A neural algorithm for a fundamental computing problem

Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science a...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 358; no. 6364; p. 793
Main Authors Dasgupta, Sanjoy, Stevens, Charles F, Navlakha, Saket
Format Journal Article
LanguageEnglish
Published United States 10.11.2017
Subjects
Online AccessGet more information
ISSN1095-9203
DOI10.1126/science.aam9868

Cover

Abstract Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem.
AbstractList Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem.
Author Navlakha, Saket
Dasgupta, Sanjoy
Stevens, Charles F
Author_xml – sequence: 1
  givenname: Sanjoy
  orcidid: 0000-0002-5960-5157
  surname: Dasgupta
  fullname: Dasgupta, Sanjoy
  organization: Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Charles F
  orcidid: 0000-0002-3709-9003
  surname: Stevens
  fullname: Stevens, Charles F
  organization: Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Saket
  orcidid: 0000-0002-5505-9718
  surname: Navlakha
  fullname: Navlakha, Saket
  email: navlakha@salk.edu
  organization: Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. navlakha@salk.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29123069$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAURoMozkPX7iR_oGNy82izHAZfMDCbcT3cpMlYaZKStgv_vQPq6uNw4MC3ItcpJ0_IA2cbzkE_ja7zyfkNYjSNbq7IkjOjKgNMLMhqHL8Yu7ARt2QBhoNg2iyJ3tLk54I9xf6cSzd9RhpyoUjDnFqMPk0X53Ic5qlLZzqUbHsf78hNwH7093-7Jh8vz8fdW7U_vL7vtvvKSS6mSrWoQBqHmokGWgagba2CcVALi6C0Czqg8UooIyFocBJQNKqRtdWW1bAmj7_dYbbRt6ehdBHL9-n_APwALT1IMg
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3307608
crossref_primary_10_1007_s10559_018_0034_z
crossref_primary_10_1016_j_ins_2020_04_046
crossref_primary_10_1162_neco_a_01615
crossref_primary_10_1016_j_ins_2021_11_006
crossref_primary_10_1186_s40537_024_01010_8
crossref_primary_10_1007_s11042_018_6439_x
crossref_primary_10_1137_21M1403114
crossref_primary_10_1016_j_plrev_2018_12_004
crossref_primary_10_1109_TCSVT_2022_3195874
crossref_primary_10_1073_pnas_1915252117
crossref_primary_10_1073_pnas_2100600119
crossref_primary_10_3389_fphys_2024_1410946
crossref_primary_10_1073_pnas_2316799121
crossref_primary_10_15407_kvt208_02_005
crossref_primary_10_1103_PhysRevE_104_024415
crossref_primary_10_4000_ijcol_609
crossref_primary_10_1007_s40747_023_01065_9
crossref_primary_10_1073_pnas_2115335119
crossref_primary_10_1038_s41467_024_55563_6
crossref_primary_10_1016_j_cois_2019_06_003
crossref_primary_10_1093_nargab_lqad004
crossref_primary_10_1007_s10462_025_11181_2
crossref_primary_10_1109_TCDS_2022_3152910
crossref_primary_10_1109_TETCI_2024_3419711
crossref_primary_10_1038_s41586_020_2451_1
crossref_primary_10_1109_ACCESS_2020_2999484
crossref_primary_10_3390_e25010051
crossref_primary_10_1016_j_cub_2022_06_031
crossref_primary_10_1016_j_neuroimage_2024_120696
crossref_primary_10_3389_fncom_2022_917786
crossref_primary_10_1007_s10827_021_00809_1
crossref_primary_10_1126_scirobotics_abl6334
crossref_primary_10_1038_s41467_023_36346_x
crossref_primary_10_1145_3538531
crossref_primary_10_1016_j_cub_2022_06_039
crossref_primary_10_1126_science_abl5311
crossref_primary_10_1002_nme_6177
crossref_primary_10_1088_2053_1583_ab6e88
crossref_primary_10_1109_ACCESS_2019_2890826
crossref_primary_10_1038_s41591_018_0300_7
crossref_primary_10_1016_j_neucom_2020_03_079
crossref_primary_10_1109_TNSM_2023_3246798
crossref_primary_10_1162_neco_a_01424
crossref_primary_10_1186_s12864_020_6651_8
crossref_primary_10_1088_1361_6501_acbdb5
crossref_primary_10_1137_22M1503579
crossref_primary_10_1016_j_neucom_2020_12_130
crossref_primary_10_1007_s12559_024_10258_4
crossref_primary_10_1038_s41378_024_00752_y
crossref_primary_10_3389_fnins_2022_867568
crossref_primary_10_1371_journal_pcbi_1006175
crossref_primary_10_3390_s22249940
crossref_primary_10_1016_j_eng_2025_01_012
crossref_primary_10_1038_s41467_025_55832_y
crossref_primary_10_1523_JNEUROSCI_0255_23_2023
crossref_primary_10_1016_j_cub_2019_06_046
crossref_primary_10_1098_rsif_2019_0410
crossref_primary_10_1631_FITEE_1700714
crossref_primary_10_1080_00051144_2019_1570642
crossref_primary_10_1016_j_tplants_2018_08_006
crossref_primary_10_1126_sciadv_abj0852
crossref_primary_10_1038_s44159_022_00068_6
crossref_primary_10_1287_ijoc_2020_0989
crossref_primary_10_3390_e20120954
crossref_primary_10_1002_inf2_12416
crossref_primary_10_1073_pnas_2207959120
crossref_primary_10_1109_JIOT_2020_2992035
crossref_primary_10_1109_LRA_2020_2967324
crossref_primary_10_1038_s43588_021_00157_1
crossref_primary_10_1016_j_neucom_2021_05_061
crossref_primary_10_15407_kvt194_04_007
crossref_primary_10_1007_s00521_022_07910_1
crossref_primary_10_1016_j_cell_2018_06_019
crossref_primary_10_7554_eLife_80923
crossref_primary_10_1016_j_neunet_2020_05_007
crossref_primary_10_1007_s40305_021_00387_0
crossref_primary_10_1109_TCBB_2023_3279443
crossref_primary_10_1073_pnas_2001893117
crossref_primary_10_1109_TNNLS_2021_3056694
crossref_primary_10_7554_eLife_45293
crossref_primary_10_1103_PhysRevResearch_6_023298
crossref_primary_10_1126_sciadv_adp9048
crossref_primary_10_1007_s40747_021_00486_8
crossref_primary_10_1016_j_patcog_2024_110717
crossref_primary_10_1109_ACCESS_2021_3112552
crossref_primary_10_1038_s41467_022_33577_2
crossref_primary_10_1109_JIOT_2019_2914344
crossref_primary_10_1109_TNNLS_2020_3018790
crossref_primary_10_1371_journal_pcbi_1012379
crossref_primary_10_1016_j_conb_2022_102528
crossref_primary_10_1007_s43657_022_00056_z
crossref_primary_10_1109_TNNLS_2023_3263195
crossref_primary_10_1109_LRA_2024_3367275
crossref_primary_10_1016_j_jgg_2018_09_003
crossref_primary_10_1007_s44196_023_00323_5
crossref_primary_10_1016_j_talanta_2025_127594
crossref_primary_10_1109_ACCESS_2019_2936856
crossref_primary_10_1126_sciadv_ado4112
crossref_primary_10_1016_j_cell_2022_09_038
crossref_primary_10_1109_LRA_2022_3140827
crossref_primary_10_1073_pnas_1814448115
crossref_primary_10_1523_JNEUROSCI_2185_19_2020
crossref_primary_10_1109_TNNLS_2021_3105949
ContentType Journal Article
Copyright Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1126/science.aam9868
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 29123069
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
AEGBM
AENEX
AEUPB
AEXZC
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CGR
CS3
CUY
CVF
DB2
DCCCD
DU5
EBS
ECM
EIF
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PKN
PQQKQ
PZZ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YIF
YIN
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
ID FETCH-LOGICAL-c413t-5da5249ca60382d0226b75f9c273ba256cf6fa9e535942f62c42a385847b6b072
IngestDate Wed Feb 19 02:44:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6364
Language English
License Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-5da5249ca60382d0226b75f9c273ba256cf6fa9e535942f62c42a385847b6b072
ORCID 0000-0002-3709-9003
0000-0002-5960-5157
0000-0002-5505-9718
PMID 29123069
ParticipantIDs pubmed_primary_29123069
PublicationCentury 2000
PublicationDate 2017-11-10
PublicationDateYYYYMMDD 2017-11-10
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
SSID ssj0009593
Score 2.6316023
Snippet Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale...
SourceID pubmed
SourceType Index Database
StartPage 793
SubjectTerms Algorithms
Animals
Drosophila
Nerve Net
Neural Networks (Computer)
Odorants
Olfactory Cortex
Smell
Title A neural algorithm for a fundamental computing problem
URI https://www.ncbi.nlm.nih.gov/pubmed/29123069
Volume 358
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwRN-838uCDMjp6TdrH4QUR3Isb7E1OslZR1w02B_rrPWnSLkzFy0spDSml30nyneSc8xFyAhwSkbHMEYDuaugK6cSCCwVI6ntpCh5TCc63HXbdC2_6Ub9Wm1lRS69T0ZLvX-aV_AdVfIa4qizZPyBbvRQf4D3ii1dEGK-_wrjdVOUoVbb_y8MIvfzHoQ6KbGYqv8OU7ZeFboNOOi_EY2w-Wg5t5JnV2Y2FWBWE2NahAmXkgOlmbSNcwOThdayp6B3kT6Nqq17rpk2ss_15NHEHZi_w_Gh6PZtkbLMJgQtbEQin1xA9cbpK89F3A3tmDaLYMiEWsNCaKrlWRvw8hVuik2kLYJjEWnjHAnQ8LBD1E095UMnPrQs1tcumJbLEuRL86Kg9HqtUsykCZaVXlV-iqkeb3gueSMFIuhtk3bgStK3tok5qad4gq1pc9K1B6gakCT01tcXPNglrU20ytDIZihhToJbJ0MpkqDGZLdK7uuyeXztGOsORyEqmTjSACB1rCcwNYn-ARI0JHmWJRLYqAGmuxPEJSRoFURL6GfNl6IM6Iw65YMLl_jZZzkd5ukuoywaqIFHgSRx5EGQizDxc4BPJI-BeyPfIjv4L92NdH-W-_D_737YckLW5FR2SlQwHZHqE7G4qjgswPgBVRlBB
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+algorithm+for+a+fundamental+computing+problem&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Dasgupta%2C+Sanjoy&rft.au=Stevens%2C+Charles+F&rft.au=Navlakha%2C+Saket&rft.date=2017-11-10&rft.eissn=1095-9203&rft.volume=358&rft.issue=6364&rft.spage=793&rft_id=info:doi/10.1126%2Fscience.aam9868&rft_id=info%3Apmid%2F29123069&rft_id=info%3Apmid%2F29123069&rft.externalDocID=29123069