Theoretical insight of stabilities and optoelectronic properties of double perovskite Cs2CuIrF6: Ab-initio calculations

Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs 2 CuIrF 6 for device applications. From the structural optim...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 29; no. 6; p. 178
Main Authors Caid, Messaoud, Rached, Youcef, Rached, Djamel, Rached, Habib
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1610-2940
0948-5023
0948-5023
DOI10.1007/s00894-023-05588-3

Cover

Abstract Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs 2 CuIrF 6 for device applications. From the structural optimization results, the stability of DP (Cs 2 CuIrF 6 ) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs 2 CuIrF 6 is 0.72 eV (L V -X C ). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications. Methods The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
AbstractList CONTEXT: In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs₂CuIrF₆. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs₂CuIrF₆ for device applications. From the structural optimization results, the stability of DP (Cs₂CuIrF₆) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs₂CuIrF₆ is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications. METHODS: The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs 2 CuIrF 6 for device applications. From the structural optimization results, the stability of DP (Cs 2 CuIrF 6 ) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs 2 CuIrF 6 is 0.72 eV (L V -X C ). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications. Methods The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.CONTEXTIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.METHODSThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.MethodsThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
Abstract ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.MethodsThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.
ArticleNumber 178
Author Rached, Djamel
Rached, Youcef
Caid, Messaoud
Rached, Habib
Author_xml – sequence: 1
  givenname: Messaoud
  surname: Caid
  fullname: Caid, Messaoud
  email: caidmessa@yahoo.fr, said.messaoud@ens-bousaada.dz
  organization: Département de Physique, École Normale Supérieure de Bou Saâda, Laboratoire de Mathématiques et Physique Appliquées, École Normale Supérieure de Bou Saâda
– sequence: 2
  givenname: Youcef
  surname: Rached
  fullname: Rached, Youcef
  organization: Laboratoire d’Etudes Physique des Matériaux, Université des Sciences et de Technologies USTO-MB, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université Ahmed Ben Yahia El-Wancharisi Tissemsilt
– sequence: 3
  givenname: Djamel
  surname: Rached
  fullname: Rached, Djamel
  organization: Faculty of exact sciences, Magnetic Materials Laboratory (MML), Djillali Liabès University of Sidi-Bel-Abbes
– sequence: 4
  givenname: Habib
  surname: Rached
  fullname: Rached, Habib
  organization: Faculty of exact sciences, Magnetic Materials Laboratory (MML), Djillali Liabès University of Sidi-Bel-Abbes, Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef
BookMark eNqFkU9vFSEUxUlTE5-1X8AViRs3o5e_w7hrXmxt0sRNXROGYVpaCk9gNP32Zd4zMeniyQZy-Z3D4d536DSm6BD6QOAzAei_FAA18A4o60AIpTp2gjYwcNWJVjtFGyIJdHTg8Badl_IAAIQKKSjdoD-39y5lV701AftY_N19xWnGpZrRB1-9K9jECaddTS44W3OK3uJdTjuX97cNntIyBodbJf0uj746vC10u1znS_kVX4ydj80o4faEXYJpx1jeozezCcWd_93P0M_Lb7fb793Nj6vr7cVNZzlhtZMjneY1_iynmasRenBqpGYYjZqAkJ5LJlQvHJkJG3hPZ9rWYEegnPfEsDP06eDbEv9aXKn6yRfrQjDRpaVoRgQjcuCc_RelinBBeylkQz--Qh_SkmP7iGZUSj5Aa_wxavXijDBYKXWgbE6lZDdr6-u-STUbHzQBvU5ZH6asm7HeT1mvUvpKusv-yeTn4yJ2EJUGxzuX_6U6onoBvQC6WQ
CitedBy_id crossref_primary_10_1016_j_ssc_2024_115698
crossref_primary_10_1016_j_ssc_2023_115376
crossref_primary_10_1016_j_inoche_2025_114059
crossref_primary_10_1016_j_mssp_2024_108638
crossref_primary_10_1007_s10904_024_03250_w
crossref_primary_10_1002_open_202300207
crossref_primary_10_1007_s10904_024_03270_6
crossref_primary_10_1134_S0036023624600722
crossref_primary_10_1007_s11082_025_08056_9
crossref_primary_10_1016_j_cocom_2024_e00978
crossref_primary_10_1016_j_inoche_2024_112539
crossref_primary_10_1002_pssb_202400644
crossref_primary_10_1007_s10904_024_03584_5
crossref_primary_10_1016_j_cej_2024_152026
crossref_primary_10_1016_j_physb_2024_416126
crossref_primary_10_1007_s10904_023_02950_z
crossref_primary_10_1002_pssb_202300577
crossref_primary_10_1007_s11082_024_07302_w
crossref_primary_10_1007_s00894_024_06158_x
crossref_primary_10_1002_adts_202401099
crossref_primary_10_1016_j_optmat_2023_114737
crossref_primary_10_1016_j_ceramint_2024_08_247
crossref_primary_10_1007_s00894_024_06092_y
crossref_primary_10_1016_j_mssp_2024_108968
crossref_primary_10_1007_s11082_024_07127_7
crossref_primary_10_1007_s43207_025_00484_3
crossref_primary_10_1016_j_cplett_2024_141345
crossref_primary_10_1007_s11082_024_06891_w
crossref_primary_10_1007_s00894_025_06286_y
crossref_primary_10_1016_j_cocom_2023_e00847
crossref_primary_10_1016_j_mssp_2023_107890
crossref_primary_10_1007_s00894_024_05861_z
crossref_primary_10_1016_j_ceramint_2024_10_387
crossref_primary_10_1016_j_physb_2024_415742
crossref_primary_10_1007_s10904_025_03594_x
crossref_primary_10_1007_s10971_024_06496_5
crossref_primary_10_1080_01411594_2024_2448254
crossref_primary_10_1016_j_mtcomm_2024_108840
crossref_primary_10_1016_j_ijhydene_2024_03_024
crossref_primary_10_1016_j_matchemphys_2024_129493
crossref_primary_10_1016_j_physb_2024_416538
Cites_doi 10.1126/science.aam7092
10.1126/science.aam7093
10.1103/PhysRevB.85.155208
10.1002/er.6307
10.1016/j.cocom.2021.e00598
10.1126/science.aab3987
10.7566/JPSJ.91.013702
10.1021/jacs.6b09645
10.1021/acs.chemmater.5b04107
10.1016/S0022-4596(03)00109-9
10.1016/j.mssp.2022.106947
10.1103/PhysRevLett.77.3865
10.1016/0022-3697(90)90092-T
10.1039/D0RA02817G
10.1063/1.1452238
10.1016/0022-4596(82)90259-6
10.1016/j.physb.2021.413533
10.1016/S0921-4526(99)01198-9
10.1021/acs.jpclett.6b00376
10.1016/j.cocom.2021.e00550
10.1021/acs.chemmater.5b04231
10.1016/j.matchemphys.2017.03.006
10.1021/jacs.5b13294
10.1016/j.cocom.2023.e00791
10.1126/science.aam6323
10.1007/s11664-017-5962-2
10.1007/s40843-019-1255-4
10.1016/j.micrna.2022.207397
10.1016/j.cocom.2020.e00478
10.1016/j.cocom.2019.e00394
10.1080/14786440808520496
10.1063/1.3686137
10.1038/s41598-021-92443-1
10.1021/acs.chemmater.6b04181
10.1063/5.0021238
10.1016/j.inoche.2022.110172
10.1038/358136a0
10.1103/RevModPhys.73.515
10.1021/acs.jpclett.0c01968
10.1103/PhysRev.136.B864
10.1016/j.jpcs.2018.02.032
10.1103/PhysRev.140.A1133
10.1021/acs.jpclett.6b01041
10.1016/0022-3697(76)90089-5
10.1088/0953-8984/14/11/301
10.1038/s41598-018-37132-2
10.1016/0010-4655(90)90187-6
10.1039/D1RA03527D
10.1002/er.8732
10.1179/mst.1992.8.4.345
10.1146/annurev.matsci.31.1.1
10.1016/j.apsusc.2022.152854
10.1016/S0025-5408(01)00708-5
10.1016/S0010-4655(02)00206-0
10.1021/acs.jpcc.7b00138
10.1016/j.jmmm.2017.05.058
10.1073/pnas.30.9.244
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
JQ2
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
K7-
KB.
LK8
M7P
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOI 10.1007/s00894-023-05588-3
DatabaseName CrossRef
ProQuest Computer Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Computer Science Database
Materials Science Database
Biological Sciences
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Computer Science Database
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
EndPage 178
ExternalDocumentID 10_1007_s00894_023_05588_3
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
K7-
KB.
LK8
M7P
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
ID FETCH-LOGICAL-c413t-6b2df1610f6df48b070e8b2a9ba8d01174635875e1f139472f22229cb024471a3
IEDL.DBID BENPR
ISSN 1610-2940
0948-5023
IngestDate Thu Oct 02 11:46:18 EDT 2025
Thu Sep 04 19:38:59 EDT 2025
Thu Oct 30 03:52:09 EDT 2025
Wed Sep 17 23:54:29 EDT 2025
Wed Oct 01 03:27:34 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Fri Feb 21 02:43:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Double perovskite
FP-LAPW method
Electronic structures
DFT calculations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-6b2df1610f6df48b070e8b2a9ba8d01174635875e1f139472f22229cb024471a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3266490023
PQPubID 2043656
PageCount 1
ParticipantIDs proquest_miscellaneous_3153169443
proquest_miscellaneous_2814527656
proquest_journals_3266490023
proquest_journals_2814431303
crossref_citationtrail_10_1007_s00894_023_05588_3
crossref_primary_10_1007_s00894_023_05588_3
springer_journals_10_1007_s00894_023_05588_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Computational Chemistry - Life Science - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AngervoIAppl Surf Sci20225891528541:CAS:528:DC%2BB38XntFems7w%3D10.1016/j.apsusc.2022.152854
SchwarzKBlahaPMadsenGKHComput Phys Commun20021477110.1016/S0010-4655(02)00206-0
FilipMRHillmanSHaghighiradAASnaithHJGiustinoFJ Phys Chem Lett2016725791:CAS:528:DC%2BC28XhtVWmurfN2732241310.1021/acs.jpclett.6b01041
VolonakisGJ Phys Chem Lett201677125412591:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376
PughSFLondon, Edinburgh Dublin Philos Mag J Sci1954458238431:CAS:528:DyaG2sXlvFOhsQ%3D%3D10.1080/14786440808520496
RoknuzzamanMSci Rep2019971830679678634588110.1038/s41598-018-37132-2
CheXWangCLiZHouZYinW-JSci China Mater20206361024103510.1007/s40843-019-1255-4
AndroulakisJKatsarakisNGiapintzakisJVouroutzisNPavlidouEChrissafisKPolychroniadisEKPerdikatsisVJ Solid State Chem20031733503541:CAS:528:DC%2BD3sXls1ahu7c%3D10.1016/S0022-4596(03)00109-9
CaidMComput Condens Matter201921e0039410.1016/j.cocom.2019.e00394
PradheeshRNairHSKumarCMNLamsalJNirmalaRSanthoshPNYelonWBMalikSKSankaranarayananVSethupathiKJ Appl Phys201211105390510.1063/1.3686137
BarbierPDracheMMairesseGRavezJJ Solid State Chem1982421301:CAS:528:DyaL38XitVylu7o%3D10.1016/0022-4596(82)90259-6
FengH-JDengWYangKHuangJZengXCJ Phys Chem C2017121447144801:CAS:528:DC%2BC2sXisVSqsrc%3D10.1021/acs.jpcc.7b00138
SaciHComputational Condensed Matter202335e0079110.1016/j.cocom.2023.e00791
HainesJLegerJBocquillonGAnnu Rev Mater Res20013111131:CAS:528:DC%2BD3MXmsFGqsL0%3D10.1146/annurev.matsci.31.1.1
Correa-BaenaJ-PScience20173587397441:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323
SmitWMADirksenGJStufkensDJJ Phys Chem Solids1990511891:CAS:528:DyaK3cXhvVyitbk%3D10.1016/0022-3697(90)90092-T
Ambrosch-DraxlCSofoJOComput Phys Commun20061175
LaghzaouiSInorg Chem Commun20221461101721:CAS:528:DC%2BB38XivVyjs7fI10.1016/j.inoche.2022.110172
HautierGOngSPJainAMooreCJCederGPhys Rev B20128515520815522510.1103/PhysRevB.85.155208
ZhaoXGJ Am Chem Soc2017139263026381:CAS:528:DC%2BC2sXhsFWqurw%3D2811293310.1021/jacs.6b09645
AsgharMWaqas IqbalMManzoorMAhmad NoorNZanibMSharmaRUllahHAftabSZahidTInt J Energy Res2022461524273242851:CAS:528:DC%2BB38XisVemsLbK10.1002/er.8732
CohenRENature19923581361:CAS:528:DyaK38Xlt1amtL4%3D10.1038/358136a0
VolonakisGFilipMRHaghighiradAASakaiNWengerBSnaithHJGiustinoFJ Phys Chem Lett2016712541:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376
GuechiNBouhemadouABin-OmranSJ Electron Mater201847153315451:CAS:528:DC%2BC2sXhvVOrtbzM10.1007/s11664-017-5962-2
YiTChem Mater201729156115681:CAS:528:DC%2BC2sXht1ynsbY%3D10.1021/acs.chemmater.6b04181
Al-QaisiSMushtaqMAlzahraniJSAlkhaldiHAlrowailiZARachedHUlHaqBMahmoodQAl-BuriahiMSMorsiMMicro Nanostruct20221702073971:CAS:528:DC%2BB38XisFygtb7L10.1016/j.micrna.2022.207397
BaroniSde GironcoliSDal CorsoAGiannozziPRev Mod Phys2001735151:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515
KhandySAGuptaDCRSC Adv20211127499275111:CAS:528:DC%2BB3MXhslOnsbbL35480670903781110.1039/D1RA03527D
BourachidIComput Condens Matter202024e0047810.1016/j.cocom.2020.e00478
KovalenkoMVProtesescuLBodnarchukMIScience20173587457501:CAS:528:DC%2BC2sXhslOnsLzI2912306110.1126/science.aam7093
Al-QaisiSMushtaqMAlomairySVuTVRachedHUlHaqBMahmoodQAl-BuriahiMSMater Sci Semicond Process20221501069471:CAS:528:DC%2BB38XhvVGms7vJ10.1016/j.mssp.2022.106947
DuanCScience201534913211:CAS:528:DC%2BC2MXhsV2gtLjK2621706410.1126/science.aab3987
PatratGBrunelMDe BergevinFJ Phys Chem Solids19763732852911:CAS:528:DyaE28Xht1yru7g%3D10.1016/0022-3697(76)90089-5
PettiforDMater Sci Technol1992843453491:CAS:528:DyaK38XksFemsLY%3D10.1179/mst.1992.8.4.345
MeyerEMutukwaDZingweNTaziwaRMetals2018866716
KhandySAGuptaDCJ Magn Magn Mater20174411661731:CAS:528:DC%2BC2sXosFWnsb8%3D10.1016/j.jmmm.2017.05.058
BlahaPSchwarzKSorantinPTrickySBComput Phys Commun1990593991:CAS:528:DyaK3cXlslynsb4%3D10.1016/0010-4655(90)90187-6
MurnaghanFDProc Natl Acad Sci USA19443092442471:STN:280:DC%2BD28zhvFGntA%3D%3D16588651107870410.1073/pnas.30.9.244
RachedHMater Chem Phys20171934534691:CAS:528:DC%2BC2sXks1Sht7Y%3D10.1016/j.matchemphys.2017.03.006
ZhaoSYamamotoKIikuboSHayaseSMaTJ Phys Chem Solids20181171171211:CAS:528:DC%2BC1cXjtVCmu7o%3D10.1016/j.jpcs.2018.02.032
LiZYangMParkJSWeiSHBerryJJZhuKChem Mater20162828410.1021/acs.chemmater.5b04107
NabiMGuptaDCSci Rep202111129451:CAS:528:DC%2BB3MXhsF2hsrbJ34155308821752410.1038/s41598-021-92443-1
SlavneyAHHuTLindenbergAMKarunadasaHIJ Am Chem Soc201613821381:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294
ZhouWJ Phys Chem Lett202011646364671:CAS:528:DC%2BB3cXhsVaqt7nM3269791410.1021/acs.jpclett.0c01968
HirotoAJ Phys Soc Jpn202291101370210.7566/JPSJ.91.013702
MoeenUd DinPhysica B: Condensed Matter202262741353310.1016/j.physb.2021.413533
FangCMde WijsGAde GrootRAJ Appl Phys200291834083441:CAS:528:DC%2BD38XjvFygsb8%3D10.1063/1.1452238
KohnWShamLJPhys Rev A1965140113310.1103/PhysRev.140.A1133
PerdewJPBurkeSErnzerhofMPhys Rev Lett19967738651:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865
CaidMRachedHBentouafARachedDRachedYComput Condens Matter202129e0059810.1016/j.cocom.2021.e00598
HohenbergPKohnWPhys Rev B196413686410.1103/PhysRev.136.B864
SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJJ Phys Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D10.1088/0953-8984/14/11/301
JafarAMKhalaphKAMahmoodAMater Sci Eng20207650120471:CAS:528:DC%2BB3cXhvFOls7rN
McClureETBallMRWindlWWoodwardPMChem Mater20162813481:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231
KawanakaHPhysica B200028151852010.1016/S0921-4526(99)01198-9
MirSAGuptaDCRSC Adv202010262771:CAS:528:DC%2BB3cXhtlKku73J35519779905544410.1039/D0RA02817G
MorsliSComput Condens Matter202127e0055010.1016/j.cocom.2021.e00550
WenwuSCaiTWangZChenOJ Chem Phys202015314110110.1063/5.0021238
AzadAKIvanovSAErikssonS-GEriksenJRundlofHMathieuRSvedlindhPMater Res Bullet200136248524961:CAS:528:DC%2BD3MXnsFOiurY%3D10.1016/S0025-5408(01)00708-5
HwangJScience20173587517561:CAS:528:DC%2BC2sXhslOnsLzJ2912306210.1126/science.aam7092
Nabi M, Gupta DC (2020) Int J Energy Res 45(5):7222–7234
N Guechi (5588_CR28) 2018; 47
SA Khandy (5588_CR32) 2017; 441
SA Mir (5588_CR51) 2020; 10
SF Pugh (5588_CR52) 1954; 45
I Angervo (5588_CR35) 2022; 589
G Volonakis (5588_CR18) 2016; 7
JP Perdew (5588_CR44) 1996; 77
H-J Feng (5588_CR13) 2017; 121
J-P Correa-Baena (5588_CR6) 2017; 358
XG Zhao (5588_CR12) 2017; 139
H Saci (5588_CR38) 2023; 35
5588_CR55
MD Segall (5588_CR50) 2002; 14
WMA Smit (5588_CR24) 1990; 51
W Zhou (5588_CR11) 2020; 11
J Hwang (5588_CR3) 2017; 358
S Zhao (5588_CR20) 2018; 117
G Volonakis (5588_CR25) 2016; 7
AH Slavney (5588_CR26) 2016; 138
S Al-Qaisi (5588_CR31) 2022; 170
MV Kovalenko (5588_CR5) 2017; 358
I Bourachid (5588_CR61) 2020; 24
G Hautier (5588_CR48) 2012; 85
M Caid (5588_CR60) 2019; 21
W Kohn (5588_CR41) 1965; 140
H Kawanaka (5588_CR36) 2000; 281
FD Murnaghan (5588_CR45) 1944; 30
M Roknuzzaman (5588_CR16) 2019; 9
M Asghar (5588_CR30) 2022; 46
ET McClure (5588_CR22) 2016; 28
S Wenwu (5588_CR19) 2020; 153
MR Filip (5588_CR27) 2016; 7
RE Cohen (5588_CR1) 1992; 358
C Duan (5588_CR2) 2015; 349
S Al-Qaisi (5588_CR29) 2022; 150
MoeenUd Din (5588_CR39) 2022; 627
AK Azad (5588_CR8) 2001; 36
D Pettifor (5588_CR54) 1992; 8
M Caid (5588_CR59) 2021; 29
J Androulakis (5588_CR10) 2003; 173
M Nabi (5588_CR21) 2021; 11
K Schwarz (5588_CR43) 2002; 147
R Pradheesh (5588_CR9) 2012; 111
S Laghzaoui (5588_CR37) 2022; 146
P Blaha (5588_CR42) 1990; 59
A Hiroto (5588_CR33) 2022; 91
SA Khandy (5588_CR47) 2021; 11
J Haines (5588_CR53) 2001; 31
AM Jafar (5588_CR14) 2020; 765
C Ambrosch-Draxl (5588_CR57) 2006; 1
T Yi (5588_CR4) 2017; 29
S Baroni (5588_CR49) 2001; 73
E Meyer (5588_CR17) 2018; 8
X Che (5588_CR15) 2020; 63
S Morsli (5588_CR58) 2021; 27
G Patrat (5588_CR34) 1976; 37
Z Li (5588_CR46) 2016; 28
P Hohenberg (5588_CR40) 1964; 136
H Rached (5588_CR7) 2017; 193
P Barbier (5588_CR23) 1982; 42
CM Fang (5588_CR56) 2002; 91
References_xml – reference: HirotoAJ Phys Soc Jpn202291101370210.7566/JPSJ.91.013702
– reference: RachedHMater Chem Phys20171934534691:CAS:528:DC%2BC2sXks1Sht7Y%3D10.1016/j.matchemphys.2017.03.006
– reference: AndroulakisJKatsarakisNGiapintzakisJVouroutzisNPavlidouEChrissafisKPolychroniadisEKPerdikatsisVJ Solid State Chem20031733503541:CAS:528:DC%2BD3sXls1ahu7c%3D10.1016/S0022-4596(03)00109-9
– reference: VolonakisGJ Phys Chem Lett201677125412591:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376
– reference: McClureETBallMRWindlWWoodwardPMChem Mater20162813481:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231
– reference: Al-QaisiSMushtaqMAlzahraniJSAlkhaldiHAlrowailiZARachedHUlHaqBMahmoodQAl-BuriahiMSMorsiMMicro Nanostruct20221702073971:CAS:528:DC%2BB38XisFygtb7L10.1016/j.micrna.2022.207397
– reference: SchwarzKBlahaPMadsenGKHComput Phys Commun20021477110.1016/S0010-4655(02)00206-0
– reference: LiZYangMParkJSWeiSHBerryJJZhuKChem Mater20162828410.1021/acs.chemmater.5b04107
– reference: MeyerEMutukwaDZingweNTaziwaRMetals2018866716
– reference: MoeenUd DinPhysica B: Condensed Matter202262741353310.1016/j.physb.2021.413533
– reference: HainesJLegerJBocquillonGAnnu Rev Mater Res20013111131:CAS:528:DC%2BD3MXmsFGqsL0%3D10.1146/annurev.matsci.31.1.1
– reference: Correa-BaenaJ-PScience20173587397441:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323
– reference: FengH-JDengWYangKHuangJZengXCJ Phys Chem C2017121447144801:CAS:528:DC%2BC2sXisVSqsrc%3D10.1021/acs.jpcc.7b00138
– reference: BarbierPDracheMMairesseGRavezJJ Solid State Chem1982421301:CAS:528:DyaL38XitVylu7o%3D10.1016/0022-4596(82)90259-6
– reference: LaghzaouiSInorg Chem Commun20221461101721:CAS:528:DC%2BB38XivVyjs7fI10.1016/j.inoche.2022.110172
– reference: FilipMRHillmanSHaghighiradAASnaithHJGiustinoFJ Phys Chem Lett2016725791:CAS:528:DC%2BC28XhtVWmurfN2732241310.1021/acs.jpclett.6b01041
– reference: CohenRENature19923581361:CAS:528:DyaK38Xlt1amtL4%3D10.1038/358136a0
– reference: NabiMGuptaDCSci Rep202111129451:CAS:528:DC%2BB3MXhsF2hsrbJ34155308821752410.1038/s41598-021-92443-1
– reference: VolonakisGFilipMRHaghighiradAASakaiNWengerBSnaithHJGiustinoFJ Phys Chem Lett2016712541:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376
– reference: AsgharMWaqas IqbalMManzoorMAhmad NoorNZanibMSharmaRUllahHAftabSZahidTInt J Energy Res2022461524273242851:CAS:528:DC%2BB38XisVemsLbK10.1002/er.8732
– reference: HwangJScience20173587517561:CAS:528:DC%2BC2sXhslOnsLzJ2912306210.1126/science.aam7092
– reference: Nabi M, Gupta DC (2020) Int J Energy Res 45(5):7222–7234
– reference: PatratGBrunelMDe BergevinFJ Phys Chem Solids19763732852911:CAS:528:DyaE28Xht1yru7g%3D10.1016/0022-3697(76)90089-5
– reference: KhandySAGuptaDCRSC Adv20211127499275111:CAS:528:DC%2BB3MXhslOnsbbL35480670903781110.1039/D1RA03527D
– reference: SaciHComputational Condensed Matter202335e0079110.1016/j.cocom.2023.e00791
– reference: BaroniSde GironcoliSDal CorsoAGiannozziPRev Mod Phys2001735151:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515
– reference: KawanakaHPhysica B200028151852010.1016/S0921-4526(99)01198-9
– reference: HohenbergPKohnWPhys Rev B196413686410.1103/PhysRev.136.B864
– reference: JafarAMKhalaphKAMahmoodAMater Sci Eng20207650120471:CAS:528:DC%2BB3cXhvFOls7rN
– reference: SlavneyAHHuTLindenbergAMKarunadasaHIJ Am Chem Soc201613821381:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294
– reference: FangCMde WijsGAde GrootRAJ Appl Phys200291834083441:CAS:528:DC%2BD38XjvFygsb8%3D10.1063/1.1452238
– reference: BlahaPSchwarzKSorantinPTrickySBComput Phys Commun1990593991:CAS:528:DyaK3cXlslynsb4%3D10.1016/0010-4655(90)90187-6
– reference: KohnWShamLJPhys Rev A1965140113310.1103/PhysRev.140.A1133
– reference: SmitWMADirksenGJStufkensDJJ Phys Chem Solids1990511891:CAS:528:DyaK3cXhvVyitbk%3D10.1016/0022-3697(90)90092-T
– reference: MurnaghanFDProc Natl Acad Sci USA19443092442471:STN:280:DC%2BD28zhvFGntA%3D%3D16588651107870410.1073/pnas.30.9.244
– reference: PettiforDMater Sci Technol1992843453491:CAS:528:DyaK38XksFemsLY%3D10.1179/mst.1992.8.4.345
– reference: CaidMRachedHBentouafARachedDRachedYComput Condens Matter202129e0059810.1016/j.cocom.2021.e00598
– reference: Ambrosch-DraxlCSofoJOComput Phys Commun20061175
– reference: PughSFLondon, Edinburgh Dublin Philos Mag J Sci1954458238431:CAS:528:DyaG2sXlvFOhsQ%3D%3D10.1080/14786440808520496
– reference: GuechiNBouhemadouABin-OmranSJ Electron Mater201847153315451:CAS:528:DC%2BC2sXhvVOrtbzM10.1007/s11664-017-5962-2
– reference: HautierGOngSPJainAMooreCJCederGPhys Rev B20128515520815522510.1103/PhysRevB.85.155208
– reference: MorsliSComput Condens Matter202127e0055010.1016/j.cocom.2021.e00550
– reference: CheXWangCLiZHouZYinW-JSci China Mater20206361024103510.1007/s40843-019-1255-4
– reference: KovalenkoMVProtesescuLBodnarchukMIScience20173587457501:CAS:528:DC%2BC2sXhslOnsLzI2912306110.1126/science.aam7093
– reference: WenwuSCaiTWangZChenOJ Chem Phys202015314110110.1063/5.0021238
– reference: PerdewJPBurkeSErnzerhofMPhys Rev Lett19967738651:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865
– reference: ZhouWJ Phys Chem Lett202011646364671:CAS:528:DC%2BB3cXhsVaqt7nM3269791410.1021/acs.jpclett.0c01968
– reference: AzadAKIvanovSAErikssonS-GEriksenJRundlofHMathieuRSvedlindhPMater Res Bullet200136248524961:CAS:528:DC%2BD3MXnsFOiurY%3D10.1016/S0025-5408(01)00708-5
– reference: PradheeshRNairHSKumarCMNLamsalJNirmalaRSanthoshPNYelonWBMalikSKSankaranarayananVSethupathiKJ Appl Phys201211105390510.1063/1.3686137
– reference: ZhaoXGJ Am Chem Soc2017139263026381:CAS:528:DC%2BC2sXhsFWqurw%3D2811293310.1021/jacs.6b09645
– reference: Al-QaisiSMushtaqMAlomairySVuTVRachedHUlHaqBMahmoodQAl-BuriahiMSMater Sci Semicond Process20221501069471:CAS:528:DC%2BB38XhvVGms7vJ10.1016/j.mssp.2022.106947
– reference: CaidMComput Condens Matter201921e0039410.1016/j.cocom.2019.e00394
– reference: YiTChem Mater201729156115681:CAS:528:DC%2BC2sXht1ynsbY%3D10.1021/acs.chemmater.6b04181
– reference: DuanCScience201534913211:CAS:528:DC%2BC2MXhsV2gtLjK2621706410.1126/science.aab3987
– reference: RoknuzzamanMSci Rep2019971830679678634588110.1038/s41598-018-37132-2
– reference: ZhaoSYamamotoKIikuboSHayaseSMaTJ Phys Chem Solids20181171171211:CAS:528:DC%2BC1cXjtVCmu7o%3D10.1016/j.jpcs.2018.02.032
– reference: MirSAGuptaDCRSC Adv202010262771:CAS:528:DC%2BB3cXhtlKku73J35519779905544410.1039/D0RA02817G
– reference: BourachidIComput Condens Matter202024e0047810.1016/j.cocom.2020.e00478
– reference: AngervoIAppl Surf Sci20225891528541:CAS:528:DC%2BB38XntFems7w%3D10.1016/j.apsusc.2022.152854
– reference: SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJJ Phys Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D10.1088/0953-8984/14/11/301
– reference: KhandySAGuptaDCJ Magn Magn Mater20174411661731:CAS:528:DC%2BC2sXosFWnsb8%3D10.1016/j.jmmm.2017.05.058
– volume: 358
  start-page: 751
  year: 2017
  ident: 5588_CR3
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 358
  start-page: 745
  year: 2017
  ident: 5588_CR5
  publication-title: Science
  doi: 10.1126/science.aam7093
– volume: 85
  start-page: 155208
  year: 2012
  ident: 5588_CR48
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.85.155208
– ident: 5588_CR55
  doi: 10.1002/er.6307
– volume: 29
  start-page: e00598
  year: 2021
  ident: 5588_CR59
  publication-title: Comput Condens Matter
  doi: 10.1016/j.cocom.2021.e00598
– volume: 349
  start-page: 1321
  year: 2015
  ident: 5588_CR2
  publication-title: Science
  doi: 10.1126/science.aab3987
– volume: 765
  start-page: 012047
  year: 2020
  ident: 5588_CR14
  publication-title: Mater Sci Eng
– volume: 91
  start-page: 013702
  issue: 1
  year: 2022
  ident: 5588_CR33
  publication-title: J Phys Soc Jpn
  doi: 10.7566/JPSJ.91.013702
– volume: 139
  start-page: 2630
  year: 2017
  ident: 5588_CR12
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b09645
– volume: 28
  start-page: 284
  year: 2016
  ident: 5588_CR46
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04107
– volume: 173
  start-page: 350
  year: 2003
  ident: 5588_CR10
  publication-title: J Solid State Chem
  doi: 10.1016/S0022-4596(03)00109-9
– volume: 150
  start-page: 106947
  year: 2022
  ident: 5588_CR29
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2022.106947
– volume: 77
  start-page: 3865
  year: 1996
  ident: 5588_CR44
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 51
  start-page: 189
  year: 1990
  ident: 5588_CR24
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(90)90092-T
– volume: 10
  start-page: 26277
  year: 2020
  ident: 5588_CR51
  publication-title: RSC Adv
  doi: 10.1039/D0RA02817G
– volume: 91
  start-page: 8340
  year: 2002
  ident: 5588_CR56
  publication-title: J Appl Phys
  doi: 10.1063/1.1452238
– volume: 42
  start-page: 130
  year: 1982
  ident: 5588_CR23
  publication-title: J Solid State Chem
  doi: 10.1016/0022-4596(82)90259-6
– volume: 627
  start-page: 413533
  year: 2022
  ident: 5588_CR39
  publication-title: Physica B: Condensed Matter
  doi: 10.1016/j.physb.2021.413533
– volume: 281
  start-page: 518
  year: 2000
  ident: 5588_CR36
  publication-title: Physica B
  doi: 10.1016/S0921-4526(99)01198-9
– volume: 7
  start-page: 1254
  issue: 7
  year: 2016
  ident: 5588_CR18
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b00376
– volume: 27
  start-page: e00550
  year: 2021
  ident: 5588_CR58
  publication-title: Comput Condens Matter
  doi: 10.1016/j.cocom.2021.e00550
– volume: 28
  start-page: 1348
  year: 2016
  ident: 5588_CR22
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04231
– volume: 193
  start-page: 453
  year: 2017
  ident: 5588_CR7
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2017.03.006
– volume: 138
  start-page: 2138
  year: 2016
  ident: 5588_CR26
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b13294
– volume: 35
  start-page: e00791
  year: 2023
  ident: 5588_CR38
  publication-title: Computational Condensed Matter
  doi: 10.1016/j.cocom.2023.e00791
– volume: 358
  start-page: 739
  year: 2017
  ident: 5588_CR6
  publication-title: Science
  doi: 10.1126/science.aam6323
– volume: 47
  start-page: 1533
  year: 2018
  ident: 5588_CR28
  publication-title: J Electron Mater
  doi: 10.1007/s11664-017-5962-2
– volume: 1
  start-page: 175
  year: 2006
  ident: 5588_CR57
  publication-title: Comput Phys Commun
– volume: 63
  start-page: 1024
  issue: 6
  year: 2020
  ident: 5588_CR15
  publication-title: Sci China Mater
  doi: 10.1007/s40843-019-1255-4
– volume: 170
  start-page: 207397
  year: 2022
  ident: 5588_CR31
  publication-title: Micro Nanostruct
  doi: 10.1016/j.micrna.2022.207397
– volume: 24
  start-page: e00478
  year: 2020
  ident: 5588_CR61
  publication-title: Comput Condens Matter
  doi: 10.1016/j.cocom.2020.e00478
– volume: 21
  start-page: e00394
  year: 2019
  ident: 5588_CR60
  publication-title: Comput Condens Matter
  doi: 10.1016/j.cocom.2019.e00394
– volume: 45
  start-page: 823
  year: 1954
  ident: 5588_CR52
  publication-title: London, Edinburgh Dublin Philos Mag J Sci
  doi: 10.1080/14786440808520496
– volume: 111
  start-page: 053905
  year: 2012
  ident: 5588_CR9
  publication-title: J Appl Phys
  doi: 10.1063/1.3686137
– volume: 11
  start-page: 12945
  year: 2021
  ident: 5588_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-92443-1
– volume: 29
  start-page: 1561
  year: 2017
  ident: 5588_CR4
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b04181
– volume: 153
  start-page: 141101
  year: 2020
  ident: 5588_CR19
  publication-title: J Chem Phys
  doi: 10.1063/5.0021238
– volume: 146
  start-page: 110172
  year: 2022
  ident: 5588_CR37
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2022.110172
– volume: 358
  start-page: 136
  year: 1992
  ident: 5588_CR1
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 73
  start-page: 515
  year: 2001
  ident: 5588_CR49
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.73.515
– volume: 11
  start-page: 6463
  year: 2020
  ident: 5588_CR11
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.0c01968
– volume: 136
  start-page: 864
  year: 1964
  ident: 5588_CR40
  publication-title: Phys Rev B
  doi: 10.1103/PhysRev.136.B864
– volume: 117
  start-page: 117
  year: 2018
  ident: 5588_CR20
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2018.02.032
– volume: 140
  start-page: 1133
  year: 1965
  ident: 5588_CR41
  publication-title: Phys Rev A
  doi: 10.1103/PhysRev.140.A1133
– volume: 8
  start-page: 1
  issue: 667
  year: 2018
  ident: 5588_CR17
  publication-title: Metals
– volume: 7
  start-page: 2579
  year: 2016
  ident: 5588_CR27
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b01041
– volume: 37
  start-page: 285
  issue: 3
  year: 1976
  ident: 5588_CR34
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(76)90089-5
– volume: 14
  start-page: 2717
  year: 2002
  ident: 5588_CR50
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/14/11/301
– volume: 9
  start-page: 718
  year: 2019
  ident: 5588_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37132-2
– volume: 59
  start-page: 399
  year: 1990
  ident: 5588_CR42
  publication-title: Comput Phys Commun
  doi: 10.1016/0010-4655(90)90187-6
– volume: 11
  start-page: 27499
  year: 2021
  ident: 5588_CR47
  publication-title: RSC Adv
  doi: 10.1039/D1RA03527D
– volume: 46
  start-page: 24273
  issue: 15
  year: 2022
  ident: 5588_CR30
  publication-title: Int J Energy Res
  doi: 10.1002/er.8732
– volume: 8
  start-page: 345
  issue: 4
  year: 1992
  ident: 5588_CR54
  publication-title: Mater Sci Technol
  doi: 10.1179/mst.1992.8.4.345
– volume: 31
  start-page: 1
  issue: 1
  year: 2001
  ident: 5588_CR53
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev.matsci.31.1.1
– volume: 589
  start-page: 152854
  year: 2022
  ident: 5588_CR35
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2022.152854
– volume: 36
  start-page: 2485
  year: 2001
  ident: 5588_CR8
  publication-title: Mater Res Bullet
  doi: 10.1016/S0025-5408(01)00708-5
– volume: 147
  start-page: 71
  year: 2002
  ident: 5588_CR43
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(02)00206-0
– volume: 121
  start-page: 4471
  year: 2017
  ident: 5588_CR13
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b00138
– volume: 7
  start-page: 1254
  year: 2016
  ident: 5588_CR25
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b00376
– volume: 441
  start-page: 166
  year: 2017
  ident: 5588_CR32
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2017.05.058
– volume: 30
  start-page: 244
  issue: 9
  year: 1944
  ident: 5588_CR45
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.30.9.244
SSID ssj0001256522
Score 2.5321105
Snippet Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation...
Abstract ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed...
ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of...
In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of...
CONTEXT: In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs₂CuIrF₆. The detailed investigation of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms absorbance
Absorptivity
Approximation
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer applications
Computer Applications in Chemistry
Crystal structure
Density functional theory
Density of states
Dynamic stability
Elastic properties
Electronic structure
Investigations
Mathematical analysis
Molecular Medicine
Optical properties
Optimization
Optoelectronics
Original Paper
Perovskites
Physical properties
refractive index
Refractivity
semiconductors
Symmetry
Theoretical and Computational Chemistry
Tin
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3oRP7E6JYI3LXRp0g9vYzimoKcNditJm8BA2rG2-u_7XtZuKpvgOWlT3kv6-728L0LufGayGCs_Rh7TLg_hSEkmlKvCWIQICB7HBOfXt2A04S9TMW2Swso22r11Sdo_9SrZDdAKy9gyjDcToF9_l-wJLOcFu3jC-t9uVoCkWPcBsBnPZTH3mmyZza_5iUhrmvnLM2oBZ3hEDhumSPtL1R6THZ2fkP1B26DtlHyO10mIdJaXaGbTwlDgezbiFWxgKvOMFvOqWHe7oXO8fl_YUZicFbV61xTLhX-UeJNLByUb1M-LYfBI-8qdYXBRQWGJtGn0VZ6RyfBpPBi5TR8FNwWIqtxAscygLEyQGR4pOOU6UkzGSkYZ1oTjwDrAbtE9A3yQh8ww7PKdKsBvwC7pn5NOXuT6glBPaSmEDCMNxIX1UmWY8tHXJjMuolQ5pNfKMkmbIuPY6-I9WZVHtvJPQP6JlX_iO-R-9cx8WWLjz9ndVkVJc9zKhEVgF_oIxxuHgaIGPEZ64pDb1TBoC50jMtdFvXyFYCHQ2-1zfICHXhDDUg55aHfHepntH335v-lX5IDZDYqXPV3SqRa1vgbuU6kbu9W_AONM-Ek
  priority: 102
  providerName: Springer Nature
Title Theoretical insight of stabilities and optoelectronic properties of double perovskite Cs2CuIrF6: Ab-initio calculations
URI https://link.springer.com/article/10.1007/s00894-023-05588-3
https://www.proquest.com/docview/2814431303
https://www.proquest.com/docview/3266490023
https://www.proquest.com/docview/2814527656
https://www.proquest.com/docview/3153169443
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0948-5023
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256522
  issn: 1610-2940
  databaseCode: AFBBN
  dateStart: 19950201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0948-5023
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256522
  issn: 1610-2940
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0948-5023
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256522
  issn: 1610-2940
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7QO8INhAdGyVJ_G2RaQX5xcSQl3VboCoJrRK4ymyY0eaNCWlaeHf585NGkBsr7ETR-ezv893vjuAtwEWJuXMj4mP1pMxLSmFofZ0nIYxA4IvOcD56zy6WsjPt-HtHszbWBi-VtnuiW6jNlXONvJ3RDMimTLEfFz-8LhqFHtX2xIaqimtYD64FGP70EfOjNWD_sV0fv3tD6sLERjnWiCm43uYSr-JpHHxdASInCkX-UpbSCoU_I1WHQX9x2vqwGj2HJ41LFKMt9P-AvZseQBPJm3xtkP4ddMFKIq7suYjuKgKQVzQ3Yal87FQpRHVcl11lXDEkk3zK9dKnU210fdWcCrxnzVbecWkxsnm02oWvRdj7d3xxaNK0BB5UwSsfgmL2fRmcuU1NRa8nOBr7UUaTcGyKCJTyETTDmATjSrVKjGcL04SI6EzjR0VxBVljAVyBfBcE7YTrqngFfTKqrSvQfjaqjBUcWKJ1OAo1wXqgP1wysgwyfUARq0ss7xJQM51MO6zXepkJ_-M5J85-WfBAM527yy36Tce7X3cTlHWLMU6w4TOjAFD9X-bO70awOmumWaLHSeqtNVm-4kQY6K-D_cJCDpGUUpDDeC81Y5umId_-ujxv3oDT9EpJBt-jqG3Xm3sCfGgtR7CfjK7HEJ_fPn9y3TYqDo9XeD4N5-nBTU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WG8IMZAFPZhJPY0IlLH-Zo0oa2savdRIdRJewt27EiTpqQ0LRP_HH8bd67TbIjtbc927Oh89v3O57sfwMeAFzqlyo-Jz40nYtxSkofKU3EaxmQQfEEJzhejaHApTq_CqxX40-TC0LPK5ky0B7Wucroj_4wwIxIpmZgvk58esUZRdLWh0JCOWkEf2hJjLrHjzPy-RReuPhx-xfXe47x_Mu4NPMcy4OV4gM-8SHFdIO7xi0gXIlG4B0yiuEyVTDRVTBNokxHVm26BaEnEvODEgZ0rtG54sssAx30GayIQKTp_a8cno2_f79zyIGCyoQyaweOp8F3mjs3fQwNMlXk5PaELUWWD-9axhbz_RGmt8eu_hBcOtbKjhZptwIopX8F6ryGL24TbcZsQya7Lmlx-VhUMsad9fYv-OJOlZtVkVrXMO2xCoYCpbcXOupqrG8OodPmvmm6VWa_mvflw2o8O2JHyrumhU8VwityRjtWv4fJJpP0GVsuqNG-B-crIMJRxYhBE8W6uCq4CivtJLcIkVx3oNrLMclfwnHg3brJlqWYr_wzln1n5Z0EH9pffTBblPh7tvdUsUea2fp3xBH3UgKDBf5tbPe7Ah2UzrhYFamRpqvliiJDHCLUf7hOgqepGKU7VgU-NdrTTPPzT7x7_q11YH4wvzrPz4ejsPTznVjnp0mkLVmfTudlGDDZTO07RGfx46r31Fyl9PIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gHoRn7g-I3jTYjdNX96W1cU3HlzwVpI2gQVpl21X_74z2XZXRQXPSZMyk_B9yWS-ATjxuMliUn6MXK4dEeKWktxXjgpjPyRAcAUlOD88Btd9cfviv3zK4rev3ZuQ5CSngVSa8up8mJnzaeIbIhdJ2nJ6e-ajr715WBQklIArus87n25ZkLDYUAIyG9fhsXDrzJmfh_mKTjPK-S1KasGntwarNWtknYmb12FO5xuw3G2KtW3C-_MsIZEN8pKO3KwwDLmfff2K52Em84wVw6qYVb5hQ7qKH9lW7JwVY_WqGUmHv5V0q8u6Je-Ob0a94IJ1lDOgh0YFwynSuuhXuQX93tVz99qpayo4KcJV5QSKZ4ZsYYLMiEjhjteR4jJWMspIH04gA8EzjG4b5IYi5IZTxe9UIZYjjklvGxbyItc7wFylpe_LMNJIYng7VYYrj-JuMhN-lKoWtBtbJmktOE51L16TqVSytX-C9k-s_ROvBafTb4YTuY0_e-83LkrqrVcmPMIzokfQ_GMz0tVAxERVWnA8bUZvUaBE5roYT4bweYhU9_c-HkJFO4hxqhacNatjNs3vP737v-5HsPR02Uvubx7v9mCF27VKd0D7sFCNxvoAKVGlDu2q_wAk8v9x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+insight+of+stabilities+and+optoelectronic+properties+of+double+perovskite+Cs2CuIrF6%3A+Ab-initio+calculations&rft.jtitle=Journal+of+molecular+modeling&rft.au=Caid%2C+Messaoud&rft.au=Rached%2C+Youcef&rft.au=Rached%2C+Djamel&rft.au=Rached%2C+Habib&rft.date=2023-06-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=6&rft_id=info:doi/10.1007%2Fs00894-023-05588-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_023_05588_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon