Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval

Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT(scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidab...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 29; no. 5; pp. 837 - 848
Main Author 周文罡 李厚强 卢亦娟 田奇
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-014-1472-3

Cover

Abstract Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT(scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidably causes many false local matches between images, which degrades the retrieval accuracy. To filter those false matches, geometric context among visual words has been popularly explored for the verification of geometric consistency. However, existing studies with global or local geometric verification are either computationally expensive or achieve limited accuracy. To address this issue, in this paper, we focus on partialduplicate Web image retrieval, and propose a scheme to encode the spatial context for visual matching verification. An efficient affine enhancement scheme is proposed to refine the verification results. Experiments on partial-duplicate Web image search, using a database of one million images, demonstrate the effectiveness and efficiency of the proposed approach.Evaluation on a 10-million image database further reveals the scalability of our approach.
AbstractList Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT (scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidably causes many false local matches between images, which degrades the retrieval accuracy. To filter those false matches, geometric context among visual words has been popularly explored for the verification of geometric consistency. However, existing studies with global or local geometric verification are either computationally expensive or achieve limited accuracy. To address this issue, in this paper, we focus on partial duplicate Web image retrieval, and propose a scheme to encode the spatial context for visual matching verification. An efficient affine enhancement scheme is proposed to refine the verification results. Experiments on partial-duplicate Web image search, using a database of one million images, demonstrate the effectiveness and efficiency of the proposed approach. Evaluation on a 10-million image database further reveals the scalability of our approach.
Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT(scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidably causes many false local matches between images, which degrades the retrieval accuracy. To filter those false matches, geometric context among visual words has been popularly explored for the verification of geometric consistency. However, existing studies with global or local geometric verification are either computationally expensive or achieve limited accuracy. To address this issue, in this paper, we focus on partialduplicate Web image retrieval, and propose a scheme to encode the spatial context for visual matching verification. An efficient affine enhancement scheme is proposed to refine the verification results. Experiments on partial-duplicate Web image search, using a database of one million images, demonstrate the effectiveness and efficiency of the proposed approach.Evaluation on a 10-million image database further reveals the scalability of our approach.
Author 周文罡 李厚强 卢亦娟 田奇
AuthorAffiliation Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China, Hefei 230027, China Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230027, China Department of Computer Science, Texas State University, San Marcos, TX 78666, U.S.A. Department of Computer Science, University of Texas at San Antonio,San Antonio, TX 78249, U.S.A.
Author_xml – sequence: 1
  fullname: 周文罡 李厚强 卢亦娟 田奇
BookMark eNp9kUtv1DAUhS1UJPrgB7CLYMMC0-v4FS_RtEClEVQtiKXlOHZIyNhTOwPDv8ejVEXqohvbkr9z7tU5J-goxOAQekXgPQGQ55kQqgADYZgwWWP6DB2TRgBmkqmj8gYArMrxAp3kPAJQCYwdoy-XwcZuCH11uzXzYKZqFcPs9nPlY6rWJvUO31ozuerapMM_vthtp8Ga2VU_XFtdbUzvqhs3p8H9NtMZeu7NlN3L-_sUff94-W31Ga-_frpafVhjywidMWkYsdQo5TpnOchOtMTW3lsQHrxoLOe8AdFIMA03XHqoreJdbVgrWis7eoreLb5_TPAm9HqMuxTKRD3m8dd-zPtWu7qkARwIFPztgm9TvNu5POvNkK2bJhNc3GVNRK2oUJQ1BX3zCH2wrhVpuBTFtFByoWyKOSfntR3mkl_JLplh0gT0oRa91KLLIvpQi6ZFSR4pt2nYmPT3SU29aHJhQ-_S_52eEr2-H_Qzhv6u6B4mCVELaCSn9B8n96rA
CitedBy_id crossref_primary_10_1145_2818708
crossref_primary_10_1109_TIP_2015_2389624
crossref_primary_10_1117_1_JEI_27_5_053002
crossref_primary_10_1007_s11390_015_1536_z
Cites_doi 10.1109/TIP.2013.2251650
10.1109/CVPR.2012.6247910
10.1145/1873951.1874019
10.1109/ICCV.2003.1238663
10.1109/CVPR.2012.6248018
10.1109/CVPR.2006.102
10.1109/CVPR.2007.383222
10.1109/TIP.2014.2305072
10.1109/CVPR.2009.5206791
10.1109/TMM.2011.2167224
10.1007/978-3-540-88682-2_24
10.1109/CVPR.2006.68
10.1109/CVPR.2009.5206566
10.1109/ICCV.2013.210
10.1109/CVPR.2006.264
10.1109/TMM.2013.2270455
10.1145/2422956.2422960
10.1145/2393347.2393377
10.1109/CVPR.2011.5995601
10.1016/j.cviu.2013.12.011
10.1109/CVPR.2013.213
10.1109/TPAMI.1987.4767923
10.1109/CVPR.2008.4587635
10.1016/j.imavis.2004.02.006
10.1109/ICCV.2007.4408891
10.1109/34.993558
10.1109/CVPRW.2009.5206531
10.1145/1282280.1282359
10.1109/CVPR.2009.5206848
10.1109/TMM.2014.2305909
10.1109/CVPR.2007.383172
10.1109/CVPR.2007.382970
10.1109/TMM.2011.2165053
10.1109/CVPR.2005.221
10.1145/244130.244151
10.1145/358669.358692
10.5244/C.22.50
10.1109/CVPR.2010.5540039
10.1023/B:VISI.0000029664.99615.94
10.1109/TMM.2014.2301979
10.1109/CVPR.2012.6248038
10.1109/CVPR.2011.5995528
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2014.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2014.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-014-1472-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (Proquest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval
EISSN 1860-4749
EndPage 848
ExternalDocumentID jsjkxjsxb_e201405010
10_1007_s11390_014_1472_3
662608753
GrantInformation_xml – fundername: This work was supported in part to Dr. Wen-Gang Zhou by the Fundamental Research Funds for the Central Universities of China under Grant Nos. WK2100060014 and WK2100060011, the Start-Up Funding from the University of Science and Technology of China under Grant No. KY2100000036, the Open Project of Beijing Multimedia and Intelligent Software Key Laboratory in Beijing University of Technology, and the sponsor from Intel ICRI MNC project, in part to Dr. Hou-Qiang Li by the National Natural Science Foundation of China (NSFC) under Grant Nos.61325009,61390514, and 61272316, in part to Dr. Yijuan Lu by the Army Research Office of USA under Grant No. W911NF-12-1-0057 and the National Science Foundation of USA under Grant No. CRI 1305302, and in part to Dr. Qi Tian by ARO under Grant No. W911NF-12-1-0057 and the Faculty Research Award by NEC Laboratories of America, respectively. This work was supported in part by NSFC under Grant No.61128007.A preliminary version of the paper was published in the Proceedings of MM 2010
  funderid: (ARO) of USA under Grant No. W911NF-12-1-0057 and the National Science Foundation of USA under Grant No. CRI 1305302, and in part to Dr. Qi Tian by ARO under Grant No. W911NF-12-1-0057 and the Faculty Research Award by NEC Laboratories of America, respectively. This work was supported in part by NSFC under Grant No.61128007.A preliminary version of the paper was published in the Proceedings of MM 2010
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
4A8
PMFND
PSX
ID FETCH-LOGICAL-c413t-1841c3a99edec507d6b1c2ffc06f0f68c555806870a85a57f02c95d2a4b6bc7d3
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Thu Sep 04 17:43:39 EDT 2025
Sat Aug 23 14:04:53 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Sun Jul 06 05:08:13 EDT 2025
Fri Feb 21 02:40:04 EST 2025
Wed Feb 14 10:36:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords affine estimation
spatial verification
spatial context coding
large-scale image retrieval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-1841c3a99edec507d6b1c2ffc06f0f68c555806870a85a57f02c95d2a4b6bc7d3
Notes 11-2296/TP
Wen-Gang Zhou,Hou-Qiang Li,Yijuan Lu,Qi Tian(1 Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China, Hefei 230027, China; 2Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230027, China ;3Department of Computer Science, Texas State University, San Marcos, TX 78666, U.S.A. ;4Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.)
large-scale image retrieval; spatial context coding; spatial verification; affine estimation
Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT(scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidably causes many false local matches between images, which degrades the retrieval accuracy. To filter those false matches, geometric context among visual words has been popularly explored for the verification of geometric consistency. However, existing studies with global or local geometric verification are either computationally expensive or achieve limited accuracy. To address this issue, in this paper, we focus on partialduplicate Web image retrieval, and propose a scheme to encode the spatial context for visual matching verification. An efficient affine enhancement scheme is proposed to refine the verification results. Experiments on partial-duplicate Web image search, using a database of one million images, demonstrate the effectiveness and efficiency of the proposed approach.Evaluation on a 10-million image database further reveals the scalability of our approach.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918576140
PQPubID 326258
PageCount 12
ParticipantIDs wanfang_journals_jsjkxjsxb_e201405010
proquest_miscellaneous_1629369348
proquest_journals_2918576140
crossref_citationtrail_10_1007_s11390_014_1472_3
crossref_primary_10_1007_s11390_014_1472_3
springer_journals_10_1007_s11390_014_1472_3
chongqing_primary_662608753
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zheng L,Wang S, Liu Z, Tian Q. LP-Norm IDF for large scale image search. In Proc. CVPR, June 2013, pp.1626–1633.
Deng J, Dong W, Socher R et al. ImageNet: A large-scale hierarchical image database. In Proc. CVPR, June 2009, pp.248–255.
ChuLJiangSWangSZhangYHuangQRobust spatial consistency graph model for partial duplicate image retrievalIEEE Trans. Multimedia20131581982199610.1109/TMM.2013.2270455
Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In Proc. CVRP, June 2006, pp.2161–2168.
Babenko A, Lempitsky V. The inverted multi-index. In Proc. CVPR, June 2012, pp.3069–3076.
Chum O, Philbin J, Sivic J, Isard M, Zisserman A. Total recall: Automatic query expansion with a generative featuremodel for object retrieval. In Proc. the 11th IEEE Int. Conf. Computer Vision, Oct. 2007, pp.1–8.
ChangSShiQYanCIconic indexing by 2-D stringsIEEE Trans. Pattern Analysis and Machine Intelligence19879341332810.1109/TPAMI.1987.4767923
Zhang Y, Chen T. Efficient kernels for identifying unbounded-order spatial features. In Proc. CVPR, June 2009, pp.1762–1769.
Zhang S, Yang M, Wang X et al. Semantic-aware co-indexing for image retrieval. In Proc. ICCV, 2013, pp.1673–1680.
Zhou W, Li H, Lu Y, Wang M, Tian Q. Visual word expansion and BSIFT verification for large-scale image search. Multimedia Systems, 2013. http://link.springer.com/article/10.1007/s00530-013-0330-4, Aug. 2014.
WangWZhangDZhangYLiJGuXRobust spatial matching for object retrieval and its parallel implementation on GPUIEEE Trans. Multimedia20111361308131810.1109/TMM.2011.2165053
Savarese S, Winn J, Criminisi A. Discriminative object class models of appearance and shape by correlatons. In Proc. CVPR, June 2006, pp.2033–2040.
Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos. In Proc. the 9th IEEE Int. Conf. Computer Vision, Oct. 2003, pp.1470–1477.
Philbin J, Chum O, Isard M et al. Lost in quantization: Improving particular object retrieval in large scale image databases. In Proc. CVPR, June 2008, pp.1–8.
XieLTianQZhouWFast and accurate near-duplicate image search with affinity propagation on the Image WebComputer Vision and Image Understanding2014124314110.1016/j.cviu.2013.12.011
Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. CVPR, June 2006, pp.2169–2178.
Wu Z, Ke Q, Isard M, Sun J. Bundling features for large scale partial-duplicate web image search. In Proc. CVPR, June 2009, pp.25–32.
Zhang Y, Jia Z, Chen T. Image retrieval with geometry-preserving visual phrases. In Proc. CVPR, June 2011, pp.809–816.
Zhang X, Zhang L, Shum H Y. QsRank: Query-sensitive hash code ranking for efficient 2-neighbor search. In Proc. CVPR, June 2012, pp.2058–2065.
Smith J R, Chang S F. VisualSEEk: A fully automated content-based image query system. In Proc. the 4th ACM Multimedia, Nov. 1996, pp.75–84.
Chum O, Perdoch M, Matas J. Geometric min-hashing: Finding a (thick) needle in a haystack. In Proc. CVPR, June 2009, pp.17–24.
Arandjelovic R, Zisserman A. Three things everyone should know to improve object retrieval. In Proc. CVPR, June 2012, pp.2911–2918.
Chum O, Mikulik A, Perdoch M, Matas J. Total recall II: Query expansion revisited. In Proc. CVPR, June 2011, pp.889–896.
Jégou H, Harzallah H, Schmid C. A contextual dissimilarity measure for accurate and efficient image search. In Proc. CVPR, June 2007, pp.1–8.
LiuZLiHZhouWZhaoRTianQContextual hashing for large-scale image searchIEEE Trans. Image Processing201423416061614319131810.1109/TIP.2014.2305072
XieHGaoKZhangYEfficient feature detection and effective post-verification for large scale near-duplicate image searchIEEE Trans. Multimedia20111361319133210.1109/TMM.2011.2167224
Jégou H, Douze M, Schmid C, Pérez P. Aggregating local descriptors into a compact image representation. In Proc. CVPR, June 2010, pp.3304–3311.
Zhou W, Lu Y, Li H, Song Y, Tian Q. Spatial coding for large scale partial-duplicate Web image search. In Proc. Int. Conf. Multimedia, Oct. 2010, pp.511–520.
LoweDGDistinctive image features from scale invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94
Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, June 2007, pp.1–8.
BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Analysis and Machine Intelligence200224450952210.1109/34.993558
Chum O, Philbin J, Zisserman A. Near duplicate image detection: Min-Hash and tf-idf weighting. In Proc. the 19th BMVC, Sept. 2008, pp.493–502.
Jegou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search. In Proc. the 10th ECCV, Oct. 2008, pp.304–317.
MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage and Vision Computing2004221076176710.1016/j.imavis.2004.02.006
ZhouWYangMLiHWangXLinYTianQTowards codebook-free: Scalable cascaded hashing for mobile image searchIEEE Trans. Multimedia201416360161110.1109/TMM.2014.2301979
Chum O, Matas J. Matching with PROSAC-progressive sample consensus. In Proc. CVPR, June 2005, pp.220–226.
Shen X, Lin Z, Brandt J et al. Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking. In Proc. CVPR, June 2012, pp.3013–3020.
Chum O, Philbin J, Isard M et al. Scalable near identical image and shot detection. In Proc. CIVR, July 2007, pp.549–556.
FischlerMABollesRCRandom sample consensus: A paradigm for model fitting with applications to image analysis and automated cartographyCommunications of the ACM198124638139561815810.1145/358669.358692
Zhou W, Lu Y, Li H, Tian Q. Scalar quantization for large scale image search. In Proc. the 20th ACM Multimedia, Oct. 2012, pp.169–178.
Zhou W, Li H, Lu Y, Tian Qi. SIFT match verification by geometric coding for large-scale partial-duplicate Web image search. ACM Trans. Multimedia Computing, Communications, and Applications, 2013, 9(1): Article No. 4.
XieHZhangYTanJGuoLLiJContextual query expansion for image retrievalIEEE Trans. Multimedia20141641104111410.1109/TMM.2014.2305909
Zhang S, Tian Q, Lu K et al. Edge-SIFT: Discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Trans. Image Processing, 2013, 22(7): pp.2889–2902.
Yuan J, Wu Y, Yang M. Discovery of collocation patterns: From visual words to visual phrases. In Proc. CVPR, June 2007, pp.1–8.
1472_CR5
L Xie (1472_CR3) 2014; 124
1472_CR6
MA Fischler (1472_CR33) 1981; 24
1472_CR7
1472_CR1
1472_CR12
1472_CR34
1472_CR11
1472_CR14
1472_CR13
1472_CR35
1472_CR8
1472_CR16
1472_CR38
1472_CR9
1472_CR15
DG Lowe (1472_CR19) 2004; 60
1472_CR39
W Zhou (1472_CR30) 2014; 16
J Matas (1472_CR37) 2004; 22
1472_CR10
1472_CR32
1472_CR31
S Chang (1472_CR36) 1987; 9
L Chu (1472_CR4) 2013; 15
1472_CR23
W Wang (1472_CR24) 2011; 13
1472_CR22
1472_CR44
1472_CR25
1472_CR27
1472_CR26
H Xie (1472_CR2) 2011; 13
1472_CR29
1472_CR28
S Belongie (1472_CR40) 2002; 24
1472_CR41
1472_CR21
1472_CR43
1472_CR20
1472_CR42
H Xie (1472_CR17) 2014; 16
Z Liu (1472_CR18) 2014; 23
References_xml – reference: Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In Proc. CVRP, June 2006, pp.2161–2168.
– reference: Arandjelovic R, Zisserman A. Three things everyone should know to improve object retrieval. In Proc. CVPR, June 2012, pp.2911–2918.
– reference: Zhang X, Zhang L, Shum H Y. QsRank: Query-sensitive hash code ranking for efficient 2-neighbor search. In Proc. CVPR, June 2012, pp.2058–2065.
– reference: Shen X, Lin Z, Brandt J et al. Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking. In Proc. CVPR, June 2012, pp.3013–3020.
– reference: Zhang Y, Chen T. Efficient kernels for identifying unbounded-order spatial features. In Proc. CVPR, June 2009, pp.1762–1769.
– reference: Chum O, Philbin J, Zisserman A. Near duplicate image detection: Min-Hash and tf-idf weighting. In Proc. the 19th BMVC, Sept. 2008, pp.493–502.
– reference: Chum O, Matas J. Matching with PROSAC-progressive sample consensus. In Proc. CVPR, June 2005, pp.220–226.
– reference: Chum O, Philbin J, Isard M et al. Scalable near identical image and shot detection. In Proc. CIVR, July 2007, pp.549–556.
– reference: ChangSShiQYanCIconic indexing by 2-D stringsIEEE Trans. Pattern Analysis and Machine Intelligence19879341332810.1109/TPAMI.1987.4767923
– reference: Jegou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search. In Proc. the 10th ECCV, Oct. 2008, pp.304–317.
– reference: Chum O, Mikulik A, Perdoch M, Matas J. Total recall II: Query expansion revisited. In Proc. CVPR, June 2011, pp.889–896.
– reference: Zhou W, Lu Y, Li H, Tian Q. Scalar quantization for large scale image search. In Proc. the 20th ACM Multimedia, Oct. 2012, pp.169–178.
– reference: MatasJChumOUrbanMPajdlaTRobust wide-baseline stereo from maximally stable extremal regionsImage and Vision Computing2004221076176710.1016/j.imavis.2004.02.006
– reference: Zhou W, Lu Y, Li H, Song Y, Tian Q. Spatial coding for large scale partial-duplicate Web image search. In Proc. Int. Conf. Multimedia, Oct. 2010, pp.511–520.
– reference: XieHGaoKZhangYEfficient feature detection and effective post-verification for large scale near-duplicate image searchIEEE Trans. Multimedia20111361319133210.1109/TMM.2011.2167224
– reference: Zhou W, Li H, Lu Y, Tian Qi. SIFT match verification by geometric coding for large-scale partial-duplicate Web image search. ACM Trans. Multimedia Computing, Communications, and Applications, 2013, 9(1): Article No. 4.
– reference: Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. CVPR, June 2006, pp.2169–2178.
– reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, June 2007, pp.1–8.
– reference: XieLTianQZhouWFast and accurate near-duplicate image search with affinity propagation on the Image WebComputer Vision and Image Understanding2014124314110.1016/j.cviu.2013.12.011
– reference: XieHZhangYTanJGuoLLiJContextual query expansion for image retrievalIEEE Trans. Multimedia20141641104111410.1109/TMM.2014.2305909
– reference: ZhouWYangMLiHWangXLinYTianQTowards codebook-free: Scalable cascaded hashing for mobile image searchIEEE Trans. Multimedia201416360161110.1109/TMM.2014.2301979
– reference: FischlerMABollesRCRandom sample consensus: A paradigm for model fitting with applications to image analysis and automated cartographyCommunications of the ACM198124638139561815810.1145/358669.358692
– reference: Philbin J, Chum O, Isard M et al. Lost in quantization: Improving particular object retrieval in large scale image databases. In Proc. CVPR, June 2008, pp.1–8.
– reference: Zhou W, Li H, Lu Y, Wang M, Tian Q. Visual word expansion and BSIFT verification for large-scale image search. Multimedia Systems, 2013. http://link.springer.com/article/10.1007/s00530-013-0330-4, Aug. 2014.
– reference: Savarese S, Winn J, Criminisi A. Discriminative object class models of appearance and shape by correlatons. In Proc. CVPR, June 2006, pp.2033–2040.
– reference: WangWZhangDZhangYLiJGuXRobust spatial matching for object retrieval and its parallel implementation on GPUIEEE Trans. Multimedia20111361308131810.1109/TMM.2011.2165053
– reference: Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos. In Proc. the 9th IEEE Int. Conf. Computer Vision, Oct. 2003, pp.1470–1477.
– reference: Chum O, Philbin J, Sivic J, Isard M, Zisserman A. Total recall: Automatic query expansion with a generative featuremodel for object retrieval. In Proc. the 11th IEEE Int. Conf. Computer Vision, Oct. 2007, pp.1–8.
– reference: Jégou H, Douze M, Schmid C, Pérez P. Aggregating local descriptors into a compact image representation. In Proc. CVPR, June 2010, pp.3304–3311.
– reference: Zhang S, Yang M, Wang X et al. Semantic-aware co-indexing for image retrieval. In Proc. ICCV, 2013, pp.1673–1680.
– reference: Smith J R, Chang S F. VisualSEEk: A fully automated content-based image query system. In Proc. the 4th ACM Multimedia, Nov. 1996, pp.75–84.
– reference: Babenko A, Lempitsky V. The inverted multi-index. In Proc. CVPR, June 2012, pp.3069–3076.
– reference: LoweDGDistinctive image features from scale invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Chum O, Perdoch M, Matas J. Geometric min-hashing: Finding a (thick) needle in a haystack. In Proc. CVPR, June 2009, pp.17–24.
– reference: Wu Z, Ke Q, Isard M, Sun J. Bundling features for large scale partial-duplicate web image search. In Proc. CVPR, June 2009, pp.25–32.
– reference: LiuZLiHZhouWZhaoRTianQContextual hashing for large-scale image searchIEEE Trans. Image Processing201423416061614319131810.1109/TIP.2014.2305072
– reference: Zhang Y, Jia Z, Chen T. Image retrieval with geometry-preserving visual phrases. In Proc. CVPR, June 2011, pp.809–816.
– reference: Zheng L,Wang S, Liu Z, Tian Q. LP-Norm IDF for large scale image search. In Proc. CVPR, June 2013, pp.1626–1633.
– reference: BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Analysis and Machine Intelligence200224450952210.1109/34.993558
– reference: Zhang S, Tian Q, Lu K et al. Edge-SIFT: Discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Trans. Image Processing, 2013, 22(7): pp.2889–2902.
– reference: ChuLJiangSWangSZhangYHuangQRobust spatial consistency graph model for partial duplicate image retrievalIEEE Trans. Multimedia20131581982199610.1109/TMM.2013.2270455
– reference: Deng J, Dong W, Socher R et al. ImageNet: A large-scale hierarchical image database. In Proc. CVPR, June 2009, pp.248–255.
– reference: Jégou H, Harzallah H, Schmid C. A contextual dissimilarity measure for accurate and efficient image search. In Proc. CVPR, June 2007, pp.1–8.
– reference: Yuan J, Wu Y, Yang M. Discovery of collocation patterns: From visual words to visual phrases. In Proc. CVPR, June 2007, pp.1–8.
– ident: 1472_CR28
  doi: 10.1109/TIP.2013.2251650
– ident: 1472_CR32
  doi: 10.1109/CVPR.2012.6247910
– ident: 1472_CR15
  doi: 10.1145/1873951.1874019
– ident: 1472_CR5
  doi: 10.1109/ICCV.2003.1238663
– ident: 1472_CR31
  doi: 10.1109/CVPR.2012.6248018
– ident: 1472_CR41
  doi: 10.1109/CVPR.2006.102
– ident: 1472_CR42
  doi: 10.1109/CVPR.2007.383222
– volume: 23
  start-page: 1606
  issue: 4
  year: 2014
  ident: 1472_CR18
  publication-title: IEEE Trans. Image Processing
  doi: 10.1109/TIP.2014.2305072
– ident: 1472_CR43
  doi: 10.1109/CVPR.2009.5206791
– volume: 13
  start-page: 1319
  issue: 6
  year: 2011
  ident: 1472_CR2
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2011.2167224
– ident: 1472_CR10
  doi: 10.1007/978-3-540-88682-2_24
– ident: 1472_CR22
– ident: 1472_CR39
  doi: 10.1109/CVPR.2006.68
– ident: 1472_CR1
  doi: 10.1109/CVPR.2009.5206566
– ident: 1472_CR27
  doi: 10.1109/ICCV.2013.210
– ident: 1472_CR26
– ident: 1472_CR6
  doi: 10.1109/CVPR.2006.264
– volume: 15
  start-page: 1982
  issue: 8
  year: 2013
  ident: 1472_CR4
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2013.2270455
– ident: 1472_CR23
  doi: 10.1145/2422956.2422960
– ident: 1472_CR20
  doi: 10.1145/2393347.2393377
– ident: 1472_CR25
  doi: 10.1109/CVPR.2011.5995601
– volume: 124
  start-page: 31
  year: 2014
  ident: 1472_CR3
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2013.12.011
– ident: 1472_CR16
  doi: 10.1109/CVPR.2013.213
– volume: 9
  start-page: 413
  issue: 3
  year: 1987
  ident: 1472_CR36
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1987.4767923
– ident: 1472_CR12
  doi: 10.1109/CVPR.2008.4587635
– volume: 22
  start-page: 761
  issue: 10
  year: 2004
  ident: 1472_CR37
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2004.02.006
– ident: 1472_CR7
  doi: 10.1109/ICCV.2007.4408891
– volume: 24
  start-page: 509
  issue: 4
  year: 2002
  ident: 1472_CR40
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.993558
– ident: 1472_CR9
  doi: 10.1109/CVPRW.2009.5206531
– ident: 1472_CR38
  doi: 10.1145/1282280.1282359
– ident: 1472_CR44
  doi: 10.1109/CVPR.2009.5206848
– volume: 16
  start-page: 1104
  issue: 4
  year: 2014
  ident: 1472_CR17
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2014.2305909
– ident: 1472_CR11
  doi: 10.1109/CVPR.2007.383172
– ident: 1472_CR29
  doi: 10.1109/CVPR.2007.382970
– volume: 13
  start-page: 1308
  issue: 6
  year: 2011
  ident: 1472_CR24
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2011.2165053
– ident: 1472_CR34
  doi: 10.1109/CVPR.2005.221
– ident: 1472_CR35
  doi: 10.1145/244130.244151
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1472_CR33
  publication-title: Communications of the ACM
  doi: 10.1145/358669.358692
– ident: 1472_CR8
  doi: 10.5244/C.22.50
– ident: 1472_CR13
  doi: 10.1109/CVPR.2010.5540039
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1472_CR19
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 16
  start-page: 601
  issue: 3
  year: 2014
  ident: 1472_CR30
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2014.2301979
– ident: 1472_CR21
  doi: 10.1109/CVPR.2012.6248038
– ident: 1472_CR14
  doi: 10.1109/CVPR.2011.5995528
SSID ssj0037044
Score 2.0016596
Snippet Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 837
SubjectTerms Accuracy
Artificial Intelligence
Computer Science
Context
Data Structures and Information Theory
Geometric accuracy
Image retrieval
Information Systems Applications (incl.Internet)
Invariants
Regular Paper
Reproduction
Retrieval
Searching
Software Engineering
Theory of Computation
Verification
Visual
Web
一致性验证
图像数据库
图像检索方法
复制
空间环境
编码
视觉匹配
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLjwKojtS64EF5BFYjvO-oRQ2-1DUFVARW-W7dittiVpya60P5-ZrLOBy55jO1Fm7PnG8_gIecd9YZ2PWPkrBJOl0kxHVzKEFjbTThU5ViN_O1cnl_LsqrhKF25tSqvsz8TuoK4aj3fkn7jGrkVgTLLP9w8MWaMwupooNB6TJzkHW4uV4pPj_iQWZdaRueIVNkNyzD6q2ZXOAfTBlCzJcllyJrC3wk1TXz-AxfjfRg3AcxUr7Sp86mjr63-M0eQFeZZQJP2yFPtL8ijUr8jznqGBpg27Sc6Pat-gdaJIPQyqRrtuVIsZBaxKv2IWOPsBUgr0AlXI3rHD-TKgHeiv4Ojpbzhu6PeOdQtU8jW5nBz9PDhhiUGBeTBOMwbuW-6F1TpUwQPyq5TLPY_RZypmUY09dvvKFOxZOy5sUcaMe11U3EqnnC8r8YZs1E0d3hJaCuFdFUJUrpTRay1lrCKAi0JHwAT5iGyv_p-5X3bKMArdJfSIRiTr_6jxqfk4cmDcmaFtMgrEgEAMCsTAlA-rKf16awbv9GIyaRO2ZlCZEdlfPYbtgzERW4dm3ppccaQ0FHI8Ih978Q5LrHnh-6QBw-BpO71dTNuFM4Gj41qAr7u1_sO2yVMcukxa2yEbsz_zsAsoZ-b2OlX-Cx8m9Xo
  priority: 102
  providerName: ProQuest
Title Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval
URI http://lib.cqvip.com/qk/85226X/201405/662608753.html
https://link.springer.com/article/10.1007/s11390-014-1472-3
https://www.proquest.com/docview/2918576140
https://www.proquest.com/docview/1629369348
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201405010
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY9sIL34iyURkJXkCWEjt26scC7cZXNQ0qxpNlO_amMlIgrdQ_n7s0bkBCk3jKQ-Kz5Lvz_S73Rcgz7qV1PmLlrxCsKJVmOrqSIbSwmXZK5liN_HGmTubFu3N53tVxNynbPYUk25u6L3YDsIJJVAXLi5IzsUcOJLaTAiGe83G6fkWZtRNc8b81w4mYKZT5LxLYUOFyWV_8hO3-Nkw92twFSNuynjra-uIPCzS9Q2510JGOt7y-S26E-h65ncYy0E5L75PZpPZLNEkU5w2DfNG2BdVmRQGg0g-Y-s0-AWsCPUW5sVfszXobxQ70S3D07Xe4Y-hZO2oL5PABmU8nn1-fsG5sAvNgkVYMfLbcC6t1qIIHuFcpl3seo89UzKIaeWzxlSlQVDuSVpYx417LitvCKefLSjwk-_WyDo8ILYXwrgohKlcW0WtdFLGKgCikjgAE8gE53J2f-bFtj2EU-kjoBg1Ilk7U-K7jOA6-uDJ9r2RkiAGGGGSIgSUvdksSvWs-PkpsMp3mNYZr7G4FoCMbkKe716AzGAixdViuG5MrjnMMRTEakJeJvT2JazZ83klA__GiWXzbLJqNM4GjtyrBwX38X1QPyU1cuU1cOyL7q1_r8ASQzsoNyd5oejwkB-Pjr-8n8Hw1mZ2eDVt5_w1ycPYN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZG9wAv_EaUDTASewFZJE7i1A8TAtapZV01jU3szbMde6iMZCOtKP8cfxt3adzCS9_2nNiJfOe773y--wh5zW2mjfVY-ZskLM2FZNKbnCG00JE0IouxGvlwLAan6eez7GyD_Am1MHitMtjExlAXlcUz8ndcYtcicCbR-6trhqxRmF0NFBq6pVYodpsWY21hx4H7_QtCuHp3uAfy3uF8v3_yacBalgFmwYBPGYQ4sU20lK5wFtBRIUxsufc2Ej7yomexI1YkQK91L9NZ7iNuZVZwnRphbF4kMO8tspniAUqHbH7sj4-Ogy9I8qihk8VDdIb0nCGv2hTvAfjCS2Epi9OcswS7O3yryotr8Fn_e8kV9F1ma5sao9Lr8uIfd7h_n9xtcSz9sFC8B2TDlQ_JvcARQVuT8YiM-6Wt0D9SJD8GZadNP6z5lAJapiO8h86-gJ44eoRKrC_Z3myRUnf0qzN0-AMMHj1ueL9gUzwmpzeyuk9Ip6xK95TQPEmsKZzzwuSpt1KmqS88wJtMekAlcZdsLddPXS16dSiBARvGZF0ShRVVtm1_jiwcl2rVuBkFokAgCgWiYMib5ZAw35qXt4OYVGsGarVS2i55tXwMGxizMrp01axWseBIqpikvS55G8S7mmLNB3daDVi9PKkn3-eTem6U4xg6ZxBtP1v_Yy_J7cHJ4UiNhuODLXIHhy2u0G2TzvTnzD0HzDU1L1rFpuT8pvfSX_2MOSo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BJyFeGD9F2QAjwQvIW344Tv04sZaNjWoCJsaTFzv2UDfSQVKp4q_nrolbQGgS4jnJRbHP9ne5u-8DeJ7YrDDWU-dvmnKRS8WVNzknaFFEysgspm7kd2O5dyzenmQnnc5pHardQ0qy7Wkglqaq2b4s_faq8Q2BCxVUCR6LPOHpdVgTJCHRg7WdN58PhmEzTvNooedKf7E56WOGxObfjBC9wpdpdfYNX_77MbXCnst06aLJp_JFdfbLeTRah9PwJW0ZyvnWrDFb9scfJI__8am34VaHVdlO61x34Jqr7sJ60IFg3bZwD8bDyk7pDGQkcIwOzRacV_OGISJmh1Rrzj-gLzh2RI5aXPDdWZs2d-yTM2z_K25q7P1C2wsd_z4cj4YfX-_xTqeBWzwCG45BYmzTQilXOov4spQmton3NpI-8nJgiVMskrgzFIOsyHIfJVZlZVIII43Ny_QB9Kpp5R4Cy9PUmtI5L00uvFVKCF96hDCZ8og84j5sLKdIX7Z8HFpSUEZxVx-iMGnadhTnpLRxoVfkzDSaGkdT02hqfOTl8pFg74qbN4Mn6G6p1zpRRKeFKCfqw7PlZVyklHkpKjed1TqWCQknpmLQh1dhylcmrnjhi87JVjdP6sn5fFLPjXYJhccZRtSP_snqU7hxtDvSh_vjgw24SUbaorlN6DXfZ-4xoqzGPOlW0k_9KxqK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoding+Spatial+Context+for+Large-Scale+Partial-Duplicate+Web+Image+Retrieval&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Wen-Gang+Zhou&rft.au=Hou-Qiang+Li&rft.au=Yijuan+Lu&rft.au=Qi+Tian&rft.date=2014-09-01&rft.issn=1000-9000&rft.issue=5&rft.spage=837&rft.epage=848&rft_id=info:doi/10.1007%2Fs11390-014-1472-3&rft.externalDocID=jsjkxjsxb_e201405010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg