Semi-automatic muscle segmentation in MR images using deep registration-based label propagation

•Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registrati...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 140; no. August 2023; p. 109529
Main Authors Decaux, Nathan, Conze, Pierre-Henri, Ropars, Juliette, He, Xinyan, Sheehan, Frances T., Pons, Christelle, Ben Salem, Douraied, Brochard, Sylvain, Rousseau, François
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
1873-5142
DOI10.1016/j.patcog.2023.109529

Cover

Abstract •Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registration quality estimation as weighting guidance.•An unsupervised pre-training stage initializes the deep registration framework. Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed semi-automatic multi-label segmentation model outperforms state-of-the-art techniques.
AbstractList Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.
•Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registration quality estimation as weighting guidance.•An unsupervised pre-training stage initializes the deep registration framework. Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed semi-automatic multi-label segmentation model outperforms state-of-the-art techniques.
Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a timeconsuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.
Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.
ArticleNumber 109529
Author He, Xinyan
Decaux, Nathan
Brochard, Sylvain
Ropars, Juliette
Sheehan, Frances T.
Rousseau, François
Conze, Pierre-Henri
Pons, Christelle
Ben Salem, Douraied
AuthorAffiliation e Fondation ILDYS, Brest, France
a LaTIM UMR 1101, Inserm, Brest, France
d Rehabilitation Medicine, NIH, Bethesda, USA
b IMT Atlantique, Brest, France
c University Hospital of Brest, Brest, France
AuthorAffiliation_xml – name: e Fondation ILDYS, Brest, France
– name: d Rehabilitation Medicine, NIH, Bethesda, USA
– name: c University Hospital of Brest, Brest, France
– name: a LaTIM UMR 1101, Inserm, Brest, France
– name: b IMT Atlantique, Brest, France
Author_xml – sequence: 1
  givenname: Nathan
  orcidid: 0000-0002-6911-6373
  surname: Decaux
  fullname: Decaux, Nathan
  email: nathan.decaux@imt-atlantique.fr
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 2
  givenname: Pierre-Henri
  surname: Conze
  fullname: Conze, Pierre-Henri
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 3
  givenname: Juliette
  surname: Ropars
  fullname: Ropars, Juliette
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 4
  givenname: Xinyan
  surname: He
  fullname: He, Xinyan
  organization: IMT Atlantique, Brest, France
– sequence: 5
  givenname: Frances T.
  surname: Sheehan
  fullname: Sheehan, Frances T.
  organization: Rehabilitation Medicine, NIH, Bethesda, USA
– sequence: 6
  givenname: Christelle
  surname: Pons
  fullname: Pons, Christelle
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 7
  givenname: Douraied
  surname: Ben Salem
  fullname: Ben Salem, Douraied
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 8
  givenname: Sylvain
  surname: Brochard
  fullname: Brochard, Sylvain
  organization: LaTIM UMR 1101, Inserm, Brest, France
– sequence: 9
  givenname: François
  surname: Rousseau
  fullname: Rousseau, François
  organization: LaTIM UMR 1101, Inserm, Brest, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37383565$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03945559$$DView record in HAL
BookMark eNqNUctu1DAUtVARnRb-ACEvYZHBj7iOWYCqCijSICQea8tx7qQeOXawk0H9ezxNeXUBrGyfe8_xueeeoKMQAyD0mJI1JfTs-W49msnGfs0I4wVSgql7aEUbyStBa3aEVoRwWnFG-DE6yXlHCJWl8AAdc8kbLs7ECulPMLjKzFMczOQsHuZsPeAM_QBhKlAM2AX8_iN2g-kh4zm70OMOYMQJependNNUtSZDh71pweMxxdH0N_hDdH9rfIZHt-cp-vLm9eeLy2rz4e27i_NNZWvKVbXlChQlpiV1a6yEpiZKESm7TioOTJlW2KZcOBNSEiYaYoVlNZRH3UEL_BSJRXcOo7n-ZrzXYyqW07WmRB8C0zu9BKYPgeklsMJ7tfDGuR2gs2XoZH5xo3H6z0pwV7qP-8JnSjWEFoVni8LVHd7l-UYfMMJVLYRQe1Z6n97-luLXGfKkB5cteG8CxDlr1nDKVKPkwdiT3439VP6xutLwYmmwKeacYKutWxZWfDr_r7HrO-T_TOvlQoOyyr2DpLN1ECx0LoGddBfd3wW-Ay_w2IM
CitedBy_id crossref_primary_10_1109_TRPMS_2023_3265863
crossref_primary_10_1016_j_bspc_2024_106391
crossref_primary_10_1016_j_patcog_2024_111338
crossref_primary_10_1007_s00261_023_04102_w
crossref_primary_10_1016_j_patcog_2024_110426
Cites_doi 10.1186/1532-429X-11-30
10.1016/j.patcog.2019.107171
10.1186/s13014-020-01617-0
10.1109/TMI.2021.3060551
10.1016/j.artmed.2020.101998
10.1016/j.neuroimage.2007.07.007
10.1109/TBME.2008.921158
10.1145/3208955.3208958
10.3389/fneur.2021.625308
10.1016/j.mri.2019.05.037
10.1016/j.compmedimag.2020.101733
10.1016/j.patcog.2023.109399
10.1109/TMI.2019.2897538
10.1016/j.media.2007.06.004
10.1371/journal.pone.0198200
10.1073/pnas.90.24.11944
10.1186/s13244-020-00946-8
10.1109/TMI.2021.3058303
10.1088/1361-6560/ab843e
10.1109/TMI.2011.2156806
10.1002/mp.15335
10.1016/j.clinbiomech.2017.07.010
10.1016/j.patcog.2022.109011
10.1118/1.4829511
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1016/j.patcog.2023.109529
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID oai:HAL:hal-03945559v1
PMC10299801
oai_HAL_hal_03945559v2
37383565
10_1016_j_patcog_2023_109529
S0031320323002297
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 CL999999
– fundername: Intramural NIH HHS
  grantid: Z01 CL060062
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4139-f39e910ab04bac7e84099077dd793e29ab5c83e23257702580c5c24e7704debe3
IEDL.DBID .~1
ISSN 0031-3203
1873-5142
IngestDate Sun Sep 07 10:50:20 EDT 2025
Tue Sep 30 17:08:19 EDT 2025
Thu Sep 04 07:27:27 EDT 2025
Sat Sep 27 17:04:42 EDT 2025
Mon Jul 21 06:07:08 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
Wed Oct 01 05:14:37 EDT 2025
Fri Feb 23 02:35:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue August 2023
Keywords Semi-automatic segmentation
Musculoskeletal system
Deep registration
Label propagation
deep registration
label propagation
musculoskeletal system
few-shot segmentation
semi-automatic segmentation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4139-f39e910ab04bac7e84099077dd793e29ab5c83e23257702580c5c24e7704debe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6911-6373
0000-0001-9837-7487
0000-0003-2214-3654
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-03945559
PMID 37383565
PQID 2831298979
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_patcog_2023_109529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299801
hal_primary_oai_HAL_hal_03945559v2
proquest_miscellaneous_2831298979
pubmed_primary_37383565
crossref_citationtrail_10_1016_j_patcog_2023_109529
crossref_primary_10_1016_j_patcog_2023_109529
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pattern recognition
PublicationTitleAlternate Pattern Recognit
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ding, Cao, Chang, Gao, Chan, Vardhanabhuti (bib0031) 2020; 11
Muzic, Paoletti, Solazzo, Belatti, Vitale, Bergsland, Bastianello, Pichiecchio (bib0001) 2021; 40
T. Sakinis, F. Milletari, H. Roth, P. Korfiatis, P. Kostandy, K. Philbrick, Z. Akkus, Z. Xu, D. Xu, B.J. Erickson, Interactive segmentation of medical images through fully convolutional neural networks
Fu, Lei, Wang, Curran, Liu, Yang (bib0021) 2020; 65
Miller, Christensen, Amit, Grenander (bib0002) 1993; 90
Rousseau, Habas, Studholme (bib0004) 2011; 30
Cheng, Crouzier, Hug, Tucker, Juneau, McCreedy, Gandler, McAuliffe, Sheehan (bib0009) 2022; 49
Pons, Sheehan, Im, Brochard, Alter (bib0027) 2017; 48
Ashburner (bib0026) 2007; 38
Avants, Epstein, Grossman, Gee (bib0025) 2008; 12
Sun, Mao, Dai, Zhong, Wang (bib0015) 2023
Azimbagirad, Dardenne, Ben Salem, Rémy-Néris, Burdin (bib0016) 2021
Feng, Nagaraj, Gupta, Lloyd, Aban, Perry, Calhoun, Dell’Italia, Denney (bib0019) 2009; 11
Al Chanti, Duque, Crouzier, Nordez, Lacourpaille, Mateus (bib0013) 2021; 40
Ogier, Hostin, Bellemare, Bendahan (bib0005) 2021; 12
E. Ahmad, M. Goyal, J.S. McPhee, H. Degens, M.H. Yap, Semantic segmentation of human thigh quadriceps muscle in magnetic resonance images
Wei, Zhang, Wu, Cao, Li, Shen, Wang (bib0023) 2020; 100
Tustison, Avants, Gee (bib0022) 2019; 64
Ronneberger, Fischer, Brox (bib0029) 2015
Chen, Li, Dyer, Feng, Rao, Benedict, Chen, Rong (bib0008) 2020; 15
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0024) 2019; 38
Feng, Zheng, Gao, Chen, Wang, Chen, Wu (bib0010) 2021; 40
Zhang, Shi, Sun, Wang, Zhou, Gao, Shen (bib0011) 2021; 111
Jabri, Owens, Efros (bib0014) 2020
Conze, Brochard, Burdin, Sheehan, Pons (bib0007) 2020; 83
Sambaturu, Gupta, Jawahar, Arora (bib0003) 2023; 133
Albu, Beugeling, Laurendeau (bib0017) 2008; 55
Ogier, Sdika, Foure, Le Troter, Bendahan (bib0018) 2017
(2019).
(2018).
Conze, Pons, Burdin, Sheehan, Brochard (bib0006) 2019
Khalvati, Salmanpour, Rahnamayan, Rodrigues, Tizhoosh (bib0020) 2013; 40
Schlaeger, Freitag, Klupp, Dieckmeyer, Weidlich, Inhuber, Deschauer, Schoser, Bublitz, Montagnese (bib0028) 2018; 13
Conze (10.1016/j.patcog.2023.109529_bib0007) 2020; 83
Balakrishnan (10.1016/j.patcog.2023.109529_bib0024) 2019; 38
Wei (10.1016/j.patcog.2023.109529_bib0023) 2020; 100
Muzic (10.1016/j.patcog.2023.109529_bib0001) 2021; 40
Fu (10.1016/j.patcog.2023.109529_bib0021) 2020; 65
10.1016/j.patcog.2023.109529_bib0030
Ogier (10.1016/j.patcog.2023.109529_bib0018) 2017
10.1016/j.patcog.2023.109529_bib0012
Sambaturu (10.1016/j.patcog.2023.109529_bib0003) 2023; 133
Azimbagirad (10.1016/j.patcog.2023.109529_bib0016) 2021
Pons (10.1016/j.patcog.2023.109529_bib0027) 2017; 48
Schlaeger (10.1016/j.patcog.2023.109529_bib0028) 2018; 13
Ronneberger (10.1016/j.patcog.2023.109529_bib0029) 2015
Jabri (10.1016/j.patcog.2023.109529_bib0014) 2020
Feng (10.1016/j.patcog.2023.109529_bib0010) 2021; 40
Sun (10.1016/j.patcog.2023.109529_bib0015) 2023
Ogier (10.1016/j.patcog.2023.109529_bib0005) 2021; 12
Zhang (10.1016/j.patcog.2023.109529_bib0011) 2021; 111
Avants (10.1016/j.patcog.2023.109529_bib0025) 2008; 12
Feng (10.1016/j.patcog.2023.109529_bib0019) 2009; 11
Chen (10.1016/j.patcog.2023.109529_bib0008) 2020; 15
Ashburner (10.1016/j.patcog.2023.109529_bib0026) 2007; 38
Miller (10.1016/j.patcog.2023.109529_bib0002) 1993; 90
Al Chanti (10.1016/j.patcog.2023.109529_bib0013) 2021; 40
Tustison (10.1016/j.patcog.2023.109529_bib0022) 2019; 64
Albu (10.1016/j.patcog.2023.109529_bib0017) 2008; 55
Khalvati (10.1016/j.patcog.2023.109529_bib0020) 2013; 40
Rousseau (10.1016/j.patcog.2023.109529_bib0004) 2011; 30
Cheng (10.1016/j.patcog.2023.109529_bib0009) 2022; 49
Ding (10.1016/j.patcog.2023.109529_bib0031) 2020; 11
Conze (10.1016/j.patcog.2023.109529_bib0006) 2019
References_xml – reference: (2018).
– volume: 111
  start-page: 101998
  year: 2021
  ident: bib0011
  article-title: Interactive medical image segmentation via a point-based interaction
  publication-title: Artif. Intell. Med.
– volume: 12
  start-page: 255
  year: 2021
  ident: bib0005
  article-title: Overview of MR image segmentation strategies in neuromuscular disorders
  publication-title: Front. Neurol.
– start-page: 317
  year: 2017
  end-page: 320
  ident: bib0018
  article-title: Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches
  publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 65
  year: 2020
  ident: bib0021
  article-title: Deep learning in medical image registration: a review
  publication-title: Phys. Med. Biol.
– start-page: 109399
  year: 2023
  ident: bib0015
  article-title: MUNet: motion uncertainty-aware semi-supervised video object segmentation
  publication-title: Pattern Recognit.
– volume: 90
  start-page: 11944
  year: 1993
  end-page: 11948
  ident: bib0002
  article-title: Mathematical textbook of deformable neuroanatomies
  publication-title: Proc. Natl. Acad. Sci.
– volume: 40
  start-page: 123503
  year: 2013
  ident: bib0020
  article-title: Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences
  publication-title: Med. Phys.
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: bib0024
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– reference: (2019).
– reference: E. Ahmad, M. Goyal, J.S. McPhee, H. Degens, M.H. Yap, Semantic segmentation of human thigh quadriceps muscle in magnetic resonance images,
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib0026
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 55
  start-page: 2022
  year: 2008
  end-page: 2038
  ident: bib0017
  article-title: A morphology-based approach for interslice interpolation of anatomical slices from volumetric images
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0029
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 40
  start-page: 116
  year: 2021
  ident: bib0001
  article-title: Reproducibility of manual segmentation in muscle imaging
  publication-title: Acta Myol.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib0025
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 64
  start-page: 142
  year: 2019
  end-page: 153
  ident: bib0022
  article-title: Learning image-based spatial transformations via convolutional neural networks: a review
  publication-title: Magn. Reson. Imaging
– volume: 11
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib0019
  article-title: A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 13
  start-page: e0198200
  year: 2018
  ident: bib0028
  article-title: Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: the reference database MyoSegmenTUM
  publication-title: PLoS One
– reference: T. Sakinis, F. Milletari, H. Roth, P. Korfiatis, P. Kostandy, K. Philbrick, Z. Akkus, Z. Xu, D. Xu, B.J. Erickson, Interactive segmentation of medical images through fully convolutional neural networks,
– volume: 40
  start-page: 2575
  year: 2021
  end-page: 2588
  ident: bib0010
  article-title: Interactive few-shot learning: Limited supervision, better medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 49
  start-page: 443
  year: 2022
  end-page: 460
  ident: bib0009
  article-title: Automatic quadriceps and patellae segmentation of MRI with cascaded U2-Net and SASSNet deep learning model
  publication-title: Med. Phys.
– volume: 40
  start-page: 2615
  year: 2021
  end-page: 2628
  ident: bib0013
  article-title: IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0031
  article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI
  publication-title: Insights Into Imaging
– volume: 48
  start-page: 80
  year: 2017
  end-page: 87
  ident: bib0027
  article-title: Shoulder muscle atrophy and its relation to strength loss in obstetrical brachial plexus palsy
  publication-title: Clin. Biomech.
– volume: 133
  start-page: 109011
  year: 2023
  ident: bib0003
  article-title: ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation
  publication-title: Pattern Recognit.
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bib0004
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 83
  start-page: 101733
  year: 2020
  ident: bib0007
  article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders
  publication-title: Comput. Med. Imaging Graph.
– volume: 15
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib0008
  article-title: Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images
  publication-title: Radiat. Oncol.
– start-page: 3141
  year: 2021
  end-page: 3144
  ident: bib0016
  article-title: Towards the definition of a patient-specific rehabilitation program for TKA: a new MRI-based approach for the easy volumetric analysis of thigh muscles
  publication-title: International Conference of the IEEE Engineering in Medicine & Biology Society
– start-page: 36
  year: 2019
  end-page: 39
  ident: bib0006
  article-title: Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability
  publication-title: International Symposium on Biomedical Imaging
– year: 2020
  ident: bib0014
  article-title: Space-time correspondence as a contrastive random walk
  publication-title: Advances in Neural Information Processing Systems
– volume: 100
  start-page: 107171
  year: 2020
  ident: bib0023
  article-title: Deep morphological simplification network (ms-net) for guided registration of brain magnetic resonance images
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2023.109529_bib0019
  article-title: A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-11-30
– volume: 100
  start-page: 107171
  year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0023
  article-title: Deep morphological simplification network (ms-net) for guided registration of brain magnetic resonance images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107171
– volume: 15
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0008
  article-title: Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-020-01617-0
– volume: 40
  start-page: 2575
  issue: 10
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0010
  article-title: Interactive few-shot learning: Limited supervision, better medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3060551
– volume: 111
  start-page: 101998
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0011
  article-title: Interactive medical image segmentation via a point-based interaction
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101998
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.patcog.2023.109529_bib0026
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0014
  article-title: Space-time correspondence as a contrastive random walk
– volume: 55
  start-page: 2022
  issue: 8
  year: 2008
  ident: 10.1016/j.patcog.2023.109529_bib0017
  article-title: A morphology-based approach for interslice interpolation of anatomical slices from volumetric images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.921158
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2023.109529_bib0029
  article-title: U-Net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.patcog.2023.109529_bib0030
  doi: 10.1145/3208955.3208958
– volume: 12
  start-page: 255
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0005
  article-title: Overview of MR image segmentation strategies in neuromuscular disorders
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.625308
– volume: 64
  start-page: 142
  year: 2019
  ident: 10.1016/j.patcog.2023.109529_bib0022
  article-title: Learning image-based spatial transformations via convolutional neural networks: a review
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.05.037
– volume: 83
  start-page: 101733
  year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0007
  article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101733
– start-page: 317
  year: 2017
  ident: 10.1016/j.patcog.2023.109529_bib0018
  article-title: Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches
– start-page: 109399
  year: 2023
  ident: 10.1016/j.patcog.2023.109529_bib0015
  article-title: MUNet: motion uncertainty-aware semi-supervised video object segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109399
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.patcog.2023.109529_bib0024
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– ident: 10.1016/j.patcog.2023.109529_bib0012
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2023.109529_bib0025
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 13
  start-page: e0198200
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2023.109529_bib0028
  article-title: Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: the reference database MyoSegmenTUM
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198200
– volume: 90
  start-page: 11944
  issue: 24
  year: 1993
  ident: 10.1016/j.patcog.2023.109529_bib0002
  article-title: Mathematical textbook of deformable neuroanatomies
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.90.24.11944
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0031
  article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI
  publication-title: Insights Into Imaging
  doi: 10.1186/s13244-020-00946-8
– volume: 40
  start-page: 2615
  issue: 10
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0013
  article-title: IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3058303
– volume: 65
  issue: 20
  year: 2020
  ident: 10.1016/j.patcog.2023.109529_bib0021
  article-title: Deep learning in medical image registration: a review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab843e
– volume: 30
  start-page: 1852
  issue: 10
  year: 2011
  ident: 10.1016/j.patcog.2023.109529_bib0004
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2156806
– start-page: 3141
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0016
  article-title: Towards the definition of a patient-specific rehabilitation program for TKA: a new MRI-based approach for the easy volumetric analysis of thigh muscles
– volume: 49
  start-page: 443
  issue: 1
  year: 2022
  ident: 10.1016/j.patcog.2023.109529_bib0009
  article-title: Automatic quadriceps and patellae segmentation of MRI with cascaded U2-Net and SASSNet deep learning model
  publication-title: Med. Phys.
  doi: 10.1002/mp.15335
– volume: 48
  start-page: 80
  year: 2017
  ident: 10.1016/j.patcog.2023.109529_bib0027
  article-title: Shoulder muscle atrophy and its relation to strength loss in obstetrical brachial plexus palsy
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2017.07.010
– volume: 40
  start-page: 116
  issue: 3
  year: 2021
  ident: 10.1016/j.patcog.2023.109529_bib0001
  article-title: Reproducibility of manual segmentation in muscle imaging
  publication-title: Acta Myol.
– volume: 133
  start-page: 109011
  year: 2023
  ident: 10.1016/j.patcog.2023.109529_bib0003
  article-title: ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109011
– start-page: 36
  year: 2019
  ident: 10.1016/j.patcog.2023.109529_bib0006
  article-title: Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability
– volume: 40
  start-page: 123503
  issue: 12
  year: 2013
  ident: 10.1016/j.patcog.2023.109529_bib0020
  article-title: Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences
  publication-title: Med. Phys.
  doi: 10.1118/1.4829511
SSID ssj0017142
Score 2.4742498
Snippet •Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep...
Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images,...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109529
SubjectTerms Computer Science
Computer Vision and Pattern Recognition
Deep registration
Label propagation
Musculoskeletal system
Semi-automatic segmentation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tdg9wYXkTXjKIq6skTprkWCFWFWJXCKi0nKw8nLbQphVpdgW_nm_ipKIsYuEWJ3acZMYz3yjjb4hemSTM4yDLJMxjIAMEFbCDpS_LuHRxoYyU4Y3Cp2ejyTR4ex6eH5Do98LMgTg728_H0lVJEAL1HtLRiH8hDehoevZ-_NmyLXpS-W3xYy-OlITv9_vdcW0K1wbWbD0bcoVwpk0KWxz5R-9zOOc0yKsY82qq5I2m2qTfL9Pl8hc_dHJs8yHrlr6Q00--DpttNsx__Ebu-LdXvE23OhAqxlZr7tCBqe7ScV_gQXTr_R7pj2a1kGmzXbfErmLV1OgvajNbdVuWKrGoxOkHsVjBLtWCs-hnojBmI7jiQ8_JK9lXFgIKZ5YCTw4j1p6_T9OTN59eT2RXkUHmcHaJLFVigC_SzA2yNI8MR4eIrqOiwDI3fpJmkDwOFAxBBDQVu3mY-4FBIyigLuoBDap1ZR6RCEtAvzLMEEGlAI1FWniAooCbAQBVPlIOqV5SOu_oyrlqxlL3eWlftJWvZvlqK1-H5G7UxtJ1XNM_6pVAdzKxUELDo1wz8iWEt5uEWbon43eaz_UCvfAdetGrlMay5X8xaWXWTa2B6jwmv49wo4dWxXb3YrIpBaDtULynfHuT7V-pFvOWGhxwEfGz6zk03OnpP32Ix_874And5JbNhXxKg-23xjwDPttmz7sl-hMo_zbV
  priority: 102
  providerName: Unpaywall
Title Semi-automatic muscle segmentation in MR images using deep registration-based label propagation
URI https://dx.doi.org/10.1016/j.patcog.2023.109529
https://www.ncbi.nlm.nih.gov/pubmed/37383565
https://www.proquest.com/docview/2831298979
https://hal.science/hal-03945559
https://pubmed.ncbi.nlm.nih.gov/PMC10299801
UnpaywallVersion submittedVersion
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoAL74d5VAviuqmTXdfxMaqowqMRAiKV02ptr1OjxLGauIgLv51v_BJRkYo4JV6v7WRnduYbeeYbojcuCpKxjmMJ86ilRlABO5iNZDbOfJzIQuW4UPh0djSd6_dnwdkeHXe1MJxW2dr-xqbX1rodOWxX87DMc67xZdpBXwFEwxFFXFHO7F_Q6cGvPs2D-3s3jOFqKHl2Vz5X53iVMHfrxYBbiDOvUlADzb-6pxvnnCd5FYRezaW8VRWl_fnDLpd_OKqTe3SnRZhi0vyJ-7Tnigd0t-veINrN_JDMF7fKpa2265q1VayqDeaLjVus2nqkQuSFOP0s8hWMzkZwivxCpM6Vgts5dIS7kh1hKqBNbinwy2Gh6vFHND95-_V4Ktt2CzKBJ4tkpiIH8GBjX8c2CR2HfgidwzTFHnajyMYQK74o7PIQUGnsJ0Ey0g4HOoUuqMe0X6wL95REkAHXZUGM8MgCEaY2HQJnAktqoKXkSHmkulU2SctFzi0xlqZLOvtuGtkYlo1pZOOR7K8qGy6Oa-aHnQDNjk4ZuItrrnwNefcPYQru6eSj4TFfRTpAGHY58uhVpw4Ge5JftNjCrauNAWQbMrN9iBs9adSjvxczSSmgaI_GO4qz87DdM0V-XvN-AwsiOPaHHg16HfunhXj23wvxnG7zUZPx-IL2txeVewkUto0P6m12QDcn7z5MZ_iczz5Nvv0GQsAyQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0kziG9dF_UlS16ZSKZVGQdjaCB0tg-tAmQG6GFclTYslFbLfr3faMNNVIgRW82KUr2rG-g4SPRRxv66UgniUR41FKjqEAczIcyH-UuJvJAWd4oPJ2dRFf687V_vUen3V4YbqtsY38T0-to3Y4ct9I8XhcF7_Fl2kFXAUQjEYXBPh1oHzF5QAfj84to1r9MCDzdkIYrT_KCbgdd3ea1RsRbzY_4FHGmVvJrrPnXDLV_w62St3Ho7XbKw6pcx79-xovFH7nq7CHdb0GmGDf_4xHt2fIxPegOcBCtPz8h89UuCxlX21VN3CqW1QbXi42dL9stSaUoSjH9Iool4s5GcJf8XGTWrgWf6NBx7krOhZmAQdmFwC9HkKrHn9LV2afL00i2Jy7IFIILZa5CC_wQJ65O4jSwXP2heg6yDG5sh2GcQLP4oODoAdDSyE39dKgtvugM5qCe0aBclfYFCT8HtMv9BBVSDFCYxZkHqAk4qQGY0hPlkOqkbNKWjpxPxViYru_sm2l0Y1g3ptGNQ7JftW7oOO64PugUaHbMyiBj3LHyA_TdP4RZuKPxxPCYq0LtoxL7MXTofWcOBm7J71ri0q6qjQFq85jcPsCNnjfm0d-LyaQUgLRDox3D2XnY7kxZ3NTU34CDqI9dz6Gj3sb-SRAv_1sQ7-gwupxOzOR8dvGK7vFM0wD5mgbb75V9A1C2Td62Tvcb-IgzOw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tdg9wYXkTXjKIq6skTprkWCFWFWJXCKi0nKw8nLbQphVpdgW_nm_ipKIsYuEWJ3acZMYz3yjjb4hemSTM4yDLJMxjIAMEFbCDpS_LuHRxoYyU4Y3Cp2ejyTR4ex6eH5Do98LMgTg728_H0lVJEAL1HtLRiH8hDehoevZ-_NmyLXpS-W3xYy-OlITv9_vdcW0K1wbWbD0bcoVwpk0KWxz5R-9zOOc0yKsY82qq5I2m2qTfL9Pl8hc_dHJs8yHrlr6Q00--DpttNsx__Ebu-LdXvE23OhAqxlZr7tCBqe7ScV_gQXTr_R7pj2a1kGmzXbfErmLV1OgvajNbdVuWKrGoxOkHsVjBLtWCs-hnojBmI7jiQ8_JK9lXFgIKZ5YCTw4j1p6_T9OTN59eT2RXkUHmcHaJLFVigC_SzA2yNI8MR4eIrqOiwDI3fpJmkDwOFAxBBDQVu3mY-4FBIyigLuoBDap1ZR6RCEtAvzLMEEGlAI1FWniAooCbAQBVPlIOqV5SOu_oyrlqxlL3eWlftJWvZvlqK1-H5G7UxtJ1XNM_6pVAdzKxUELDo1wz8iWEt5uEWbon43eaz_UCvfAdetGrlMay5X8xaWXWTa2B6jwmv49wo4dWxXb3YrIpBaDtULynfHuT7V-pFvOWGhxwEfGz6zk03OnpP32Ix_874And5JbNhXxKg-23xjwDPttmz7sl-hMo_zbV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automatic+muscle+segmentation+in+MR+images+using+deep+registration-based+label+propagation&rft.jtitle=Pattern+recognition&rft.au=Decaux%2C+Nathan&rft.au=Conze%2C+Pierre-Henri&rft.au=Ropars%2C+Juliette&rft.au=He%2C+Xinyan&rft.date=2023-08-01&rft.issn=0031-3203&rft.volume=140&rft_id=info:doi/10.1016%2Fj.patcog.2023.109529&rft_id=info%3Apmid%2F37383565&rft.externalDocID=PMC10299801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon