Design Strategies of S8 Molecule Cathodes for Room-Temperature Na-S Batteries
Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 15; no. 5; p. 330 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.02.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano15050330 |
Cover
Abstract | Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues. |
---|---|
AbstractList | Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues. Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues. Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S 8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues. |
Author | Shi, Sha-Sha Lin, Dong-Tao Cai, Zi-Qi Yang, Tao Lu, Chen-Kai Geng, Nan-Nan Li, Jing Liu, Tao |
AuthorAffiliation | 2 Future Technology School, Shenzhen Technology University, Shenzhen 518118, China; 202100501059@stumail.sztu.edu.cn (Z.-Q.C.); luchenkai0818@163.com (C.-K.L.); lijing0708@163.com (J.L.); dongtao_lin@163.com (D.-T.L.) 3 TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal 1 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; sss450802@163.com (S.-S.S.); gnn0420@outlook.com (N.-N.G.) |
AuthorAffiliation_xml | – name: 1 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; sss450802@163.com (S.-S.S.); gnn0420@outlook.com (N.-N.G.) – name: 3 TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal – name: 2 Future Technology School, Shenzhen Technology University, Shenzhen 518118, China; 202100501059@stumail.sztu.edu.cn (Z.-Q.C.); luchenkai0818@163.com (C.-K.L.); lijing0708@163.com (J.L.); dongtao_lin@163.com (D.-T.L.) |
Author_xml | – sequence: 1 givenname: Sha-Sha surname: Shi fullname: Shi, Sha-Sha – sequence: 2 givenname: Zi-Qi surname: Cai fullname: Cai, Zi-Qi – sequence: 3 givenname: Chen-Kai surname: Lu fullname: Lu, Chen-Kai – sequence: 4 givenname: Jing surname: Li fullname: Li, Jing – sequence: 5 givenname: Nan-Nan surname: Geng fullname: Geng, Nan-Nan – sequence: 6 givenname: Dong-Tao surname: Lin fullname: Lin, Dong-Tao – sequence: 7 givenname: Tao surname: Yang fullname: Yang, Tao – sequence: 8 givenname: Tao orcidid: 0000-0001-6017-0827 surname: Liu fullname: Liu, Tao |
BookMark | eNpdkU1vFSEUhompsbV25w-YxI2LjsIcGGBl9Fq1ST8Sb10Thjnczs0MXGGmif--1NuYVjaQw8OTl3Nek4MQAxLyltEPAJp-DDZEJqigAPQFOWqo1DXXmh08OR-Sk5y3tCzNQAl4RQ45pbJhAEfk8ivmYROq9ZzsjJsBcxV9tVbVZRzRLSNWKzvfxr7UfUzVzxin-ganHRZ8SVhd2XpdfbHzjKm8fUNeejtmPHncj8mvb2c3qx_1xfX389Xni9pxBnPdciYUdholK6lU60FxDgyl6Bw6UIwCZb4QgitpW2w4b6DXrgXvdde3cEzO994-2q3ZpWGy6Y-JdjB_CzFtjE3z4EY00ne9aJmQqrO8bfqOUgZeix5dp7TE4vq0d-2WbsLeYSitGJ9Jn9-E4dZs4p1hTNOGalkM7x8NKf5eMM9mGrLDcbQB45INMNkClxQegr_7D93GJYXSqz0lmvLXQp3uKZdizgn9vzSMmoe5m6dzh3vr0Z6s |
Cites_doi | 10.1002/smll.202101879 10.1039/D0TA08748C 10.1016/j.cej.2020.124978 10.1002/advs.202105544 10.1039/D2QI00057A 10.1016/j.est.2023.109353 10.1021/acsnano.1c05193 10.1002/advs.202206558 10.1016/j.cej.2021.134205 10.1021/acsami.0c21267 10.1002/adfm.202214353 10.1016/j.cej.2019.122359 10.1021/acsnano.9b04977 10.3866/PKU.WHXB202302049 10.1002/aenm.202100989 10.1002/adfm.202102280 10.1038/s41467-019-11600-3 10.1039/D1QI01406D 10.1016/j.nanoen.2021.106590 10.1038/s41467-021-26631-y 10.1016/j.jcis.2020.06.051 10.1002/adfm.202305908 10.1021/acsenergylett.0c00913 10.1002/adfm.201200473 10.1016/j.jechem.2023.08.010 10.1021/acsnano.0c02488 10.1016/j.jallcom.2021.160910 10.1002/adfm.201705537 10.1016/j.ensm.2022.07.028 10.1039/C8TA09556F 10.1002/adma.201906700 10.1016/j.nanoen.2016.12.018 10.1016/j.xcrp.2021.100539 10.1002/anie.202309046 10.1007/s12598-024-02975-4 10.1002/anie.202217009 10.3390/molecules25071585 10.1002/adfm.202005669 10.1002/adma.202100229 10.1002/adma.202200479 10.1021/acsenergylett.9b02746 10.1039/D0TA10159A 10.1021/acsami.3c02599 10.1016/j.jcis.2022.09.071 10.1039/D1MH01326B 10.1002/anie.202009400 10.1002/adma.202208873 10.1016/j.jcis.2023.09.134 10.1021/jacs.4c13400 10.1038/s41560-019-0351-0 10.1002/aenm.202303925 10.1016/j.cej.2023.144528 10.1016/j.matt.2021.03.004 10.1021/acsaem.0c02294 10.1039/D2QI01362B 10.1038/s41467-018-06144-x 10.1016/j.est.2024.112141 10.1002/anie.202200384 10.1016/j.electacta.2023.142288 10.1073/pnas.1006652108 10.31635/ccschem.024.202303640 10.1016/j.jpowsour.2023.232917 10.1021/acsnano.1c00804 10.1002/adfm.202100666 10.1016/j.ensm.2018.11.031 10.1016/j.est.2024.113260 10.1039/D1EE01349A 10.1002/adfm.202400859 10.1002/smll.202311151 10.1021/acsami.1c02301 10.1039/D0QI00939C 10.1002/adfm.202211821 10.1002/adma.202312207 10.1002/sstr.202200020 10.1038/s41467-020-19078-0 10.1016/j.joule.2018.08.010 10.1016/j.mtener.2024.101536 10.1016/j.ensm.2021.08.014 10.1039/D4DT00745J 10.1021/jacs.2c07655 10.1002/adfm.202212600 10.1016/j.cej.2021.132389 10.1021/acsnano.1c05778 10.1007/s40820-020-00563-6 10.1038/s41560-022-01175-7 10.1002/anie.202218165 10.1038/s41467-023-42383-3 10.1016/j.est.2021.102660 10.1016/j.cej.2020.124210 10.1039/D0TA08876E 10.1002/smll.202310225 10.1039/C9EE03251G 10.1016/j.jcis.2020.01.010 10.3390/batteries9010026 10.1038/s41467-021-27551-7 10.1021/acsami.1c11793 10.1002/anie.202015932 10.1002/smtd.202200335 10.1016/j.apsusc.2022.154496 10.1002/anie.201811080 10.1016/j.nanoen.2023.109082 10.1002/smll.202311180 10.1021/acsnano.2c00265 10.1021/acsaem.0c03235 10.1002/advs.201902617 10.1002/adma.202204214 10.1002/anie.202422208 10.1002/adma.202103846 10.1038/s41467-024-47628-3 10.1039/D2CC05071D 10.1039/D3QI00661A 10.1002/adfm.202418126 10.1016/j.cej.2020.125295 10.1002/smll.202302461 10.1002/adma.202411725 10.1002/smll.202400164 10.1016/j.cej.2021.129681 10.1016/j.jcis.2023.05.142 10.1021/acsami.3c14578 10.1016/j.jcat.2014.12.033 10.1149/2.0851503jes 10.1021/acsnano.0c03737 10.1021/acsami.9b00203 10.1002/advs.202308180 10.1016/j.cej.2024.153006 10.1016/S1872-5805(22)60607-3 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano15050330 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_7fbd561578ba462db0013f95decb897e PMC11902097 10_3390_nano15050330 |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia; grantid: PTDC/EME-REN/1497/2021; UIDB/00481/2020; UIDP/00481/2020 – fundername: Training Project of High-level Professional and Technical Talents of Guangxi University, the Natural Science and Technology Innovation Development Multiplication Program of Guangxi University grantid: 2022BZRC006 – fundername: Guangxi Science and Technology Major Program grantid: AA24206037 – fundername: Centro Portugal Regional Operational Programme grantid: CENTRO-01-0145-FEDER-022083 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c413t-64158eb9e7100086f384431e75bcec3810301f8eb5487a6e24423d9c63ff9bd63 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Tue Aug 26 23:58:21 EDT 2025 Thu Aug 21 18:34:07 EDT 2025 Fri Sep 05 00:14:51 EDT 2025 Fri Jul 25 12:02:07 EDT 2025 Wed Sep 10 05:31:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-64158eb9e7100086f384431e75bcec3810301f8eb5487a6e24423d9c63ff9bd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6017-0827 |
OpenAccessLink | https://doaj.org/article/7fbd561578ba462db0013f95decb897e |
PMID | 40072133 |
PQID | 3176352244 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7fbd561578ba462db0013f95decb897e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902097 proquest_miscellaneous_3176347036 proquest_journals_3176352244 crossref_primary_10_3390_nano15050330 |
PublicationCentury | 2000 |
PublicationDate | 20250220 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Yang (ref_30) 2020; 7 Du (ref_18) 2021; 13 Aslam (ref_34) 2022; 429 Li (ref_57) 2024; 91 Luo (ref_15) 2021; 17 Ma (ref_48) 2020; 388 Huang (ref_63) 2021; 8 Wang (ref_121) 2022; 6 Yan (ref_64) 2019; 10 Liu (ref_119) 2020; 14 Lai (ref_89) 2020; 59 Lei (ref_120) 2022; 61 Kumar (ref_55) 2019; 20 Huang (ref_6) 2021; 14 Jin (ref_122) 2021; 4 Li (ref_80) 2023; 39 Lei (ref_90) 2024; 15 Luo (ref_129) 2024; 11 Medford (ref_39) 2015; 328 Wei (ref_49) 2024; 9 Jiang (ref_91) 2023; 35 Jin (ref_43) 2023; 565 Ma (ref_86) 2023; 33 Wen (ref_1) 2013; 23 Du (ref_31) 2020; 565 Fang (ref_118) 2023; 19 Ma (ref_56) 2023; 629 Zhou (ref_38) 2018; 2 Wang (ref_107) 2024; 20 Ma (ref_70) 2021; 4 Wang (ref_69) 2021; 420 Yan (ref_71) 2021; 2 Wang (ref_117) 2024; 36 Bao (ref_29) 2021; 15 Reddy (ref_26) 2021; 39 Mou (ref_73) 2022; 52 Dong (ref_72) 2021; 9 He (ref_88) 2023; 14 Ye (ref_111) 2021; 15 Hu (ref_96) 2025; 44 Zhu (ref_78) 2023; 647 Wang (ref_50) 2020; 13 Mei (ref_42) 2024; 10 Ma (ref_65) 2022; 58 Aslam (ref_12) 2020; 11 Zhang (ref_3) 2024; 69 Ghosh (ref_77) 2020; 30 ref_83 Tang (ref_53) 2024; 20 Huang (ref_74) 2023; 10 Wang (ref_52) 2021; 15 Wang (ref_7) 2022; 16 Fang (ref_100) 2023; 15 Guo (ref_33) 2020; 7 Zhou (ref_11) 2022; 34 Huang (ref_61) 2023; 10 Du (ref_24) 2020; 379 Li (ref_76) 2022; 34 Zhang (ref_128) 2020; 5 Li (ref_109) 2021; 13 Zhang (ref_32) 2018; 9 Xiao (ref_59) 2024; 53 Reddy (ref_106) 2021; 883 Gao (ref_14) 2024; 20 Zhu (ref_58) 2022; 604 Ruan (ref_102) 2024; 36 Li (ref_17) 2023; 451 Liu (ref_23) 2022; 9 Xue (ref_85) 2019; 4 Saroha (ref_20) 2022; 431 Xiao (ref_66) 2021; 13 Wang (ref_87) 2021; 33 Zhi (ref_44) 2024; 41 Ye (ref_75) 2021; 12 Bai (ref_95) 2023; 62 Wu (ref_35) 2024; 654 Meng (ref_125) 2023; 62 Wang (ref_126) 2015; 162 Li (ref_84) 2023; 8 Wu (ref_112) 2022; 3 Liu (ref_51) 2022; 9 Mou (ref_8) 2020; 8 Tang (ref_21) 2020; 395 Norskov (ref_37) 2011; 108 Zhang (ref_41) 2019; 58 Yang (ref_19) 2021; 31 Wang (ref_67) 2022; 9 Wang (ref_82) 2024; 119 Kumar (ref_79) 2021; 42 Xiao (ref_97) 2021; 11 Cui (ref_101) 2024; 11 Zhao (ref_10) 2024; 494 Yan (ref_68) 2020; 32 Yao (ref_99) 2024; 34 He (ref_47) 2023; 74 Zhong (ref_103) 2024; 146 Zhou (ref_62) 2021; 60 Qian (ref_113) 2023; 471 Zhang (ref_81) 2023; 33 Huang (ref_123) 2021; 31 Yan (ref_108) 2020; 14 Zhang (ref_92) 2022; 144 Lei (ref_5) 2023; 33 Yang (ref_22) 2019; 7 Zhang (ref_114) 2024; 14 Ma (ref_46) 2021; 13 Samriddhi (ref_27) 2024; 99 Kumar (ref_16) 2021; 4 Liu (ref_116) 2021; 9 Qi (ref_2) 2021; 12 Ye (ref_60) 2022; 37 Qin (ref_110) 2020; 396 Wang (ref_4) 2024; 20 Zhang (ref_93) 2024; 6 Qiang (ref_36) 2017; 32 Li (ref_98) 2024; 34 Zhang (ref_105) 2021; 33 Huang (ref_9) 2022; 9 Ma (ref_104) 2018; 28 Kumar (ref_127) 2020; 5 Wu (ref_115) 2021; 90 Zhang (ref_124) 2023; 62 ref_40 Ghosh (ref_54) 2019; 11 Ou (ref_13) 2024; 16 Bao (ref_28) 2019; 13 Ye (ref_25) 2023; 86 Ma (ref_45) 2020; 578 |
References_xml | – volume: 17 start-page: 2101879 year: 2021 ident: ref_15 article-title: Flower-Like Interlayer-Expanded MoS2−x Nanosheets Confined in Hollow Carbon Spheres with High-Efficiency Electrocatalysis Sites for Advanced Sodium-Sulfur Battery publication-title: Small doi: 10.1002/smll.202101879 – volume: 9 start-page: 566 year: 2021 ident: ref_116 article-title: Sustainable S cathodes with synergic electrocatalysis for room-temperature Na-S batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08748C – volume: 395 start-page: 124978 year: 2020 ident: ref_21 article-title: Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124978 – volume: 9 start-page: 2105544 year: 2022 ident: ref_51 article-title: Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium-Sulfur Batteries publication-title: Adv. Sci. doi: 10.1002/advs.202105544 – volume: 9 start-page: 1743 year: 2022 ident: ref_67 article-title: Tessellated N-doped carbon/CoSe2 as trap-catalyst sulfur hosts for room-temperature sodium-sulfur batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00057A – volume: 74 start-page: 109353 year: 2023 ident: ref_47 article-title: Etch-driven N, P co-doped hierarchical porous carbon embedded with Ni nanoparticles as an efficient dynamic carrier for room-temperature Na-S battery publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109353 – volume: 15 start-page: 16207 year: 2021 ident: ref_29 article-title: Porous Heteroatom-Doped Ti3C2Tx MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium-Sulfur Batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c05193 – volume: 10 start-page: 2206558 year: 2023 ident: ref_61 article-title: Orthorhombic Nb2O5 Decorated Carbon Nanoreactors Enable Bidirectionally Regulated Redox Behaviors in Room-Temperature Na-S Batteries publication-title: Adv. Sci. doi: 10.1002/advs.202206558 – volume: 431 start-page: 134205 year: 2022 ident: ref_20 article-title: V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134205 – volume: 13 start-page: 11852 year: 2021 ident: ref_46 article-title: Multi-step Controllable Catalysis Method for the Defense of Sodium Polysulfide Dissolution in Room-Temperature Na-S Batteries publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.0c21267 – volume: 34 start-page: 2214353 year: 2024 ident: ref_99 article-title: Highly Flexible Carbon Film Implanted with Single-Atomic Zn-N2 Moiety for Long-Life Sodium-Sulfur Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214353 – volume: 379 start-page: 122359 year: 2020 ident: ref_24 article-title: Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122359 – volume: 13 start-page: 11500 year: 2019 ident: ref_28 article-title: Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides publication-title: ACS Nano doi: 10.1021/acsnano.9b04977 – volume: 39 start-page: 2302049 year: 2023 ident: ref_80 article-title: Function of Electron Spin Effect in Electrocatalysts publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB202302049 – volume: 11 start-page: 2100989 year: 2021 ident: ref_97 article-title: Generating Short-Chain Sulfur Suitable for Efficient Sodium-Sulfur Batteries via Atomic Copper Sites on a N,O-Codoped Carbon Composite publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100989 – volume: 31 start-page: 2102280 year: 2021 ident: ref_19 article-title: Architecting Freestanding Sulfur Cathodes for Superior Room-Temperature Na-S Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102280 – volume: 10 start-page: 4793 year: 2019 ident: ref_64 article-title: Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/s41467-019-11600-3 – volume: 9 start-page: 645 year: 2022 ident: ref_23 article-title: Anthozoan-like porous nanocages with nano-cobalt-armed CNT multifunctional layers as a cathode material for highly stable Na-S batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01406D – volume: 90 start-page: 106590 year: 2021 ident: ref_115 article-title: Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na-S batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106590 – volume: 12 start-page: 6347 year: 2021 ident: ref_2 article-title: A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries publication-title: Nat. Commun. doi: 10.1038/s41467-021-26631-y – volume: 578 start-page: 710 year: 2020 ident: ref_45 article-title: Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.051 – volume: 33 start-page: 2305908 year: 2023 ident: ref_81 article-title: Sodium-Sulfur Batteries with Unprecedented Capacity, Cycling Stability and Operation Temperature Range Enabled by a CoFe2O4 Catalytic Additive Under an External Magnetic Field publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305908 – volume: 5 start-page: 2112 year: 2020 ident: ref_127 article-title: Free-Radical Catalysis and Enhancement of the Redox Kinetics for Room-Temperature Sodium-Sulfur Batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00913 – volume: 23 start-page: 1005 year: 2013 ident: ref_1 article-title: Main Challenges for High Performance NAS Battery: Materials and Interfaces publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200473 – volume: 86 start-page: 620 year: 2023 ident: ref_25 article-title: Engineering CoMoO4 in reduced graphene oxide as superior cathode hosts for advanced room-temperature sodium-sulfur batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.08.010 – volume: 14 start-page: 7259 year: 2020 ident: ref_119 article-title: Electrocatalyzing S Cathodes via Multisulfiphilic Sites for Superior Room-Temperature Sodium-Sulfur Batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c02488 – volume: 883 start-page: 160910 year: 2021 ident: ref_106 article-title: Layered-like structure of TiO2-T3C2 Mxene as an efficient sulfur host for room-temperature sodium-sulfur batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160910 – volume: 28 start-page: 1705537 year: 2018 ident: ref_104 article-title: New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature Sodium-Sulfur Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705537 – volume: 52 start-page: 111 year: 2022 ident: ref_73 article-title: A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: Assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1-x nanoparticles publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.07.028 – volume: 7 start-page: 150 year: 2019 ident: ref_22 article-title: A railway-like network electrode design for room temperature Na-S battery publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09556F – volume: 32 start-page: 1906700 year: 2020 ident: ref_68 article-title: A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries publication-title: Adv. Mater. doi: 10.1002/adma.201906700 – volume: 32 start-page: 59 year: 2017 ident: ref_36 article-title: Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.018 – volume: 2 start-page: 100539 year: 2021 ident: ref_71 article-title: Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100539 – volume: 62 start-page: e202309046 year: 2023 ident: ref_125 article-title: A Radical Pathway and Stabilized Li Anode Enabled by Halide Quaternary Ammonium Electrolyte Additives for Lithium-Sulfur Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202309046 – volume: 44 start-page: 288 year: 2025 ident: ref_96 article-title: N/O dual coordination of cobalt single atom for fast kinetics sodium-sulfur batteries publication-title: Rare Met. doi: 10.1007/s12598-024-02975-4 – volume: 62 start-page: e202217009 year: 2023 ident: ref_124 article-title: Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High-Capacity and Stable Na-S Battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202217009 – ident: ref_40 doi: 10.3390/molecules25071585 – volume: 30 start-page: 2005669 year: 2020 ident: ref_77 article-title: Lewis Acid-Base Interactions between Polysulfides and Boehmite Enables Stable Room-Temperature Sodium-Sulfur Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005669 – volume: 33 start-page: 2100229 year: 2021 ident: ref_87 article-title: Tunable Electrocatalytic Behavior of Sodiated MoS2 Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202100229 – volume: 34 start-page: 2200479 year: 2022 ident: ref_11 article-title: A High-Efficiency Mo2C Electrocatalyst Promoting the Polysulfide Redox Kinetics for Na-S Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202200479 – volume: 5 start-page: 1070 year: 2020 ident: ref_128 article-title: Altering the Electrochemical Pathway of Sulfur Chemistry with Oxygen for High Energy Density and Low Shuttling in a Na/S Battery publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02746 – volume: 9 start-page: 3451 year: 2021 ident: ref_72 article-title: Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10159A – volume: 15 start-page: 26650 year: 2023 ident: ref_100 article-title: Low-Coordinated Zn-N2 Sites as Bidirectional Atomic Catalysis for Room-Temperature Na-S Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02599 – volume: 629 start-page: 76 year: 2023 ident: ref_56 article-title: Oxygen vacancy-mediated amorphous GeOx assisted polysulfide redox kinetics for room-temperature sodium-sulfur batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.09.071 – volume: 8 start-page: 2870 year: 2021 ident: ref_63 article-title: Metal-based electrocatalysts for room-temperature Na-S batteries publication-title: Mater. Horiz. doi: 10.1039/D1MH01326B – volume: 59 start-page: 22171 year: 2020 ident: ref_89 article-title: General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009400 – volume: 35 start-page: 2208873 year: 2023 ident: ref_91 article-title: Single-Atom Vanadium Catalyst Boosting Reaction Kinetics of Polysulfides in Na-S Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202208873 – volume: 654 start-page: 649 year: 2024 ident: ref_35 article-title: Encapsulation of sulfur in MoS2-modified metal-organic framework-derived N, O-codoped carbon host for sodium-sulfur batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.09.134 – volume: 146 start-page: 32124 year: 2024 ident: ref_103 article-title: Origin of the High Catalytic Activity of MoS2 in Na-S Batteries: Electrochemically Reconstructed Mo Single Atoms publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c13400 – volume: 4 start-page: 374 year: 2019 ident: ref_85 article-title: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities publication-title: Nat. Energy doi: 10.1038/s41560-019-0351-0 – volume: 14 start-page: 2303925 year: 2024 ident: ref_114 article-title: Achieving a Quasi-Solid-State Conversion of Polysulfides via Building High Efficiency Heterostructure for Room Temperature Na-S Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202303925 – volume: 471 start-page: 144528 year: 2023 ident: ref_113 article-title: 3D layered structure Ti3C2Tx MXene/Ni(OH)2/C with strong catalytic and adsorption capabilities of polysulfides for high-capacity Sodium-Sulfur battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144528 – volume: 4 start-page: 1768 year: 2021 ident: ref_122 article-title: Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries publication-title: Matter doi: 10.1016/j.matt.2021.03.004 – volume: 4 start-page: 384 year: 2021 ident: ref_16 article-title: Approach to Increase the Utilization of Active Material in a High Sulfur-Loaded Cathode for High Areal Capacity Room-Temperature Sodium-Sulfur Batteries publication-title: Acs Appl. Energy Mater. doi: 10.1021/acsaem.0c02294 – volume: 9 start-page: 5486 year: 2022 ident: ref_9 article-title: In situ implanting MnO nanoparticles into carbon nanorod-assembled microspheres enables performance-enhanced room-temperature Na-S batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01362B – volume: 9 start-page: 4082 year: 2018 ident: ref_32 article-title: Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/s41467-018-06144-x – volume: 91 start-page: 112141 year: 2024 ident: ref_57 article-title: Oxygen vacancy modified cerium dioxide with excellent catalytic activity for room-temperature Na-S batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112141 – volume: 61 start-page: e202200384 year: 2022 ident: ref_120 article-title: Streamline Sulfur Redox Reactions to Achieve Efficient Room-Temperature Sodium-Sulfur Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200384 – volume: 451 start-page: 142288 year: 2023 ident: ref_17 article-title: Co4N embedded nitrogen doped carbon with 2D/3D hybrid structure as sulfur host for room-temperature sodium-sulfur batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142288 – volume: 108 start-page: 937 year: 2011 ident: ref_37 article-title: Density functional theory in surface chemistry and catalysis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1006652108 – volume: 6 start-page: 2289 year: 2024 ident: ref_93 article-title: Atomic Manganese Manipulating Polysulfide Speciation Pathway for Room-Temperature Na-S Batteries publication-title: CCS Chem. doi: 10.31635/ccschem.024.202303640 – volume: 565 start-page: 232917 year: 2023 ident: ref_43 article-title: Cobalt, nitrogen co-doped microporous carbon matrix derived from metal organic frameworks toward high specific capacity room temperature sodium sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232917 – volume: 15 start-page: 5639 year: 2021 ident: ref_111 article-title: Enabling a Stable Room-Temperature Sodium-Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers publication-title: ACS Nano doi: 10.1021/acsnano.1c00804 – volume: 31 start-page: 2100666 year: 2021 ident: ref_123 article-title: High-Capacity and Stable Sodium-Sulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full Conversion publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100666 – volume: 20 start-page: 196 year: 2019 ident: ref_55 article-title: High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.11.031 – volume: 99 start-page: 113260 year: 2024 ident: ref_27 article-title: Hydrothermal assisted RGO wrapped fumed silica-sulfur composite for an advanced room-temperature sodium-sulfur battery publication-title: J. Energy Storage doi: 10.1016/j.est.2024.113260 – volume: 14 start-page: 3757 year: 2021 ident: ref_6 article-title: Materials engineering for adsorption and catalysis in room-temperature Na-S batteries publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01349A – volume: 34 start-page: 2400859 year: 2024 ident: ref_98 article-title: Strengthening d-p Orbital-Hybridization via Coordination Number Regulation of Manganese Single-Atom Catalysts Toward Fast Kinetic and Long-Life Sodium-Sulfur Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202400859 – volume: 9 start-page: 2414172 year: 2024 ident: ref_49 article-title: Construction of Heterointerfaced Nanoreactor Electrocatalyst via In Situ Evolution Toward Practical Room-Temperature Sodium-Sulfur Batteries publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2311151 year: 2024 ident: ref_53 article-title: A Highly Dispersed Cobalt Electrocatalyst with Electron-Deficient Centers Induced by Boron toward Enhanced Adsorption and Electrocatalysis for Room-Temperature Sodium-Sulfur Batteries publication-title: Small doi: 10.1002/smll.202311151 – volume: 13 start-page: 18010 year: 2021 ident: ref_66 article-title: MOF-Derived CoS2/N-Doped Carbon Composite to Induce Short-Chain Sulfur Molecule Generation for Enhanced Sodium-Sulfur Battery Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02301 – volume: 7 start-page: 4396 year: 2020 ident: ref_30 article-title: An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00939C – volume: 33 start-page: 2211821 year: 2023 ident: ref_86 article-title: Dynamic Multistage Coupling of FeS2/S Enables Ultrahigh Reversible Na-S Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211821 – volume: 36 start-page: 2312207 year: 2024 ident: ref_102 article-title: Linearly Interlinked Fe-Nx-Fe Single Atoms Catalyze High-Rate Sodium-Sulfur Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202312207 – volume: 3 start-page: 2200020 year: 2022 ident: ref_112 article-title: Bifunctional Catalyst for Liquid-Solid Redox Conversion in Room-Temperature Sodium-Sulfur Batteries publication-title: Small Struct. doi: 10.1002/sstr.202200020 – volume: 11 start-page: 5242 year: 2020 ident: ref_12 article-title: Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-19078-0 – volume: 2 start-page: 2681 year: 2018 ident: ref_38 article-title: Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry publication-title: Joule doi: 10.1016/j.joule.2018.08.010 – volume: 41 start-page: 101536 year: 2024 ident: ref_44 article-title: Cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers to enhance redox kinetics for long-cycling sodium-sulfur batteries publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2024.101536 – volume: 42 start-page: 608 year: 2021 ident: ref_79 article-title: Sub-zero and room-temperature sodium-sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.08.014 – volume: 69 start-page: 197 year: 2024 ident: ref_3 article-title: Polysulfide regulation by defect-modulated Ta3N5−x electrocatalyst toward superior room-temperature sodium-sulfur batteries publication-title: Sci. Bull. – volume: 53 start-page: 8168 year: 2024 ident: ref_59 article-title: Defect engineering of a TiO2 anatase/rutile homojunction accelerating sulfur redox kinetics for high-performance Na-S batteries publication-title: Dalton Trans. doi: 10.1039/D4DT00745J – volume: 144 start-page: 18995 year: 2022 ident: ref_92 article-title: Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na-S Batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07655 – volume: 33 start-page: 2212600 year: 2023 ident: ref_5 article-title: A Review on the Status and Challenges of Cathodes in Room-Temperature Na-S Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202212600 – volume: 429 start-page: 132389 year: 2022 ident: ref_34 article-title: Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132389 – volume: 15 start-page: 15218 year: 2021 ident: ref_52 article-title: Manipulating the Electronic Structure of Nickel via Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c05778 – volume: 13 start-page: 50 year: 2021 ident: ref_18 article-title: Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of “Branch-Leaf” Electrode for High-Energy Sodium-Sulfur Batteries publication-title: Nano Micro Lett. doi: 10.1007/s40820-020-00563-6 – volume: 8 start-page: 84 year: 2023 ident: ref_84 article-title: Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries publication-title: Nat. Energy doi: 10.1038/s41560-022-01175-7 – volume: 62 start-page: e202218165 year: 2023 ident: ref_95 article-title: Toward Complete Transformation of Sodium Polysulfides by Regulating the Second-Shell Coordinating Environment of Atomically Dispersed Fe publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202218165 – volume: 14 start-page: 6568 year: 2023 ident: ref_88 article-title: Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/s41467-023-42383-3 – volume: 39 start-page: 102660 year: 2021 ident: ref_26 article-title: Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium-sulfur batteries and its electrochemical properties publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102660 – volume: 388 start-page: 124210 year: 2020 ident: ref_48 article-title: Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room sodium-sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124210 – volume: 8 start-page: 24590 year: 2020 ident: ref_8 article-title: Hierarchical porous carbon sheets for high-performance room temperature sodium-sulfur batteries: Integration of nitrogen-self-doping and space confinement publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08876E – volume: 20 start-page: 2310225 year: 2024 ident: ref_14 article-title: 3D Flower-like Nanospheres Constructed by Transition Metal Telluride Nanosheets as Sulfur Immobilizers for High-Performance Room-Temperature Na-S Batteries publication-title: Small doi: 10.1002/smll.202310225 – volume: 13 start-page: 562 year: 2020 ident: ref_50 article-title: High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03251G – volume: 565 start-page: 63 year: 2020 ident: ref_31 article-title: Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.010 – ident: ref_83 doi: 10.3390/batteries9010026 – volume: 12 start-page: 7195 year: 2021 ident: ref_75 article-title: A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/s41467-021-27551-7 – volume: 13 start-page: 48536 year: 2021 ident: ref_109 article-title: Ni@Ni3N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium-Sulfur Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11793 – volume: 60 start-page: 10129 year: 2021 ident: ref_62 article-title: Sulfur in Amorphous Silica for an Advanced Room-Temperature Sodium-Sulfur Battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015932 – volume: 6 start-page: 2200335 year: 2022 ident: ref_121 article-title: Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation publication-title: Small Methods doi: 10.1002/smtd.202200335 – volume: 604 start-page: 154496 year: 2022 ident: ref_58 article-title: An extraordinary Na-S battery enabled by a carbon nanosheet host loaded with Fe-accelerator and TiO2-inhibitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154496 – volume: 58 start-page: 1484 year: 2019 ident: ref_41 article-title: Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811080 – volume: 119 start-page: 109082 year: 2024 ident: ref_82 article-title: Hierarchical FeS2 cathode with suppressed shuttle effect for high performance magnesium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109082 – volume: 20 start-page: 2311180 year: 2024 ident: ref_107 article-title: A Mott-Schottky Heterojunction with Strong Chemisorption and Fast Conversion Effects for Room-Temperature Na-S Batteries publication-title: Small doi: 10.1002/smll.202311180 – volume: 16 start-page: 5103 year: 2022 ident: ref_7 article-title: Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries publication-title: ACS Nano doi: 10.1021/acsnano.2c00265 – volume: 4 start-page: 3487 year: 2021 ident: ref_70 article-title: Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03235 – volume: 7 start-page: 1902617 year: 2020 ident: ref_33 article-title: Nickel Hollow Spheres Concatenated by Nitrogen-Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium-Sulfur Batteries publication-title: Adv. Sci. doi: 10.1002/advs.201902617 – volume: 34 start-page: 2204214 year: 2022 ident: ref_76 article-title: Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design publication-title: Adv. Mater. doi: 10.1002/adma.202204214 – ident: ref_94 doi: 10.1002/anie.202422208 – volume: 33 start-page: 2103846 year: 2021 ident: ref_105 article-title: Mo2N-W2N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Room-Temperature Na-S Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202103846 – volume: 15 start-page: 3325 year: 2024 ident: ref_90 article-title: Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries publication-title: Nat. Commun. doi: 10.1038/s41467-024-47628-3 – volume: 58 start-page: 13612 year: 2022 ident: ref_65 article-title: Gallate-MOF derived CoS2/C composites as an accelerated catalyst for room-temperature sodium-sulfur batteries publication-title: Chem. Commun. doi: 10.1039/D2CC05071D – volume: 10 start-page: 4241 year: 2023 ident: ref_74 article-title: Dredging sodium polysulfides using a Fe3C electrocatalyst to realize improved room-temperature Na-S batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00661A – volume: 10 start-page: 2418126 year: 2024 ident: ref_42 article-title: Cobalt Catalytic Regulation Engineering in Room-Temperature Sodium-Sulfur Batteries: Facilitating Rapid Polysulfides Conversion and Delicate Na2S Nucleation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202418126 – volume: 396 start-page: 125295 year: 2020 ident: ref_110 article-title: High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125295 – volume: 19 start-page: 2302461 year: 2023 ident: ref_118 article-title: Core-Shell Tandem Catalysis Coupled with Interface Engineering For High-Performance Room-Temperature Na-S Batteries publication-title: Small doi: 10.1002/smll.202302461 – volume: 36 start-page: 2411725 year: 2024 ident: ref_117 article-title: In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202411725 – volume: 20 start-page: 2400164 year: 2024 ident: ref_4 article-title: Designing Urchin-Like S/SiO2 with Regulated Pores Toward Ultra-Fast Room Temperature Sodium-Sulfur Battery publication-title: Small doi: 10.1002/smll.202400164 – volume: 420 start-page: 129681 year: 2021 ident: ref_69 article-title: Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129681 – volume: 647 start-page: 546 year: 2023 ident: ref_78 article-title: High performance sulfur/carbon cathode for Na-S battery enabled by electrocatalytic effect of Sn-doped In2S3 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.142 – volume: 16 start-page: 3302 year: 2024 ident: ref_13 article-title: Hetero structured Co/CeO2-Decorating N-Doped Porous Carbon Nanocubes as Efficient Sulfur Hosts with Enhanced Rate Capability and Cycling Durability toward Room-Temperature Na-S Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c14578 – volume: 11 start-page: 2409866 year: 2024 ident: ref_101 article-title: Multi-Functional Descriptor Design of V-Based Double Atomic Catalysts for Room Temperature Sodium-Sulfur Batteries publication-title: Small – volume: 328 start-page: 36 year: 2015 ident: ref_39 article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2014.12.033 – volume: 162 start-page: A474 year: 2015 ident: ref_126 article-title: Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0851503jes – volume: 14 start-page: 10284 year: 2020 ident: ref_108 article-title: Multiregion Janus-Featured Cobalt Phosphide-Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c03737 – volume: 11 start-page: 14101 year: 2019 ident: ref_54 article-title: Three-Dimensionally Reinforced Freestanding Cathode for High Energy Room-Temperature Sodium-Sulfur Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00203 – volume: 11 start-page: 2308180 year: 2024 ident: ref_129 article-title: Enhancing Conversion Kinetics through Electron Density Dual-Regulation of Catalysts and Sulfur toward Room-/Subzero-Temperature Na-S Batteries publication-title: Adv. Sci. doi: 10.1002/advs.202308180 – volume: 494 start-page: 153006 year: 2024 ident: ref_10 article-title: Synergistically promoting the catalytic conversion of polysulfides via in-situ construction of Ni-MnO2 heterostructure on N-doped hollow carbon spheres towards high-performance sodium-sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153006 – volume: 37 start-page: 1116 year: 2022 ident: ref_60 article-title: Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(22)60607-3 |
SSID | ssj0000913853 |
Score | 2.2870305 |
SecondaryResourceType | review_article |
Snippet | Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity,... Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 330 |
SubjectTerms | Adsorption Batteries Carbon fibers catalyst strategy Catalysts cathode Cathodes conversion pathway Cost effectiveness Design Electrolytes Energy storage Heterojunctions High temperature Intermediates Lithium Load Na-S batteries nanostructure engineering Operating temperature Raw materials Review Room temperature Sodium Sodium sulfur batteries Storage capacity Sulfur |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPqA-qptDKlejRIg_HGx9QBS0IVdoV4iFxizx-tL0kFJb_z0wey-bSqx9KNPZ4vrFnvgE4zFJHOyGzUtnSSJVjlKgdygozzDx6ZSInJy-W-uJW_bor77ZgOebCcFjleCZ2B7VvHd-RH5Gd0wwWlPp-_09y1Sh-XR1LaNihtII_7ijGXsF2zlWVZ7B9era8vFrfujALJhmoPgK-IH__qLFNS6CIX_PSiW3qKPwnuHMaNblhhs7fwO6AH8VJv-BvYSs07-D1Bqvge1j87KIyxEg8Gx5FG8V1JRZ9KdwgOO2v9dROiFVcEXSWN4Hgc0-vLJZWXoued5Pm7sHt-dnNjws5VE2QjgzSSmoyyVVAE5i3hxyWWFSKUEKYl-iCY0Iv0ulII9hXsTqQRPPCG6eLGA16XXyAWdM24SOI3LjU55kr0xRVFpBckYiVN9pYTK3KEvg2yqu-78kxanIqWK71plwTOGVhrscwpXXX0D78rgcNqecRPYE5OkHQKp17hnNFNKUPDiszDwkcjEtRD3r2WL_sigS-rrtJQ_jZwzahfRrGKCYaS6CaLOHkh6Y9zd8_Hdd2RoApT8380_-_vg87ORcG5lz39ABmq4en8JnQygq_DFvwGRVE66A priority: 102 providerName: ProQuest |
Title | Design Strategies of S8 Molecule Cathodes for Room-Temperature Na-S Batteries |
URI | https://www.proquest.com/docview/3176352244 https://www.proquest.com/docview/3176347036 https://pubmed.ncbi.nlm.nih.gov/PMC11902097 https://doaj.org/article/7fbd561578ba462db0013f95decb897e |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RSBsjISHK3aieONjxS6VEi7Qn1IvUUePwSXBNHt_2cmyVbJiQtX25GcmbG_b-TxZ4CPWgWKBO2l8bWTpsQs0QaUDWrUEaNxmS8nb3f2_Np8v6lvZk99cU3YKA88Gu5knTESxlNgoTe2jIzyVXZ1TAEbt068-yqnZsnUsAc7XREQjZXuFeX1J53veiI_fGqnFhg0SPUv-OWyOnIGN5tn8HTiieLzOL_n8CB1L-DJTD3wJWy_DtUX4iAwm25Fn8VlI7bjk7dJ8PW-PlI7MVNxQRRZXiWiyaOMsth5eSlGfU369hVcb86uvpzL6XUEGQh49tIS9DYJXWJ9HkpMctUYYgNpXWNIgYW7aO1mGsE5ibeJcLysogu2ytlhtNVrOOr6Lr0BUbqgYqlDrRQanZBSjoxNdNZ5VN7oAj4d7NX-HkUwWkoe2K7t3K4FnLIx78ewdPXQQA5tJ4e2_3JoAccHV7TTerptieVYporGFPDhvptWAh9v-C71d9MYw4JiBTQLFy4mtOzpfv0cNLU1ESOKo_Xb__EL7-Bxyc8E8813dQxH-z936T1xlz2u4GGz-baCR6dnux8XqyFo_wIAFfCf |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE81UMBI9Gg1cZxsfKgQfWlLuyvUbqXegp_AJSndrar-OX4bM3lsNxduvcZOYo1nPJ_tmW8APiexRU1INJc6U1wKE7jJreGFSUzijJMqUHLyZJqPL-S3y-xyDf72uTAUVtmvic1C7WpLZ-Q76OdyAgtSfrn6w6lqFN2u9iU0dFdawe02FGNdYseJv7vFLdx89_gA53tbiKPD2f6Yd1UGuMUFfMFzdGGFN8oTzw0C_JAWEr2qH2XGeksEWGgDAXsQtte5xxGI1CmbpyEo4_IUv_sINhB2pGhVG3uH0-9ny1MeYt1Eh9hG3KepincqXdUIwuj2MB74wqZkwADnDqM0V9ze0XN41uFV9rVVsBew5quX8HSFxfAVTA6aKBDWE936OasDOy_YpC296xmlGdYOnyNCZmcI1fnMI1xv6ZzZVPNz1vJ84ruv4eJB5PcG1qu68pvAhLKxE4nN4tjIxBvc-gRTOJUrbWItkwi2e3mVVy0ZR4mbGJJruSrXCPZImMs-RKHdPKivf5adRZajYByCR1yxjJa5cAQf06Ay560p1MhHsNVPRdnZ9by818IIPi2b0SLpmkVXvr7p-kgiNougGEzhYEDDlur3r4bbO0GAJmI1evv_v3-Ex-PZ5LQ8PZ6evIMngooSU559vAXri-sb_x6R0sJ86NSRwY-HtoB_ee8m7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4iUMBI9Git4zjZ-IAQsCwtZVeItlJvwU_gkpTuVoi_xq9jJo9lc-HWa-zE0XjG89me-QbgZSocakJquDK55krayG3hLC9talNvvdKRkpMXy-LgVH08y8924M-QC0NhlcOa2C7UvnF0Rj5BP1cQWFBqEvuwiM-z-evzn5wqSNFN61BOo1ORo_D7F27fVq8OZzjX-1LO35-8O-B9hQHucPFe8wLdVxmsDsRxg-A-ZqVCjxqmuXXBEfkV6n_EHoTrTRFwdJl57YosRm19keF3r8F1KvVCFlXOP2zOd4hvE11hF2ufZVpMalM3CL_o3lCMvGBbLGCEcMfxmVsOb34HbvdIlb3pVOsu7IT6Htza4i-8D4tZG__BBorbsGJNZMclW3RFdwOjBMPG43PExuwLgnR-EhCod0TObGn4MesYPvHdB3B6JdJ7CLt1U4dHwKR2wsvU5UJYlQaLm55oS68LbawwKk1gf5BXdd7RcFS4fSG5VttyTeAtCXPTh8iz2wfNxbeqt8VqGq1H2IhrlTWqkJ6AYxZ17oOzpZ6GBPaGqah6i15V__QvgRebZrRFumAxdWgu-z6KKM0SKEdTOPqhcUv943vL6p0iNJNCTx__f_TncAP1vvp0uDx6AjclVSOmBHuxB7vri8vwFCHS2j5rdZHB16tW_r9v_SSI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategies+of+S8+Molecule+Cathodes+for+Room-Temperature+Na-S+Batteries&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Sha-Sha&rft.au=Cai%2C+Zi-Qi&rft.au=Lu%2C+Chen-Kai&rft.au=Li%2C+Jing&rft.date=2025-02-20&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=15&rft.issue=5&rft.spage=330&rft_id=info:doi/10.3390%2Fnano15050330&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano15050330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |