Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data

Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 111; no. 3; pp. 971 - 988
Main Authors Gu, Yu, Zeng, Donglin, Heiss, Gerardo, Lin, D Y
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2024
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0006-3444
1464-3510
DOI10.1093/biomet/asad073

Cover

Abstract Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
AbstractList Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
Author Lin, D Y
Heiss, Gerardo
Gu, Yu
Zeng, Donglin
Author_xml – sequence: 1
  givenname: Yu
  surname: Gu
  fullname: Gu, Yu
– sequence: 2
  givenname: Donglin
  surname: Zeng
  fullname: Zeng, Donglin
– sequence: 3
  givenname: Gerardo
  surname: Heiss
  fullname: Heiss, Gerardo
– sequence: 4
  givenname: D Y
  orcidid: 0000-0002-0150-3115
  surname: Lin
  fullname: Lin, D Y
  email: lin@bios.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39239267$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7LZ69SgDXvQw7cskmeycpBR_QcWLnkMmedNNTSZrkqn635t116IFEQIhvM_3vffN94QczXFGQp5SOKMwsPPRxYDlXGdtQbIHZEV5z1smKByRFQD0LeOcH5OTnG92z170j8gxG7p6erki7oP-7sISGu--oHebGG2Dubigi4tzM8XUZAxuq5Ouc5IzTcLrhDnvqiFa9Ln55sqmcXPBdKt9a3DOMaFtwuKLy0UXbKwu-jF5OGmf8cnhPiWf37z-dPmuvfr49v3lxVVrOGWlldXVJKduMNoATAKEsVIwPsoJRsNQ8HVvUXZmPU4dZWszrjV042AH1FLIkZ2SV_u-22UMaOs6JWmvtql6Sj9U1E79XZndRl3HW0Upk0yKvnZ4ceiQ4tel_oYKLhv0Xs8Yl6wYBdoxyoWo6PN76E1c0lz97SgGMHCASj37c6W7XX7HUIGzPWBSzDnhdIdQULuc1T5ndci5Cvg9gXHlV2TVkvP_lr3cy-Ky_d-In_01wVE
CitedBy_id crossref_primary_10_1111_sjos_12768
crossref_primary_10_1080_01621459_2024_2448858
crossref_primary_10_1002_sim_10079
Cites_doi 10.1002/9781118032985
10.1080/01621459.2000.10474219
10.1164/ajrccm.163.5.2101039
10.1212/WNL.41.7.1006
10.1002/sim.7604
10.1002/sim.1680
10.1007/978-1-4612-4348-9
10.1111/j.0006-341X.1999.00887.x
10.1093/biostatistics/kxz047
10.1111/j.0006-341X.2004.00188.x
10.1002/sim.4780130803
10.1093/biomet/asx029
10.1093/biostatistics/3.3.407
10.1016/j.jacc.2021.04.035
10.1214/12-EJS690
10.1093/biomet/asw013
10.1111/j.2517-6161.1976.tb01597.x
10.18637/jss.v038.i08
10.1111/j.0006-341X.1999.01228.x
10.1016/j.csda.2020.107057
10.1080/01621459.1985.10478195
10.1007/s10985-014-9310-z
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.1093/biomet/asad073
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 988
ExternalDocumentID PMC11373756
39239267
10_1093_biomet_asad073
10.1093/biomet/asad073
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL173128
– fundername: ;
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
8U8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWIL
ABAWQ
ABBHK
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPFR
ABPIB
ABPPZ
ABPQH
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABYWD
ABZBJ
ABZEO
ACBEA
ACFRR
ACGFO
ACGFS
ACGOD
ACHJO
ACIPB
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACUBG
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADMHC
ADNBA
ADOCK
ADODI
ADQBN
ADRDM
ADRTK
ADULT
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGKRT
AGLNM
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AIAGR
AIHAF
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
AS~
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
WH7
X7H
X7M
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c413t-7093f7f29cac00f505cd7534b7f0bc3e5486de72c8bf2138cb8a02b9d9ea757b3
ISSN 0006-3444
IngestDate Tue Sep 30 17:00:17 EDT 2025
Mon Sep 29 06:10:32 EDT 2025
Mon Jun 30 10:25:00 EDT 2025
Wed Sep 03 02:24:05 EDT 2025
Wed Oct 01 04:58:44 EDT 2025
Thu Apr 24 22:53:36 EDT 2025
Mon Jun 30 08:34:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multistate model
Nonparametric likelihood
Time-dependent covariate
Proportional intensity
Semiparametric efficiency
Transition probability
Random effect
EM algorithm
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-7093f7f29cac00f505cd7534b7f0bc3e5486de72c8bf2138cb8a02b9d9ea757b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0150-3115
PMID 39239267
PQID 3103009400
PQPubID 47813
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373756
proquest_miscellaneous_3101231455
proquest_journals_3103009400
pubmed_primary_39239267
crossref_primary_10_1093_biomet_asad073
crossref_citationtrail_10_1093_biomet_asad073
oup_primary_10_1093_biomet_asad073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biometrika
PublicationTitleAlternate Biometrika
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Lawless (2024090419282980000_asad073-B12) 2015; 21
Ma (2024090419282980000_asad073-B13) 2012; 6
Sutradhar (2024090419282980000_asad073-B22) 2008; 57
R Development Core Team (2024090419282980000_asad073-B18) 2024
Kalbfleisch (2024090419282980000_asad073-B9) 1985; 80
Wright (2024090419282980000_asad073-B24) 2021; 77
Satten (2024090419282980000_asad073-B21) 1999; 55
Zeng (2024090419282980000_asad073-B26) 2016; 103
Kalbfleisch (2024090419282980000_asad073-B10) 2002
Pauwels (2024090419282980000_asad073-B17) 2001; 163
Zeng (2024090419282980000_asad073-B25) 2017; 104
Saint-Pierre (2024090419282980000_asad073-B20) 2003; 22
Machado (2024090419282980000_asad073-B15) 2021; 153
Andersen (2024090419282980000_asad073-B1) 1993
Cook (2024090419282980000_asad073-B3) 2021; 22
Cook (2024090419282980000_asad073-B2) 2002; 3
Gentleman (2024090419282980000_asad073-B6) 1994; 13
Flicker (2024090419282980000_asad073-B5) 1991; 41
Knopman (2024090419282980000_asad073-B11) 2016; 2
Rudin (2024090419282980000_asad073-B19) 1973
Joly (2024090419282980000_asad073-B8) 1999; 55
Jackson (2024090419282980000_asad073-B7) 2011; 38
Machado (2024090419282980000_asad073-B14) 2018; 37
Turnbull (2024090419282980000_asad073-B23) 1976; 38
Cook (2024090419282980000_asad073-B4) 2004; 60
Murphy (2024090419282980000_asad073-B16) 2000; 95
References_xml – volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 2024090419282980000_asad073-B10
  doi: 10.1002/9781118032985
– volume: 95
  start-page: 449
  year: 2000
  ident: 2024090419282980000_asad073-B16
  article-title: On profile likelihood
  publication-title: J. Am. Statist. Assoc
  doi: 10.1080/01621459.2000.10474219
– volume: 163
  start-page: 1256
  year: 2001
  ident: 2024090419282980000_asad073-B17
  article-title: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary
  publication-title: Am. J. Respir. Crit. Care Med
  doi: 10.1164/ajrccm.163.5.2101039
– volume: 41
  start-page: 1006
  year: 1991
  ident: 2024090419282980000_asad073-B5
  article-title: Mild cognitive impairment in the elderly: predictors of dementia
  publication-title: Neurology
  doi: 10.1212/WNL.41.7.1006
– volume: 37
  start-page: 1636
  year: 2018
  ident: 2024090419282980000_asad073-B14
  article-title: Flexible multistate models for interval-censored data: specification, estimation, and an application to ageing research
  publication-title: Statist. Med
  doi: 10.1002/sim.7604
– volume: 22
  start-page: 3755
  year: 2003
  ident: 2024090419282980000_asad073-B20
  article-title: The analysis of asthma control under a Markov assumption with use of covariates
  publication-title: Statist. Med
  doi: 10.1002/sim.1680
– volume-title: Statistical Models Based on Counting Processes
  year: 1993
  ident: 2024090419282980000_asad073-B1
  doi: 10.1007/978-1-4612-4348-9
– volume: 55
  start-page: 887
  year: 1999
  ident: 2024090419282980000_asad073-B8
  article-title: A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to aids
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00887.x
– volume: 22
  start-page: 455
  year: 2021
  ident: 2024090419282980000_asad073-B3
  article-title: Independence conditions and the analysis of life history studies with intermittent observation
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxz047
– volume: 60
  start-page: 436
  year: 2004
  ident: 2024090419282980000_asad073-B4
  article-title: A conditional Markov model for clustered progressive multistate processes under incomplete observation
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00188.x
– volume: 13
  start-page: 805
  year: 1994
  ident: 2024090419282980000_asad073-B6
  article-title: Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease
  publication-title: Statist. Med
  doi: 10.1002/sim.4780130803
– volume: 104
  start-page: 505
  year: 2017
  ident: 2024090419282980000_asad073-B25
  article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asx029
– volume: 3
  start-page: 407
  year: 2002
  ident: 2024090419282980000_asad073-B2
  article-title: A generalized Mover-Stayer model for panel data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/3.3.407
– volume: 77
  start-page: 2939
  year: 2021
  ident: 2024090419282980000_asad073-B24
  article-title: The ARIC (Atherosclerosis Risk in Communities) Study: JACC focus seminar 3/8
  publication-title: J. Am. College Cardiol
  doi: 10.1016/j.jacc.2021.04.035
– volume: 6
  start-page: 710
  year: 2012
  ident: 2024090419282980000_asad073-B13
  article-title: Efficient distribution estimation for data with unobserved sub-population identifiers
  publication-title: Electron. J. Statist
  doi: 10.1214/12-EJS690
– volume: 57
  start-page: 553
  year: 2008
  ident: 2024090419282980000_asad073-B22
  article-title: Analysis of interval-censored data from clustered multistate processes: application to joint damage in psoriatic arthritis
  publication-title: Appl. Statist
– volume: 103
  start-page: 253
  year: 2016
  ident: 2024090419282980000_asad073-B26
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asw013
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2024
  ident: 2024090419282980000_asad073-B18
– volume: 38
  start-page: 290
  year: 1976
  ident: 2024090419282980000_asad073-B23
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– volume: 38
  start-page: 1
  year: 2011
  ident: 2024090419282980000_asad073-B7
  article-title: Multi-state models for panel data: the msm package for R
  publication-title: J. Statist. Software
  doi: 10.18637/jss.v038.i08
– volume: 55
  start-page: 1228
  year: 1999
  ident: 2024090419282980000_asad073-B21
  article-title: Estimating the extent of tracking in interval-censored chain-of-events data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.01228.x
– volume: 153
  start-page: 107057
  year: 2021
  ident: 2024090419282980000_asad073-B15
  article-title: Penalised maximum likelihood estimation in multi-state models for interval-censored data
  publication-title: Comp. Statist. Data Anal
  doi: 10.1016/j.csda.2020.107057
– volume: 2
  start-page: 1
  year: 2016
  ident: 2024090419282980000_asad073-B11
  article-title: Mild cognitive impairment and dementia prevalence: the Atherosclerosis Risk in Communities Neurocognitive Study
  publication-title: Alzheimer’s Dement.
– volume-title: Functional Analysis
  year: 1973
  ident: 2024090419282980000_asad073-B19
– volume: 80
  start-page: 863
  year: 1985
  ident: 2024090419282980000_asad073-B9
  article-title: The analysis of panel data under a Markov assumption
  publication-title: J. Am. Statist. Assoc
  doi: 10.1080/01621459.1985.10478195
– volume: 21
  start-page: 160
  year: 2015
  ident: 2024090419282980000_asad073-B12
  article-title: Estimation and assessment of Markov multistate models with intermittent observations on individuals
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-014-9310-z
SSID ssj0006656
Score 2.4632401
Snippet Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite...
Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 971
SubjectTerms Algorithms
Covariance matrix
Epidemiology
Mathematical models
Maximum likelihood estimation
Parameter estimation
Regression analysis
Regression models
Time dependence
Title Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data
URI https://www.ncbi.nlm.nih.gov/pubmed/39239267
https://www.proquest.com/docview/3103009400
https://www.proquest.com/docview/3101231455
https://pubmed.ncbi.nlm.nih.gov/PMC11373756
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1464-3510
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006656
  issn: 0006-3444
  databaseCode: AMVHM
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJ1BfEIyvjoEMQuJhypbGiZM8ThtQIYp42NDeIsexR7QmrWgiDX4JP5fr2HGSjc9JVVQlbqzmnFzfm9x7LkKvPDCKAeHEka6EAEVQ5kQRdR1G48ALBRV-qAqcFx_p_NR_fxacjUY_ellLdZXu8--_rCu5CaqwD3BVVbL_gaw9KeyA74AvbAFh2P4Txgt2mRd1sbfML8QybwSKlWhG0SUQbkSRK3XvQjXOUmLN5zrvtdQtcExtW94kPrKlwyGoXamM9CbPsCk22jPVa92rX1WwD2e7sAb9Xd0Y8to-hBbagByvVI2wZd9c5KZDuyp6zlbt_g9axuDYLAXmEYTn2xyr6k-ljQOzSx3ia6HHfaEtrU99VUbgDkyxMbx5P1Rf6yTeWW-NjnUrwGvmX0tjNcIFlVrkNixzdaeUHhvWRUMHcAzho3uBXJHc_rQ4ms1ISMKA3kJbHqwX7hhtHS4-zxd2lae06Qxs_5oVBCUHev4DM_sE3WmnGvg-g3rKXlhzNTu35-6c3EN3TZyCDzXp7qORKLfRbd259Ns2mqggRWt8P0C54SHueIg7HmKADQ95iDseYs1DrHiIr_EQdzzEiocP0enbNydHc8e08HA4eEeVE8L1kKH0Ys6460pwt3kGAbKfhtJNOREQL9NMhB6PUunNSMTTiLleGmexYGEQpuQRGperUjxBOJARI0JKRmnsw-9YFsiYuGBMRAZ-Np8ip724CTf69qrNyjLReRYk0bgkBpcpem3Hr7Wyy29HvgSs_jpot4UyMSZikzRN_JRCpTtFL-xhMODqrRwrxapuxoD3qPoFTNFjjbydqiXOFEUDTtgBShx-eKTMvzQi8S2Bd27-06do0t3tu2hcfa3FM3DBq_S5uRt-Ajwc51I
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+semiparametric+regression+models+with+interval-censored+multistate+data&rft.jtitle=Biometrika&rft.au=Gu%2C+Yu&rft.au=Zeng%2C+Donglin&rft.au=Heiss%2C+Gerardo&rft.au=Lin%2C+D+Y&rft.date=2024-09-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=111&rft.issue=3&rft.spage=971&rft.epage=988&rft_id=info:doi/10.1093%2Fbiomet%2Fasad073&rft_id=info%3Apmid%2F39239267&rft.externalDocID=PMC11373756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon