Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and n...
Saved in:
| Published in | ChemMedChem Vol. 17; no. 17; pp. e202200291 - n/a |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
WEINHEIM
Wiley
05.09.2022
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1860-7179 1860-7187 1860-7187 |
| DOI | 10.1002/cmdc.202200291 |
Cover
| Abstract | Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs.
Using machine learning models trained with bioactive peptides from DBAASP, we designed new non‐hemolytic anticancer peptides (ACPs). The subsequently selected hit‐compounds A1 and B1 showed IC50 activities with low micromolar range against several cancer cell lines, having adopted amphiphilic α‐helical conformations. Further biological evaluations revealed membranolytic and mitochondria targeting properties of selected anticancer peptides. |
|---|---|
| AbstractList | Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs.
Using machine learning models trained with bioactive peptides from DBAASP, we designed new non‐hemolytic anticancer peptides (ACPs). The subsequently selected hit‐compounds A1 and B1 showed IC50 activities with low micromolar range against several cancer cell lines, having adopted amphiphilic α‐helical conformations. Further biological evaluations revealed membranolytic and mitochondria targeting properties of selected anticancer peptides. Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs. Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs. Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic alpha-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs. |
| ArticleNumber | 202200291 |
| Author | Zakharova, Elena Capecchi, Alice Reymond, Jean‐Louis Orsi, Markus |
| Author_xml | – sequence: 1 givenname: Elena surname: Zakharova fullname: Zakharova, Elena organization: University of Bern – sequence: 2 givenname: Markus surname: Orsi fullname: Orsi, Markus organization: University of Bern – sequence: 3 givenname: Alice surname: Capecchi fullname: Capecchi, Alice organization: University of Bern – sequence: 4 givenname: Jean‐Louis orcidid: 0000-0003-2724-2942 surname: Reymond fullname: Reymond, Jean‐Louis email: jean-louis.reymond@unibe.ch organization: University of Bern |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35880810$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctu1DAUhi1URG9sWaJIbJDQTI8dj2MvqxTaSjPAouyQIsc5AVeJPdhJq-x4BJ6RJ8GjmQ5SJVRWvn2fj8_vY3LgvENCXlGYUwB2ZvrGzBkwlhaKPiNHVAqYFVQWB_t5oQ7JcYy3AJxLKl-Qw3whJUgKR-TrSpvv1mG2RB2cdd-yy9E22GQXNhp_h2HKfJt99O73z19X2PtuGqzJVtjXQScrUWFcD_YOs3OXTrQzGLLPmLYajKfkeau7iC934wn58uH9TXk1W366vC7PlzPDaU5nPK9rXZsCxAJR5ciNkkw0BWNKaGiZkdjmqoWaU1Nz1nLR1LJRBQdhTE5FfkLOtveObq2ne9111TrYXoepolBtcqo2OVX7nJLxdmusg_8xYhyqPvWLXZea8mOsmFBcCUaLzeVvHqG3fgwu9VOxglKQUiyKRL3eUWPdY7Ov_5B0AuQWuMfat9FYTFHtMQCQuWDpe9IMaGkHPVjvSj-6Ianv_l9N9HxLm-BjDNg-nQV_JJhd-SFo2_1bU7tX2Q6nJ4pU5eqi_Ov-Acon0kI |
| CitedBy_id | crossref_primary_10_1039_D4MD00159A crossref_primary_10_1021_acs_jcim_3c01385 crossref_primary_10_1021_acsomega_4c01374 crossref_primary_10_1039_D3DD00045A crossref_primary_10_1002_cbic_202400435 crossref_primary_10_1039_D4CP01404A crossref_primary_10_1002_cmdc_202300480 crossref_primary_10_1016_j_ijbiomac_2024_138880 crossref_primary_10_1038_s41598_024_62419_y crossref_primary_10_1021_acsinfecdis_3c00421 crossref_primary_10_1021_acs_jmedchem_3c00460 crossref_primary_10_1039_D3FO01602A crossref_primary_10_1186_s12859_024_05983_4 crossref_primary_10_1038_s44222_024_00152_x crossref_primary_10_1007_s00726_023_03326_w crossref_primary_10_1016_j_jconrel_2023_12_050 crossref_primary_10_1016_j_foodchem_2025_143311 |
| Cites_doi | 10.1021/acs.accounts.1c00047 10.1093/bioinformatics/btn392 10.1039/D1SC01713F 10.1038/srep22843 10.1039/C6MD00376A 10.2174/1381612043383971 10.1038/s41598-019-47568-9 10.3389/fmicb.2013.00294 10.1016/j.drudis.2018.01.039 10.1016/j.chemphyslip.2011.09.004 10.1098/rsfs.2016.0153 10.1038/nrd.2017.232 10.1093/nar/gkaa991 10.1145/1060745.1060840 10.1093/bioinformatics/bty451 10.1093/nar/gkh371 10.1038/srep33910 10.1007/s10989-014-9435-7 10.1093/femsre/fuv008 10.1093/bioinformatics/btx760 10.1007/s10863-020-09846-4 10.1186/s12859-019-3006-z 10.3390/ijms222111691 10.1039/D1CB00124H 10.1016/j.artmed.2017.06.008 10.1038/s41598-020-67701-3 10.3390/ijms22062857 10.3390/genes9030158 10.18632/oncotarget.20365 10.1038/299371a0 10.1016/j.peptides.2011.11.002 10.3390/s21196385 10.1002/cmdc.201800204 10.1038/s41589-020-0529-6 10.1186/s13321-020-00445-4 10.1038/s41598-020-73644-6 10.1186/s13321-020-0416-x 10.1016/j.medidd.2021.100081 10.1016/j.bbrc.2012.11.015 10.18632/oncotarget.7815 10.1002/ange.201409270 10.1016/j.apsb.2021.07.014 10.1111/1574-6968.12489 10.1016/j.chemolab.2018.09.007 10.1002/cbic.200900133 10.1111/1348-0421.12538 10.1002/jcc.25534 10.1016/j.jtbi.2013.08.037 10.1002/pep2.24079 10.1021/acs.jcim.1c00175 10.1007/s00894-021-04674-8 10.1021/acs.jcim.9b01014 10.1016/j.drudis.2018.05.010 10.1002/anie.201409270 10.1158/1535-7163.MCT-10-0811 10.1093/nar/gku892 10.3390/molecules24101973 10.1039/c6md00376a 10.1039/d1sc01713f 10.1039/d1cb00124h 10.1039/d1dd00024a |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH – notice: 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 ADTOC UNPAY |
| DOI | 10.1002/cmdc.202200291 |
| DatabaseName | Wiley Online Library Open Access CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic MEDLINE Web of Science |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1860-7187 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/cmdc.202200291 35880810 000836248100001 10_1002_cmdc_202200291 CMDC202200291 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Research Council funderid: 885076 – fundername: Swiss National Science Foundation funderid: 200020_178998; 407240_167048 – fundername: Swiss National Science Foundation; Swiss National Science Foundation (SNSF) grantid: 200020_178998; 407240_167048 – fundername: Universitat Bern – fundername: Swiss National Science Foundation (SNF); Swiss National Science Foundation (SNSF) grantid: 407240_167048 – fundername: European Research Council (ERC) grantid: 885076 – fundername: European Research Council; European Research Council (ERC) grantid: 885076 |
| GroupedDBID | --- 05W 0R~ 1L6 1OC 24P 29B 33P 3WU 4.4 53G 5GY 66C 6J9 77Q 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HBH HGLYW HHZ HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O9- OIG P2W P4E PQQKQ ROL RWI SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 YZZ ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 31~ AANHP AASGY ACBWZ ACRPL ACYXJ ADNMO ADTOC AFFNX AGQPQ ASPBG AVWKF AZFZN EJD FEDTE GODZA HF~ HVGLF LW6 UNPAY |
| ID | FETCH-LOGICAL-c4131-43bbabc7065ee93e4c9826d72296a0f2c8ef39f0b41cb42f46db8d97406cc3163 |
| IEDL.DBID | UNPAY |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000836248100001 |
| ISSN | 1860-7179 1860-7187 |
| IngestDate | Sun Oct 26 03:13:49 EDT 2025 Wed Oct 01 14:46:39 EDT 2025 Tue Oct 07 06:17:21 EDT 2025 Mon Jul 21 05:57:35 EDT 2025 Mon Oct 27 23:30:06 EDT 2025 Sat Oct 25 01:07:02 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Thu Oct 16 04:40:21 EDT 2025 Wed Jan 22 16:24:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | genetic algorithm VENOM DESIGN DATABASE anticancer peptides peptide design chemical space ANTIMICROBIAL PEPTIDES machine learning CANCER WEB SERVER |
| Language | English |
| License | Attribution 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH. unspecified-oa |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-c4131-43bbabc7065ee93e4c9826d72296a0f2c8ef39f0b41cb42f46db8d97406cc3163 |
| Notes | European Research Council (ERC) Swiss National Science Foundation (SNF) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2724-2942 0000-0002-0509-7011 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cmdc.202200291 |
| PMID | 35880810 |
| PQID | 2711088657 |
| PQPubID | 986335 |
| PageCount | 10 |
| ParticipantIDs | webofscience_primary_000836248100001CitationCount crossref_primary_10_1002_cmdc_202200291 wiley_primary_10_1002_cmdc_202200291_CMDC202200291 crossref_citationtrail_10_1002_cmdc_202200291 pubmed_primary_35880810 unpaywall_primary_10_1002_cmdc_202200291 proquest_miscellaneous_2694962176 webofscience_primary_000836248100001 proquest_journals_2711088657 |
| PublicationCentury | 2000 |
| PublicationDate | September 5, 2022 |
| PublicationDateYYYYMMDD | 2022-09-05 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 5, 2022 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | WEINHEIM |
| PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
| PublicationTitle | ChemMedChem |
| PublicationTitleAbbrev | CHEMMEDCHEM |
| PublicationTitleAlternate | ChemMedChem |
| PublicationYear | 2022 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2014 2014; 53 126 2017; 7 2021; 27 2017; 8 2021; 21 2013; 4 2021; 22 2020; 60 2020; 16 2011; 10 2020; 12 2020; 10 2004; 32 2018; 9 2018; 39 2009; 10 2019; 20 2020; 52 2019; 24 2017; 79 2015; 43 1982; 299 2013; 430 2016; 40 2008; 24 2018; 34 2011; 164 2021; 9 2015; 13 2017; 61 2021; 49 2019; 9 2018; 182 2021; 2 1965; 163 2005 2018; 23 2012; 33 2014; 357 2004; 10 2016; 6 2018; 17 2016; 7 2018; 110 2021; 54 2021; 12 2021; 11 2022 2020 2015; 21 2021; 61 2014; 341 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Levenshtein V. I. (e_1_2_9_57_1) 1965; 163 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Ansari M. (e_1_2_9_56_1) 2022 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Haapala A. (e_1_2_9_58_1) 2020 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 Kašperová A. (e_1_2_9_43_1) 2015; 13 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 Wan F. (e_1_2_9_20_1) 2022 e_1_2_9_9_1 e_1_2_9_48_2 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Szlasa, W (WOS:000552602500001) 2020; 52 Bandyopadhyay, S (WOS:000314320700001) 2013; 430 Schaduangrat, N (WOS:000470996600131) 2019; 24 Gogoladze, G (WOS:000341783500009) 2014; 357 Tyagi, A (WOS:000350210400122) 2015; 43 Manavalan, B (WOS:000412066700108) 2017; 8 (000836248100001.49) 2014; 126 Whitmore, L (WOS:000222273100135) 2004; 32 Heffernan, R (WOS:000448826100006) 2018; 39 Barrett, R (WOS:000443404400003) 2018; 110 Hajisharifi, Z (WOS:000330149600004) 2014; 341 Schneider, G (WOS:000424402500014) 2018; 17 Chen, HM (WOS:000437071200009) 2018; 23 Haapala, A. (000836248100001.58) 2020 Vrablikova, A (WOS:000415669400002) 2017; 61 Capecchi, A. (000836248100001.19) 2021; 9 EISENBERG, D (WOS:A1982PH55300056) 1982; 299 Bian, YM (WOS:000617231200004) 2021; 27 Probst, D (WOS:000430175000030) 2018; 34 Ansari, M. (000836248100001.56) 2022 Kabelka, I (WOS:000648508400014) 2021; 54 Capecchi, A (WOS:000661474800001) 2021; 12 Lo, YC (WOS:000443787600011) 2018; 23 Stach, M (WOS:000344793400026) 2014; 53 Lee, EY (WOS:000413400700007) 2017; 7 Gaspar, D (WOS:000331514900002) 2013; 4 Riedl, S (WOS:000297958000008) 2011; 164 Aronica, PGA (WOS:000678396200003) 2021; 61 Gabernet, G (WOS:000390552300003) 2016; 7 Lin, LM (WOS:000701202400003) 2021; 11 Wei, LY (WOS:000453453300007) 2018; 34 Akbar, S (WOS:000409286500007) 2017; 79 Wu, CY (WOS:000484971800002) 2019; 20 Huang, YB (WOS:000288153900005) 2011; 10 Timmons, PB (WOS:000549999900009) 2020; 10 Leuschner, C (WOS:000222195800003) 2004; 10 Kasperov?, A. (000836248100001.43) 2015; 13 Grisoni, F (WOS:000437734400003) 2018; 13 Baeriswyl, S (WOS:000700040900001) 2021; 2 Chaudhary, K (WOS:000371588600002) 2016; 6 Chen, W (WOS:000375692900120) 2016; 7 Lorent, JH (WOS:000530218800001) 2020; 16 Sohlenkamp, C (WOS:000371243600008) 2016; 40 De Santis, I (WOS:000759972000010) 2021; 21 Gautier, R (WOS:000258959600021) 2008; 24 Bawa, M. (000836248100001.59) 2005 Cerovsky, V (WOS:000269279700024) 2009; 10 Bin Hafeez, A (WOS:000723165100001) 2021; 22 Wan, FP (WOS:001101874800001) 2022; 1 Kabir, M (WOS:000450380100018) 2018; 182 Capecchi, A (WOS:000510104100014) 2020; 60 Plisson, F (WOS:000578475300049) 2020; 10 Slaninová, J (WOS:000300073100003) 2012; 33 LEVENSHT.VI (WOS:A19656731900016) 1965; 163 Xu, L (WOS:000428508800041) 2018; 9 Probst, D (WOS:000514340100001) 2020; 12 Battista, F (WOS:000645729400001) 2021; 22 Li, FM (WOS:000384097200001) 2016; 6 Pirtskhalava, M (WOS:000608437800038) 2021; 49 Vijayakumar, S (WOS:000348448700013) 2015; 21 Gabernet, G (WOS:000478575000069) 2019; 9 |
| References_xml | – volume: 21 start-page: 99 year: 2015 end-page: 106 publication-title: Int. J. Pept. Res. Ther. – volume: 10 start-page: 2299 year: 2004 end-page: 2310 publication-title: Curr. Pharm. Des. – volume: 24 start-page: 2101 year: 2008 end-page: 2102 publication-title: Bioinformatics – volume: 12 start-page: 12 year: 2020 publication-title: J. Cheminf. – volume: 54 start-page: 2196 year: 2021 end-page: 2204 publication-title: Acc. Chem. Res. – start-page: 651 year: 2005 end-page: 660 – volume: 7 year: 2017 publication-title: Interface Focus – volume: 6 start-page: 33910 year: 2016 publication-title: Sci. Rep. – volume: 79 start-page: 62 year: 2017 end-page: 70 publication-title: Artif. Intell. Med. – volume: 7 start-page: 16895 year: 2016 end-page: 16909 publication-title: Oncotarget – volume: 22 start-page: 11691 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 110 year: 2018 publication-title: Pept. Sci. – volume: 24 start-page: 1973 year: 2019 publication-title: Molecules – volume: 61 start-page: 3172 year: 2021 end-page: 3196 publication-title: J. Chem. Inf. Model. – volume: 53 126 start-page: 12827 13041 year: 2014 2014 end-page: 12831 13045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2020 publication-title: Ztane/Python-Levenshtein – volume: 20 start-page: 456 year: 2019 publication-title: BMC Bioinf. – volume: 357 start-page: 63 year: 2014 end-page: 68 publication-title: FEMS Microbiol. Lett. – volume: 2 start-page: 1608 year: 2021 end-page: 1617 publication-title: RSC Chem. Biol. – volume: 49 start-page: D288 year: 2021 end-page: D297 publication-title: Nucleic Acids Res. – volume: 27 start-page: 71 year: 2021 publication-title: J. Mol. Model. – volume: 7 start-page: 2232 year: 2016 end-page: 2245 publication-title: MedChemComm – volume: 32 start-page: W668 year: 2004 end-page: W673 publication-title: Nucleic Acids Res. – volume: 11 start-page: 2609 year: 2021 end-page: 2644 publication-title: Acta Pharm. Sin. B. – volume: 430 start-page: 1 year: 2013 end-page: 6 publication-title: Biochem. Biophys. Res. Commun. – volume: 34 start-page: 4007 year: 2018 end-page: 4016 publication-title: Bioinformatics – volume: 10 start-page: 2089 year: 2009 end-page: 2099 publication-title: ChemBioChem – volume: 13 start-page: 54 year: 2015 end-page: 57 publication-title: Collect. Czech. Chem. Commun. – volume: 9 start-page: 158 year: 2018 publication-title: Genes – start-page: 2022 year: 2022 publication-title: bioRxiv – volume: 9 year: 2021 publication-title: Med. Drug Discovery – volume: 39 start-page: 2210 year: 2018 end-page: 2216 publication-title: J. Comput. Chem. – volume: 52 start-page: 321 year: 2020 end-page: 342 publication-title: J. Bioenerg. Biomembr. – volume: 6 start-page: 22843 year: 2016 publication-title: Sci. Rep. – volume: 40 start-page: 133 year: 2016 end-page: 159 publication-title: FEMS Microbiol. Rev. – volume: 10 start-page: 10869 year: 2020 publication-title: Sci. Rep. – volume: 8 start-page: 77121 year: 2017 end-page: 77136 publication-title: Oncotarget – volume: 23 start-page: 1241 year: 2018 end-page: 1250 publication-title: Drug Discovery Today – volume: 9 start-page: 11282 year: 2019 publication-title: Sci. Rep. – volume: 22 start-page: 2857 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 97 year: 2018 end-page: 113 publication-title: Nat. Rev. Drug Discovery – volume: 21 start-page: 6385 year: 2021 publication-title: Sensors – volume: 43 start-page: D837 year: 2015 end-page: 843 publication-title: Nucleic Acids Res. – volume: 12 start-page: 43 year: 2020 publication-title: J. Cheminf. – volume: 164 start-page: 766 year: 2011 end-page: 781 publication-title: Chem. Phys. Lipids – volume: 163 start-page: 845 year: 1965 end-page: 848 publication-title: Dokl. Akad. Nauk SSSR – year: 2022 publication-title: Digital Discovery – volume: 16 start-page: 644 year: 2020 end-page: 652 publication-title: Nat. Chem. Biol. – volume: 299 start-page: 371 year: 1982 end-page: 374 publication-title: Nature – volume: 10 start-page: 16581 year: 2020 publication-title: Sci. Rep. – volume: 341 start-page: 34 year: 2014 end-page: 40 publication-title: J. Theor. Biol. – volume: 23 start-page: 1538 year: 2018 end-page: 1546 publication-title: Drug Discovery Today – volume: 34 start-page: 1433 year: 2018 end-page: 1435 publication-title: Bioinformatics – volume: 12 start-page: 9221 year: 2021 end-page: 9232 publication-title: Chem. Sci. – volume: 33 start-page: 18 year: 2012 end-page: 26 publication-title: Peptides – volume: 182 start-page: 158 year: 2018 end-page: 165 publication-title: Chemom. Intell. Lab. Syst. – volume: 4 year: 2013 publication-title: Front. Microbiol. – volume: 10 start-page: 416 year: 2011 end-page: 426 publication-title: Mol. Cancer Ther. – volume: 60 start-page: 121 year: 2020 end-page: 132 publication-title: J. Chem. Inf. Model. – volume: 61 start-page: 474 year: 2017 end-page: 481 publication-title: Microbiol. Immunol. – volume: 13 start-page: 1300 year: 2018 end-page: 1302 publication-title: ChemMedChem – ident: e_1_2_9_7_1 doi: 10.1021/acs.accounts.1c00047 – ident: e_1_2_9_51_1 doi: 10.1093/bioinformatics/btn392 – ident: e_1_2_9_15_1 doi: 10.1039/D1SC01713F – ident: e_1_2_9_12_1 doi: 10.1038/srep22843 – ident: e_1_2_9_5_1 doi: 10.1039/C6MD00376A – ident: e_1_2_9_49_1 doi: 10.2174/1381612043383971 – ident: e_1_2_9_33_1 doi: 10.1038/s41598-019-47568-9 – ident: e_1_2_9_46_1 doi: 10.3389/fmicb.2013.00294 – ident: e_1_2_9_2_1 doi: 10.1016/j.drudis.2018.01.039 – ident: e_1_2_9_50_1 doi: 10.1016/j.chemphyslip.2011.09.004 – ident: e_1_2_9_16_1 doi: 10.1098/rsfs.2016.0153 – ident: e_1_2_9_3_1 doi: 10.1038/nrd.2017.232 – year: 2020 ident: e_1_2_9_58_1 publication-title: Ztane/Python-Levenshtein – ident: e_1_2_9_9_1 doi: 10.1093/nar/gkaa991 – ident: e_1_2_9_59_1 doi: 10.1145/1060745.1060840 – ident: e_1_2_9_23_1 doi: 10.1093/bioinformatics/bty451 – ident: e_1_2_9_61_1 doi: 10.1093/nar/gkh371 – ident: e_1_2_9_27_1 doi: 10.1038/srep33910 – ident: e_1_2_9_22_1 doi: 10.1007/s10989-014-9435-7 – ident: e_1_2_9_36_1 doi: 10.1093/femsre/fuv008 – start-page: 2022 year: 2022 ident: e_1_2_9_56_1 publication-title: bioRxiv – ident: e_1_2_9_60_1 doi: 10.1093/bioinformatics/btx760 – ident: e_1_2_9_34_1 doi: 10.1007/s10863-020-09846-4 – ident: e_1_2_9_31_1 doi: 10.1186/s12859-019-3006-z – ident: e_1_2_9_11_1 doi: 10.3390/ijms222111691 – ident: e_1_2_9_47_1 doi: 10.1039/D1CB00124H – ident: e_1_2_9_25_1 doi: 10.1016/j.artmed.2017.06.008 – ident: e_1_2_9_13_1 doi: 10.1038/s41598-020-67701-3 – ident: e_1_2_9_54_1 doi: 10.3390/ijms22062857 – volume: 13 start-page: 54 year: 2015 ident: e_1_2_9_43_1 publication-title: Collect. Czech. Chem. Commun. – ident: e_1_2_9_21_1 doi: 10.3390/genes9030158 – ident: e_1_2_9_29_1 doi: 10.18632/oncotarget.20365 – ident: e_1_2_9_41_1 doi: 10.1038/299371a0 – ident: e_1_2_9_42_1 doi: 10.1016/j.peptides.2011.11.002 – ident: e_1_2_9_52_1 doi: 10.3390/s21196385 – ident: e_1_2_9_32_1 doi: 10.1002/cmdc.201800204 – ident: e_1_2_9_35_1 doi: 10.1038/s41589-020-0529-6 – ident: e_1_2_9_45_1 doi: 10.1186/s13321-020-00445-4 – ident: e_1_2_9_14_1 doi: 10.1038/s41598-020-73644-6 – ident: e_1_2_9_55_1 doi: 10.1186/s13321-020-0416-x – ident: e_1_2_9_19_1 doi: 10.1016/j.medidd.2021.100081 – ident: e_1_2_9_53_1 doi: 10.1016/j.bbrc.2012.11.015 – ident: e_1_2_9_26_1 doi: 10.18632/oncotarget.7815 – ident: e_1_2_9_48_2 doi: 10.1002/ange.201409270 – ident: e_1_2_9_4_1 doi: 10.1016/j.apsb.2021.07.014 – ident: e_1_2_9_8_1 doi: 10.1111/1574-6968.12489 – ident: e_1_2_9_28_1 doi: 10.1016/j.chemolab.2018.09.007 – ident: e_1_2_9_39_1 doi: 10.1002/cbic.200900133 – ident: e_1_2_9_44_1 doi: 10.1111/1348-0421.12538 – ident: e_1_2_9_40_1 doi: 10.1002/jcc.25534 – ident: e_1_2_9_30_1 doi: 10.1016/j.jtbi.2013.08.037 – ident: e_1_2_9_17_1 doi: 10.1002/pep2.24079 – ident: e_1_2_9_18_1 doi: 10.1021/acs.jcim.1c00175 – ident: e_1_2_9_37_1 doi: 10.1007/s00894-021-04674-8 – ident: e_1_2_9_38_1 doi: 10.1021/acs.jcim.9b01014 – ident: e_1_2_9_1_1 doi: 10.1016/j.drudis.2018.05.010 – ident: e_1_2_9_48_1 doi: 10.1002/anie.201409270 – ident: e_1_2_9_6_1 doi: 10.1158/1535-7163.MCT-10-0811 – ident: e_1_2_9_10_1 doi: 10.1093/nar/gku892 – ident: e_1_2_9_24_1 doi: 10.3390/molecules24101973 – year: 2022 ident: e_1_2_9_20_1 publication-title: Digital Discovery – volume: 163 start-page: 845 year: 1965 ident: e_1_2_9_57_1 publication-title: Dokl. Akad. Nauk SSSR – volume: 9 year: 2021 ident: 000836248100001.19 publication-title: Med. Drug Discovery – volume: 6 start-page: ARTN 22843 year: 2016 ident: WOS:000371588600002 article-title: A Web Server and Mobile App for Computing Hemolytic Potency of Peptides publication-title: SCIENTIFIC REPORTS doi: 10.1038/srep22843 – volume: 39 start-page: 2210 year: 2018 ident: WOS:000448826100006 article-title: Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY doi: 10.1002/jcc.25534 – volume: 32 start-page: W668 year: 2004 ident: WOS:000222273100135 article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gkh371 – volume: 7 start-page: 2232 year: 2016 ident: WOS:000390552300003 article-title: Membranolytic anticancer peptides publication-title: MEDCHEMCOMM doi: 10.1039/c6md00376a – volume: 21 start-page: ARTN 6385 year: 2021 ident: WOS:000759972000010 article-title: Co-Density Distribution Maps for Advanced Molecule Colocalization and Co-Distribution Analysis publication-title: SENSORS doi: 10.3390/s21196385 – volume: 341 start-page: 34 year: 2014 ident: WOS:000330149600004 article-title: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test publication-title: JOURNAL OF THEORETICAL BIOLOGY doi: 10.1016/j.jtbi.2013.08.037 – volume: 9 start-page: ARTN 11282 year: 2019 ident: WOS:000478575000069 article-title: In silico design and optimization of selective membranolytic anticancer peptides publication-title: SCIENTIFIC REPORTS doi: 10.1038/s41598-019-47568-9 – volume: 33 start-page: 18 year: 2012 ident: WOS:000300073100003 article-title: Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells publication-title: PEPTIDES doi: 10.1016/j.peptides.2011.11.002 – volume: 6 start-page: ARTN 33910 year: 2016 ident: WOS:000384097200001 article-title: Identifying anticancer peptides by using improved hybrid compositions publication-title: SCIENTIFIC REPORTS doi: 10.1038/srep33910 – volume: 21 start-page: 99 year: 2015 ident: WOS:000348448700013 article-title: ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides publication-title: INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS doi: 10.1007/s10989-014-9435-7 – volume: 164 start-page: 766 year: 2011 ident: WOS:000297958000008 article-title: Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs publication-title: CHEMISTRY AND PHYSICS OF LIPIDS doi: 10.1016/j.chemphyslip.2011.09.004 – volume: 7 start-page: 16895 year: 2016 ident: WOS:000375692900120 article-title: IACP: a sequence-based tool for identifying anticancer peptides publication-title: ONCOTARGET – volume: 10 start-page: 2299 year: 2004 ident: WOS:000222195800003 article-title: Membrane disrupting lytic peptides for cancer treatments publication-title: CURRENT PHARMACEUTICAL DESIGN – volume: 61 start-page: 3172 year: 2021 ident: WOS:000678396200003 article-title: Computational Methods and Tools in Antimicrobial Peptide Research publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING doi: 10.1021/acs.jcim.1c00175 – volume: 20 start-page: ARTN 456 year: 2019 ident: WOS:000484971800002 article-title: PTPD: predicting therapeutic peptides by deep learning and word2vec publication-title: BMC BIOINFORMATICS doi: 10.1186/s12859-019-3006-z – volume: 9 start-page: ARTN 158 year: 2018 ident: WOS:000428508800041 article-title: A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides publication-title: GENES doi: 10.3390/genes9030158 – volume: 24 start-page: 2101 year: 2008 ident: WOS:000258959600021 article-title: HELIQUEST:: a web server to screen sequences with specific α-helical properties publication-title: BIOINFORMATICS doi: 10.1093/bioinformatics/btn392 – volume: 11 start-page: 2609 year: 2021 ident: WOS:000701202400003 article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era publication-title: ACTA PHARMACEUTICA SINICA B doi: 10.1016/j.apsb.2021.07.014 – volume: 22 start-page: ARTN 11691 year: 2021 ident: WOS:000723165100001 article-title: Antimicrobial Peptides: An Update on Classifications and Databases publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES doi: 10.3390/ijms222111691 – volume: 4 start-page: ARTN 294 year: 2013 ident: WOS:000331514900002 article-title: From antimicrobial to anticancer peptides. A review publication-title: FRONTIERS IN MICROBIOLOGY doi: 10.3389/fmicb.2013.00294 – volume: 182 start-page: 158 year: 2018 ident: WOS:000450380100018 article-title: Intelligent computational method for discrimination of anticancer peptides by incorporating sequential and evolutionary profiles information publication-title: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS doi: 10.1016/j.chemolab.2018.09.007 – volume: 52 start-page: 321 year: 2020 ident: WOS:000552602500001 article-title: Lipid composition of the cancer cell membrane publication-title: JOURNAL OF BIOENERGETICS AND BIOMEMBRANES doi: 10.1007/s10863-020-09846-4 – volume: 43 start-page: D837 year: 2015 ident: WOS:000350210400122 article-title: CancerPPD: a database of anticancer peptides and proteins publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gku892 – volume: 10 start-page: 2089 year: 2009 ident: WOS:000269279700024 article-title: Lasioglossins: Three Novel Antimicrobial Peptides from the Venom of the Eusocial Bee Lasioglossum laticeps (Hymenoptera: Halictidae) publication-title: CHEMBIOCHEM doi: 10.1002/cbic.200900133 – volume: 61 start-page: 474 year: 2017 ident: WOS:000415669400002 article-title: Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice publication-title: MICROBIOLOGY AND IMMUNOLOGY doi: 10.1111/1348-0421.12538 – volume: 357 start-page: 63 year: 2014 ident: WOS:000341783500009 article-title: DBAASP: database of antimicrobial activity and structure of peptides publication-title: FEMS MICROBIOLOGY LETTERS doi: 10.1111/1574-6968.12489 – volume: 110 start-page: ARTN e24079 year: 2018 ident: WOS:000443404400003 article-title: Classifying antimicrobial and multifunctional peptides with Bayesian network models publication-title: PEPTIDE SCIENCE doi: 10.1002/pep2.24079 – volume: 126 start-page: 13041 year: 2014 ident: 000836248100001.49 publication-title: Angew. Chem – volume: 40 start-page: 133 year: 2016 ident: WOS:000371243600008 article-title: Bacterial membrane lipids: diversity in structures and pathways publication-title: FEMS MICROBIOLOGY REVIEWS doi: 10.1093/femsre/fuv008 – volume: 24 start-page: ARTN 1973 year: 2019 ident: WOS:000470996600131 article-title: ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides publication-title: MOLECULES doi: 10.3390/molecules24101973 – volume: 10 start-page: ARTN 16581 year: 2020 ident: WOS:000578475300049 article-title: Machine learning-guided discovery and design of non-hemolytic peptides publication-title: SCIENTIFIC REPORTS doi: 10.1038/s41598-020-73644-6 – volume: 10 start-page: ARTN 10869 year: 2020 ident: WOS:000549999900009 article-title: HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks publication-title: SCIENTIFIC REPORTS doi: 10.1038/s41598-020-67701-3 – volume: 430 start-page: 1 year: 2013 ident: WOS:000314320700001 article-title: Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom publication-title: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS doi: 10.1016/j.bbrc.2012.11.015 – year: 2020 ident: 000836248100001.58 publication-title: Ztane/Python-Levenshtein. – volume: 299 start-page: 371 year: 1982 ident: WOS:A1982PH55300056 article-title: THE HELICAL HYDROPHOBIC MOMENT - A MEASURE OF THE AMPHIPHILICITY OF A HELIX publication-title: NATURE – volume: 8 start-page: 77121 year: 2017 ident: WOS:000412066700108 article-title: MLACP: machine-learning-based prediction of anticancer peptides publication-title: ONCOTARGET doi: 10.18632/oncotarget.20365 – volume: 10 start-page: 416 year: 2011 ident: WOS:000288153900005 article-title: Studies on Mechanism of Action of Anticancer Peptides by Modulation of Hydrophobicity Within a Defined Structural Framework publication-title: MOLECULAR CANCER THERAPEUTICS doi: 10.1158/1535-7163.MCT-10-0811 – volume: 22 start-page: ARTN 2857 year: 2021 ident: WOS:000645729400001 article-title: Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES doi: 10.3390/ijms22062857 – volume: 12 start-page: 9221 year: 2021 ident: WOS:000661474800001 article-title: Machine learning designs non-hemolytic antimicrobial peptides publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc01713f – volume: 60 start-page: 121 year: 2020 ident: WOS:000510104100014 article-title: Populating Chemical Space with Peptides Using a Genetic Algorithm publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING doi: 10.1021/acs.jcim.9b01014 – volume: 2 start-page: 1608 year: 2021 ident: WOS:000700040900001 article-title: A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography publication-title: RSC CHEMICAL BIOLOGY doi: 10.1039/d1cb00124h – volume: 17 start-page: 97 year: 2018 ident: WOS:000424402500014 article-title: Automating drug discovery publication-title: NATURE REVIEWS DRUG DISCOVERY doi: 10.1038/nrd.2017.232 – volume: 54 start-page: 2196 year: 2021 ident: WOS:000648508400014 article-title: Advances in Molecular Understanding of α-Helical Membrane-Active Peptides publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00047 – year: 2022 ident: 000836248100001.56 publication-title: bioRxiv – volume: 27 start-page: ARTN 71 year: 2021 ident: WOS:000617231200004 article-title: Generative chemistry: drug discovery with deep learning generative models publication-title: JOURNAL OF MOLECULAR MODELING doi: 10.1007/s00894-021-04674-8 – start-page: 651 year: 2005 ident: 000836248100001.59 publication-title: Proceedings of the 14th International Conference on World Wide Web – volume: 23 start-page: 1241 year: 2018 ident: WOS:000437071200009 article-title: The rise of deep learning in drug discovery publication-title: DRUG DISCOVERY TODAY doi: 10.1016/j.drudis.2018.01.039 – volume: 16 start-page: 644 year: 2020 ident: WOS:000530218800001 article-title: Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/s41589-020-0529-6 – volume: 53 start-page: 12827 year: 2014 ident: WOS:000344793400026 article-title: Combining Topology and Sequence Design for the Discovery of Potent Antimicrobial Peptide Dendrimers against Multidrug-Resistant Pseudomonas aeruginosa publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201409270 – volume: 1 start-page: 195 year: 2022 ident: WOS:001101874800001 article-title: Deep generative models for peptide design publication-title: DIGITAL DISCOVERY doi: 10.1039/d1dd00024a – volume: 34 start-page: 4007 year: 2018 ident: WOS:000453453300007 article-title: ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides publication-title: BIOINFORMATICS doi: 10.1093/bioinformatics/bty451 – volume: 23 start-page: 1538 year: 2018 ident: WOS:000443787600011 article-title: Machine learning in chemoinformatics and drug discovery publication-title: DRUG DISCOVERY TODAY doi: 10.1016/j.drudis.2018.05.010 – volume: 7 start-page: ARTN 20160153 year: 2017 ident: WOS:000413400700007 article-title: What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? publication-title: INTERFACE FOCUS doi: 10.1098/rsfs.2016.0153 – volume: 34 start-page: 1433 year: 2018 ident: WOS:000430175000030 article-title: FUn: a framework for interactive visualizations of large, high-dimensional datasets on the web publication-title: BIOINFORMATICS doi: 10.1093/bioinformatics/btx760 – volume: 79 start-page: 62 year: 2017 ident: WOS:000409286500007 article-title: iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space publication-title: ARTIFICIAL INTELLIGENCE IN MEDICINE doi: 10.1016/j.artmed.2017.06.008 – volume: 12 start-page: ARTN 12 year: 2020 ident: WOS:000514340100001 article-title: Visualization of very large high-dimensional data sets as minimum spanning trees publication-title: JOURNAL OF CHEMINFORMATICS doi: 10.1186/s13321-020-0416-x – volume: 13 start-page: 54 year: 2015 ident: 000836248100001.43 publication-title: Collect. Czech. Chem. Commun – volume: 13 start-page: 1300 year: 2018 ident: WOS:000437734400003 article-title: Designing Anticancer Peptides by Constructive Machine Learning publication-title: CHEMMEDCHEM doi: 10.1002/cmdc.201800204 – volume: 49 start-page: D288 year: 2021 ident: WOS:000608437800038 article-title: DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gkaa991 – volume: 163 start-page: 845 year: 1965 ident: WOS:A19656731900016 article-title: BINARY CODES FOR CORRECTING DELETION INSERTION AND SUBSTITUTION ERRORS publication-title: DOKLADY AKADEMII NAUK SSSR |
| SSID | ssj0044818 |
| Score | 2.4473994 |
| Snippet | Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also... Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic alpha-helices, many of which are however... Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also... |
| Source | Web of Science |
| SourceID | unpaywall proquest pubmed webofscience crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202200291 |
| SubjectTerms | anticancer peptides Antiinfectives and antibacterials Antimicrobial peptides Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Cell Death chemical space Chemistry, Medicinal genetic algorithm Genetic algorithms Helices Helicity Hemolysis Humans Learning algorithms Life Sciences & Biomedicine Machine Learning Membranes Neural networks peptide design Peptides Pharmacology & Pharmacy Recurrent neural networks Science & Technology |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hcgAOiDeGghapKhxqdb1eb7zHKqVESKlyaKUekKx9GVVK7CiOhXzjJ_Ab-SXM2I7TgFARt1iZtVc7j52Znf2GkAPvrMBmNGHCHAQoSulQpyYKjYs958zEvM13TM_l5FJ8vkqubtzi7_AhhoQbakZrr1HBtamOt6ChduEQgpBjlQFeX78bgTODMs7FbGOLIfZoM3xRKlkIgYvawDYyfrw7fndb-sPXfEDu1cVSN9_0fP7bFrXr1bbb0tkj8rD3J-lJJwCPyR1fPCGHsw6QujmiF9v7VdURPaSzLVR185R8mba1lJ72MKtf6af62nlHT68ri8WdDS1zel4WP7__mPhFOW_gPXTqF7BwMAqoVvUSDSY9KTApDhNd0RkWyjhfPSOXZx8vxpOw77cQWtjKgFOxMdpYPPj0XsVeWAXBhxtxrqRmObepz2OVMyMiawTPhXQmdRCQMGltDI7dc7JXlIV_SajzQK7ylFkthEm9ZmA4vJdCaytGRgQk3Cx3ZnswcuyJMc86GGWeIXuygT0BeT_QLzsYjr9S7m-4l_XqWGV8hLcdUpmMAvJu-BsUCU9HYL3KGmikEkpChCYD8qLj-vCpOEmxQwkLyIdBDG6dx8FNKRmoW6dXchDM9mAlING_kI37NUKggnVAeCtxt8wgG09Px8PTq_8Z9Jrcx99tTV2yT_bWq9q_ASdsbd62evYLqPAnBA priority: 102 providerName: Wiley-Blackwell |
| Title | Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202200291 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000836248100001 https://www.ncbi.nlm.nih.gov/pubmed/35880810 https://www.proquest.com/docview/2711088657 https://www.proquest.com/docview/2694962176 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cmdc.202200291 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| WOS | 000836248100001 |
| WOSCitedRecordID | wos000836248100001 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1860-7187 databaseCode: DR2 dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1860-7187 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044818 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-69GHbw74_vHVFg9Ltoe4cWZbtx5CsC4MEMxroYGCsD4-yxA5JzPCe9ifsb9xfspO_sraMFvZiZHyWpfOd7k46_QRwoJVk5jAa23MUBihhmNhJIPq2UK6m1BEureY7JlM-nrGPZ97ZDozavTA1PkQ34WY0oxqvjYIvVVqP883qPn0nF8rAEFKTaWC2sO9yDz3yHuzOptHgs4m1Au7YGLGE23Lgt9iNVyq4aJuuOJx34XaRLZPyezKfX7JTF13byjad3Afd9qpOSfl2XGzEsfxxCfDxf7v9AO41zisZ1NL2EHZ09ggOoxr9ujwip9vNXOsjckiiLS52-Ri-TKrETU0aTNev5ENxrrQio_O1NJmkJclTMs2z3z9_jfUin5dYD5noBTYX30KqVbE0ozMZZGYGHhmyIpHJylF6_QRmJ-9Ph2O7OdzBlmg3USxcIRIhzSqr1qGrmQwx0lE-pSFPnJTKQKdumDqC9aVgNGVciUBh9ONwKV30Ip9CL8sz_RyI0kgepoEjE8ZEoBMHRymtOUsSyXzBLLDb3xrLBvncHMAxj2vMZhobhsYdQy1409Eva8yPf1LutVISN7q_jqlvtlYE3PMteN09Rq01SzHIr7xAGh6ykGM4yC14VktX9ynXC8xxKI4Fbztxu7YdB39LY0ddedicsqBexbGgfxOyYcMjg4qwsYBW4nhNC-LhZDTs7l7cvOkv4Y4pV2l73h70NqtCv0I_byP24RZlEV5Hn-h-o9J_AMK4TWI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQclg4IN4EFjDSauGw0SaO48bHVZelwKbqoStxQIriR9BKbVK1jVBv_AR-I7-EGedRCkKLODYdJ5bn4Znx-BtCDq3RHJvR-HFgIECRMvfzRIW-MpFlLFARc_mOdCxGl_zDp7irJsS7MA0-RJ9wQ81w9hoVHBPSJ1vUUD03iEHIsMwA76_f5CIUGH8xPumMMQQfLsUXJiLwIXKRHW5jwE52x-_uS384m7fJfl0u8s3XfDb7bY_adWvdvnR-l9xpHUp62kjAPXLDlvfJ0aRBpN4c0-n2gtXqmB7RyRarevOAfE5dMaWlLc7qF_quvjLW0LOrlcbqzg2tCjquyh_fvo_svJpt4D00tXNYORgFVMt6gRaTnpaYFYeJLukEK2WMXT0kl-dvp8OR3zZc8DXsZcCqSKlcaTz5tFZGlmsJ0YcZMCZFHhRMJ7aIZBEoHmrFWcGFUYmBiCQQWkfg2T0ie2VV2ieEGgvkskgCnXOuEpsHYDmsFTzPNR8o7hG_W-5Mt2jk2BRjljU4yixD9mQ9ezzyuqdfNDgcf6U86LiXtfq4ytgArzskIh545FX_N2gSHo_AelU10AjJpYAQTXjkccP1_lNRnGCLksAjb3oxuHYeh79KSU_tvF7BQDDdyYpHwn8hG7ZrhEgFa48wJ3HXzCAbpmfD_tfT_xn0kuyPpulFdvF-_PEZuYXPXYFdfED21svaPgePbK1eOJ37CZAsKnA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIvE48IYaCixSVTjUrbNeb7zHKiGER6IItRKHSpb3YVQ1saMkFjInfgK_kV_CrF8hRagIjrZn7d3xzM7M7uw3ALtGK2aL0biBpzFAESJ241B2XKl9Q6knfVqud4zGfHjC3n0KmmxCexamwodoF9ysZpTztVVwM9fJ4Ro1VM20xSCkNs3Anl-_ygIR2qy-_scWQQqDj3KJrxNyz8XIRTS4jR493Gy_aZd-czZvwvU8ncfFl3g6vWCjNt3a0i4NboNsRlSlo5wf5Ct5oL5eAHv8ryHfgVu110qOKjG7C1dMeg_2JhXsdbFPjtenuJb7ZI9M1oDYxX04HZUZm4bUYK6fyZv8TBtN-mdLZVNIC5IlZJylP759H5pZNi3wPWRkZthXbIVUi3xup2VylNqld-TGgkxsOo42ywdwMnh93Bu6dVUHV6HBRHnwpYylsturxgjfMCUwxNFdSgWPvYSq0CS-SDzJOkoymjCuZagx7PG4Uj66jw9hK81Ssw1EGyQXSeipmDEZmtjD6ckYzuJYsa5kDrjNP41UDXluK29MowqsmUaWoVHLUAdetvTzCuzjj5Q7jYhEtdIvI9q1ZypCHnQdeNE-RnW1ezDIryxHGi6Y4BgHcgceVaLVfsoPQlsHxXPgVStrl_Zj91dRbKlL15pTlP5y-8aBzt-Q9WoeWTiElQO0lMVLehD1Rv1ee_X4Xxo9h2uT_iD68Hb8_gncsLfLJL5gB7ZWi9w8Ra9vJZ-Vev0T_JBLxg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED9K-rDtofu_eeuGBqXbQ905sixLjyFZFwYJeWigg4HRP5eyxA5JTPGe9hH2GfdJJtmOs7aMFvZm47Msne9Od9LdTwAHRiviDqPxo0DbAIVz4Qsmu77UocE4kCGu1jtGYzqcki9n0dkODDa1MDU-RLvg5jSjstdOwRc6re18s7uPP6q5djCE2GUauBL2XRpZj7wDu9PxpPfVxVqMBr6NWPj2msUb7MYbDVydm244nA_gXpEtRHkpZrNr89RV17aam04egtmMqk5J-X5crOWx-nEN8PF_h_0I9hrnFfVqaXsMOyZ7AoeTGv26PEKn22Ku1RE6RJMtLnb5FL6NqsRNgxpM13P0ubjQRqPBxUq5TNIS5Ska59nvn7-GZp7PStsOGpm57a59y1Iti4WzzqiXuRV4y5AlmrisHG1Wz2B68um0P_Sbwx18ZedNKxahlEIqt8tqDA8NUdxGOjrGmFMRpFgxk4Y8DSTpKklwSqiWTNvoJ6BKhdaLfA6dLM_MS0DaWHKeskAJQiQzIrBWyhhKhFAklsQDf_NbE9Ugn7sDOGZJjdmME8fQpGWoB-9b-kWN-fFPyv2NlCSN7q8SHLvSCkaj2IN37WOrtW4rxvIrLywN5YRTGw5SD17U0tV-KoyYOw4l8OBDK2639uPgb2lsqSsPm2LC6l0cD7p3Ies3PHKoCGsPcCWOt_Qg6Y8G_fbu1d27_hruu-sqbS_ah856WZg31s9by7eNGv8BM7lLog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Guided+Discovery+of+Non-Hemolytic+Membrane+Disruptive+Anticancer+Peptides&rft.jtitle=ChemMedChem&rft.au=Zakharova%2C+Elena&rft.au=Orsi%2C+Markus&rft.au=Capecchi%2C+Alice&rft.au=Reymond%2C+Jean-Louis&rft.date=2022-09-05&rft.issn=1860-7187&rft.eissn=1860-7187&rft.volume=17&rft.issue=17&rft.spage=e202200291&rft_id=info:doi/10.1002%2Fcmdc.202200291&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon |