
  ident: C9CS00504H-(cit71)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3460286
– volume: 99
  start-page: 104102
  year: 2006
  ident: C9CS00504H-(cit211)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2197264
– volume: 48
  start-page: 1787
  year: 2019
  ident: C9CS00504H-(cit237)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00928G
– volume: 138
  start-page: 13175
  year: 2016
  ident: C9CS00504H-(cit190)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08817
– volume: 40
  start-page: 3577
  year: 2011
  ident: C9CS00504H-(cit22)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00226g
– volume: 3
  start-page: 1887
  year: 2018
  ident: C9CS00504H-(cit101)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00999
– volume: 60
  start-page: 15
  year: 1984
  ident: C9CS00504H-(cit267)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150198408017505
– volume: 6
  start-page: 21
  year: 2007
  ident: C9CS00504H-(cit85)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1805
– volume: 6
  start-page: 7338
  year: 2015
  ident: C9CS00504H-(cit105)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8338
– volume: 373
  start-page: 1
  year: 2008
  ident: C9CS00504H-(cit78)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150190802408457
– volume: 56
  start-page: 12150
  year: 2017
  ident: C9CS00504H-(cit129)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705836
– volume: 139
  start-page: 18071
  year: 2017
  ident: C9CS00504H-(cit260)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10449
– volume: 514
  start-page: 205
  year: 2014
  ident: C9CS00504H-(cit117)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13763
– volume: 2
  start-page: 93
  year: 1980
  ident: C9CS00504H-(cit269)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/0261-3069(80)90019-9
– volume: 28
  start-page: 6574
  year: 2016
  ident: C9CS00504H-(cit84)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600160
– volume: 140
  start-page: 12296
  year: 2018
  ident: C9CS00504H-(cit175)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08286
– volume: 74
  start-page: 233
  year: 1999
  ident: C9CS00504H-(cit200)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123266
– volume: 82
  start-page: 1804
  year: 1997
  ident: C9CS00504H-(cit265)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365983
– volume: 82
  start-page: 797
  year: 1999
  ident: C9CS00504H-(cit12)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb01840.x
– volume: 139
  start-page: 3954
  year: 2017
  ident: C9CS00504H-(cit192)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00492
– volume: 150
  start-page: 331
  year: 1993
  ident: C9CS00504H-(cit241)/*[position()=1]
  publication-title: Ferroelectrics
  doi: 10.1080/00150199308211451
– volume: 10
  start-page: 726
  year: 2010
  ident: C9CS00504H-(cit239)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl9040719
– volume: 10
  start-page: 950
  year: 2017
  ident: C9CS00504H-(cit100)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00420F
– volume: 27
  start-page: 6475
  year: 2015
  ident: C9CS00504H-(cit215)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502357
– volume: 339
  start-page: 425
  year: 2013
  ident: C9CS00504H-(cit94)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1229675
– volume: 2
  start-page: 697
  year: 2020
  ident: C9CS00504H-(cit261)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.12.008
– volume: 63
  start-page: 586
  year: 1984
  ident: C9CS00504H-(cit232)/*[position()=1]
  publication-title: Am. Ceram. Soc. Bull.
– volume: 112
  start-page: 1163
  year: 2012
  ident: C9CS00504H-(cit23)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200174w
– volume: 7
  start-page: 357
  year: 2008
  ident: C9CS00504H-(cit14)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2137
– volume: 367
  start-page: 671
  year: 2020
  ident: C9CS00504H-(cit141)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaz2795
– volume: 84
  start-page: 5423
  year: 2000
  ident: C9CS00504H-(cit258)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5423
– volume: 27
  start-page: 7832
  year: 2015
  ident: C9CS00504H-(cit162)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504019
– volume: 141
  start-page: 1781
  year: 2019
  ident: C9CS00504H-(cit188)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13223
– volume: 28
  start-page: 4283
  year: 2016
  ident: C9CS00504H-(cit240)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504299
SSID ssj0011762
Score 2.6143162
SecondaryResourceType review_article
Snippet With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8248
SubjectTerms atomic force microscopy
Crystallography
Design optimization
electronics
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
Ferroelectrics
mechanics
Microscopy
Nondestructive testing
optics
Physical properties
Piezoelectricity
spring
vigor
Title PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics
URI https://www.proquest.com/docview/2552972113
https://www.proquest.com/docview/2536801491
https://www.proquest.com/docview/2636456279
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYaAgODChQGK7dnycqpaCugKiFd0p8le0SqyZSnvZhX-d5zhOWjFNwCWqHMe13vvZfn5-_j2EXlPNrREqiw3hSez4S2KZmiS2mWQ4k0ZL6i44n03ZeE4_LfqLTufXTtTSdqPe6esb75X8j1ahDPTqbsn-g2abRqEAfoN-4Qkahudf6fjL6MxZiFdLe12ufbBrxeENY_XSBdq5KycgRBDM0oBhaapojSqw8DJkxX1b2PW69MlwQuB7IC4IXAIhsrNmLm0nrVV8vvXHG87tHMoXS1nGH2o_NDTSwO98W31RJ0Te-eK7XcZfAafuvpUsdx0ROHUeTtw6Iry7I_SoiiWpM9btTGnE-S-SOnDa-imXMgAJ9yyQYU72ZLQBe3Rnhs2wZ-YMqzX2GYD-WAkS4ohUtdAur3tCL9r1LpzxTz_no_lkks-Gi9kBOsScp_0uOjwdzj5OmoOolLP6IMp3PDDcEvG-bXvfpmk3KgfrkEWmslZm99G9epsRnXrMPEAdu3qI7jSyeoSmgJ3ozR5yogo5UYucE4-byOPGvY4a3ET7uHmM5qPhbDCO69wasQazZRNzt6-kwgpFaUG4pkWilFFcWo1hnGbC2L7IOC5soQXpFy7HWWK4YJmVTHBFjlB3Va7sExRZrYqCKGsxL2hipIJFgrOCSsOZxKLfQydBOrmuiedd_pMfeRUAQUQ-EINvlSTHPfSqqXvl6VZurHUchJzXw_FnDntj7KioUtJDL5vXIFV3AiZXtty6OoQ5uiSR3lKHuZN5hrnooSNQYNOPVt9Pb___Z-huOz6OUXez3trnYLpu1IsaXr8BoamdHQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFM+%28piezoresponse+force+microscopy%29-aided+design+for+molecular+ferroelectrics&rft.jtitle=Chemical+Society+reviews&rft.au=Han-Yue%2C+Zhang&rft.au=Xiao-Gang%2C+Chen&rft.au=Yuan-Yuan%2C+Tang&rft.au=Wei-Qiang+Liao&rft.date=2021-07-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=50&rft.issue=14&rft.spage=8248&rft.epage=8278&rft_id=info:doi/10.1039%2Fc9cs00504h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon