Theoretical insight of stabilities and optoelectronic properties of double perovskite Cs2CuIrF6: Ab-initio calculations
Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs 2 CuIrF 6 for device applications. From the structural optim...
Saved in:
| Published in | Journal of molecular modeling Vol. 29; no. 6; p. 178 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1610-2940 0948-5023 0948-5023 |
| DOI | 10.1007/s00894-023-05588-3 |
Cover
| Abstract | Context
In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs
2
CuIrF
6
. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs
2
CuIrF
6
for device applications. From the structural optimization results, the stability of DP (Cs
2
CuIrF
6
) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs
2
CuIrF
6
is 0.72 eV (L
V
-X
C
). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.
Methods
The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. |
|---|---|
| AbstractList | CONTEXT: In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs₂CuIrF₆. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs₂CuIrF₆ for device applications. From the structural optimization results, the stability of DP (Cs₂CuIrF₆) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs₂CuIrF₆ is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications. METHODS: The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. Context In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs 2 CuIrF 6 . The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs 2 CuIrF 6 for device applications. From the structural optimization results, the stability of DP (Cs 2 CuIrF 6 ) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs 2 CuIrF 6 is 0.72 eV (L V -X C ). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications. Methods The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.CONTEXTIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.The density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code.METHODSThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.MethodsThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. Abstract ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of electronic structure and optical properties to find the suitability of DP Cs2CuIrF6 for device applications. From the structural optimization results, the stability of DP (Cs2CuIrF6) is in cubic order and belongs to the Fm-3 m space group (#225) with a nonmagnetic (NM) state. Additionally, the elastic results show that this DP is mechanically stable in a cubic and ductile manner. Further, we explain in detail the semiconducting nature of the proposed DP with the help of electronic structure and density of states (DOS). The electronic band gap of DP Cs2CuIrF6 is 0.72 eV (LV-XC). The optical part discussion, like the dielectric function ε, reflectivity R, refractive index n, absorption coefficient α and optical conductivity σ up to 13.00 eV. The studied compound is explored as a potential candidate for optoelectronic applications.MethodsThe density functional theory (DFT) within generalized gradient approximation (GGA) scheme of Perdew, Burke and Ernzerhof (PBE) as implemented in Wien2k computational code is utilized to achieve stable structure, elastic, electronic and optical properties of this material. The dynamic stability of this material was studied using the finite displacement method implemented in the CASTEP computational code. The elastic results have been computed by the IRelast package implemented in the Wien2k computational code. |
| ArticleNumber | 178 |
| Author | Rached, Djamel Rached, Youcef Caid, Messaoud Rached, Habib |
| Author_xml | – sequence: 1 givenname: Messaoud surname: Caid fullname: Caid, Messaoud email: caidmessa@yahoo.fr, said.messaoud@ens-bousaada.dz organization: Département de Physique, École Normale Supérieure de Bou Saâda, Laboratoire de Mathématiques et Physique Appliquées, École Normale Supérieure de Bou Saâda – sequence: 2 givenname: Youcef surname: Rached fullname: Rached, Youcef organization: Laboratoire d’Etudes Physique des Matériaux, Université des Sciences et de Technologies USTO-MB, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université Ahmed Ben Yahia El-Wancharisi Tissemsilt – sequence: 3 givenname: Djamel surname: Rached fullname: Rached, Djamel organization: Faculty of exact sciences, Magnetic Materials Laboratory (MML), Djillali Liabès University of Sidi-Bel-Abbes – sequence: 4 givenname: Habib surname: Rached fullname: Rached, Habib organization: Faculty of exact sciences, Magnetic Materials Laboratory (MML), Djillali Liabès University of Sidi-Bel-Abbes, Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef |
| BookMark | eNqFkU9vFSEUxUlTE5-1X8AViRs3o5e_w7hrXmxt0sRNXROGYVpaCk9gNP32Zd4zMeniyQZy-Z3D4d536DSm6BD6QOAzAei_FAA18A4o60AIpTp2gjYwcNWJVjtFGyIJdHTg8Badl_IAAIQKKSjdoD-39y5lV701AftY_N19xWnGpZrRB1-9K9jECaddTS44W3OK3uJdTjuX97cNntIyBodbJf0uj746vC10u1znS_kVX4ydj80o4faEXYJpx1jeozezCcWd_93P0M_Lb7fb793Nj6vr7cVNZzlhtZMjneY1_iynmasRenBqpGYYjZqAkJ5LJlQvHJkJG3hPZ9rWYEegnPfEsDP06eDbEv9aXKn6yRfrQjDRpaVoRgQjcuCc_RelinBBeylkQz--Qh_SkmP7iGZUSj5Aa_wxavXijDBYKXWgbE6lZDdr6-u-STUbHzQBvU5ZH6asm7HeT1mvUvpKusv-yeTn4yJ2EJUGxzuX_6U6onoBvQC6WQ |
| CitedBy_id | crossref_primary_10_1016_j_ssc_2024_115698 crossref_primary_10_1016_j_ssc_2023_115376 crossref_primary_10_1016_j_inoche_2025_114059 crossref_primary_10_1016_j_mssp_2024_108638 crossref_primary_10_1007_s10904_024_03250_w crossref_primary_10_1002_open_202300207 crossref_primary_10_1007_s10904_024_03270_6 crossref_primary_10_1134_S0036023624600722 crossref_primary_10_1007_s11082_025_08056_9 crossref_primary_10_1016_j_cocom_2024_e00978 crossref_primary_10_1016_j_inoche_2024_112539 crossref_primary_10_1002_pssb_202400644 crossref_primary_10_1007_s10904_024_03584_5 crossref_primary_10_1016_j_cej_2024_152026 crossref_primary_10_1016_j_physb_2024_416126 crossref_primary_10_1007_s10904_023_02950_z crossref_primary_10_1002_pssb_202300577 crossref_primary_10_1007_s11082_024_07302_w crossref_primary_10_1007_s00894_024_06158_x crossref_primary_10_1002_adts_202401099 crossref_primary_10_1016_j_optmat_2023_114737 crossref_primary_10_1016_j_ceramint_2024_08_247 crossref_primary_10_1007_s00894_024_06092_y crossref_primary_10_1016_j_mssp_2024_108968 crossref_primary_10_1007_s11082_024_07127_7 crossref_primary_10_1007_s43207_025_00484_3 crossref_primary_10_1016_j_cplett_2024_141345 crossref_primary_10_1007_s11082_024_06891_w crossref_primary_10_1007_s00894_025_06286_y crossref_primary_10_1016_j_cocom_2023_e00847 crossref_primary_10_1016_j_mssp_2023_107890 crossref_primary_10_1007_s00894_024_05861_z crossref_primary_10_1016_j_ceramint_2024_10_387 crossref_primary_10_1016_j_physb_2024_415742 crossref_primary_10_1007_s10904_025_03594_x crossref_primary_10_1007_s10971_024_06496_5 crossref_primary_10_1080_01411594_2024_2448254 crossref_primary_10_1016_j_mtcomm_2024_108840 crossref_primary_10_1016_j_ijhydene_2024_03_024 crossref_primary_10_1016_j_matchemphys_2024_129493 crossref_primary_10_1016_j_physb_2024_416538 |
| Cites_doi | 10.1126/science.aam7092 10.1126/science.aam7093 10.1103/PhysRevB.85.155208 10.1002/er.6307 10.1016/j.cocom.2021.e00598 10.1126/science.aab3987 10.7566/JPSJ.91.013702 10.1021/jacs.6b09645 10.1021/acs.chemmater.5b04107 10.1016/S0022-4596(03)00109-9 10.1016/j.mssp.2022.106947 10.1103/PhysRevLett.77.3865 10.1016/0022-3697(90)90092-T 10.1039/D0RA02817G 10.1063/1.1452238 10.1016/0022-4596(82)90259-6 10.1016/j.physb.2021.413533 10.1016/S0921-4526(99)01198-9 10.1021/acs.jpclett.6b00376 10.1016/j.cocom.2021.e00550 10.1021/acs.chemmater.5b04231 10.1016/j.matchemphys.2017.03.006 10.1021/jacs.5b13294 10.1016/j.cocom.2023.e00791 10.1126/science.aam6323 10.1007/s11664-017-5962-2 10.1007/s40843-019-1255-4 10.1016/j.micrna.2022.207397 10.1016/j.cocom.2020.e00478 10.1016/j.cocom.2019.e00394 10.1080/14786440808520496 10.1063/1.3686137 10.1038/s41598-021-92443-1 10.1021/acs.chemmater.6b04181 10.1063/5.0021238 10.1016/j.inoche.2022.110172 10.1038/358136a0 10.1103/RevModPhys.73.515 10.1021/acs.jpclett.0c01968 10.1103/PhysRev.136.B864 10.1016/j.jpcs.2018.02.032 10.1103/PhysRev.140.A1133 10.1021/acs.jpclett.6b01041 10.1016/0022-3697(76)90089-5 10.1088/0953-8984/14/11/301 10.1038/s41598-018-37132-2 10.1016/0010-4655(90)90187-6 10.1039/D1RA03527D 10.1002/er.8732 10.1179/mst.1992.8.4.345 10.1146/annurev.matsci.31.1.1 10.1016/j.apsusc.2022.152854 10.1016/S0025-5408(01)00708-5 10.1016/S0010-4655(02)00206-0 10.1021/acs.jpcc.7b00138 10.1016/j.jmmm.2017.05.058 10.1073/pnas.30.9.244 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION JQ2 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ K7- KB. LK8 M7P P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 |
| DOI | 10.1007/s00894-023-05588-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Computer Science Database Materials Science Database Biological Sciences Biological Science Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Computer Science Database ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 0948-5023 |
| EndPage | 178 |
| ExternalDocumentID | 10_1007_s00894_023_05588_3 |
| GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ K7- KB. LK8 M7P P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c413t-6b2df1610f6df48b070e8b2a9ba8d01174635875e1f139472f22229cb024471a3 |
| IEDL.DBID | BENPR |
| ISSN | 1610-2940 0948-5023 |
| IngestDate | Thu Oct 02 11:46:18 EDT 2025 Thu Sep 04 19:38:59 EDT 2025 Thu Oct 30 03:52:09 EDT 2025 Wed Sep 17 23:54:29 EDT 2025 Wed Oct 01 03:27:34 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Fri Feb 21 02:43:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Double perovskite FP-LAPW method Electronic structures DFT calculations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-6b2df1610f6df48b070e8b2a9ba8d01174635875e1f139472f22229cb024471a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3266490023 |
| PQPubID | 2043656 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3153169443 proquest_miscellaneous_2814527656 proquest_journals_3266490023 proquest_journals_2814431303 crossref_citationtrail_10_1007_s00894_023_05588_3 crossref_primary_10_1007_s00894_023_05588_3 springer_journals_10_1007_s00894_023_05588_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
| PublicationTitle | Journal of molecular modeling |
| PublicationTitleAbbrev | J Mol Model |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | AngervoIAppl Surf Sci20225891528541:CAS:528:DC%2BB38XntFems7w%3D10.1016/j.apsusc.2022.152854 SchwarzKBlahaPMadsenGKHComput Phys Commun20021477110.1016/S0010-4655(02)00206-0 FilipMRHillmanSHaghighiradAASnaithHJGiustinoFJ Phys Chem Lett2016725791:CAS:528:DC%2BC28XhtVWmurfN2732241310.1021/acs.jpclett.6b01041 VolonakisGJ Phys Chem Lett201677125412591:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376 PughSFLondon, Edinburgh Dublin Philos Mag J Sci1954458238431:CAS:528:DyaG2sXlvFOhsQ%3D%3D10.1080/14786440808520496 RoknuzzamanMSci Rep2019971830679678634588110.1038/s41598-018-37132-2 CheXWangCLiZHouZYinW-JSci China Mater20206361024103510.1007/s40843-019-1255-4 AndroulakisJKatsarakisNGiapintzakisJVouroutzisNPavlidouEChrissafisKPolychroniadisEKPerdikatsisVJ Solid State Chem20031733503541:CAS:528:DC%2BD3sXls1ahu7c%3D10.1016/S0022-4596(03)00109-9 CaidMComput Condens Matter201921e0039410.1016/j.cocom.2019.e00394 PradheeshRNairHSKumarCMNLamsalJNirmalaRSanthoshPNYelonWBMalikSKSankaranarayananVSethupathiKJ Appl Phys201211105390510.1063/1.3686137 BarbierPDracheMMairesseGRavezJJ Solid State Chem1982421301:CAS:528:DyaL38XitVylu7o%3D10.1016/0022-4596(82)90259-6 FengH-JDengWYangKHuangJZengXCJ Phys Chem C2017121447144801:CAS:528:DC%2BC2sXisVSqsrc%3D10.1021/acs.jpcc.7b00138 SaciHComputational Condensed Matter202335e0079110.1016/j.cocom.2023.e00791 HainesJLegerJBocquillonGAnnu Rev Mater Res20013111131:CAS:528:DC%2BD3MXmsFGqsL0%3D10.1146/annurev.matsci.31.1.1 Correa-BaenaJ-PScience20173587397441:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323 SmitWMADirksenGJStufkensDJJ Phys Chem Solids1990511891:CAS:528:DyaK3cXhvVyitbk%3D10.1016/0022-3697(90)90092-T Ambrosch-DraxlCSofoJOComput Phys Commun20061175 LaghzaouiSInorg Chem Commun20221461101721:CAS:528:DC%2BB38XivVyjs7fI10.1016/j.inoche.2022.110172 HautierGOngSPJainAMooreCJCederGPhys Rev B20128515520815522510.1103/PhysRevB.85.155208 ZhaoXGJ Am Chem Soc2017139263026381:CAS:528:DC%2BC2sXhsFWqurw%3D2811293310.1021/jacs.6b09645 AsgharMWaqas IqbalMManzoorMAhmad NoorNZanibMSharmaRUllahHAftabSZahidTInt J Energy Res2022461524273242851:CAS:528:DC%2BB38XisVemsLbK10.1002/er.8732 CohenRENature19923581361:CAS:528:DyaK38Xlt1amtL4%3D10.1038/358136a0 VolonakisGFilipMRHaghighiradAASakaiNWengerBSnaithHJGiustinoFJ Phys Chem Lett2016712541:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376 GuechiNBouhemadouABin-OmranSJ Electron Mater201847153315451:CAS:528:DC%2BC2sXhvVOrtbzM10.1007/s11664-017-5962-2 YiTChem Mater201729156115681:CAS:528:DC%2BC2sXht1ynsbY%3D10.1021/acs.chemmater.6b04181 Al-QaisiSMushtaqMAlzahraniJSAlkhaldiHAlrowailiZARachedHUlHaqBMahmoodQAl-BuriahiMSMorsiMMicro Nanostruct20221702073971:CAS:528:DC%2BB38XisFygtb7L10.1016/j.micrna.2022.207397 BaroniSde GironcoliSDal CorsoAGiannozziPRev Mod Phys2001735151:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515 KhandySAGuptaDCRSC Adv20211127499275111:CAS:528:DC%2BB3MXhslOnsbbL35480670903781110.1039/D1RA03527D BourachidIComput Condens Matter202024e0047810.1016/j.cocom.2020.e00478 KovalenkoMVProtesescuLBodnarchukMIScience20173587457501:CAS:528:DC%2BC2sXhslOnsLzI2912306110.1126/science.aam7093 Al-QaisiSMushtaqMAlomairySVuTVRachedHUlHaqBMahmoodQAl-BuriahiMSMater Sci Semicond Process20221501069471:CAS:528:DC%2BB38XhvVGms7vJ10.1016/j.mssp.2022.106947 DuanCScience201534913211:CAS:528:DC%2BC2MXhsV2gtLjK2621706410.1126/science.aab3987 PatratGBrunelMDe BergevinFJ Phys Chem Solids19763732852911:CAS:528:DyaE28Xht1yru7g%3D10.1016/0022-3697(76)90089-5 PettiforDMater Sci Technol1992843453491:CAS:528:DyaK38XksFemsLY%3D10.1179/mst.1992.8.4.345 MeyerEMutukwaDZingweNTaziwaRMetals2018866716 KhandySAGuptaDCJ Magn Magn Mater20174411661731:CAS:528:DC%2BC2sXosFWnsb8%3D10.1016/j.jmmm.2017.05.058 BlahaPSchwarzKSorantinPTrickySBComput Phys Commun1990593991:CAS:528:DyaK3cXlslynsb4%3D10.1016/0010-4655(90)90187-6 MurnaghanFDProc Natl Acad Sci USA19443092442471:STN:280:DC%2BD28zhvFGntA%3D%3D16588651107870410.1073/pnas.30.9.244 RachedHMater Chem Phys20171934534691:CAS:528:DC%2BC2sXks1Sht7Y%3D10.1016/j.matchemphys.2017.03.006 ZhaoSYamamotoKIikuboSHayaseSMaTJ Phys Chem Solids20181171171211:CAS:528:DC%2BC1cXjtVCmu7o%3D10.1016/j.jpcs.2018.02.032 LiZYangMParkJSWeiSHBerryJJZhuKChem Mater20162828410.1021/acs.chemmater.5b04107 NabiMGuptaDCSci Rep202111129451:CAS:528:DC%2BB3MXhsF2hsrbJ34155308821752410.1038/s41598-021-92443-1 SlavneyAHHuTLindenbergAMKarunadasaHIJ Am Chem Soc201613821381:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294 ZhouWJ Phys Chem Lett202011646364671:CAS:528:DC%2BB3cXhsVaqt7nM3269791410.1021/acs.jpclett.0c01968 HirotoAJ Phys Soc Jpn202291101370210.7566/JPSJ.91.013702 MoeenUd DinPhysica B: Condensed Matter202262741353310.1016/j.physb.2021.413533 FangCMde WijsGAde GrootRAJ Appl Phys200291834083441:CAS:528:DC%2BD38XjvFygsb8%3D10.1063/1.1452238 KohnWShamLJPhys Rev A1965140113310.1103/PhysRev.140.A1133 PerdewJPBurkeSErnzerhofMPhys Rev Lett19967738651:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865 CaidMRachedHBentouafARachedDRachedYComput Condens Matter202129e0059810.1016/j.cocom.2021.e00598 HohenbergPKohnWPhys Rev B196413686410.1103/PhysRev.136.B864 SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJJ Phys Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D10.1088/0953-8984/14/11/301 JafarAMKhalaphKAMahmoodAMater Sci Eng20207650120471:CAS:528:DC%2BB3cXhvFOls7rN McClureETBallMRWindlWWoodwardPMChem Mater20162813481:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231 KawanakaHPhysica B200028151852010.1016/S0921-4526(99)01198-9 MirSAGuptaDCRSC Adv202010262771:CAS:528:DC%2BB3cXhtlKku73J35519779905544410.1039/D0RA02817G MorsliSComput Condens Matter202127e0055010.1016/j.cocom.2021.e00550 WenwuSCaiTWangZChenOJ Chem Phys202015314110110.1063/5.0021238 AzadAKIvanovSAErikssonS-GEriksenJRundlofHMathieuRSvedlindhPMater Res Bullet200136248524961:CAS:528:DC%2BD3MXnsFOiurY%3D10.1016/S0025-5408(01)00708-5 HwangJScience20173587517561:CAS:528:DC%2BC2sXhslOnsLzJ2912306210.1126/science.aam7092 Nabi M, Gupta DC (2020) Int J Energy Res 45(5):7222–7234 N Guechi (5588_CR28) 2018; 47 SA Khandy (5588_CR32) 2017; 441 SA Mir (5588_CR51) 2020; 10 SF Pugh (5588_CR52) 1954; 45 I Angervo (5588_CR35) 2022; 589 G Volonakis (5588_CR18) 2016; 7 JP Perdew (5588_CR44) 1996; 77 H-J Feng (5588_CR13) 2017; 121 J-P Correa-Baena (5588_CR6) 2017; 358 XG Zhao (5588_CR12) 2017; 139 H Saci (5588_CR38) 2023; 35 5588_CR55 MD Segall (5588_CR50) 2002; 14 WMA Smit (5588_CR24) 1990; 51 W Zhou (5588_CR11) 2020; 11 J Hwang (5588_CR3) 2017; 358 S Zhao (5588_CR20) 2018; 117 G Volonakis (5588_CR25) 2016; 7 AH Slavney (5588_CR26) 2016; 138 S Al-Qaisi (5588_CR31) 2022; 170 MV Kovalenko (5588_CR5) 2017; 358 I Bourachid (5588_CR61) 2020; 24 G Hautier (5588_CR48) 2012; 85 M Caid (5588_CR60) 2019; 21 W Kohn (5588_CR41) 1965; 140 H Kawanaka (5588_CR36) 2000; 281 FD Murnaghan (5588_CR45) 1944; 30 M Roknuzzaman (5588_CR16) 2019; 9 M Asghar (5588_CR30) 2022; 46 ET McClure (5588_CR22) 2016; 28 S Wenwu (5588_CR19) 2020; 153 MR Filip (5588_CR27) 2016; 7 RE Cohen (5588_CR1) 1992; 358 C Duan (5588_CR2) 2015; 349 S Al-Qaisi (5588_CR29) 2022; 150 MoeenUd Din (5588_CR39) 2022; 627 AK Azad (5588_CR8) 2001; 36 D Pettifor (5588_CR54) 1992; 8 M Caid (5588_CR59) 2021; 29 J Androulakis (5588_CR10) 2003; 173 M Nabi (5588_CR21) 2021; 11 K Schwarz (5588_CR43) 2002; 147 R Pradheesh (5588_CR9) 2012; 111 S Laghzaoui (5588_CR37) 2022; 146 P Blaha (5588_CR42) 1990; 59 A Hiroto (5588_CR33) 2022; 91 SA Khandy (5588_CR47) 2021; 11 J Haines (5588_CR53) 2001; 31 AM Jafar (5588_CR14) 2020; 765 C Ambrosch-Draxl (5588_CR57) 2006; 1 T Yi (5588_CR4) 2017; 29 S Baroni (5588_CR49) 2001; 73 E Meyer (5588_CR17) 2018; 8 X Che (5588_CR15) 2020; 63 S Morsli (5588_CR58) 2021; 27 G Patrat (5588_CR34) 1976; 37 Z Li (5588_CR46) 2016; 28 P Hohenberg (5588_CR40) 1964; 136 H Rached (5588_CR7) 2017; 193 P Barbier (5588_CR23) 1982; 42 CM Fang (5588_CR56) 2002; 91 |
| References_xml | – reference: HirotoAJ Phys Soc Jpn202291101370210.7566/JPSJ.91.013702 – reference: RachedHMater Chem Phys20171934534691:CAS:528:DC%2BC2sXks1Sht7Y%3D10.1016/j.matchemphys.2017.03.006 – reference: AndroulakisJKatsarakisNGiapintzakisJVouroutzisNPavlidouEChrissafisKPolychroniadisEKPerdikatsisVJ Solid State Chem20031733503541:CAS:528:DC%2BD3sXls1ahu7c%3D10.1016/S0022-4596(03)00109-9 – reference: VolonakisGJ Phys Chem Lett201677125412591:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376 – reference: McClureETBallMRWindlWWoodwardPMChem Mater20162813481:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231 – reference: Al-QaisiSMushtaqMAlzahraniJSAlkhaldiHAlrowailiZARachedHUlHaqBMahmoodQAl-BuriahiMSMorsiMMicro Nanostruct20221702073971:CAS:528:DC%2BB38XisFygtb7L10.1016/j.micrna.2022.207397 – reference: SchwarzKBlahaPMadsenGKHComput Phys Commun20021477110.1016/S0010-4655(02)00206-0 – reference: LiZYangMParkJSWeiSHBerryJJZhuKChem Mater20162828410.1021/acs.chemmater.5b04107 – reference: MeyerEMutukwaDZingweNTaziwaRMetals2018866716 – reference: MoeenUd DinPhysica B: Condensed Matter202262741353310.1016/j.physb.2021.413533 – reference: HainesJLegerJBocquillonGAnnu Rev Mater Res20013111131:CAS:528:DC%2BD3MXmsFGqsL0%3D10.1146/annurev.matsci.31.1.1 – reference: Correa-BaenaJ-PScience20173587397441:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323 – reference: FengH-JDengWYangKHuangJZengXCJ Phys Chem C2017121447144801:CAS:528:DC%2BC2sXisVSqsrc%3D10.1021/acs.jpcc.7b00138 – reference: BarbierPDracheMMairesseGRavezJJ Solid State Chem1982421301:CAS:528:DyaL38XitVylu7o%3D10.1016/0022-4596(82)90259-6 – reference: LaghzaouiSInorg Chem Commun20221461101721:CAS:528:DC%2BB38XivVyjs7fI10.1016/j.inoche.2022.110172 – reference: FilipMRHillmanSHaghighiradAASnaithHJGiustinoFJ Phys Chem Lett2016725791:CAS:528:DC%2BC28XhtVWmurfN2732241310.1021/acs.jpclett.6b01041 – reference: CohenRENature19923581361:CAS:528:DyaK38Xlt1amtL4%3D10.1038/358136a0 – reference: NabiMGuptaDCSci Rep202111129451:CAS:528:DC%2BB3MXhsF2hsrbJ34155308821752410.1038/s41598-021-92443-1 – reference: VolonakisGFilipMRHaghighiradAASakaiNWengerBSnaithHJGiustinoFJ Phys Chem Lett2016712541:CAS:528:DC%2BC28Xkt1Cnsbk%3D2698211810.1021/acs.jpclett.6b00376 – reference: AsgharMWaqas IqbalMManzoorMAhmad NoorNZanibMSharmaRUllahHAftabSZahidTInt J Energy Res2022461524273242851:CAS:528:DC%2BB38XisVemsLbK10.1002/er.8732 – reference: HwangJScience20173587517561:CAS:528:DC%2BC2sXhslOnsLzJ2912306210.1126/science.aam7092 – reference: Nabi M, Gupta DC (2020) Int J Energy Res 45(5):7222–7234 – reference: PatratGBrunelMDe BergevinFJ Phys Chem Solids19763732852911:CAS:528:DyaE28Xht1yru7g%3D10.1016/0022-3697(76)90089-5 – reference: KhandySAGuptaDCRSC Adv20211127499275111:CAS:528:DC%2BB3MXhslOnsbbL35480670903781110.1039/D1RA03527D – reference: SaciHComputational Condensed Matter202335e0079110.1016/j.cocom.2023.e00791 – reference: BaroniSde GironcoliSDal CorsoAGiannozziPRev Mod Phys2001735151:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515 – reference: KawanakaHPhysica B200028151852010.1016/S0921-4526(99)01198-9 – reference: HohenbergPKohnWPhys Rev B196413686410.1103/PhysRev.136.B864 – reference: JafarAMKhalaphKAMahmoodAMater Sci Eng20207650120471:CAS:528:DC%2BB3cXhvFOls7rN – reference: SlavneyAHHuTLindenbergAMKarunadasaHIJ Am Chem Soc201613821381:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294 – reference: FangCMde WijsGAde GrootRAJ Appl Phys200291834083441:CAS:528:DC%2BD38XjvFygsb8%3D10.1063/1.1452238 – reference: BlahaPSchwarzKSorantinPTrickySBComput Phys Commun1990593991:CAS:528:DyaK3cXlslynsb4%3D10.1016/0010-4655(90)90187-6 – reference: KohnWShamLJPhys Rev A1965140113310.1103/PhysRev.140.A1133 – reference: SmitWMADirksenGJStufkensDJJ Phys Chem Solids1990511891:CAS:528:DyaK3cXhvVyitbk%3D10.1016/0022-3697(90)90092-T – reference: MurnaghanFDProc Natl Acad Sci USA19443092442471:STN:280:DC%2BD28zhvFGntA%3D%3D16588651107870410.1073/pnas.30.9.244 – reference: PettiforDMater Sci Technol1992843453491:CAS:528:DyaK38XksFemsLY%3D10.1179/mst.1992.8.4.345 – reference: CaidMRachedHBentouafARachedDRachedYComput Condens Matter202129e0059810.1016/j.cocom.2021.e00598 – reference: Ambrosch-DraxlCSofoJOComput Phys Commun20061175 – reference: PughSFLondon, Edinburgh Dublin Philos Mag J Sci1954458238431:CAS:528:DyaG2sXlvFOhsQ%3D%3D10.1080/14786440808520496 – reference: GuechiNBouhemadouABin-OmranSJ Electron Mater201847153315451:CAS:528:DC%2BC2sXhvVOrtbzM10.1007/s11664-017-5962-2 – reference: HautierGOngSPJainAMooreCJCederGPhys Rev B20128515520815522510.1103/PhysRevB.85.155208 – reference: MorsliSComput Condens Matter202127e0055010.1016/j.cocom.2021.e00550 – reference: CheXWangCLiZHouZYinW-JSci China Mater20206361024103510.1007/s40843-019-1255-4 – reference: KovalenkoMVProtesescuLBodnarchukMIScience20173587457501:CAS:528:DC%2BC2sXhslOnsLzI2912306110.1126/science.aam7093 – reference: WenwuSCaiTWangZChenOJ Chem Phys202015314110110.1063/5.0021238 – reference: PerdewJPBurkeSErnzerhofMPhys Rev Lett19967738651:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865 – reference: ZhouWJ Phys Chem Lett202011646364671:CAS:528:DC%2BB3cXhsVaqt7nM3269791410.1021/acs.jpclett.0c01968 – reference: AzadAKIvanovSAErikssonS-GEriksenJRundlofHMathieuRSvedlindhPMater Res Bullet200136248524961:CAS:528:DC%2BD3MXnsFOiurY%3D10.1016/S0025-5408(01)00708-5 – reference: PradheeshRNairHSKumarCMNLamsalJNirmalaRSanthoshPNYelonWBMalikSKSankaranarayananVSethupathiKJ Appl Phys201211105390510.1063/1.3686137 – reference: ZhaoXGJ Am Chem Soc2017139263026381:CAS:528:DC%2BC2sXhsFWqurw%3D2811293310.1021/jacs.6b09645 – reference: Al-QaisiSMushtaqMAlomairySVuTVRachedHUlHaqBMahmoodQAl-BuriahiMSMater Sci Semicond Process20221501069471:CAS:528:DC%2BB38XhvVGms7vJ10.1016/j.mssp.2022.106947 – reference: CaidMComput Condens Matter201921e0039410.1016/j.cocom.2019.e00394 – reference: YiTChem Mater201729156115681:CAS:528:DC%2BC2sXht1ynsbY%3D10.1021/acs.chemmater.6b04181 – reference: DuanCScience201534913211:CAS:528:DC%2BC2MXhsV2gtLjK2621706410.1126/science.aab3987 – reference: RoknuzzamanMSci Rep2019971830679678634588110.1038/s41598-018-37132-2 – reference: ZhaoSYamamotoKIikuboSHayaseSMaTJ Phys Chem Solids20181171171211:CAS:528:DC%2BC1cXjtVCmu7o%3D10.1016/j.jpcs.2018.02.032 – reference: MirSAGuptaDCRSC Adv202010262771:CAS:528:DC%2BB3cXhtlKku73J35519779905544410.1039/D0RA02817G – reference: BourachidIComput Condens Matter202024e0047810.1016/j.cocom.2020.e00478 – reference: AngervoIAppl Surf Sci20225891528541:CAS:528:DC%2BB38XntFems7w%3D10.1016/j.apsusc.2022.152854 – reference: SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJJ Phys Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D10.1088/0953-8984/14/11/301 – reference: KhandySAGuptaDCJ Magn Magn Mater20174411661731:CAS:528:DC%2BC2sXosFWnsb8%3D10.1016/j.jmmm.2017.05.058 – volume: 358 start-page: 751 year: 2017 ident: 5588_CR3 publication-title: Science doi: 10.1126/science.aam7092 – volume: 358 start-page: 745 year: 2017 ident: 5588_CR5 publication-title: Science doi: 10.1126/science.aam7093 – volume: 85 start-page: 155208 year: 2012 ident: 5588_CR48 publication-title: Phys Rev B doi: 10.1103/PhysRevB.85.155208 – ident: 5588_CR55 doi: 10.1002/er.6307 – volume: 29 start-page: e00598 year: 2021 ident: 5588_CR59 publication-title: Comput Condens Matter doi: 10.1016/j.cocom.2021.e00598 – volume: 349 start-page: 1321 year: 2015 ident: 5588_CR2 publication-title: Science doi: 10.1126/science.aab3987 – volume: 765 start-page: 012047 year: 2020 ident: 5588_CR14 publication-title: Mater Sci Eng – volume: 91 start-page: 013702 issue: 1 year: 2022 ident: 5588_CR33 publication-title: J Phys Soc Jpn doi: 10.7566/JPSJ.91.013702 – volume: 139 start-page: 2630 year: 2017 ident: 5588_CR12 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b09645 – volume: 28 start-page: 284 year: 2016 ident: 5588_CR46 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04107 – volume: 173 start-page: 350 year: 2003 ident: 5588_CR10 publication-title: J Solid State Chem doi: 10.1016/S0022-4596(03)00109-9 – volume: 150 start-page: 106947 year: 2022 ident: 5588_CR29 publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2022.106947 – volume: 77 start-page: 3865 year: 1996 ident: 5588_CR44 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 51 start-page: 189 year: 1990 ident: 5588_CR24 publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(90)90092-T – volume: 10 start-page: 26277 year: 2020 ident: 5588_CR51 publication-title: RSC Adv doi: 10.1039/D0RA02817G – volume: 91 start-page: 8340 year: 2002 ident: 5588_CR56 publication-title: J Appl Phys doi: 10.1063/1.1452238 – volume: 42 start-page: 130 year: 1982 ident: 5588_CR23 publication-title: J Solid State Chem doi: 10.1016/0022-4596(82)90259-6 – volume: 627 start-page: 413533 year: 2022 ident: 5588_CR39 publication-title: Physica B: Condensed Matter doi: 10.1016/j.physb.2021.413533 – volume: 281 start-page: 518 year: 2000 ident: 5588_CR36 publication-title: Physica B doi: 10.1016/S0921-4526(99)01198-9 – volume: 7 start-page: 1254 issue: 7 year: 2016 ident: 5588_CR18 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b00376 – volume: 27 start-page: e00550 year: 2021 ident: 5588_CR58 publication-title: Comput Condens Matter doi: 10.1016/j.cocom.2021.e00550 – volume: 28 start-page: 1348 year: 2016 ident: 5588_CR22 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04231 – volume: 193 start-page: 453 year: 2017 ident: 5588_CR7 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2017.03.006 – volume: 138 start-page: 2138 year: 2016 ident: 5588_CR26 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b13294 – volume: 35 start-page: e00791 year: 2023 ident: 5588_CR38 publication-title: Computational Condensed Matter doi: 10.1016/j.cocom.2023.e00791 – volume: 358 start-page: 739 year: 2017 ident: 5588_CR6 publication-title: Science doi: 10.1126/science.aam6323 – volume: 47 start-page: 1533 year: 2018 ident: 5588_CR28 publication-title: J Electron Mater doi: 10.1007/s11664-017-5962-2 – volume: 1 start-page: 175 year: 2006 ident: 5588_CR57 publication-title: Comput Phys Commun – volume: 63 start-page: 1024 issue: 6 year: 2020 ident: 5588_CR15 publication-title: Sci China Mater doi: 10.1007/s40843-019-1255-4 – volume: 170 start-page: 207397 year: 2022 ident: 5588_CR31 publication-title: Micro Nanostruct doi: 10.1016/j.micrna.2022.207397 – volume: 24 start-page: e00478 year: 2020 ident: 5588_CR61 publication-title: Comput Condens Matter doi: 10.1016/j.cocom.2020.e00478 – volume: 21 start-page: e00394 year: 2019 ident: 5588_CR60 publication-title: Comput Condens Matter doi: 10.1016/j.cocom.2019.e00394 – volume: 45 start-page: 823 year: 1954 ident: 5588_CR52 publication-title: London, Edinburgh Dublin Philos Mag J Sci doi: 10.1080/14786440808520496 – volume: 111 start-page: 053905 year: 2012 ident: 5588_CR9 publication-title: J Appl Phys doi: 10.1063/1.3686137 – volume: 11 start-page: 12945 year: 2021 ident: 5588_CR21 publication-title: Sci Rep doi: 10.1038/s41598-021-92443-1 – volume: 29 start-page: 1561 year: 2017 ident: 5588_CR4 publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b04181 – volume: 153 start-page: 141101 year: 2020 ident: 5588_CR19 publication-title: J Chem Phys doi: 10.1063/5.0021238 – volume: 146 start-page: 110172 year: 2022 ident: 5588_CR37 publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2022.110172 – volume: 358 start-page: 136 year: 1992 ident: 5588_CR1 publication-title: Nature doi: 10.1038/358136a0 – volume: 73 start-page: 515 year: 2001 ident: 5588_CR49 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.73.515 – volume: 11 start-page: 6463 year: 2020 ident: 5588_CR11 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c01968 – volume: 136 start-page: 864 year: 1964 ident: 5588_CR40 publication-title: Phys Rev B doi: 10.1103/PhysRev.136.B864 – volume: 117 start-page: 117 year: 2018 ident: 5588_CR20 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2018.02.032 – volume: 140 start-page: 1133 year: 1965 ident: 5588_CR41 publication-title: Phys Rev A doi: 10.1103/PhysRev.140.A1133 – volume: 8 start-page: 1 issue: 667 year: 2018 ident: 5588_CR17 publication-title: Metals – volume: 7 start-page: 2579 year: 2016 ident: 5588_CR27 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b01041 – volume: 37 start-page: 285 issue: 3 year: 1976 ident: 5588_CR34 publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(76)90089-5 – volume: 14 start-page: 2717 year: 2002 ident: 5588_CR50 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/14/11/301 – volume: 9 start-page: 718 year: 2019 ident: 5588_CR16 publication-title: Sci Rep doi: 10.1038/s41598-018-37132-2 – volume: 59 start-page: 399 year: 1990 ident: 5588_CR42 publication-title: Comput Phys Commun doi: 10.1016/0010-4655(90)90187-6 – volume: 11 start-page: 27499 year: 2021 ident: 5588_CR47 publication-title: RSC Adv doi: 10.1039/D1RA03527D – volume: 46 start-page: 24273 issue: 15 year: 2022 ident: 5588_CR30 publication-title: Int J Energy Res doi: 10.1002/er.8732 – volume: 8 start-page: 345 issue: 4 year: 1992 ident: 5588_CR54 publication-title: Mater Sci Technol doi: 10.1179/mst.1992.8.4.345 – volume: 31 start-page: 1 issue: 1 year: 2001 ident: 5588_CR53 publication-title: Annu Rev Mater Res doi: 10.1146/annurev.matsci.31.1.1 – volume: 589 start-page: 152854 year: 2022 ident: 5588_CR35 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2022.152854 – volume: 36 start-page: 2485 year: 2001 ident: 5588_CR8 publication-title: Mater Res Bullet doi: 10.1016/S0025-5408(01)00708-5 – volume: 147 start-page: 71 year: 2002 ident: 5588_CR43 publication-title: Comput Phys Commun doi: 10.1016/S0010-4655(02)00206-0 – volume: 121 start-page: 4471 year: 2017 ident: 5588_CR13 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b00138 – volume: 7 start-page: 1254 year: 2016 ident: 5588_CR25 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b00376 – volume: 441 start-page: 166 year: 2017 ident: 5588_CR32 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2017.05.058 – volume: 30 start-page: 244 issue: 9 year: 1944 ident: 5588_CR45 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.30.9.244 |
| SSID | ssj0001256522 |
| Score | 2.5321105 |
| Snippet | Context
In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs
2
CuIrF
6
. The detailed investigation... Abstract ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed... ContextIn this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of... In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs2CuIrF6. The detailed investigation of... CONTEXT: In this study, we predict the stability, elastic, electronic and optical properties of double perovskite (DP) Cs₂CuIrF₆. The detailed investigation of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 178 |
| SubjectTerms | absorbance Absorptivity Approximation Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer applications Computer Applications in Chemistry Crystal structure Density functional theory Density of states Dynamic stability Elastic properties Electronic structure Investigations Mathematical analysis Molecular Medicine Optical properties Optimization Optoelectronics Original Paper Perovskites Physical properties refractive index Refractivity semiconductors Symmetry Theoretical and Computational Chemistry Tin |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3oRP7E6JYI3LXRp0g9vYzimoKcNditJm8BA2rG2-u_7XtZuKpvgOWlT3kv6-728L0LufGayGCs_Rh7TLg_hSEkmlKvCWIQICB7HBOfXt2A04S9TMW2Swso22r11Sdo_9SrZDdAKy9gyjDcToF9_l-wJLOcFu3jC-t9uVoCkWPcBsBnPZTH3mmyZza_5iUhrmvnLM2oBZ3hEDhumSPtL1R6THZ2fkP1B26DtlHyO10mIdJaXaGbTwlDgezbiFWxgKvOMFvOqWHe7oXO8fl_YUZicFbV61xTLhX-UeJNLByUb1M-LYfBI-8qdYXBRQWGJtGn0VZ6RyfBpPBi5TR8FNwWIqtxAscygLEyQGR4pOOU6UkzGSkYZ1oTjwDrAbtE9A3yQh8ww7PKdKsBvwC7pn5NOXuT6glBPaSmEDCMNxIX1UmWY8tHXJjMuolQ5pNfKMkmbIuPY6-I9WZVHtvJPQP6JlX_iO-R-9cx8WWLjz9ndVkVJc9zKhEVgF_oIxxuHgaIGPEZ64pDb1TBoC50jMtdFvXyFYCHQ2-1zfICHXhDDUg55aHfHepntH335v-lX5IDZDYqXPV3SqRa1vgbuU6kbu9W_AONM-Ek priority: 102 providerName: Springer Nature |
| Title | Theoretical insight of stabilities and optoelectronic properties of double perovskite Cs2CuIrF6: Ab-initio calculations |
| URI | https://link.springer.com/article/10.1007/s00894-023-05588-3 https://www.proquest.com/docview/2814431303 https://www.proquest.com/docview/3266490023 https://www.proquest.com/docview/2814527656 https://www.proquest.com/docview/3153169443 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 0948-5023 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256522 issn: 1610-2940 databaseCode: AFBBN dateStart: 19950201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0948-5023 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256522 issn: 1610-2940 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0948-5023 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256522 issn: 1610-2940 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7QO8INhAdGyVJ_G2RaQX5xcSQl3VboCoJrRK4ymyY0eaNCWlaeHf585NGkBsr7ETR-ezv893vjuAtwEWJuXMj4mP1pMxLSmFofZ0nIYxA4IvOcD56zy6WsjPt-HtHszbWBi-VtnuiW6jNlXONvJ3RDMimTLEfFz-8LhqFHtX2xIaqimtYD64FGP70EfOjNWD_sV0fv3tD6sLERjnWiCm43uYSr-JpHHxdASInCkX-UpbSCoU_I1WHQX9x2vqwGj2HJ41LFKMt9P-AvZseQBPJm3xtkP4ddMFKIq7suYjuKgKQVzQ3Yal87FQpRHVcl11lXDEkk3zK9dKnU210fdWcCrxnzVbecWkxsnm02oWvRdj7d3xxaNK0BB5UwSsfgmL2fRmcuU1NRa8nOBr7UUaTcGyKCJTyETTDmATjSrVKjGcL04SI6EzjR0VxBVljAVyBfBcE7YTrqngFfTKqrSvQfjaqjBUcWKJ1OAo1wXqgP1wysgwyfUARq0ss7xJQM51MO6zXepkJ_-M5J85-WfBAM527yy36Tce7X3cTlHWLMU6w4TOjAFD9X-bO70awOmumWaLHSeqtNVm-4kQY6K-D_cJCDpGUUpDDeC81Y5umId_-ujxv3oDT9EpJBt-jqG3Xm3sCfGgtR7CfjK7HEJ_fPn9y3TYqDo9XeD4N5-nBTU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WG8IMZAFPZhJPY0IlLH-Zo0oa2savdRIdRJewt27EiTpqQ0LRP_HH8bd67TbIjtbc927Oh89v3O57sfwMeAFzqlyo-Jz40nYtxSkofKU3EaxmQQfEEJzhejaHApTq_CqxX40-TC0LPK5ky0B7Wucroj_4wwIxIpmZgvk58esUZRdLWh0JCOWkEf2hJjLrHjzPy-RReuPhx-xfXe47x_Mu4NPMcy4OV4gM-8SHFdIO7xi0gXIlG4B0yiuEyVTDRVTBNokxHVm26BaEnEvODEgZ0rtG54sssAx30GayIQKTp_a8cno2_f79zyIGCyoQyaweOp8F3mjs3fQwNMlXk5PaELUWWD-9axhbz_RGmt8eu_hBcOtbKjhZptwIopX8F6ryGL24TbcZsQya7Lmlx-VhUMsad9fYv-OJOlZtVkVrXMO2xCoYCpbcXOupqrG8OodPmvmm6VWa_mvflw2o8O2JHyrumhU8VwityRjtWv4fJJpP0GVsuqNG-B-crIMJRxYhBE8W6uCq4CivtJLcIkVx3oNrLMclfwnHg3brJlqWYr_wzln1n5Z0EH9pffTBblPh7tvdUsUea2fp3xBH3UgKDBf5tbPe7Ah2UzrhYFamRpqvliiJDHCLUf7hOgqepGKU7VgU-NdrTTPPzT7x7_q11YH4wvzrPz4ejsPTznVjnp0mkLVmfTudlGDDZTO07RGfx46r31Fyl9PIg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gHoRn7g-I3jTYjdNX96W1cU3HlzwVpI2gQVpl21X_74z2XZXRQXPSZMyk_B9yWS-ATjxuMliUn6MXK4dEeKWktxXjgpjPyRAcAUlOD88Btd9cfviv3zK4rev3ZuQ5CSngVSa8up8mJnzaeIbIhdJ2nJ6e-ajr715WBQklIArus87n25ZkLDYUAIyG9fhsXDrzJmfh_mKTjPK-S1KasGntwarNWtknYmb12FO5xuw3G2KtW3C-_MsIZEN8pKO3KwwDLmfff2K52Em84wVw6qYVb5hQ7qKH9lW7JwVY_WqGUmHv5V0q8u6Je-Ob0a94IJ1lDOgh0YFwynSuuhXuQX93tVz99qpayo4KcJV5QSKZ4ZsYYLMiEjhjteR4jJWMspIH04gA8EzjG4b5IYi5IZTxe9UIZYjjklvGxbyItc7wFylpe_LMNJIYng7VYYrj-JuMhN-lKoWtBtbJmktOE51L16TqVSytX-C9k-s_ROvBafTb4YTuY0_e-83LkrqrVcmPMIzokfQ_GMz0tVAxERVWnA8bUZvUaBE5roYT4bweYhU9_c-HkJFO4hxqhacNatjNs3vP737v-5HsPR02Uvubx7v9mCF27VKd0D7sFCNxvoAKVGlDu2q_wAk8v9x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+insight+of+stabilities+and+optoelectronic+properties+of+double+perovskite+Cs2CuIrF6%3A+Ab-initio+calculations&rft.jtitle=Journal+of+molecular+modeling&rft.au=Caid%2C+Messaoud&rft.au=Rached%2C+Youcef&rft.au=Rached%2C+Djamel&rft.au=Rached%2C+Habib&rft.date=2023-06-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=6&rft_id=info:doi/10.1007%2Fs00894-023-05588-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_023_05588_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |