Design Strategies of S8 Molecule Cathodes for Room-Temperature Na-S Batteries

Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 15; no. 5; p. 330
Main Authors Shi, Sha-Sha, Cai, Zi-Qi, Lu, Chen-Kai, Li, Jing, Geng, Nan-Nan, Lin, Dong-Tao, Yang, Tao, Liu, Tao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.02.2025
MDPI
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano15050330

Cover

Abstract Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.
AbstractList Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.
Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.
Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium–sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium–sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S 8 molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.
Author Shi, Sha-Sha
Lin, Dong-Tao
Cai, Zi-Qi
Yang, Tao
Lu, Chen-Kai
Geng, Nan-Nan
Li, Jing
Liu, Tao
AuthorAffiliation 2 Future Technology School, Shenzhen Technology University, Shenzhen 518118, China; 202100501059@stumail.sztu.edu.cn (Z.-Q.C.); luchenkai0818@163.com (C.-K.L.); lijing0708@163.com (J.L.); dongtao_lin@163.com (D.-T.L.)
3 TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
1 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; sss450802@163.com (S.-S.S.); gnn0420@outlook.com (N.-N.G.)
AuthorAffiliation_xml – name: 1 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; sss450802@163.com (S.-S.S.); gnn0420@outlook.com (N.-N.G.)
– name: 3 TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
– name: 2 Future Technology School, Shenzhen Technology University, Shenzhen 518118, China; 202100501059@stumail.sztu.edu.cn (Z.-Q.C.); luchenkai0818@163.com (C.-K.L.); lijing0708@163.com (J.L.); dongtao_lin@163.com (D.-T.L.)
Author_xml – sequence: 1
  givenname: Sha-Sha
  surname: Shi
  fullname: Shi, Sha-Sha
– sequence: 2
  givenname: Zi-Qi
  surname: Cai
  fullname: Cai, Zi-Qi
– sequence: 3
  givenname: Chen-Kai
  surname: Lu
  fullname: Lu, Chen-Kai
– sequence: 4
  givenname: Jing
  surname: Li
  fullname: Li, Jing
– sequence: 5
  givenname: Nan-Nan
  surname: Geng
  fullname: Geng, Nan-Nan
– sequence: 6
  givenname: Dong-Tao
  surname: Lin
  fullname: Lin, Dong-Tao
– sequence: 7
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
– sequence: 8
  givenname: Tao
  orcidid: 0000-0001-6017-0827
  surname: Liu
  fullname: Liu, Tao
BookMark eNpdkU1vFSEUhompsbV25w-YxI2LjsIcGGBl9Fq1ST8Sb10Thjnczs0MXGGmif--1NuYVjaQw8OTl3Nek4MQAxLyltEPAJp-DDZEJqigAPQFOWqo1DXXmh08OR-Sk5y3tCzNQAl4RQ45pbJhAEfk8ivmYROq9ZzsjJsBcxV9tVbVZRzRLSNWKzvfxr7UfUzVzxin-ganHRZ8SVhd2XpdfbHzjKm8fUNeejtmPHncj8mvb2c3qx_1xfX389Xni9pxBnPdciYUdholK6lU60FxDgyl6Bw6UIwCZb4QgitpW2w4b6DXrgXvdde3cEzO994-2q3ZpWGy6Y-JdjB_CzFtjE3z4EY00ne9aJmQqrO8bfqOUgZeix5dp7TE4vq0d-2WbsLeYSitGJ9Jn9-E4dZs4p1hTNOGalkM7x8NKf5eMM9mGrLDcbQB45INMNkClxQegr_7D93GJYXSqz0lmvLXQp3uKZdizgn9vzSMmoe5m6dzh3vr0Z6s
Cites_doi 10.1002/smll.202101879
10.1039/D0TA08748C
10.1016/j.cej.2020.124978
10.1002/advs.202105544
10.1039/D2QI00057A
10.1016/j.est.2023.109353
10.1021/acsnano.1c05193
10.1002/advs.202206558
10.1016/j.cej.2021.134205
10.1021/acsami.0c21267
10.1002/adfm.202214353
10.1016/j.cej.2019.122359
10.1021/acsnano.9b04977
10.3866/PKU.WHXB202302049
10.1002/aenm.202100989
10.1002/adfm.202102280
10.1038/s41467-019-11600-3
10.1039/D1QI01406D
10.1016/j.nanoen.2021.106590
10.1038/s41467-021-26631-y
10.1016/j.jcis.2020.06.051
10.1002/adfm.202305908
10.1021/acsenergylett.0c00913
10.1002/adfm.201200473
10.1016/j.jechem.2023.08.010
10.1021/acsnano.0c02488
10.1016/j.jallcom.2021.160910
10.1002/adfm.201705537
10.1016/j.ensm.2022.07.028
10.1039/C8TA09556F
10.1002/adma.201906700
10.1016/j.nanoen.2016.12.018
10.1016/j.xcrp.2021.100539
10.1002/anie.202309046
10.1007/s12598-024-02975-4
10.1002/anie.202217009
10.3390/molecules25071585
10.1002/adfm.202005669
10.1002/adma.202100229
10.1002/adma.202200479
10.1021/acsenergylett.9b02746
10.1039/D0TA10159A
10.1021/acsami.3c02599
10.1016/j.jcis.2022.09.071
10.1039/D1MH01326B
10.1002/anie.202009400
10.1002/adma.202208873
10.1016/j.jcis.2023.09.134
10.1021/jacs.4c13400
10.1038/s41560-019-0351-0
10.1002/aenm.202303925
10.1016/j.cej.2023.144528
10.1016/j.matt.2021.03.004
10.1021/acsaem.0c02294
10.1039/D2QI01362B
10.1038/s41467-018-06144-x
10.1016/j.est.2024.112141
10.1002/anie.202200384
10.1016/j.electacta.2023.142288
10.1073/pnas.1006652108
10.31635/ccschem.024.202303640
10.1016/j.jpowsour.2023.232917
10.1021/acsnano.1c00804
10.1002/adfm.202100666
10.1016/j.ensm.2018.11.031
10.1016/j.est.2024.113260
10.1039/D1EE01349A
10.1002/adfm.202400859
10.1002/smll.202311151
10.1021/acsami.1c02301
10.1039/D0QI00939C
10.1002/adfm.202211821
10.1002/adma.202312207
10.1002/sstr.202200020
10.1038/s41467-020-19078-0
10.1016/j.joule.2018.08.010
10.1016/j.mtener.2024.101536
10.1016/j.ensm.2021.08.014
10.1039/D4DT00745J
10.1021/jacs.2c07655
10.1002/adfm.202212600
10.1016/j.cej.2021.132389
10.1021/acsnano.1c05778
10.1007/s40820-020-00563-6
10.1038/s41560-022-01175-7
10.1002/anie.202218165
10.1038/s41467-023-42383-3
10.1016/j.est.2021.102660
10.1016/j.cej.2020.124210
10.1039/D0TA08876E
10.1002/smll.202310225
10.1039/C9EE03251G
10.1016/j.jcis.2020.01.010
10.3390/batteries9010026
10.1038/s41467-021-27551-7
10.1021/acsami.1c11793
10.1002/anie.202015932
10.1002/smtd.202200335
10.1016/j.apsusc.2022.154496
10.1002/anie.201811080
10.1016/j.nanoen.2023.109082
10.1002/smll.202311180
10.1021/acsnano.2c00265
10.1021/acsaem.0c03235
10.1002/advs.201902617
10.1002/adma.202204214
10.1002/anie.202422208
10.1002/adma.202103846
10.1038/s41467-024-47628-3
10.1039/D2CC05071D
10.1039/D3QI00661A
10.1002/adfm.202418126
10.1016/j.cej.2020.125295
10.1002/smll.202302461
10.1002/adma.202411725
10.1002/smll.202400164
10.1016/j.cej.2021.129681
10.1016/j.jcis.2023.05.142
10.1021/acsami.3c14578
10.1016/j.jcat.2014.12.033
10.1149/2.0851503jes
10.1021/acsnano.0c03737
10.1021/acsami.9b00203
10.1002/advs.202308180
10.1016/j.cej.2024.153006
10.1016/S1872-5805(22)60607-3
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano15050330
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_7fbd561578ba462db0013f95decb897e
PMC11902097
10_3390_nano15050330
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia;
  grantid: PTDC/EME-REN/1497/2021; UIDB/00481/2020; UIDP/00481/2020
– fundername: Training Project of High-level Professional and Technical Talents of Guangxi University, the Natural Science and Technology Innovation Development Multiplication Program of Guangxi University
  grantid: 2022BZRC006
– fundername: Guangxi Science and Technology Major Program
  grantid: AA24206037
– fundername: Centro Portugal Regional Operational Programme
  grantid: CENTRO-01-0145-FEDER-022083
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
RPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c413t-64158eb9e7100086f384431e75bcec3810301f8eb5487a6e24423d9c63ff9bd63
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Tue Aug 26 23:58:21 EDT 2025
Thu Aug 21 18:34:07 EDT 2025
Fri Sep 05 00:14:51 EDT 2025
Fri Jul 25 12:02:07 EDT 2025
Wed Sep 10 05:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-64158eb9e7100086f384431e75bcec3810301f8eb5487a6e24423d9c63ff9bd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6017-0827
OpenAccessLink https://doaj.org/article/7fbd561578ba462db0013f95decb897e
PMID 40072133
PQID 3176352244
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_7fbd561578ba462db0013f95decb897e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902097
proquest_miscellaneous_3176347036
proquest_journals_3176352244
crossref_primary_10_3390_nano15050330
PublicationCentury 2000
PublicationDate 20250220
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 2
  year: 2025
  text: 20250220
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Yang (ref_30) 2020; 7
Du (ref_18) 2021; 13
Aslam (ref_34) 2022; 429
Li (ref_57) 2024; 91
Luo (ref_15) 2021; 17
Ma (ref_48) 2020; 388
Huang (ref_63) 2021; 8
Wang (ref_121) 2022; 6
Yan (ref_64) 2019; 10
Liu (ref_119) 2020; 14
Lai (ref_89) 2020; 59
Lei (ref_120) 2022; 61
Kumar (ref_55) 2019; 20
Huang (ref_6) 2021; 14
Jin (ref_122) 2021; 4
Li (ref_80) 2023; 39
Lei (ref_90) 2024; 15
Luo (ref_129) 2024; 11
Medford (ref_39) 2015; 328
Wei (ref_49) 2024; 9
Jiang (ref_91) 2023; 35
Jin (ref_43) 2023; 565
Ma (ref_86) 2023; 33
Wen (ref_1) 2013; 23
Du (ref_31) 2020; 565
Fang (ref_118) 2023; 19
Ma (ref_56) 2023; 629
Zhou (ref_38) 2018; 2
Wang (ref_107) 2024; 20
Ma (ref_70) 2021; 4
Wang (ref_69) 2021; 420
Yan (ref_71) 2021; 2
Wang (ref_117) 2024; 36
Bao (ref_29) 2021; 15
Reddy (ref_26) 2021; 39
Mou (ref_73) 2022; 52
Dong (ref_72) 2021; 9
He (ref_88) 2023; 14
Ye (ref_111) 2021; 15
Hu (ref_96) 2025; 44
Zhu (ref_78) 2023; 647
Wang (ref_50) 2020; 13
Mei (ref_42) 2024; 10
Ma (ref_65) 2022; 58
Aslam (ref_12) 2020; 11
Zhang (ref_3) 2024; 69
Ghosh (ref_77) 2020; 30
ref_83
Tang (ref_53) 2024; 20
Huang (ref_74) 2023; 10
Wang (ref_52) 2021; 15
Wang (ref_7) 2022; 16
Fang (ref_100) 2023; 15
Guo (ref_33) 2020; 7
Zhou (ref_11) 2022; 34
Huang (ref_61) 2023; 10
Du (ref_24) 2020; 379
Li (ref_76) 2022; 34
Zhang (ref_128) 2020; 5
Li (ref_109) 2021; 13
Zhang (ref_32) 2018; 9
Xiao (ref_59) 2024; 53
Reddy (ref_106) 2021; 883
Gao (ref_14) 2024; 20
Zhu (ref_58) 2022; 604
Ruan (ref_102) 2024; 36
Li (ref_17) 2023; 451
Liu (ref_23) 2022; 9
Xue (ref_85) 2019; 4
Saroha (ref_20) 2022; 431
Xiao (ref_66) 2021; 13
Wang (ref_87) 2021; 33
Zhi (ref_44) 2024; 41
Ye (ref_75) 2021; 12
Bai (ref_95) 2023; 62
Wu (ref_35) 2024; 654
Meng (ref_125) 2023; 62
Wang (ref_126) 2015; 162
Li (ref_84) 2023; 8
Wu (ref_112) 2022; 3
Liu (ref_51) 2022; 9
Mou (ref_8) 2020; 8
Tang (ref_21) 2020; 395
Norskov (ref_37) 2011; 108
Zhang (ref_41) 2019; 58
Yang (ref_19) 2021; 31
Wang (ref_67) 2022; 9
Wang (ref_82) 2024; 119
Kumar (ref_79) 2021; 42
Xiao (ref_97) 2021; 11
Cui (ref_101) 2024; 11
Zhao (ref_10) 2024; 494
Yan (ref_68) 2020; 32
Yao (ref_99) 2024; 34
He (ref_47) 2023; 74
Zhong (ref_103) 2024; 146
Zhou (ref_62) 2021; 60
Qian (ref_113) 2023; 471
Zhang (ref_81) 2023; 33
Huang (ref_123) 2021; 31
Yan (ref_108) 2020; 14
Zhang (ref_92) 2022; 144
Lei (ref_5) 2023; 33
Yang (ref_22) 2019; 7
Zhang (ref_114) 2024; 14
Ma (ref_46) 2021; 13
Samriddhi (ref_27) 2024; 99
Kumar (ref_16) 2021; 4
Liu (ref_116) 2021; 9
Qi (ref_2) 2021; 12
Ye (ref_60) 2022; 37
Qin (ref_110) 2020; 396
Wang (ref_4) 2024; 20
Zhang (ref_93) 2024; 6
Qiang (ref_36) 2017; 32
Li (ref_98) 2024; 34
Zhang (ref_105) 2021; 33
Huang (ref_9) 2022; 9
Ma (ref_104) 2018; 28
Kumar (ref_127) 2020; 5
Wu (ref_115) 2021; 90
Zhang (ref_124) 2023; 62
ref_40
Ghosh (ref_54) 2019; 11
Ou (ref_13) 2024; 16
Bao (ref_28) 2019; 13
Ye (ref_25) 2023; 86
Ma (ref_45) 2020; 578
References_xml – volume: 17
  start-page: 2101879
  year: 2021
  ident: ref_15
  article-title: Flower-Like Interlayer-Expanded MoS2−x Nanosheets Confined in Hollow Carbon Spheres with High-Efficiency Electrocatalysis Sites for Advanced Sodium-Sulfur Battery
  publication-title: Small
  doi: 10.1002/smll.202101879
– volume: 9
  start-page: 566
  year: 2021
  ident: ref_116
  article-title: Sustainable S cathodes with synergic electrocatalysis for room-temperature Na-S batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08748C
– volume: 395
  start-page: 124978
  year: 2020
  ident: ref_21
  article-title: Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124978
– volume: 9
  start-page: 2105544
  year: 2022
  ident: ref_51
  article-title: Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium-Sulfur Batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105544
– volume: 9
  start-page: 1743
  year: 2022
  ident: ref_67
  article-title: Tessellated N-doped carbon/CoSe2 as trap-catalyst sulfur hosts for room-temperature sodium-sulfur batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI00057A
– volume: 74
  start-page: 109353
  year: 2023
  ident: ref_47
  article-title: Etch-driven N, P co-doped hierarchical porous carbon embedded with Ni nanoparticles as an efficient dynamic carrier for room-temperature Na-S battery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109353
– volume: 15
  start-page: 16207
  year: 2021
  ident: ref_29
  article-title: Porous Heteroatom-Doped Ti3C2Tx MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium-Sulfur Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05193
– volume: 10
  start-page: 2206558
  year: 2023
  ident: ref_61
  article-title: Orthorhombic Nb2O5 Decorated Carbon Nanoreactors Enable Bidirectionally Regulated Redox Behaviors in Room-Temperature Na-S Batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206558
– volume: 431
  start-page: 134205
  year: 2022
  ident: ref_20
  article-title: V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134205
– volume: 13
  start-page: 11852
  year: 2021
  ident: ref_46
  article-title: Multi-step Controllable Catalysis Method for the Defense of Sodium Polysulfide Dissolution in Room-Temperature Na-S Batteries
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21267
– volume: 34
  start-page: 2214353
  year: 2024
  ident: ref_99
  article-title: Highly Flexible Carbon Film Implanted with Single-Atomic Zn-N2 Moiety for Long-Life Sodium-Sulfur Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214353
– volume: 379
  start-page: 122359
  year: 2020
  ident: ref_24
  article-title: Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122359
– volume: 13
  start-page: 11500
  year: 2019
  ident: ref_28
  article-title: Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04977
– volume: 39
  start-page: 2302049
  year: 2023
  ident: ref_80
  article-title: Function of Electron Spin Effect in Electrocatalysts
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB202302049
– volume: 11
  start-page: 2100989
  year: 2021
  ident: ref_97
  article-title: Generating Short-Chain Sulfur Suitable for Efficient Sodium-Sulfur Batteries via Atomic Copper Sites on a N,O-Codoped Carbon Composite
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100989
– volume: 31
  start-page: 2102280
  year: 2021
  ident: ref_19
  article-title: Architecting Freestanding Sulfur Cathodes for Superior Room-Temperature Na-S Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102280
– volume: 10
  start-page: 4793
  year: 2019
  ident: ref_64
  article-title: Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11600-3
– volume: 9
  start-page: 645
  year: 2022
  ident: ref_23
  article-title: Anthozoan-like porous nanocages with nano-cobalt-armed CNT multifunctional layers as a cathode material for highly stable Na-S batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI01406D
– volume: 90
  start-page: 106590
  year: 2021
  ident: ref_115
  article-title: Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na-S batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106590
– volume: 12
  start-page: 6347
  year: 2021
  ident: ref_2
  article-title: A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26631-y
– volume: 578
  start-page: 710
  year: 2020
  ident: ref_45
  article-title: Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.06.051
– volume: 33
  start-page: 2305908
  year: 2023
  ident: ref_81
  article-title: Sodium-Sulfur Batteries with Unprecedented Capacity, Cycling Stability and Operation Temperature Range Enabled by a CoFe2O4 Catalytic Additive Under an External Magnetic Field
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305908
– volume: 5
  start-page: 2112
  year: 2020
  ident: ref_127
  article-title: Free-Radical Catalysis and Enhancement of the Redox Kinetics for Room-Temperature Sodium-Sulfur Batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00913
– volume: 23
  start-page: 1005
  year: 2013
  ident: ref_1
  article-title: Main Challenges for High Performance NAS Battery: Materials and Interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200473
– volume: 86
  start-page: 620
  year: 2023
  ident: ref_25
  article-title: Engineering CoMoO4 in reduced graphene oxide as superior cathode hosts for advanced room-temperature sodium-sulfur batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.08.010
– volume: 14
  start-page: 7259
  year: 2020
  ident: ref_119
  article-title: Electrocatalyzing S Cathodes via Multisulfiphilic Sites for Superior Room-Temperature Sodium-Sulfur Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02488
– volume: 883
  start-page: 160910
  year: 2021
  ident: ref_106
  article-title: Layered-like structure of TiO2-T3C2 Mxene as an efficient sulfur host for room-temperature sodium-sulfur batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160910
– volume: 28
  start-page: 1705537
  year: 2018
  ident: ref_104
  article-title: New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature Sodium-Sulfur Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705537
– volume: 52
  start-page: 111
  year: 2022
  ident: ref_73
  article-title: A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: Assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1-x nanoparticles
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.07.028
– volume: 7
  start-page: 150
  year: 2019
  ident: ref_22
  article-title: A railway-like network electrode design for room temperature Na-S battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09556F
– volume: 32
  start-page: 1906700
  year: 2020
  ident: ref_68
  article-title: A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906700
– volume: 32
  start-page: 59
  year: 2017
  ident: ref_36
  article-title: Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.018
– volume: 2
  start-page: 100539
  year: 2021
  ident: ref_71
  article-title: Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100539
– volume: 62
  start-page: e202309046
  year: 2023
  ident: ref_125
  article-title: A Radical Pathway and Stabilized Li Anode Enabled by Halide Quaternary Ammonium Electrolyte Additives for Lithium-Sulfur Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202309046
– volume: 44
  start-page: 288
  year: 2025
  ident: ref_96
  article-title: N/O dual coordination of cobalt single atom for fast kinetics sodium-sulfur batteries
  publication-title: Rare Met.
  doi: 10.1007/s12598-024-02975-4
– volume: 62
  start-page: e202217009
  year: 2023
  ident: ref_124
  article-title: Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High-Capacity and Stable Na-S Battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202217009
– ident: ref_40
  doi: 10.3390/molecules25071585
– volume: 30
  start-page: 2005669
  year: 2020
  ident: ref_77
  article-title: Lewis Acid-Base Interactions between Polysulfides and Boehmite Enables Stable Room-Temperature Sodium-Sulfur Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005669
– volume: 33
  start-page: 2100229
  year: 2021
  ident: ref_87
  article-title: Tunable Electrocatalytic Behavior of Sodiated MoS2 Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100229
– volume: 34
  start-page: 2200479
  year: 2022
  ident: ref_11
  article-title: A High-Efficiency Mo2C Electrocatalyst Promoting the Polysulfide Redox Kinetics for Na-S Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200479
– volume: 5
  start-page: 1070
  year: 2020
  ident: ref_128
  article-title: Altering the Electrochemical Pathway of Sulfur Chemistry with Oxygen for High Energy Density and Low Shuttling in a Na/S Battery
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02746
– volume: 9
  start-page: 3451
  year: 2021
  ident: ref_72
  article-title: Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10159A
– volume: 15
  start-page: 26650
  year: 2023
  ident: ref_100
  article-title: Low-Coordinated Zn-N2 Sites as Bidirectional Atomic Catalysis for Room-Temperature Na-S Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02599
– volume: 629
  start-page: 76
  year: 2023
  ident: ref_56
  article-title: Oxygen vacancy-mediated amorphous GeOx assisted polysulfide redox kinetics for room-temperature sodium-sulfur batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.09.071
– volume: 8
  start-page: 2870
  year: 2021
  ident: ref_63
  article-title: Metal-based electrocatalysts for room-temperature Na-S batteries
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH01326B
– volume: 59
  start-page: 22171
  year: 2020
  ident: ref_89
  article-title: General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202009400
– volume: 35
  start-page: 2208873
  year: 2023
  ident: ref_91
  article-title: Single-Atom Vanadium Catalyst Boosting Reaction Kinetics of Polysulfides in Na-S Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208873
– volume: 654
  start-page: 649
  year: 2024
  ident: ref_35
  article-title: Encapsulation of sulfur in MoS2-modified metal-organic framework-derived N, O-codoped carbon host for sodium-sulfur batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.09.134
– volume: 146
  start-page: 32124
  year: 2024
  ident: ref_103
  article-title: Origin of the High Catalytic Activity of MoS2 in Na-S Batteries: Electrochemically Reconstructed Mo Single Atoms
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c13400
– volume: 4
  start-page: 374
  year: 2019
  ident: ref_85
  article-title: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0351-0
– volume: 14
  start-page: 2303925
  year: 2024
  ident: ref_114
  article-title: Achieving a Quasi-Solid-State Conversion of Polysulfides via Building High Efficiency Heterostructure for Room Temperature Na-S Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202303925
– volume: 471
  start-page: 144528
  year: 2023
  ident: ref_113
  article-title: 3D layered structure Ti3C2Tx MXene/Ni(OH)2/C with strong catalytic and adsorption capabilities of polysulfides for high-capacity Sodium-Sulfur battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144528
– volume: 4
  start-page: 1768
  year: 2021
  ident: ref_122
  article-title: Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries
  publication-title: Matter
  doi: 10.1016/j.matt.2021.03.004
– volume: 4
  start-page: 384
  year: 2021
  ident: ref_16
  article-title: Approach to Increase the Utilization of Active Material in a High Sulfur-Loaded Cathode for High Areal Capacity Room-Temperature Sodium-Sulfur Batteries
  publication-title: Acs Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02294
– volume: 9
  start-page: 5486
  year: 2022
  ident: ref_9
  article-title: In situ implanting MnO nanoparticles into carbon nanorod-assembled microspheres enables performance-enhanced room-temperature Na-S batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01362B
– volume: 9
  start-page: 4082
  year: 2018
  ident: ref_32
  article-title: Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06144-x
– volume: 91
  start-page: 112141
  year: 2024
  ident: ref_57
  article-title: Oxygen vacancy modified cerium dioxide with excellent catalytic activity for room-temperature Na-S batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112141
– volume: 61
  start-page: e202200384
  year: 2022
  ident: ref_120
  article-title: Streamline Sulfur Redox Reactions to Achieve Efficient Room-Temperature Sodium-Sulfur Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200384
– volume: 451
  start-page: 142288
  year: 2023
  ident: ref_17
  article-title: Co4N embedded nitrogen doped carbon with 2D/3D hybrid structure as sulfur host for room-temperature sodium-sulfur batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142288
– volume: 108
  start-page: 937
  year: 2011
  ident: ref_37
  article-title: Density functional theory in surface chemistry and catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1006652108
– volume: 6
  start-page: 2289
  year: 2024
  ident: ref_93
  article-title: Atomic Manganese Manipulating Polysulfide Speciation Pathway for Room-Temperature Na-S Batteries
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.024.202303640
– volume: 565
  start-page: 232917
  year: 2023
  ident: ref_43
  article-title: Cobalt, nitrogen co-doped microporous carbon matrix derived from metal organic frameworks toward high specific capacity room temperature sodium sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232917
– volume: 15
  start-page: 5639
  year: 2021
  ident: ref_111
  article-title: Enabling a Stable Room-Temperature Sodium-Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00804
– volume: 31
  start-page: 2100666
  year: 2021
  ident: ref_123
  article-title: High-Capacity and Stable Sodium-Sulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full Conversion
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100666
– volume: 20
  start-page: 196
  year: 2019
  ident: ref_55
  article-title: High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.11.031
– volume: 99
  start-page: 113260
  year: 2024
  ident: ref_27
  article-title: Hydrothermal assisted RGO wrapped fumed silica-sulfur composite for an advanced room-temperature sodium-sulfur battery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.113260
– volume: 14
  start-page: 3757
  year: 2021
  ident: ref_6
  article-title: Materials engineering for adsorption and catalysis in room-temperature Na-S batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01349A
– volume: 34
  start-page: 2400859
  year: 2024
  ident: ref_98
  article-title: Strengthening d-p Orbital-Hybridization via Coordination Number Regulation of Manganese Single-Atom Catalysts Toward Fast Kinetic and Long-Life Sodium-Sulfur Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202400859
– volume: 9
  start-page: 2414172
  year: 2024
  ident: ref_49
  article-title: Construction of Heterointerfaced Nanoreactor Electrocatalyst via In Situ Evolution Toward Practical Room-Temperature Sodium-Sulfur Batteries
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2311151
  year: 2024
  ident: ref_53
  article-title: A Highly Dispersed Cobalt Electrocatalyst with Electron-Deficient Centers Induced by Boron toward Enhanced Adsorption and Electrocatalysis for Room-Temperature Sodium-Sulfur Batteries
  publication-title: Small
  doi: 10.1002/smll.202311151
– volume: 13
  start-page: 18010
  year: 2021
  ident: ref_66
  article-title: MOF-Derived CoS2/N-Doped Carbon Composite to Induce Short-Chain Sulfur Molecule Generation for Enhanced Sodium-Sulfur Battery Performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02301
– volume: 7
  start-page: 4396
  year: 2020
  ident: ref_30
  article-title: An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00939C
– volume: 33
  start-page: 2211821
  year: 2023
  ident: ref_86
  article-title: Dynamic Multistage Coupling of FeS2/S Enables Ultrahigh Reversible Na-S Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211821
– volume: 36
  start-page: 2312207
  year: 2024
  ident: ref_102
  article-title: Linearly Interlinked Fe-Nx-Fe Single Atoms Catalyze High-Rate Sodium-Sulfur Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312207
– volume: 3
  start-page: 2200020
  year: 2022
  ident: ref_112
  article-title: Bifunctional Catalyst for Liquid-Solid Redox Conversion in Room-Temperature Sodium-Sulfur Batteries
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200020
– volume: 11
  start-page: 5242
  year: 2020
  ident: ref_12
  article-title: Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19078-0
– volume: 2
  start-page: 2681
  year: 2018
  ident: ref_38
  article-title: Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.010
– volume: 41
  start-page: 101536
  year: 2024
  ident: ref_44
  article-title: Cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers to enhance redox kinetics for long-cycling sodium-sulfur batteries
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2024.101536
– volume: 42
  start-page: 608
  year: 2021
  ident: ref_79
  article-title: Sub-zero and room-temperature sodium-sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.08.014
– volume: 69
  start-page: 197
  year: 2024
  ident: ref_3
  article-title: Polysulfide regulation by defect-modulated Ta3N5−x electrocatalyst toward superior room-temperature sodium-sulfur batteries
  publication-title: Sci. Bull.
– volume: 53
  start-page: 8168
  year: 2024
  ident: ref_59
  article-title: Defect engineering of a TiO2 anatase/rutile homojunction accelerating sulfur redox kinetics for high-performance Na-S batteries
  publication-title: Dalton Trans.
  doi: 10.1039/D4DT00745J
– volume: 144
  start-page: 18995
  year: 2022
  ident: ref_92
  article-title: Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na-S Batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07655
– volume: 33
  start-page: 2212600
  year: 2023
  ident: ref_5
  article-title: A Review on the Status and Challenges of Cathodes in Room-Temperature Na-S Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202212600
– volume: 429
  start-page: 132389
  year: 2022
  ident: ref_34
  article-title: Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132389
– volume: 15
  start-page: 15218
  year: 2021
  ident: ref_52
  article-title: Manipulating the Electronic Structure of Nickel via Alloying with Iron: Toward High-Kinetics Sulfur Cathode for Na-S Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05778
– volume: 13
  start-page: 50
  year: 2021
  ident: ref_18
  article-title: Efficient Catalytic Conversion of Polysulfides by Biomimetic Design of “Branch-Leaf” Electrode for High-Energy Sodium-Sulfur Batteries
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-020-00563-6
– volume: 8
  start-page: 84
  year: 2023
  ident: ref_84
  article-title: Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01175-7
– volume: 62
  start-page: e202218165
  year: 2023
  ident: ref_95
  article-title: Toward Complete Transformation of Sodium Polysulfides by Regulating the Second-Shell Coordinating Environment of Atomically Dispersed Fe
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202218165
– volume: 14
  start-page: 6568
  year: 2023
  ident: ref_88
  article-title: Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42383-3
– volume: 39
  start-page: 102660
  year: 2021
  ident: ref_26
  article-title: Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium-sulfur batteries and its electrochemical properties
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102660
– volume: 388
  start-page: 124210
  year: 2020
  ident: ref_48
  article-title: Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room sodium-sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124210
– volume: 8
  start-page: 24590
  year: 2020
  ident: ref_8
  article-title: Hierarchical porous carbon sheets for high-performance room temperature sodium-sulfur batteries: Integration of nitrogen-self-doping and space confinement
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08876E
– volume: 20
  start-page: 2310225
  year: 2024
  ident: ref_14
  article-title: 3D Flower-like Nanospheres Constructed by Transition Metal Telluride Nanosheets as Sulfur Immobilizers for High-Performance Room-Temperature Na-S Batteries
  publication-title: Small
  doi: 10.1002/smll.202310225
– volume: 13
  start-page: 562
  year: 2020
  ident: ref_50
  article-title: High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03251G
– volume: 565
  start-page: 63
  year: 2020
  ident: ref_31
  article-title: Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.010
– ident: ref_83
  doi: 10.3390/batteries9010026
– volume: 12
  start-page: 7195
  year: 2021
  ident: ref_75
  article-title: A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27551-7
– volume: 13
  start-page: 48536
  year: 2021
  ident: ref_109
  article-title: Ni@Ni3N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium-Sulfur Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11793
– volume: 60
  start-page: 10129
  year: 2021
  ident: ref_62
  article-title: Sulfur in Amorphous Silica for an Advanced Room-Temperature Sodium-Sulfur Battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015932
– volume: 6
  start-page: 2200335
  year: 2022
  ident: ref_121
  article-title: Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation
  publication-title: Small Methods
  doi: 10.1002/smtd.202200335
– volume: 604
  start-page: 154496
  year: 2022
  ident: ref_58
  article-title: An extraordinary Na-S battery enabled by a carbon nanosheet host loaded with Fe-accelerator and TiO2-inhibitor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154496
– volume: 58
  start-page: 1484
  year: 2019
  ident: ref_41
  article-title: Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811080
– volume: 119
  start-page: 109082
  year: 2024
  ident: ref_82
  article-title: Hierarchical FeS2 cathode with suppressed shuttle effect for high performance magnesium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109082
– volume: 20
  start-page: 2311180
  year: 2024
  ident: ref_107
  article-title: A Mott-Schottky Heterojunction with Strong Chemisorption and Fast Conversion Effects for Room-Temperature Na-S Batteries
  publication-title: Small
  doi: 10.1002/smll.202311180
– volume: 16
  start-page: 5103
  year: 2022
  ident: ref_7
  article-title: Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00265
– volume: 4
  start-page: 3487
  year: 2021
  ident: ref_70
  article-title: Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03235
– volume: 7
  start-page: 1902617
  year: 2020
  ident: ref_33
  article-title: Nickel Hollow Spheres Concatenated by Nitrogen-Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium-Sulfur Batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902617
– volume: 34
  start-page: 2204214
  year: 2022
  ident: ref_76
  article-title: Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204214
– ident: ref_94
  doi: 10.1002/anie.202422208
– volume: 33
  start-page: 2103846
  year: 2021
  ident: ref_105
  article-title: Mo2N-W2N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Room-Temperature Na-S Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103846
– volume: 15
  start-page: 3325
  year: 2024
  ident: ref_90
  article-title: Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47628-3
– volume: 58
  start-page: 13612
  year: 2022
  ident: ref_65
  article-title: Gallate-MOF derived CoS2/C composites as an accelerated catalyst for room-temperature sodium-sulfur batteries
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC05071D
– volume: 10
  start-page: 4241
  year: 2023
  ident: ref_74
  article-title: Dredging sodium polysulfides using a Fe3C electrocatalyst to realize improved room-temperature Na-S batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00661A
– volume: 10
  start-page: 2418126
  year: 2024
  ident: ref_42
  article-title: Cobalt Catalytic Regulation Engineering in Room-Temperature Sodium-Sulfur Batteries: Facilitating Rapid Polysulfides Conversion and Delicate Na2S Nucleation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202418126
– volume: 396
  start-page: 125295
  year: 2020
  ident: ref_110
  article-title: High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125295
– volume: 19
  start-page: 2302461
  year: 2023
  ident: ref_118
  article-title: Core-Shell Tandem Catalysis Coupled with Interface Engineering For High-Performance Room-Temperature Na-S Batteries
  publication-title: Small
  doi: 10.1002/smll.202302461
– volume: 36
  start-page: 2411725
  year: 2024
  ident: ref_117
  article-title: In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202411725
– volume: 20
  start-page: 2400164
  year: 2024
  ident: ref_4
  article-title: Designing Urchin-Like S/SiO2 with Regulated Pores Toward Ultra-Fast Room Temperature Sodium-Sulfur Battery
  publication-title: Small
  doi: 10.1002/smll.202400164
– volume: 420
  start-page: 129681
  year: 2021
  ident: ref_69
  article-title: Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129681
– volume: 647
  start-page: 546
  year: 2023
  ident: ref_78
  article-title: High performance sulfur/carbon cathode for Na-S battery enabled by electrocatalytic effect of Sn-doped In2S3
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.142
– volume: 16
  start-page: 3302
  year: 2024
  ident: ref_13
  article-title: Hetero structured Co/CeO2-Decorating N-Doped Porous Carbon Nanocubes as Efficient Sulfur Hosts with Enhanced Rate Capability and Cycling Durability toward Room-Temperature Na-S Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c14578
– volume: 11
  start-page: 2409866
  year: 2024
  ident: ref_101
  article-title: Multi-Functional Descriptor Design of V-Based Double Atomic Catalysts for Room Temperature Sodium-Sulfur Batteries
  publication-title: Small
– volume: 328
  start-page: 36
  year: 2015
  ident: ref_39
  article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.12.033
– volume: 162
  start-page: A474
  year: 2015
  ident: ref_126
  article-title: Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0851503jes
– volume: 14
  start-page: 10284
  year: 2020
  ident: ref_108
  article-title: Multiregion Janus-Featured Cobalt Phosphide-Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03737
– volume: 11
  start-page: 14101
  year: 2019
  ident: ref_54
  article-title: Three-Dimensionally Reinforced Freestanding Cathode for High Energy Room-Temperature Sodium-Sulfur Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00203
– volume: 11
  start-page: 2308180
  year: 2024
  ident: ref_129
  article-title: Enhancing Conversion Kinetics through Electron Density Dual-Regulation of Catalysts and Sulfur toward Room-/Subzero-Temperature Na-S Batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202308180
– volume: 494
  start-page: 153006
  year: 2024
  ident: ref_10
  article-title: Synergistically promoting the catalytic conversion of polysulfides via in-situ construction of Ni-MnO2 heterostructure on N-doped hollow carbon spheres towards high-performance sodium-sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153006
– volume: 37
  start-page: 1116
  year: 2022
  ident: ref_60
  article-title: Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(22)60607-3
SSID ssj0000913853
Score 2.2870305
SecondaryResourceType review_article
Snippet Sodium–sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity,...
Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 330
SubjectTerms Adsorption
Batteries
Carbon fibers
catalyst strategy
Catalysts
cathode
Cathodes
conversion pathway
Cost effectiveness
Design
Electrolytes
Energy storage
Heterojunctions
High temperature
Intermediates
Lithium
Load
Na-S batteries
nanostructure engineering
Operating temperature
Raw materials
Review
Room temperature
Sodium
Sodium sulfur batteries
Storage capacity
Sulfur
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPqA-qptDKlejRIg_HGx9QBS0IVdoV4iFxizx-tL0kFJb_z0wey-bSqx9KNPZ4vrFnvgE4zFJHOyGzUtnSSJVjlKgdygozzDx6ZSInJy-W-uJW_bor77ZgOebCcFjleCZ2B7VvHd-RH5Gd0wwWlPp-_09y1Sh-XR1LaNihtII_7ijGXsF2zlWVZ7B9era8vFrfujALJhmoPgK-IH__qLFNS6CIX_PSiW3qKPwnuHMaNblhhs7fwO6AH8VJv-BvYSs07-D1Bqvge1j87KIyxEg8Gx5FG8V1JRZ9KdwgOO2v9dROiFVcEXSWN4Hgc0-vLJZWXoued5Pm7sHt-dnNjws5VE2QjgzSSmoyyVVAE5i3hxyWWFSKUEKYl-iCY0Iv0ulII9hXsTqQRPPCG6eLGA16XXyAWdM24SOI3LjU55kr0xRVFpBckYiVN9pYTK3KEvg2yqu-78kxanIqWK71plwTOGVhrscwpXXX0D78rgcNqecRPYE5OkHQKp17hnNFNKUPDiszDwkcjEtRD3r2WL_sigS-rrtJQ_jZwzahfRrGKCYaS6CaLOHkh6Y9zd8_Hdd2RoApT8380_-_vg87ORcG5lz39ABmq4en8JnQygq_DFvwGRVE66A
  priority: 102
  providerName: ProQuest
Title Design Strategies of S8 Molecule Cathodes for Room-Temperature Na-S Batteries
URI https://www.proquest.com/docview/3176352244
https://www.proquest.com/docview/3176347036
https://pubmed.ncbi.nlm.nih.gov/PMC11902097
https://doaj.org/article/7fbd561578ba462db0013f95decb897e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RSBsjISHK3aieONjxS6VEi7Qn1IvUUePwSXBNHt_2cmyVbJiQtX25GcmbG_b-TxZ4CPWgWKBO2l8bWTpsQs0QaUDWrUEaNxmS8nb3f2_Np8v6lvZk99cU3YKA88Gu5knTESxlNgoTe2jIzyVXZ1TAEbt068-yqnZsnUsAc7XREQjZXuFeX1J53veiI_fGqnFhg0SPUv-OWyOnIGN5tn8HTiieLzOL_n8CB1L-DJTD3wJWy_DtUX4iAwm25Fn8VlI7bjk7dJ8PW-PlI7MVNxQRRZXiWiyaOMsth5eSlGfU369hVcb86uvpzL6XUEGQh49tIS9DYJXWJ9HkpMctUYYgNpXWNIgYW7aO1mGsE5ibeJcLysogu2ytlhtNVrOOr6Lr0BUbqgYqlDrRQanZBSjoxNdNZ5VN7oAj4d7NX-HkUwWkoe2K7t3K4FnLIx78ewdPXQQA5tJ4e2_3JoAccHV7TTerptieVYporGFPDhvptWAh9v-C71d9MYw4JiBTQLFy4mtOzpfv0cNLU1ESOKo_Xb__EL7-Bxyc8E8813dQxH-z936T1xlz2u4GGz-baCR6dnux8XqyFo_wIAFfCf
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE81UMBI9Gg1cZxsfKgQfWlLuyvUbqXegp_AJSndrar-OX4bM3lsNxduvcZOYo1nPJ_tmW8APiexRU1INJc6U1wKE7jJreGFSUzijJMqUHLyZJqPL-S3y-xyDf72uTAUVtmvic1C7WpLZ-Q76OdyAgtSfrn6w6lqFN2u9iU0dFdawe02FGNdYseJv7vFLdx89_gA53tbiKPD2f6Yd1UGuMUFfMFzdGGFN8oTzw0C_JAWEr2qH2XGeksEWGgDAXsQtte5xxGI1CmbpyEo4_IUv_sINhB2pGhVG3uH0-9ny1MeYt1Eh9hG3KepincqXdUIwuj2MB74wqZkwADnDqM0V9ze0XN41uFV9rVVsBew5quX8HSFxfAVTA6aKBDWE936OasDOy_YpC296xmlGdYOnyNCZmcI1fnMI1xv6ZzZVPNz1vJ84ruv4eJB5PcG1qu68pvAhLKxE4nN4tjIxBvc-gRTOJUrbWItkwi2e3mVVy0ZR4mbGJJruSrXCPZImMs-RKHdPKivf5adRZajYByCR1yxjJa5cAQf06Ay560p1MhHsNVPRdnZ9by818IIPi2b0SLpmkVXvr7p-kgiNougGEzhYEDDlur3r4bbO0GAJmI1evv_v3-Ex-PZ5LQ8PZ6evIMngooSU559vAXri-sb_x6R0sJ86NSRwY-HtoB_ee8m7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4iUMBI9Git4zjZ-IAQsCwtZVeItlJvwU_gkpTuVoi_xq9jJo9lc-HWa-zE0XjG89me-QbgZSocakJquDK55krayG3hLC9talNvvdKRkpMXy-LgVH08y8924M-QC0NhlcOa2C7UvnF0Rj5BP1cQWFBqEvuwiM-z-evzn5wqSNFN61BOo1ORo_D7F27fVq8OZzjX-1LO35-8O-B9hQHucPFe8wLdVxmsDsRxg-A-ZqVCjxqmuXXBEfkV6n_EHoTrTRFwdJl57YosRm19keF3r8F1KvVCFlXOP2zOd4hvE11hF2ufZVpMalM3CL_o3lCMvGBbLGCEcMfxmVsOb34HbvdIlb3pVOsu7IT6Htza4i-8D4tZG__BBorbsGJNZMclW3RFdwOjBMPG43PExuwLgnR-EhCod0TObGn4MesYPvHdB3B6JdJ7CLt1U4dHwKR2wsvU5UJYlQaLm55oS68LbawwKk1gf5BXdd7RcFS4fSG5VttyTeAtCXPTh8iz2wfNxbeqt8VqGq1H2IhrlTWqkJ6AYxZ17oOzpZ6GBPaGqah6i15V__QvgRebZrRFumAxdWgu-z6KKM0SKEdTOPqhcUv943vL6p0iNJNCTx__f_TncAP1vvp0uDx6AjclVSOmBHuxB7vri8vwFCHS2j5rdZHB16tW_r9v_SSI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategies+of+S8+Molecule+Cathodes+for+Room-Temperature+Na-S+Batteries&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Sha-Sha&rft.au=Cai%2C+Zi-Qi&rft.au=Lu%2C+Chen-Kai&rft.au=Li%2C+Jing&rft.date=2025-02-20&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=15&rft.issue=5&rft.spage=330&rft_id=info:doi/10.3390%2Fnano15050330&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano15050330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon