Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data
Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-...
Saved in:
| Published in | Biometrika Vol. 111; no. 3; pp. 971 - 988 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
01.09.2024
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-3444 1464-3510 |
| DOI | 10.1093/biomet/asad073 |
Cover
| Abstract | Summary
Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study. |
|---|---|
| AbstractList | Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study. Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study. Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study. |
| Author | Lin, D Y Heiss, Gerardo Gu, Yu Zeng, Donglin |
| Author_xml | – sequence: 1 givenname: Yu surname: Gu fullname: Gu, Yu – sequence: 2 givenname: Donglin surname: Zeng fullname: Zeng, Donglin – sequence: 3 givenname: Gerardo surname: Heiss fullname: Heiss, Gerardo – sequence: 4 givenname: D Y orcidid: 0000-0002-0150-3115 surname: Lin fullname: Lin, D Y email: lin@bios.unc.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39239267$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9rFDEUx4NU7LZ69SgDXvQw7cskmeycpBR_QcWLnkMmedNNTSZrkqn635t116IFEQIhvM_3vffN94QczXFGQp5SOKMwsPPRxYDlXGdtQbIHZEV5z1smKByRFQD0LeOcH5OTnG92z170j8gxG7p6erki7oP-7sISGu--oHebGG2Dubigi4tzM8XUZAxuq5Ouc5IzTcLrhDnvqiFa9Ln55sqmcXPBdKt9a3DOMaFtwuKLy0UXbKwu-jF5OGmf8cnhPiWf37z-dPmuvfr49v3lxVVrOGWlldXVJKduMNoATAKEsVIwPsoJRsNQ8HVvUXZmPU4dZWszrjV042AH1FLIkZ2SV_u-22UMaOs6JWmvtql6Sj9U1E79XZndRl3HW0Upk0yKvnZ4ceiQ4tel_oYKLhv0Xs8Yl6wYBdoxyoWo6PN76E1c0lz97SgGMHCASj37c6W7XX7HUIGzPWBSzDnhdIdQULuc1T5ndci5Cvg9gXHlV2TVkvP_lr3cy-Ky_d-In_01wVE |
| CitedBy_id | crossref_primary_10_1111_sjos_12768 crossref_primary_10_1080_01621459_2024_2448858 crossref_primary_10_1002_sim_10079 |
| Cites_doi | 10.1002/9781118032985 10.1080/01621459.2000.10474219 10.1164/ajrccm.163.5.2101039 10.1212/WNL.41.7.1006 10.1002/sim.7604 10.1002/sim.1680 10.1007/978-1-4612-4348-9 10.1111/j.0006-341X.1999.00887.x 10.1093/biostatistics/kxz047 10.1111/j.0006-341X.2004.00188.x 10.1002/sim.4780130803 10.1093/biomet/asx029 10.1093/biostatistics/3.3.407 10.1016/j.jacc.2021.04.035 10.1214/12-EJS690 10.1093/biomet/asw013 10.1111/j.2517-6161.1976.tb01597.x 10.18637/jss.v038.i08 10.1111/j.0006-341X.1999.01228.x 10.1016/j.csda.2020.107057 10.1080/01621459.1985.10478195 10.1007/s10985-014-9310-z |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com. The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com |
| Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com |
| DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 5PM |
| DOI | 10.1093/biomet/asad073 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology |
| EISSN | 1464-3510 |
| EndPage | 988 |
| ExternalDocumentID | PMC11373756 39239267 10_1093_biomet_asad073 10.1093/biomet/asad073 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL173128 – fundername: ; |
| GroupedDBID | -DZ -E4 -~X ..I .2P .55 .DC .GJ .I3 0R~ 1TH 23N 3R3 4.4 482 48X 53G 5GY 5RE 5VS 5WA 6J9 6OB 70D 79B 8U8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWIL ABAWQ ABBHK ABDFA ABDTM ABEJV ABEUO ABFAN ABGNP ABIME ABIXL ABJNI ABLJU ABNGD ABNKS ABPFR ABPIB ABPPZ ABPQH ABPQP ABPTD ABQLI ABSMQ ABVGC ABWST ABXSQ ABXVV ABYWD ABZBJ ABZEO ACBEA ACFRR ACGFO ACGFS ACGOD ACHJO ACIPB ACIWK ACMTB ACNCT ACPQN ACPRK ACTMH ACUBG ACUFI ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADLSF ADMHC ADNBA ADOCK ADODI ADQBN ADRDM ADRTK ADULT ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFIYH AFOFC AFRAH AFSHK AFVYC AFXHP AFYAG AGINJ AGKEF AGKRT AGLNM AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AIAGR AIHAF AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALRMG ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG AS~ ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DQDLB DSRWC DU5 D~K EBS ECEWR EE~ EJD ELUNK F5P F9B FEDTE FLIZI FLUFQ FOEOM FQBLK FVMVE GAUVT GJXCC H13 H5~ HAR HGD HQ6 HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI RNS ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TJP TN5 UAP WH7 X7H X7M XSW YAYTL YKOAZ YXANX ZCG ZGI ZKX ~02 ~91 AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 5PM |
| ID | FETCH-LOGICAL-c413t-7093f7f29cac00f505cd7534b7f0bc3e5486de72c8bf2138cb8a02b9d9ea757b3 |
| ISSN | 0006-3444 |
| IngestDate | Tue Sep 30 17:00:17 EDT 2025 Mon Sep 29 06:10:32 EDT 2025 Mon Jun 30 10:25:00 EDT 2025 Wed Sep 03 02:24:05 EDT 2025 Wed Oct 01 04:58:44 EDT 2025 Thu Apr 24 22:53:36 EDT 2025 Mon Jun 30 08:34:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multistate model Nonparametric likelihood Time-dependent covariate Proportional intensity Semiparametric efficiency Transition probability Random effect EM algorithm |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c413t-7093f7f29cac00f505cd7534b7f0bc3e5486de72c8bf2138cb8a02b9d9ea757b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0150-3115 |
| PMID | 39239267 |
| PQID | 3103009400 |
| PQPubID | 47813 |
| PageCount | 18 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373756 proquest_miscellaneous_3101231455 proquest_journals_3103009400 pubmed_primary_39239267 crossref_primary_10_1093_biomet_asad073 crossref_citationtrail_10_1093_biomet_asad073 oup_primary_10_1093_biomet_asad073 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Biometrika |
| PublicationTitleAlternate | Biometrika |
| PublicationYear | 2024 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Lawless (2024090419282980000_asad073-B12) 2015; 21 Ma (2024090419282980000_asad073-B13) 2012; 6 Sutradhar (2024090419282980000_asad073-B22) 2008; 57 R Development Core Team (2024090419282980000_asad073-B18) 2024 Kalbfleisch (2024090419282980000_asad073-B9) 1985; 80 Wright (2024090419282980000_asad073-B24) 2021; 77 Satten (2024090419282980000_asad073-B21) 1999; 55 Zeng (2024090419282980000_asad073-B26) 2016; 103 Kalbfleisch (2024090419282980000_asad073-B10) 2002 Pauwels (2024090419282980000_asad073-B17) 2001; 163 Zeng (2024090419282980000_asad073-B25) 2017; 104 Saint-Pierre (2024090419282980000_asad073-B20) 2003; 22 Machado (2024090419282980000_asad073-B15) 2021; 153 Andersen (2024090419282980000_asad073-B1) 1993 Cook (2024090419282980000_asad073-B3) 2021; 22 Cook (2024090419282980000_asad073-B2) 2002; 3 Gentleman (2024090419282980000_asad073-B6) 1994; 13 Flicker (2024090419282980000_asad073-B5) 1991; 41 Knopman (2024090419282980000_asad073-B11) 2016; 2 Rudin (2024090419282980000_asad073-B19) 1973 Joly (2024090419282980000_asad073-B8) 1999; 55 Jackson (2024090419282980000_asad073-B7) 2011; 38 Machado (2024090419282980000_asad073-B14) 2018; 37 Turnbull (2024090419282980000_asad073-B23) 1976; 38 Cook (2024090419282980000_asad073-B4) 2004; 60 Murphy (2024090419282980000_asad073-B16) 2000; 95 |
| References_xml | – volume-title: The Statistical Analysis of Failure Time Data year: 2002 ident: 2024090419282980000_asad073-B10 doi: 10.1002/9781118032985 – volume: 95 start-page: 449 year: 2000 ident: 2024090419282980000_asad073-B16 article-title: On profile likelihood publication-title: J. Am. Statist. Assoc doi: 10.1080/01621459.2000.10474219 – volume: 163 start-page: 1256 year: 2001 ident: 2024090419282980000_asad073-B17 article-title: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary publication-title: Am. J. Respir. Crit. Care Med doi: 10.1164/ajrccm.163.5.2101039 – volume: 41 start-page: 1006 year: 1991 ident: 2024090419282980000_asad073-B5 article-title: Mild cognitive impairment in the elderly: predictors of dementia publication-title: Neurology doi: 10.1212/WNL.41.7.1006 – volume: 37 start-page: 1636 year: 2018 ident: 2024090419282980000_asad073-B14 article-title: Flexible multistate models for interval-censored data: specification, estimation, and an application to ageing research publication-title: Statist. Med doi: 10.1002/sim.7604 – volume: 22 start-page: 3755 year: 2003 ident: 2024090419282980000_asad073-B20 article-title: The analysis of asthma control under a Markov assumption with use of covariates publication-title: Statist. Med doi: 10.1002/sim.1680 – volume-title: Statistical Models Based on Counting Processes year: 1993 ident: 2024090419282980000_asad073-B1 doi: 10.1007/978-1-4612-4348-9 – volume: 55 start-page: 887 year: 1999 ident: 2024090419282980000_asad073-B8 article-title: A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to aids publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00887.x – volume: 22 start-page: 455 year: 2021 ident: 2024090419282980000_asad073-B3 article-title: Independence conditions and the analysis of life history studies with intermittent observation publication-title: Biostatistics doi: 10.1093/biostatistics/kxz047 – volume: 60 start-page: 436 year: 2004 ident: 2024090419282980000_asad073-B4 article-title: A conditional Markov model for clustered progressive multistate processes under incomplete observation publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00188.x – volume: 13 start-page: 805 year: 1994 ident: 2024090419282980000_asad073-B6 article-title: Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease publication-title: Statist. Med doi: 10.1002/sim.4780130803 – volume: 104 start-page: 505 year: 2017 ident: 2024090419282980000_asad073-B25 article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data publication-title: Biometrika doi: 10.1093/biomet/asx029 – volume: 3 start-page: 407 year: 2002 ident: 2024090419282980000_asad073-B2 article-title: A generalized Mover-Stayer model for panel data publication-title: Biostatistics doi: 10.1093/biostatistics/3.3.407 – volume: 77 start-page: 2939 year: 2021 ident: 2024090419282980000_asad073-B24 article-title: The ARIC (Atherosclerosis Risk in Communities) Study: JACC focus seminar 3/8 publication-title: J. Am. College Cardiol doi: 10.1016/j.jacc.2021.04.035 – volume: 6 start-page: 710 year: 2012 ident: 2024090419282980000_asad073-B13 article-title: Efficient distribution estimation for data with unobserved sub-population identifiers publication-title: Electron. J. Statist doi: 10.1214/12-EJS690 – volume: 57 start-page: 553 year: 2008 ident: 2024090419282980000_asad073-B22 article-title: Analysis of interval-censored data from clustered multistate processes: application to joint damage in psoriatic arthritis publication-title: Appl. Statist – volume: 103 start-page: 253 year: 2016 ident: 2024090419282980000_asad073-B26 article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data publication-title: Biometrika doi: 10.1093/biomet/asw013 – volume-title: R: A Language and Environment for Statistical Computing year: 2024 ident: 2024090419282980000_asad073-B18 – volume: 38 start-page: 290 year: 1976 ident: 2024090419282980000_asad073-B23 article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1976.tb01597.x – volume: 38 start-page: 1 year: 2011 ident: 2024090419282980000_asad073-B7 article-title: Multi-state models for panel data: the msm package for R publication-title: J. Statist. Software doi: 10.18637/jss.v038.i08 – volume: 55 start-page: 1228 year: 1999 ident: 2024090419282980000_asad073-B21 article-title: Estimating the extent of tracking in interval-censored chain-of-events data publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.01228.x – volume: 153 start-page: 107057 year: 2021 ident: 2024090419282980000_asad073-B15 article-title: Penalised maximum likelihood estimation in multi-state models for interval-censored data publication-title: Comp. Statist. Data Anal doi: 10.1016/j.csda.2020.107057 – volume: 2 start-page: 1 year: 2016 ident: 2024090419282980000_asad073-B11 article-title: Mild cognitive impairment and dementia prevalence: the Atherosclerosis Risk in Communities Neurocognitive Study publication-title: Alzheimer’s Dement. – volume-title: Functional Analysis year: 1973 ident: 2024090419282980000_asad073-B19 – volume: 80 start-page: 863 year: 1985 ident: 2024090419282980000_asad073-B9 article-title: The analysis of panel data under a Markov assumption publication-title: J. Am. Statist. Assoc doi: 10.1080/01621459.1985.10478195 – volume: 21 start-page: 160 year: 2015 ident: 2024090419282980000_asad073-B12 article-title: Estimation and assessment of Markov multistate models with intermittent observations on individuals publication-title: Lifetime Data Anal doi: 10.1007/s10985-014-9310-z |
| SSID | ssj0006656 |
| Score | 2.4632401 |
| Snippet | Summary
Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite... Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 971 |
| SubjectTerms | Algorithms Covariance matrix Epidemiology Mathematical models Maximum likelihood estimation Parameter estimation Regression analysis Regression models Time dependence |
| Title | Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39239267 https://www.proquest.com/docview/3103009400 https://www.proquest.com/docview/3101231455 https://pubmed.ncbi.nlm.nih.gov/PMC11373756 |
| Volume | 111 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1464-3510 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0006656 issn: 0006-3444 databaseCode: AMVHM dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJ1BfEIyvjoEMQuJhypbGiZM8ThtQIYp42NDeIsexR7QmrWgiDX4JP5fr2HGSjc9JVVQlbqzmnFzfm9x7LkKvPDCKAeHEka6EAEVQ5kQRdR1G48ALBRV-qAqcFx_p_NR_fxacjUY_ellLdZXu8--_rCu5CaqwD3BVVbL_gaw9KeyA74AvbAFh2P4Txgt2mRd1sbfML8QybwSKlWhG0SUQbkSRK3XvQjXOUmLN5zrvtdQtcExtW94kPrKlwyGoXamM9CbPsCk22jPVa92rX1WwD2e7sAb9Xd0Y8to-hBbagByvVI2wZd9c5KZDuyp6zlbt_g9axuDYLAXmEYTn2xyr6k-ljQOzSx3ia6HHfaEtrU99VUbgDkyxMbx5P1Rf6yTeWW-NjnUrwGvmX0tjNcIFlVrkNixzdaeUHhvWRUMHcAzho3uBXJHc_rQ4ms1ISMKA3kJbHqwX7hhtHS4-zxd2lae06Qxs_5oVBCUHev4DM_sE3WmnGvg-g3rKXlhzNTu35-6c3EN3TZyCDzXp7qORKLfRbd259Ns2mqggRWt8P0C54SHueIg7HmKADQ95iDseYs1DrHiIr_EQdzzEiocP0enbNydHc8e08HA4eEeVE8L1kKH0Ys6460pwt3kGAbKfhtJNOREQL9NMhB6PUunNSMTTiLleGmexYGEQpuQRGperUjxBOJARI0JKRmnsw-9YFsiYuGBMRAZ-Np8ip724CTf69qrNyjLReRYk0bgkBpcpem3Hr7Wyy29HvgSs_jpot4UyMSZikzRN_JRCpTtFL-xhMODqrRwrxapuxoD3qPoFTNFjjbydqiXOFEUDTtgBShx-eKTMvzQi8S2Bd27-06do0t3tu2hcfa3FM3DBq_S5uRt-Ajwc51I |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+semiparametric+regression+models+with+interval-censored+multistate+data&rft.jtitle=Biometrika&rft.au=Gu%2C+Yu&rft.au=Zeng%2C+Donglin&rft.au=Heiss%2C+Gerardo&rft.au=Lin%2C+D+Y&rft.date=2024-09-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=111&rft.issue=3&rft.spage=971&rft.epage=988&rft_id=info:doi/10.1093%2Fbiomet%2Fasad073&rft_id=info%3Apmid%2F39239267&rft.externalDocID=PMC11373756 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon |