Semi-automatic muscle segmentation in MR images using deep registration-based label propagation
•Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registrati...
Saved in:
Published in | Pattern recognition Vol. 140; no. August 2023; p. 109529 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 1873-5142 |
DOI | 10.1016/j.patcog.2023.109529 |
Cover
Abstract | •Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registration quality estimation as weighting guidance.•An unsupervised pre-training stage initializes the deep registration framework.
Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed semi-automatic multi-label segmentation model outperforms state-of-the-art techniques. |
---|---|
AbstractList | Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques. •Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep registration.•Propagation is guided by image intensity, muscle shape and registration consistency.•Bidirectional propagation uses registration quality estimation as weighting guidance.•An unsupervised pre-training stage initializes the deep registration framework. Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed semi-automatic multi-label segmentation model outperforms state-of-the-art techniques. Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a timeconsuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques. Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques. |
ArticleNumber | 109529 |
Author | He, Xinyan Decaux, Nathan Brochard, Sylvain Ropars, Juliette Sheehan, Frances T. Rousseau, François Conze, Pierre-Henri Pons, Christelle Ben Salem, Douraied |
AuthorAffiliation | e Fondation ILDYS, Brest, France a LaTIM UMR 1101, Inserm, Brest, France d Rehabilitation Medicine, NIH, Bethesda, USA b IMT Atlantique, Brest, France c University Hospital of Brest, Brest, France |
AuthorAffiliation_xml | – name: e Fondation ILDYS, Brest, France – name: d Rehabilitation Medicine, NIH, Bethesda, USA – name: c University Hospital of Brest, Brest, France – name: a LaTIM UMR 1101, Inserm, Brest, France – name: b IMT Atlantique, Brest, France |
Author_xml | – sequence: 1 givenname: Nathan orcidid: 0000-0002-6911-6373 surname: Decaux fullname: Decaux, Nathan email: nathan.decaux@imt-atlantique.fr organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 2 givenname: Pierre-Henri surname: Conze fullname: Conze, Pierre-Henri organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 3 givenname: Juliette surname: Ropars fullname: Ropars, Juliette organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 4 givenname: Xinyan surname: He fullname: He, Xinyan organization: IMT Atlantique, Brest, France – sequence: 5 givenname: Frances T. surname: Sheehan fullname: Sheehan, Frances T. organization: Rehabilitation Medicine, NIH, Bethesda, USA – sequence: 6 givenname: Christelle surname: Pons fullname: Pons, Christelle organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 7 givenname: Douraied surname: Ben Salem fullname: Ben Salem, Douraied organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 8 givenname: Sylvain surname: Brochard fullname: Brochard, Sylvain organization: LaTIM UMR 1101, Inserm, Brest, France – sequence: 9 givenname: François surname: Rousseau fullname: Rousseau, François organization: LaTIM UMR 1101, Inserm, Brest, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37383565$$D View this record in MEDLINE/PubMed https://hal.science/hal-03945559$$DView record in HAL |
BookMark | eNqNUctu1DAUtVARnRb-ACEvYZHBj7iOWYCqCijSICQea8tx7qQeOXawk0H9ezxNeXUBrGyfe8_xueeeoKMQAyD0mJI1JfTs-W49msnGfs0I4wVSgql7aEUbyStBa3aEVoRwWnFG-DE6yXlHCJWl8AAdc8kbLs7ECulPMLjKzFMczOQsHuZsPeAM_QBhKlAM2AX8_iN2g-kh4zm70OMOYMQJependNNUtSZDh71pweMxxdH0N_hDdH9rfIZHt-cp-vLm9eeLy2rz4e27i_NNZWvKVbXlChQlpiV1a6yEpiZKESm7TioOTJlW2KZcOBNSEiYaYoVlNZRH3UEL_BSJRXcOo7n-ZrzXYyqW07WmRB8C0zu9BKYPgeklsMJ7tfDGuR2gs2XoZH5xo3H6z0pwV7qP-8JnSjWEFoVni8LVHd7l-UYfMMJVLYRQe1Z6n97-luLXGfKkB5cteG8CxDlr1nDKVKPkwdiT3439VP6xutLwYmmwKeacYKutWxZWfDr_r7HrO-T_TOvlQoOyyr2DpLN1ECx0LoGddBfd3wW-Ay_w2IM |
CitedBy_id | crossref_primary_10_1109_TRPMS_2023_3265863 crossref_primary_10_1016_j_bspc_2024_106391 crossref_primary_10_1016_j_patcog_2024_111338 crossref_primary_10_1007_s00261_023_04102_w crossref_primary_10_1016_j_patcog_2024_110426 |
Cites_doi | 10.1186/1532-429X-11-30 10.1016/j.patcog.2019.107171 10.1186/s13014-020-01617-0 10.1109/TMI.2021.3060551 10.1016/j.artmed.2020.101998 10.1016/j.neuroimage.2007.07.007 10.1109/TBME.2008.921158 10.1145/3208955.3208958 10.3389/fneur.2021.625308 10.1016/j.mri.2019.05.037 10.1016/j.compmedimag.2020.101733 10.1016/j.patcog.2023.109399 10.1109/TMI.2019.2897538 10.1016/j.media.2007.06.004 10.1371/journal.pone.0198200 10.1073/pnas.90.24.11944 10.1186/s13244-020-00946-8 10.1109/TMI.2021.3058303 10.1088/1361-6560/ab843e 10.1109/TMI.2011.2156806 10.1002/mp.15335 10.1016/j.clinbiomech.2017.07.010 10.1016/j.patcog.2022.109011 10.1118/1.4829511 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM ADTOC UNPAY |
DOI | 10.1016/j.patcog.2023.109529 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | oai:HAL:hal-03945559v1 PMC10299801 oai_HAL_hal_03945559v2 37383565 10_1016_j_patcog_2023_109529 S0031320323002297 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 CL999999 – fundername: Intramural NIH HHS grantid: Z01 CL060062 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 1XC VOOES 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c4139-f39e910ab04bac7e84099077dd793e29ab5c83e23257702580c5c24e7704debe3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 1873-5142 |
IngestDate | Sun Sep 07 10:50:20 EDT 2025 Tue Sep 30 17:08:19 EDT 2025 Thu Sep 04 07:27:27 EDT 2025 Sat Sep 27 17:04:42 EDT 2025 Mon Jul 21 06:07:08 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Wed Oct 01 05:14:37 EDT 2025 Fri Feb 23 02:35:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | August 2023 |
Keywords | Semi-automatic segmentation Musculoskeletal system Deep registration Label propagation deep registration label propagation musculoskeletal system few-shot segmentation semi-automatic segmentation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4139-f39e910ab04bac7e84099077dd793e29ab5c83e23257702580c5c24e7704debe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6911-6373 0000-0001-9837-7487 0000-0003-2214-3654 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-03945559 |
PMID | 37383565 |
PQID | 2831298979 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_1016_j_patcog_2023_109529 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299801 hal_primary_oai_HAL_hal_03945559v2 proquest_miscellaneous_2831298979 pubmed_primary_37383565 crossref_citationtrail_10_1016_j_patcog_2023_109529 crossref_primary_10_1016_j_patcog_2023_109529 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pattern recognition |
PublicationTitleAlternate | Pattern Recognit |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ding, Cao, Chang, Gao, Chan, Vardhanabhuti (bib0031) 2020; 11 Muzic, Paoletti, Solazzo, Belatti, Vitale, Bergsland, Bastianello, Pichiecchio (bib0001) 2021; 40 T. Sakinis, F. Milletari, H. Roth, P. Korfiatis, P. Kostandy, K. Philbrick, Z. Akkus, Z. Xu, D. Xu, B.J. Erickson, Interactive segmentation of medical images through fully convolutional neural networks Fu, Lei, Wang, Curran, Liu, Yang (bib0021) 2020; 65 Miller, Christensen, Amit, Grenander (bib0002) 1993; 90 Rousseau, Habas, Studholme (bib0004) 2011; 30 Cheng, Crouzier, Hug, Tucker, Juneau, McCreedy, Gandler, McAuliffe, Sheehan (bib0009) 2022; 49 Pons, Sheehan, Im, Brochard, Alter (bib0027) 2017; 48 Ashburner (bib0026) 2007; 38 Avants, Epstein, Grossman, Gee (bib0025) 2008; 12 Sun, Mao, Dai, Zhong, Wang (bib0015) 2023 Azimbagirad, Dardenne, Ben Salem, Rémy-Néris, Burdin (bib0016) 2021 Feng, Nagaraj, Gupta, Lloyd, Aban, Perry, Calhoun, Dell’Italia, Denney (bib0019) 2009; 11 Al Chanti, Duque, Crouzier, Nordez, Lacourpaille, Mateus (bib0013) 2021; 40 Ogier, Hostin, Bellemare, Bendahan (bib0005) 2021; 12 E. Ahmad, M. Goyal, J.S. McPhee, H. Degens, M.H. Yap, Semantic segmentation of human thigh quadriceps muscle in magnetic resonance images Wei, Zhang, Wu, Cao, Li, Shen, Wang (bib0023) 2020; 100 Tustison, Avants, Gee (bib0022) 2019; 64 Ronneberger, Fischer, Brox (bib0029) 2015 Chen, Li, Dyer, Feng, Rao, Benedict, Chen, Rong (bib0008) 2020; 15 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0024) 2019; 38 Feng, Zheng, Gao, Chen, Wang, Chen, Wu (bib0010) 2021; 40 Zhang, Shi, Sun, Wang, Zhou, Gao, Shen (bib0011) 2021; 111 Jabri, Owens, Efros (bib0014) 2020 Conze, Brochard, Burdin, Sheehan, Pons (bib0007) 2020; 83 Sambaturu, Gupta, Jawahar, Arora (bib0003) 2023; 133 Albu, Beugeling, Laurendeau (bib0017) 2008; 55 Ogier, Sdika, Foure, Le Troter, Bendahan (bib0018) 2017 (2019). (2018). Conze, Pons, Burdin, Sheehan, Brochard (bib0006) 2019 Khalvati, Salmanpour, Rahnamayan, Rodrigues, Tizhoosh (bib0020) 2013; 40 Schlaeger, Freitag, Klupp, Dieckmeyer, Weidlich, Inhuber, Deschauer, Schoser, Bublitz, Montagnese (bib0028) 2018; 13 Conze (10.1016/j.patcog.2023.109529_bib0007) 2020; 83 Balakrishnan (10.1016/j.patcog.2023.109529_bib0024) 2019; 38 Wei (10.1016/j.patcog.2023.109529_bib0023) 2020; 100 Muzic (10.1016/j.patcog.2023.109529_bib0001) 2021; 40 Fu (10.1016/j.patcog.2023.109529_bib0021) 2020; 65 10.1016/j.patcog.2023.109529_bib0030 Ogier (10.1016/j.patcog.2023.109529_bib0018) 2017 10.1016/j.patcog.2023.109529_bib0012 Sambaturu (10.1016/j.patcog.2023.109529_bib0003) 2023; 133 Azimbagirad (10.1016/j.patcog.2023.109529_bib0016) 2021 Pons (10.1016/j.patcog.2023.109529_bib0027) 2017; 48 Schlaeger (10.1016/j.patcog.2023.109529_bib0028) 2018; 13 Ronneberger (10.1016/j.patcog.2023.109529_bib0029) 2015 Jabri (10.1016/j.patcog.2023.109529_bib0014) 2020 Feng (10.1016/j.patcog.2023.109529_bib0010) 2021; 40 Sun (10.1016/j.patcog.2023.109529_bib0015) 2023 Ogier (10.1016/j.patcog.2023.109529_bib0005) 2021; 12 Zhang (10.1016/j.patcog.2023.109529_bib0011) 2021; 111 Avants (10.1016/j.patcog.2023.109529_bib0025) 2008; 12 Feng (10.1016/j.patcog.2023.109529_bib0019) 2009; 11 Chen (10.1016/j.patcog.2023.109529_bib0008) 2020; 15 Ashburner (10.1016/j.patcog.2023.109529_bib0026) 2007; 38 Miller (10.1016/j.patcog.2023.109529_bib0002) 1993; 90 Al Chanti (10.1016/j.patcog.2023.109529_bib0013) 2021; 40 Tustison (10.1016/j.patcog.2023.109529_bib0022) 2019; 64 Albu (10.1016/j.patcog.2023.109529_bib0017) 2008; 55 Khalvati (10.1016/j.patcog.2023.109529_bib0020) 2013; 40 Rousseau (10.1016/j.patcog.2023.109529_bib0004) 2011; 30 Cheng (10.1016/j.patcog.2023.109529_bib0009) 2022; 49 Ding (10.1016/j.patcog.2023.109529_bib0031) 2020; 11 Conze (10.1016/j.patcog.2023.109529_bib0006) 2019 |
References_xml | – reference: (2018). – volume: 111 start-page: 101998 year: 2021 ident: bib0011 article-title: Interactive medical image segmentation via a point-based interaction publication-title: Artif. Intell. Med. – volume: 12 start-page: 255 year: 2021 ident: bib0005 article-title: Overview of MR image segmentation strategies in neuromuscular disorders publication-title: Front. Neurol. – start-page: 317 year: 2017 end-page: 320 ident: bib0018 article-title: Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 65 year: 2020 ident: bib0021 article-title: Deep learning in medical image registration: a review publication-title: Phys. Med. Biol. – start-page: 109399 year: 2023 ident: bib0015 article-title: MUNet: motion uncertainty-aware semi-supervised video object segmentation publication-title: Pattern Recognit. – volume: 90 start-page: 11944 year: 1993 end-page: 11948 ident: bib0002 article-title: Mathematical textbook of deformable neuroanatomies publication-title: Proc. Natl. Acad. Sci. – volume: 40 start-page: 123503 year: 2013 ident: bib0020 article-title: Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences publication-title: Med. Phys. – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: bib0024 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – reference: (2019). – reference: E. Ahmad, M. Goyal, J.S. McPhee, H. Degens, M.H. Yap, Semantic segmentation of human thigh quadriceps muscle in magnetic resonance images, – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib0026 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 55 start-page: 2022 year: 2008 end-page: 2038 ident: bib0017 article-title: A morphology-based approach for interslice interpolation of anatomical slices from volumetric images publication-title: IEEE Trans. Biomed. Eng. – start-page: 234 year: 2015 end-page: 241 ident: bib0029 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 40 start-page: 116 year: 2021 ident: bib0001 article-title: Reproducibility of manual segmentation in muscle imaging publication-title: Acta Myol. – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib0025 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 64 start-page: 142 year: 2019 end-page: 153 ident: bib0022 article-title: Learning image-based spatial transformations via convolutional neural networks: a review publication-title: Magn. Reson. Imaging – volume: 11 start-page: 1 year: 2009 end-page: 13 ident: bib0019 article-title: A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR publication-title: J. Cardiovasc. Magn. Reson. – volume: 13 start-page: e0198200 year: 2018 ident: bib0028 article-title: Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: the reference database MyoSegmenTUM publication-title: PLoS One – reference: T. Sakinis, F. Milletari, H. Roth, P. Korfiatis, P. Kostandy, K. Philbrick, Z. Akkus, Z. Xu, D. Xu, B.J. Erickson, Interactive segmentation of medical images through fully convolutional neural networks, – volume: 40 start-page: 2575 year: 2021 end-page: 2588 ident: bib0010 article-title: Interactive few-shot learning: Limited supervision, better medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 49 start-page: 443 year: 2022 end-page: 460 ident: bib0009 article-title: Automatic quadriceps and patellae segmentation of MRI with cascaded U2-Net and SASSNet deep learning model publication-title: Med. Phys. – volume: 40 start-page: 2615 year: 2021 end-page: 2628 ident: bib0013 article-title: IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound publication-title: IEEE Trans. Med. Imaging – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bib0031 article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI publication-title: Insights Into Imaging – volume: 48 start-page: 80 year: 2017 end-page: 87 ident: bib0027 article-title: Shoulder muscle atrophy and its relation to strength loss in obstetrical brachial plexus palsy publication-title: Clin. Biomech. – volume: 133 start-page: 109011 year: 2023 ident: bib0003 article-title: ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation publication-title: Pattern Recognit. – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bib0004 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging – volume: 83 start-page: 101733 year: 2020 ident: bib0007 article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders publication-title: Comput. Med. Imaging Graph. – volume: 15 start-page: 1 year: 2020 end-page: 10 ident: bib0008 article-title: Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images publication-title: Radiat. Oncol. – start-page: 3141 year: 2021 end-page: 3144 ident: bib0016 article-title: Towards the definition of a patient-specific rehabilitation program for TKA: a new MRI-based approach for the easy volumetric analysis of thigh muscles publication-title: International Conference of the IEEE Engineering in Medicine & Biology Society – start-page: 36 year: 2019 end-page: 39 ident: bib0006 article-title: Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability publication-title: International Symposium on Biomedical Imaging – year: 2020 ident: bib0014 article-title: Space-time correspondence as a contrastive random walk publication-title: Advances in Neural Information Processing Systems – volume: 100 start-page: 107171 year: 2020 ident: bib0023 article-title: Deep morphological simplification network (ms-net) for guided registration of brain magnetic resonance images publication-title: Pattern Recognit. – volume: 11 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.patcog.2023.109529_bib0019 article-title: A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-11-30 – volume: 100 start-page: 107171 year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0023 article-title: Deep morphological simplification network (ms-net) for guided registration of brain magnetic resonance images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107171 – volume: 15 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0008 article-title: Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images publication-title: Radiat. Oncol. doi: 10.1186/s13014-020-01617-0 – volume: 40 start-page: 2575 issue: 10 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0010 article-title: Interactive few-shot learning: Limited supervision, better medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3060551 – volume: 111 start-page: 101998 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0011 article-title: Interactive medical image segmentation via a point-based interaction publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101998 – volume: 38 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.patcog.2023.109529_bib0026 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0014 article-title: Space-time correspondence as a contrastive random walk – volume: 55 start-page: 2022 issue: 8 year: 2008 ident: 10.1016/j.patcog.2023.109529_bib0017 article-title: A morphology-based approach for interslice interpolation of anatomical slices from volumetric images publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.921158 – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2023.109529_bib0029 article-title: U-Net: convolutional networks for biomedical image segmentation – ident: 10.1016/j.patcog.2023.109529_bib0030 doi: 10.1145/3208955.3208958 – volume: 12 start-page: 255 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0005 article-title: Overview of MR image segmentation strategies in neuromuscular disorders publication-title: Front. Neurol. doi: 10.3389/fneur.2021.625308 – volume: 64 start-page: 142 year: 2019 ident: 10.1016/j.patcog.2023.109529_bib0022 article-title: Learning image-based spatial transformations via convolutional neural networks: a review publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.05.037 – volume: 83 start-page: 101733 year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0007 article-title: Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101733 – start-page: 317 year: 2017 ident: 10.1016/j.patcog.2023.109529_bib0018 article-title: Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches – start-page: 109399 year: 2023 ident: 10.1016/j.patcog.2023.109529_bib0015 article-title: MUNet: motion uncertainty-aware semi-supervised video object segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109399 – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.patcog.2023.109529_bib0024 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – ident: 10.1016/j.patcog.2023.109529_bib0012 – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.patcog.2023.109529_bib0025 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 13 start-page: e0198200 issue: 6 year: 2018 ident: 10.1016/j.patcog.2023.109529_bib0028 article-title: Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: the reference database MyoSegmenTUM publication-title: PLoS One doi: 10.1371/journal.pone.0198200 – volume: 90 start-page: 11944 issue: 24 year: 1993 ident: 10.1016/j.patcog.2023.109529_bib0002 article-title: Mathematical textbook of deformable neuroanatomies publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.90.24.11944 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0031 article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI publication-title: Insights Into Imaging doi: 10.1186/s13244-020-00946-8 – volume: 40 start-page: 2615 issue: 10 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0013 article-title: IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3058303 – volume: 65 issue: 20 year: 2020 ident: 10.1016/j.patcog.2023.109529_bib0021 article-title: Deep learning in medical image registration: a review publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab843e – volume: 30 start-page: 1852 issue: 10 year: 2011 ident: 10.1016/j.patcog.2023.109529_bib0004 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2156806 – start-page: 3141 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0016 article-title: Towards the definition of a patient-specific rehabilitation program for TKA: a new MRI-based approach for the easy volumetric analysis of thigh muscles – volume: 49 start-page: 443 issue: 1 year: 2022 ident: 10.1016/j.patcog.2023.109529_bib0009 article-title: Automatic quadriceps and patellae segmentation of MRI with cascaded U2-Net and SASSNet deep learning model publication-title: Med. Phys. doi: 10.1002/mp.15335 – volume: 48 start-page: 80 year: 2017 ident: 10.1016/j.patcog.2023.109529_bib0027 article-title: Shoulder muscle atrophy and its relation to strength loss in obstetrical brachial plexus palsy publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2017.07.010 – volume: 40 start-page: 116 issue: 3 year: 2021 ident: 10.1016/j.patcog.2023.109529_bib0001 article-title: Reproducibility of manual segmentation in muscle imaging publication-title: Acta Myol. – volume: 133 start-page: 109011 year: 2023 ident: 10.1016/j.patcog.2023.109529_bib0003 article-title: ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109011 – start-page: 36 year: 2019 ident: 10.1016/j.patcog.2023.109529_bib0006 article-title: Deep convolutional encoder-decoders for deltoid segmentation using healthy versus pathological learning transferability – volume: 40 start-page: 123503 issue: 12 year: 2013 ident: 10.1016/j.patcog.2023.109529_bib0020 article-title: Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences publication-title: Med. Phys. doi: 10.1118/1.4829511 |
SSID | ssj0017142 |
Score | 2.4742498 |
Snippet | •Registration-based label propagation is used for intra-subject muscle MR segmentation.•3D few-shot segmentation is reached by propagating 2D labels using deep... Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images,... |
SourceID | unpaywall pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109529 |
SubjectTerms | Computer Science Computer Vision and Pattern Recognition Deep registration Label propagation Musculoskeletal system Semi-automatic segmentation |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tdg9wYXkTXjKIq6skTprkWCFWFWJXCKi0nKw8nLbQphVpdgW_nm_ipKIsYuEWJ3acZMYz3yjjb4hemSTM4yDLJMxjIAMEFbCDpS_LuHRxoYyU4Y3Cp2ejyTR4ex6eH5Do98LMgTg728_H0lVJEAL1HtLRiH8hDehoevZ-_NmyLXpS-W3xYy-OlITv9_vdcW0K1wbWbD0bcoVwpk0KWxz5R-9zOOc0yKsY82qq5I2m2qTfL9Pl8hc_dHJs8yHrlr6Q00--DpttNsx__Ebu-LdXvE23OhAqxlZr7tCBqe7ScV_gQXTr_R7pj2a1kGmzXbfErmLV1OgvajNbdVuWKrGoxOkHsVjBLtWCs-hnojBmI7jiQ8_JK9lXFgIKZ5YCTw4j1p6_T9OTN59eT2RXkUHmcHaJLFVigC_SzA2yNI8MR4eIrqOiwDI3fpJmkDwOFAxBBDQVu3mY-4FBIyigLuoBDap1ZR6RCEtAvzLMEEGlAI1FWniAooCbAQBVPlIOqV5SOu_oyrlqxlL3eWlftJWvZvlqK1-H5G7UxtJ1XNM_6pVAdzKxUELDo1wz8iWEt5uEWbon43eaz_UCvfAdetGrlMay5X8xaWXWTa2B6jwmv49wo4dWxXb3YrIpBaDtULynfHuT7V-pFvOWGhxwEfGz6zk03OnpP32Ix_874And5JbNhXxKg-23xjwDPttmz7sl-hMo_zbV priority: 102 providerName: Unpaywall |
Title | Semi-automatic muscle segmentation in MR images using deep registration-based label propagation |
URI | https://dx.doi.org/10.1016/j.patcog.2023.109529 https://www.ncbi.nlm.nih.gov/pubmed/37383565 https://www.proquest.com/docview/2831298979 https://hal.science/hal-03945559 https://pubmed.ncbi.nlm.nih.gov/PMC10299801 |
UnpaywallVersion | submittedVersion |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoAL74d5VAviuqmTXdfxMaqowqMRAiKV02ptr1OjxLGauIgLv51v_BJRkYo4JV6v7WRnduYbeeYbojcuCpKxjmMJ86ilRlABO5iNZDbOfJzIQuW4UPh0djSd6_dnwdkeHXe1MJxW2dr-xqbX1rodOWxX87DMc67xZdpBXwFEwxFFXFHO7F_Q6cGvPs2D-3s3jOFqKHl2Vz5X53iVMHfrxYBbiDOvUlADzb-6pxvnnCd5FYRezaW8VRWl_fnDLpd_OKqTe3SnRZhi0vyJ-7Tnigd0t-veINrN_JDMF7fKpa2265q1VayqDeaLjVus2nqkQuSFOP0s8hWMzkZwivxCpM6Vgts5dIS7kh1hKqBNbinwy2Gh6vFHND95-_V4Ktt2CzKBJ4tkpiIH8GBjX8c2CR2HfgidwzTFHnajyMYQK74o7PIQUGnsJ0Ey0g4HOoUuqMe0X6wL95REkAHXZUGM8MgCEaY2HQJnAktqoKXkSHmkulU2SctFzi0xlqZLOvtuGtkYlo1pZOOR7K8qGy6Oa-aHnQDNjk4ZuItrrnwNefcPYQru6eSj4TFfRTpAGHY58uhVpw4Ge5JftNjCrauNAWQbMrN9iBs9adSjvxczSSmgaI_GO4qz87DdM0V-XvN-AwsiOPaHHg16HfunhXj23wvxnG7zUZPx-IL2txeVewkUto0P6m12QDcn7z5MZ_iczz5Nvv0GQsAyQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0kziG9dF_UlS16ZSKZVGQdjaCB0tg-tAmQG6GFclTYslFbLfr3faMNNVIgRW82KUr2rG-g4SPRRxv66UgniUR41FKjqEAczIcyH-UuJvJAWd4oPJ2dRFf687V_vUen3V4YbqtsY38T0-to3Y4ct9I8XhcF7_Fl2kFXAUQjEYXBPh1oHzF5QAfj84to1r9MCDzdkIYrT_KCbgdd3ea1RsRbzY_4FHGmVvJrrPnXDLV_w62St3Ho7XbKw6pcx79-xovFH7nq7CHdb0GmGDf_4xHt2fIxPegOcBCtPz8h89UuCxlX21VN3CqW1QbXi42dL9stSaUoSjH9Iool4s5GcJf8XGTWrgWf6NBx7krOhZmAQdmFwC9HkKrHn9LV2afL00i2Jy7IFIILZa5CC_wQJ65O4jSwXP2heg6yDG5sh2GcQLP4oODoAdDSyE39dKgtvugM5qCe0aBclfYFCT8HtMv9BBVSDFCYxZkHqAk4qQGY0hPlkOqkbNKWjpxPxViYru_sm2l0Y1g3ptGNQ7JftW7oOO64PugUaHbMyiBj3LHyA_TdP4RZuKPxxPCYq0LtoxL7MXTofWcOBm7J71ri0q6qjQFq85jcPsCNnjfm0d-LyaQUgLRDox3D2XnY7kxZ3NTU34CDqI9dz6Gj3sb-SRAv_1sQ7-gwupxOzOR8dvGK7vFM0wD5mgbb75V9A1C2Td62Tvcb-IgzOw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tdg9wYXkTXjKIq6skTprkWCFWFWJXCKi0nKw8nLbQphVpdgW_nm_ipKIsYuEWJ3acZMYz3yjjb4hemSTM4yDLJMxjIAMEFbCDpS_LuHRxoYyU4Y3Cp2ejyTR4ex6eH5Do98LMgTg728_H0lVJEAL1HtLRiH8hDehoevZ-_NmyLXpS-W3xYy-OlITv9_vdcW0K1wbWbD0bcoVwpk0KWxz5R-9zOOc0yKsY82qq5I2m2qTfL9Pl8hc_dHJs8yHrlr6Q00--DpttNsx__Ebu-LdXvE23OhAqxlZr7tCBqe7ScV_gQXTr_R7pj2a1kGmzXbfErmLV1OgvajNbdVuWKrGoxOkHsVjBLtWCs-hnojBmI7jiQ8_JK9lXFgIKZ5YCTw4j1p6_T9OTN59eT2RXkUHmcHaJLFVigC_SzA2yNI8MR4eIrqOiwDI3fpJmkDwOFAxBBDQVu3mY-4FBIyigLuoBDap1ZR6RCEtAvzLMEEGlAI1FWniAooCbAQBVPlIOqV5SOu_oyrlqxlL3eWlftJWvZvlqK1-H5G7UxtJ1XNM_6pVAdzKxUELDo1wz8iWEt5uEWbon43eaz_UCvfAdetGrlMay5X8xaWXWTa2B6jwmv49wo4dWxXb3YrIpBaDtULynfHuT7V-pFvOWGhxwEfGz6zk03OnpP32Ix_874And5JbNhXxKg-23xjwDPttmz7sl-hMo_zbV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automatic+muscle+segmentation+in+MR+images+using+deep+registration-based+label+propagation&rft.jtitle=Pattern+recognition&rft.au=Decaux%2C+Nathan&rft.au=Conze%2C+Pierre-Henri&rft.au=Ropars%2C+Juliette&rft.au=He%2C+Xinyan&rft.date=2023-08-01&rft.issn=0031-3203&rft.volume=140&rft_id=info:doi/10.1016%2Fj.patcog.2023.109529&rft_id=info%3Apmid%2F37383565&rft.externalDocID=PMC10299801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |