Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides

Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and n...

Full description

Saved in:
Bibliographic Details
Published inChemMedChem Vol. 17; no. 17; pp. e202200291 - n/a
Main Authors Zakharova, Elena, Orsi, Markus, Capecchi, Alice, Reymond, Jean‐Louis
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 05.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1860-7179
1860-7187
1860-7187
DOI10.1002/cmdc.202200291

Cover

Abstract Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs. Using machine learning models trained with bioactive peptides from DBAASP, we designed new non‐hemolytic anticancer peptides (ACPs). The subsequently selected hit‐compounds A1 and B1 showed IC50 activities with low micromolar range against several cancer cell lines, having adopted amphiphilic α‐helical conformations. Further biological evaluations revealed membranolytic and mitochondria targeting properties of selected anticancer peptides.
AbstractList Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs. Using machine learning models trained with bioactive peptides from DBAASP, we designed new non‐hemolytic anticancer peptides (ACPs). The subsequently selected hit‐compounds A1 and B1 showed IC50 activities with low micromolar range against several cancer cell lines, having adopted amphiphilic α‐helical conformations. Further biological evaluations revealed membranolytic and mitochondria targeting properties of selected anticancer peptides.
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non‐hemolytic from hemolytic AMPs and ACPs to discover new non‐hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty‐three peptides resulted in eleven active ACPs, four of which were non‐hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non‐hemolytic ACPs.
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic alpha-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.
ArticleNumber 202200291
Author Zakharova, Elena
Capecchi, Alice
Reymond, Jean‐Louis
Orsi, Markus
Author_xml – sequence: 1
  givenname: Elena
  surname: Zakharova
  fullname: Zakharova, Elena
  organization: University of Bern
– sequence: 2
  givenname: Markus
  surname: Orsi
  fullname: Orsi, Markus
  organization: University of Bern
– sequence: 3
  givenname: Alice
  surname: Capecchi
  fullname: Capecchi, Alice
  organization: University of Bern
– sequence: 4
  givenname: Jean‐Louis
  orcidid: 0000-0003-2724-2942
  surname: Reymond
  fullname: Reymond, Jean‐Louis
  email: jean-louis.reymond@unibe.ch
  organization: University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35880810$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URG9sWaJIbJDQTI8dj2MvqxTaSjPAouyQIsc5AVeJPdhJq-x4BJ6RJ8GjmQ5SJVRWvn2fj8_vY3LgvENCXlGYUwB2ZvrGzBkwlhaKPiNHVAqYFVQWB_t5oQ7JcYy3AJxLKl-Qw3whJUgKR-TrSpvv1mG2RB2cdd-yy9E22GQXNhp_h2HKfJt99O73z19X2PtuGqzJVtjXQScrUWFcD_YOs3OXTrQzGLLPmLYajKfkeau7iC934wn58uH9TXk1W366vC7PlzPDaU5nPK9rXZsCxAJR5ciNkkw0BWNKaGiZkdjmqoWaU1Nz1nLR1LJRBQdhTE5FfkLOtveObq2ne9111TrYXoepolBtcqo2OVX7nJLxdmusg_8xYhyqPvWLXZea8mOsmFBcCUaLzeVvHqG3fgwu9VOxglKQUiyKRL3eUWPdY7Ov_5B0AuQWuMfat9FYTFHtMQCQuWDpe9IMaGkHPVjvSj-6Ianv_l9N9HxLm-BjDNg-nQV_JJhd-SFo2_1bU7tX2Q6nJ4pU5eqi_Ov-Acon0kI
CitedBy_id crossref_primary_10_1039_D4MD00159A
crossref_primary_10_1021_acs_jcim_3c01385
crossref_primary_10_1021_acsomega_4c01374
crossref_primary_10_1039_D3DD00045A
crossref_primary_10_1002_cbic_202400435
crossref_primary_10_1039_D4CP01404A
crossref_primary_10_1002_cmdc_202300480
crossref_primary_10_1016_j_ijbiomac_2024_138880
crossref_primary_10_1038_s41598_024_62419_y
crossref_primary_10_1021_acsinfecdis_3c00421
crossref_primary_10_1021_acs_jmedchem_3c00460
crossref_primary_10_1039_D3FO01602A
crossref_primary_10_1186_s12859_024_05983_4
crossref_primary_10_1038_s44222_024_00152_x
crossref_primary_10_1007_s00726_023_03326_w
crossref_primary_10_1016_j_jconrel_2023_12_050
crossref_primary_10_1016_j_foodchem_2025_143311
Cites_doi 10.1021/acs.accounts.1c00047
10.1093/bioinformatics/btn392
10.1039/D1SC01713F
10.1038/srep22843
10.1039/C6MD00376A
10.2174/1381612043383971
10.1038/s41598-019-47568-9
10.3389/fmicb.2013.00294
10.1016/j.drudis.2018.01.039
10.1016/j.chemphyslip.2011.09.004
10.1098/rsfs.2016.0153
10.1038/nrd.2017.232
10.1093/nar/gkaa991
10.1145/1060745.1060840
10.1093/bioinformatics/bty451
10.1093/nar/gkh371
10.1038/srep33910
10.1007/s10989-014-9435-7
10.1093/femsre/fuv008
10.1093/bioinformatics/btx760
10.1007/s10863-020-09846-4
10.1186/s12859-019-3006-z
10.3390/ijms222111691
10.1039/D1CB00124H
10.1016/j.artmed.2017.06.008
10.1038/s41598-020-67701-3
10.3390/ijms22062857
10.3390/genes9030158
10.18632/oncotarget.20365
10.1038/299371a0
10.1016/j.peptides.2011.11.002
10.3390/s21196385
10.1002/cmdc.201800204
10.1038/s41589-020-0529-6
10.1186/s13321-020-00445-4
10.1038/s41598-020-73644-6
10.1186/s13321-020-0416-x
10.1016/j.medidd.2021.100081
10.1016/j.bbrc.2012.11.015
10.18632/oncotarget.7815
10.1002/ange.201409270
10.1016/j.apsb.2021.07.014
10.1111/1574-6968.12489
10.1016/j.chemolab.2018.09.007
10.1002/cbic.200900133
10.1111/1348-0421.12538
10.1002/jcc.25534
10.1016/j.jtbi.2013.08.037
10.1002/pep2.24079
10.1021/acs.jcim.1c00175
10.1007/s00894-021-04674-8
10.1021/acs.jcim.9b01014
10.1016/j.drudis.2018.05.010
10.1002/anie.201409270
10.1158/1535-7163.MCT-10-0811
10.1093/nar/gku892
10.3390/molecules24101973
10.1039/c6md00376a
10.1039/d1sc01713f
10.1039/d1cb00124h
10.1039/d1dd00024a
ContentType Journal Article
Copyright 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH
2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH
– notice: 2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1002/cmdc.202200291
DatabaseName Wiley Online Library Open Access
CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Web of Science
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1860-7187
EndPage n/a
ExternalDocumentID 10.1002/cmdc.202200291
35880810
000836248100001
10_1002_cmdc_202200291
CMDC202200291
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 885076
– fundername: Swiss National Science Foundation
  funderid: 200020_178998; 407240_167048
– fundername: Swiss National Science Foundation; Swiss National Science Foundation (SNSF)
  grantid: 200020_178998; 407240_167048
– fundername: Universitat Bern
– fundername: Swiss National Science Foundation (SNF); Swiss National Science Foundation (SNSF)
  grantid: 407240_167048
– fundername: European Research Council (ERC)
  grantid: 885076
– fundername: European Research Council; European Research Council (ERC)
  grantid: 885076
GroupedDBID ---
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
53G
5GY
66C
6J9
77Q
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HBH
HGLYW
HHZ
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
RWI
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
YZZ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
31~
AANHP
AASGY
ACBWZ
ACRPL
ACYXJ
ADNMO
ADTOC
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
EJD
FEDTE
GODZA
HF~
HVGLF
LW6
UNPAY
ID FETCH-LOGICAL-c4131-43bbabc7065ee93e4c9826d72296a0f2c8ef39f0b41cb42f46db8d97406cc3163
IEDL.DBID UNPAY
ISICitedReferencesCount 23
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000836248100001
ISSN 1860-7179
1860-7187
IngestDate Sun Oct 26 03:13:49 EDT 2025
Wed Oct 01 14:46:39 EDT 2025
Tue Oct 07 06:17:21 EDT 2025
Mon Jul 21 05:57:35 EDT 2025
Mon Oct 27 23:30:06 EDT 2025
Sat Oct 25 01:07:02 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Thu Oct 16 04:40:21 EDT 2025
Wed Jan 22 16:24:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords genetic algorithm
VENOM
DESIGN
DATABASE
anticancer peptides
peptide design
chemical space
ANTIMICROBIAL PEPTIDES
machine learning
CANCER
WEB SERVER
Language English
License Attribution
2022 The Authors. ChemMedChem published by Wiley-VCH GmbH.
unspecified-oa
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4131-43bbabc7065ee93e4c9826d72296a0f2c8ef39f0b41cb42f46db8d97406cc3163
Notes European Research Council (ERC)
Swiss National Science Foundation (SNF)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2724-2942
0000-0002-0509-7011
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cmdc.202200291
PMID 35880810
PQID 2711088657
PQPubID 986335
PageCount 10
ParticipantIDs webofscience_primary_000836248100001CitationCount
crossref_primary_10_1002_cmdc_202200291
wiley_primary_10_1002_cmdc_202200291_CMDC202200291
crossref_citationtrail_10_1002_cmdc_202200291
pubmed_primary_35880810
unpaywall_primary_10_1002_cmdc_202200291
proquest_miscellaneous_2694962176
webofscience_primary_000836248100001
proquest_journals_2711088657
PublicationCentury 2000
PublicationDate September 5, 2022
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: September 5, 2022
  day: 05
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle ChemMedChem
PublicationTitleAbbrev CHEMMEDCHEM
PublicationTitleAlternate ChemMedChem
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 7
2021; 27
2017; 8
2021; 21
2013; 4
2021; 22
2020; 60
2020; 16
2011; 10
2020; 12
2020; 10
2004; 32
2018; 9
2018; 39
2009; 10
2019; 20
2020; 52
2019; 24
2017; 79
2015; 43
1982; 299
2013; 430
2016; 40
2008; 24
2018; 34
2011; 164
2021; 9
2015; 13
2017; 61
2021; 49
2019; 9
2018; 182
2021; 2
1965; 163
2005
2018; 23
2012; 33
2014; 357
2004; 10
2016; 6
2018; 17
2016; 7
2018; 110
2021; 54
2021; 12
2021; 11
2022
2020
2015; 21
2021; 61
2014; 341
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Levenshtein V. I. (e_1_2_9_57_1) 1965; 163
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Ansari M. (e_1_2_9_56_1) 2022
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Haapala A. (e_1_2_9_58_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
Kašperová A. (e_1_2_9_43_1) 2015; 13
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
Wan F. (e_1_2_9_20_1) 2022
e_1_2_9_9_1
e_1_2_9_48_2
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Szlasa, W (WOS:000552602500001) 2020; 52
Bandyopadhyay, S (WOS:000314320700001) 2013; 430
Schaduangrat, N (WOS:000470996600131) 2019; 24
Gogoladze, G (WOS:000341783500009) 2014; 357
Tyagi, A (WOS:000350210400122) 2015; 43
Manavalan, B (WOS:000412066700108) 2017; 8
(000836248100001.49) 2014; 126
Whitmore, L (WOS:000222273100135) 2004; 32
Heffernan, R (WOS:000448826100006) 2018; 39
Barrett, R (WOS:000443404400003) 2018; 110
Hajisharifi, Z (WOS:000330149600004) 2014; 341
Schneider, G (WOS:000424402500014) 2018; 17
Chen, HM (WOS:000437071200009) 2018; 23
Haapala, A. (000836248100001.58) 2020
Vrablikova, A (WOS:000415669400002) 2017; 61
Capecchi, A. (000836248100001.19) 2021; 9
EISENBERG, D (WOS:A1982PH55300056) 1982; 299
Bian, YM (WOS:000617231200004) 2021; 27
Probst, D (WOS:000430175000030) 2018; 34
Ansari, M. (000836248100001.56) 2022
Kabelka, I (WOS:000648508400014) 2021; 54
Capecchi, A (WOS:000661474800001) 2021; 12
Lo, YC (WOS:000443787600011) 2018; 23
Stach, M (WOS:000344793400026) 2014; 53
Lee, EY (WOS:000413400700007) 2017; 7
Gaspar, D (WOS:000331514900002) 2013; 4
Riedl, S (WOS:000297958000008) 2011; 164
Aronica, PGA (WOS:000678396200003) 2021; 61
Gabernet, G (WOS:000390552300003) 2016; 7
Lin, LM (WOS:000701202400003) 2021; 11
Wei, LY (WOS:000453453300007) 2018; 34
Akbar, S (WOS:000409286500007) 2017; 79
Wu, CY (WOS:000484971800002) 2019; 20
Huang, YB (WOS:000288153900005) 2011; 10
Timmons, PB (WOS:000549999900009) 2020; 10
Leuschner, C (WOS:000222195800003) 2004; 10
Kasperov?, A. (000836248100001.43) 2015; 13
Grisoni, F (WOS:000437734400003) 2018; 13
Baeriswyl, S (WOS:000700040900001) 2021; 2
Chaudhary, K (WOS:000371588600002) 2016; 6
Chen, W (WOS:000375692900120) 2016; 7
Lorent, JH (WOS:000530218800001) 2020; 16
Sohlenkamp, C (WOS:000371243600008) 2016; 40
De Santis, I (WOS:000759972000010) 2021; 21
Gautier, R (WOS:000258959600021) 2008; 24
Bawa, M. (000836248100001.59) 2005
Cerovsky, V (WOS:000269279700024) 2009; 10
Bin Hafeez, A (WOS:000723165100001) 2021; 22
Wan, FP (WOS:001101874800001) 2022; 1
Kabir, M (WOS:000450380100018) 2018; 182
Capecchi, A (WOS:000510104100014) 2020; 60
Plisson, F (WOS:000578475300049) 2020; 10
Slaninová, J (WOS:000300073100003) 2012; 33
LEVENSHT.VI (WOS:A19656731900016) 1965; 163
Xu, L (WOS:000428508800041) 2018; 9
Probst, D (WOS:000514340100001) 2020; 12
Battista, F (WOS:000645729400001) 2021; 22
Li, FM (WOS:000384097200001) 2016; 6
Pirtskhalava, M (WOS:000608437800038) 2021; 49
Vijayakumar, S (WOS:000348448700013) 2015; 21
Gabernet, G (WOS:000478575000069) 2019; 9
References_xml – volume: 21
  start-page: 99
  year: 2015
  end-page: 106
  publication-title: Int. J. Pept. Res. Ther.
– volume: 10
  start-page: 2299
  year: 2004
  end-page: 2310
  publication-title: Curr. Pharm. Des.
– volume: 24
  start-page: 2101
  year: 2008
  end-page: 2102
  publication-title: Bioinformatics
– volume: 12
  start-page: 12
  year: 2020
  publication-title: J. Cheminf.
– volume: 54
  start-page: 2196
  year: 2021
  end-page: 2204
  publication-title: Acc. Chem. Res.
– start-page: 651
  year: 2005
  end-page: 660
– volume: 7
  year: 2017
  publication-title: Interface Focus
– volume: 6
  start-page: 33910
  year: 2016
  publication-title: Sci. Rep.
– volume: 79
  start-page: 62
  year: 2017
  end-page: 70
  publication-title: Artif. Intell. Med.
– volume: 7
  start-page: 16895
  year: 2016
  end-page: 16909
  publication-title: Oncotarget
– volume: 22
  start-page: 11691
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 110
  year: 2018
  publication-title: Pept. Sci.
– volume: 24
  start-page: 1973
  year: 2019
  publication-title: Molecules
– volume: 61
  start-page: 3172
  year: 2021
  end-page: 3196
  publication-title: J. Chem. Inf. Model.
– volume: 53 126
  start-page: 12827 13041
  year: 2014 2014
  end-page: 12831 13045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2020
  publication-title: Ztane/Python-Levenshtein
– volume: 20
  start-page: 456
  year: 2019
  publication-title: BMC Bioinf.
– volume: 357
  start-page: 63
  year: 2014
  end-page: 68
  publication-title: FEMS Microbiol. Lett.
– volume: 2
  start-page: 1608
  year: 2021
  end-page: 1617
  publication-title: RSC Chem. Biol.
– volume: 49
  start-page: D288
  year: 2021
  end-page: D297
  publication-title: Nucleic Acids Res.
– volume: 27
  start-page: 71
  year: 2021
  publication-title: J. Mol. Model.
– volume: 7
  start-page: 2232
  year: 2016
  end-page: 2245
  publication-title: MedChemComm
– volume: 32
  start-page: W668
  year: 2004
  end-page: W673
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 2609
  year: 2021
  end-page: 2644
  publication-title: Acta Pharm. Sin. B.
– volume: 430
  start-page: 1
  year: 2013
  end-page: 6
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 34
  start-page: 4007
  year: 2018
  end-page: 4016
  publication-title: Bioinformatics
– volume: 10
  start-page: 2089
  year: 2009
  end-page: 2099
  publication-title: ChemBioChem
– volume: 13
  start-page: 54
  year: 2015
  end-page: 57
  publication-title: Collect. Czech. Chem. Commun.
– volume: 9
  start-page: 158
  year: 2018
  publication-title: Genes
– start-page: 2022
  year: 2022
  publication-title: bioRxiv
– volume: 9
  year: 2021
  publication-title: Med. Drug Discovery
– volume: 39
  start-page: 2210
  year: 2018
  end-page: 2216
  publication-title: J. Comput. Chem.
– volume: 52
  start-page: 321
  year: 2020
  end-page: 342
  publication-title: J. Bioenerg. Biomembr.
– volume: 6
  start-page: 22843
  year: 2016
  publication-title: Sci. Rep.
– volume: 40
  start-page: 133
  year: 2016
  end-page: 159
  publication-title: FEMS Microbiol. Rev.
– volume: 10
  start-page: 10869
  year: 2020
  publication-title: Sci. Rep.
– volume: 8
  start-page: 77121
  year: 2017
  end-page: 77136
  publication-title: Oncotarget
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  publication-title: Drug Discovery Today
– volume: 9
  start-page: 11282
  year: 2019
  publication-title: Sci. Rep.
– volume: 22
  start-page: 2857
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 17
  start-page: 97
  year: 2018
  end-page: 113
  publication-title: Nat. Rev. Drug Discovery
– volume: 21
  start-page: 6385
  year: 2021
  publication-title: Sensors
– volume: 43
  start-page: D837
  year: 2015
  end-page: 843
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 43
  year: 2020
  publication-title: J. Cheminf.
– volume: 164
  start-page: 766
  year: 2011
  end-page: 781
  publication-title: Chem. Phys. Lipids
– volume: 163
  start-page: 845
  year: 1965
  end-page: 848
  publication-title: Dokl. Akad. Nauk SSSR
– year: 2022
  publication-title: Digital Discovery
– volume: 16
  start-page: 644
  year: 2020
  end-page: 652
  publication-title: Nat. Chem. Biol.
– volume: 299
  start-page: 371
  year: 1982
  end-page: 374
  publication-title: Nature
– volume: 10
  start-page: 16581
  year: 2020
  publication-title: Sci. Rep.
– volume: 341
  start-page: 34
  year: 2014
  end-page: 40
  publication-title: J. Theor. Biol.
– volume: 23
  start-page: 1538
  year: 2018
  end-page: 1546
  publication-title: Drug Discovery Today
– volume: 34
  start-page: 1433
  year: 2018
  end-page: 1435
  publication-title: Bioinformatics
– volume: 12
  start-page: 9221
  year: 2021
  end-page: 9232
  publication-title: Chem. Sci.
– volume: 33
  start-page: 18
  year: 2012
  end-page: 26
  publication-title: Peptides
– volume: 182
  start-page: 158
  year: 2018
  end-page: 165
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 4
  year: 2013
  publication-title: Front. Microbiol.
– volume: 10
  start-page: 416
  year: 2011
  end-page: 426
  publication-title: Mol. Cancer Ther.
– volume: 60
  start-page: 121
  year: 2020
  end-page: 132
  publication-title: J. Chem. Inf. Model.
– volume: 61
  start-page: 474
  year: 2017
  end-page: 481
  publication-title: Microbiol. Immunol.
– volume: 13
  start-page: 1300
  year: 2018
  end-page: 1302
  publication-title: ChemMedChem
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.accounts.1c00047
– ident: e_1_2_9_51_1
  doi: 10.1093/bioinformatics/btn392
– ident: e_1_2_9_15_1
  doi: 10.1039/D1SC01713F
– ident: e_1_2_9_12_1
  doi: 10.1038/srep22843
– ident: e_1_2_9_5_1
  doi: 10.1039/C6MD00376A
– ident: e_1_2_9_49_1
  doi: 10.2174/1381612043383971
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-019-47568-9
– ident: e_1_2_9_46_1
  doi: 10.3389/fmicb.2013.00294
– ident: e_1_2_9_2_1
  doi: 10.1016/j.drudis.2018.01.039
– ident: e_1_2_9_50_1
  doi: 10.1016/j.chemphyslip.2011.09.004
– ident: e_1_2_9_16_1
  doi: 10.1098/rsfs.2016.0153
– ident: e_1_2_9_3_1
  doi: 10.1038/nrd.2017.232
– year: 2020
  ident: e_1_2_9_58_1
  publication-title: Ztane/Python-Levenshtein
– ident: e_1_2_9_9_1
  doi: 10.1093/nar/gkaa991
– ident: e_1_2_9_59_1
  doi: 10.1145/1060745.1060840
– ident: e_1_2_9_23_1
  doi: 10.1093/bioinformatics/bty451
– ident: e_1_2_9_61_1
  doi: 10.1093/nar/gkh371
– ident: e_1_2_9_27_1
  doi: 10.1038/srep33910
– ident: e_1_2_9_22_1
  doi: 10.1007/s10989-014-9435-7
– ident: e_1_2_9_36_1
  doi: 10.1093/femsre/fuv008
– start-page: 2022
  year: 2022
  ident: e_1_2_9_56_1
  publication-title: bioRxiv
– ident: e_1_2_9_60_1
  doi: 10.1093/bioinformatics/btx760
– ident: e_1_2_9_34_1
  doi: 10.1007/s10863-020-09846-4
– ident: e_1_2_9_31_1
  doi: 10.1186/s12859-019-3006-z
– ident: e_1_2_9_11_1
  doi: 10.3390/ijms222111691
– ident: e_1_2_9_47_1
  doi: 10.1039/D1CB00124H
– ident: e_1_2_9_25_1
  doi: 10.1016/j.artmed.2017.06.008
– ident: e_1_2_9_13_1
  doi: 10.1038/s41598-020-67701-3
– ident: e_1_2_9_54_1
  doi: 10.3390/ijms22062857
– volume: 13
  start-page: 54
  year: 2015
  ident: e_1_2_9_43_1
  publication-title: Collect. Czech. Chem. Commun.
– ident: e_1_2_9_21_1
  doi: 10.3390/genes9030158
– ident: e_1_2_9_29_1
  doi: 10.18632/oncotarget.20365
– ident: e_1_2_9_41_1
  doi: 10.1038/299371a0
– ident: e_1_2_9_42_1
  doi: 10.1016/j.peptides.2011.11.002
– ident: e_1_2_9_52_1
  doi: 10.3390/s21196385
– ident: e_1_2_9_32_1
  doi: 10.1002/cmdc.201800204
– ident: e_1_2_9_35_1
  doi: 10.1038/s41589-020-0529-6
– ident: e_1_2_9_45_1
  doi: 10.1186/s13321-020-00445-4
– ident: e_1_2_9_14_1
  doi: 10.1038/s41598-020-73644-6
– ident: e_1_2_9_55_1
  doi: 10.1186/s13321-020-0416-x
– ident: e_1_2_9_19_1
  doi: 10.1016/j.medidd.2021.100081
– ident: e_1_2_9_53_1
  doi: 10.1016/j.bbrc.2012.11.015
– ident: e_1_2_9_26_1
  doi: 10.18632/oncotarget.7815
– ident: e_1_2_9_48_2
  doi: 10.1002/ange.201409270
– ident: e_1_2_9_4_1
  doi: 10.1016/j.apsb.2021.07.014
– ident: e_1_2_9_8_1
  doi: 10.1111/1574-6968.12489
– ident: e_1_2_9_28_1
  doi: 10.1016/j.chemolab.2018.09.007
– ident: e_1_2_9_39_1
  doi: 10.1002/cbic.200900133
– ident: e_1_2_9_44_1
  doi: 10.1111/1348-0421.12538
– ident: e_1_2_9_40_1
  doi: 10.1002/jcc.25534
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jtbi.2013.08.037
– ident: e_1_2_9_17_1
  doi: 10.1002/pep2.24079
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.jcim.1c00175
– ident: e_1_2_9_37_1
  doi: 10.1007/s00894-021-04674-8
– ident: e_1_2_9_38_1
  doi: 10.1021/acs.jcim.9b01014
– ident: e_1_2_9_1_1
  doi: 10.1016/j.drudis.2018.05.010
– ident: e_1_2_9_48_1
  doi: 10.1002/anie.201409270
– ident: e_1_2_9_6_1
  doi: 10.1158/1535-7163.MCT-10-0811
– ident: e_1_2_9_10_1
  doi: 10.1093/nar/gku892
– ident: e_1_2_9_24_1
  doi: 10.3390/molecules24101973
– year: 2022
  ident: e_1_2_9_20_1
  publication-title: Digital Discovery
– volume: 163
  start-page: 845
  year: 1965
  ident: e_1_2_9_57_1
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 9
  year: 2021
  ident: 000836248100001.19
  publication-title: Med. Drug Discovery
– volume: 6
  start-page: ARTN 22843
  year: 2016
  ident: WOS:000371588600002
  article-title: A Web Server and Mobile App for Computing Hemolytic Potency of Peptides
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/srep22843
– volume: 39
  start-page: 2210
  year: 2018
  ident: WOS:000448826100006
  article-title: Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning
  publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY
  doi: 10.1002/jcc.25534
– volume: 32
  start-page: W668
  year: 2004
  ident: WOS:000222273100135
  article-title: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data
  publication-title: NUCLEIC ACIDS RESEARCH
  doi: 10.1093/nar/gkh371
– volume: 7
  start-page: 2232
  year: 2016
  ident: WOS:000390552300003
  article-title: Membranolytic anticancer peptides
  publication-title: MEDCHEMCOMM
  doi: 10.1039/c6md00376a
– volume: 21
  start-page: ARTN 6385
  year: 2021
  ident: WOS:000759972000010
  article-title: Co-Density Distribution Maps for Advanced Molecule Colocalization and Co-Distribution Analysis
  publication-title: SENSORS
  doi: 10.3390/s21196385
– volume: 341
  start-page: 34
  year: 2014
  ident: WOS:000330149600004
  article-title: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test
  publication-title: JOURNAL OF THEORETICAL BIOLOGY
  doi: 10.1016/j.jtbi.2013.08.037
– volume: 9
  start-page: ARTN 11282
  year: 2019
  ident: WOS:000478575000069
  article-title: In silico design and optimization of selective membranolytic anticancer peptides
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/s41598-019-47568-9
– volume: 33
  start-page: 18
  year: 2012
  ident: WOS:000300073100003
  article-title: Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells
  publication-title: PEPTIDES
  doi: 10.1016/j.peptides.2011.11.002
– volume: 6
  start-page: ARTN 33910
  year: 2016
  ident: WOS:000384097200001
  article-title: Identifying anticancer peptides by using improved hybrid compositions
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/srep33910
– volume: 21
  start-page: 99
  year: 2015
  ident: WOS:000348448700013
  article-title: ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides
  publication-title: INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS
  doi: 10.1007/s10989-014-9435-7
– volume: 164
  start-page: 766
  year: 2011
  ident: WOS:000297958000008
  article-title: Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs
  publication-title: CHEMISTRY AND PHYSICS OF LIPIDS
  doi: 10.1016/j.chemphyslip.2011.09.004
– volume: 7
  start-page: 16895
  year: 2016
  ident: WOS:000375692900120
  article-title: IACP: a sequence-based tool for identifying anticancer peptides
  publication-title: ONCOTARGET
– volume: 10
  start-page: 2299
  year: 2004
  ident: WOS:000222195800003
  article-title: Membrane disrupting lytic peptides for cancer treatments
  publication-title: CURRENT PHARMACEUTICAL DESIGN
– volume: 61
  start-page: 3172
  year: 2021
  ident: WOS:000678396200003
  article-title: Computational Methods and Tools in Antimicrobial Peptide Research
  publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING
  doi: 10.1021/acs.jcim.1c00175
– volume: 20
  start-page: ARTN 456
  year: 2019
  ident: WOS:000484971800002
  article-title: PTPD: predicting therapeutic peptides by deep learning and word2vec
  publication-title: BMC BIOINFORMATICS
  doi: 10.1186/s12859-019-3006-z
– volume: 9
  start-page: ARTN 158
  year: 2018
  ident: WOS:000428508800041
  article-title: A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides
  publication-title: GENES
  doi: 10.3390/genes9030158
– volume: 24
  start-page: 2101
  year: 2008
  ident: WOS:000258959600021
  article-title: HELIQUEST:: a web server to screen sequences with specific α-helical properties
  publication-title: BIOINFORMATICS
  doi: 10.1093/bioinformatics/btn392
– volume: 11
  start-page: 2609
  year: 2021
  ident: WOS:000701202400003
  article-title: Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era
  publication-title: ACTA PHARMACEUTICA SINICA B
  doi: 10.1016/j.apsb.2021.07.014
– volume: 22
  start-page: ARTN 11691
  year: 2021
  ident: WOS:000723165100001
  article-title: Antimicrobial Peptides: An Update on Classifications and Databases
  publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
  doi: 10.3390/ijms222111691
– volume: 4
  start-page: ARTN 294
  year: 2013
  ident: WOS:000331514900002
  article-title: From antimicrobial to anticancer peptides. A review
  publication-title: FRONTIERS IN MICROBIOLOGY
  doi: 10.3389/fmicb.2013.00294
– volume: 182
  start-page: 158
  year: 2018
  ident: WOS:000450380100018
  article-title: Intelligent computational method for discrimination of anticancer peptides by incorporating sequential and evolutionary profiles information
  publication-title: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS
  doi: 10.1016/j.chemolab.2018.09.007
– volume: 52
  start-page: 321
  year: 2020
  ident: WOS:000552602500001
  article-title: Lipid composition of the cancer cell membrane
  publication-title: JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  doi: 10.1007/s10863-020-09846-4
– volume: 43
  start-page: D837
  year: 2015
  ident: WOS:000350210400122
  article-title: CancerPPD: a database of anticancer peptides and proteins
  publication-title: NUCLEIC ACIDS RESEARCH
  doi: 10.1093/nar/gku892
– volume: 10
  start-page: 2089
  year: 2009
  ident: WOS:000269279700024
  article-title: Lasioglossins: Three Novel Antimicrobial Peptides from the Venom of the Eusocial Bee Lasioglossum laticeps (Hymenoptera: Halictidae)
  publication-title: CHEMBIOCHEM
  doi: 10.1002/cbic.200900133
– volume: 61
  start-page: 474
  year: 2017
  ident: WOS:000415669400002
  article-title: Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice
  publication-title: MICROBIOLOGY AND IMMUNOLOGY
  doi: 10.1111/1348-0421.12538
– volume: 357
  start-page: 63
  year: 2014
  ident: WOS:000341783500009
  article-title: DBAASP: database of antimicrobial activity and structure of peptides
  publication-title: FEMS MICROBIOLOGY LETTERS
  doi: 10.1111/1574-6968.12489
– volume: 110
  start-page: ARTN e24079
  year: 2018
  ident: WOS:000443404400003
  article-title: Classifying antimicrobial and multifunctional peptides with Bayesian network models
  publication-title: PEPTIDE SCIENCE
  doi: 10.1002/pep2.24079
– volume: 126
  start-page: 13041
  year: 2014
  ident: 000836248100001.49
  publication-title: Angew. Chem
– volume: 40
  start-page: 133
  year: 2016
  ident: WOS:000371243600008
  article-title: Bacterial membrane lipids: diversity in structures and pathways
  publication-title: FEMS MICROBIOLOGY REVIEWS
  doi: 10.1093/femsre/fuv008
– volume: 24
  start-page: ARTN 1973
  year: 2019
  ident: WOS:000470996600131
  article-title: ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides
  publication-title: MOLECULES
  doi: 10.3390/molecules24101973
– volume: 10
  start-page: ARTN 16581
  year: 2020
  ident: WOS:000578475300049
  article-title: Machine learning-guided discovery and design of non-hemolytic peptides
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/s41598-020-73644-6
– volume: 10
  start-page: ARTN 10869
  year: 2020
  ident: WOS:000549999900009
  article-title: HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/s41598-020-67701-3
– volume: 430
  start-page: 1
  year: 2013
  ident: WOS:000314320700001
  article-title: Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom
  publication-title: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
  doi: 10.1016/j.bbrc.2012.11.015
– year: 2020
  ident: 000836248100001.58
  publication-title: Ztane/Python-Levenshtein.
– volume: 299
  start-page: 371
  year: 1982
  ident: WOS:A1982PH55300056
  article-title: THE HELICAL HYDROPHOBIC MOMENT - A MEASURE OF THE AMPHIPHILICITY OF A HELIX
  publication-title: NATURE
– volume: 8
  start-page: 77121
  year: 2017
  ident: WOS:000412066700108
  article-title: MLACP: machine-learning-based prediction of anticancer peptides
  publication-title: ONCOTARGET
  doi: 10.18632/oncotarget.20365
– volume: 10
  start-page: 416
  year: 2011
  ident: WOS:000288153900005
  article-title: Studies on Mechanism of Action of Anticancer Peptides by Modulation of Hydrophobicity Within a Defined Structural Framework
  publication-title: MOLECULAR CANCER THERAPEUTICS
  doi: 10.1158/1535-7163.MCT-10-0811
– volume: 22
  start-page: ARTN 2857
  year: 2021
  ident: WOS:000645729400001
  article-title: Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III
  publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
  doi: 10.3390/ijms22062857
– volume: 12
  start-page: 9221
  year: 2021
  ident: WOS:000661474800001
  article-title: Machine learning designs non-hemolytic antimicrobial peptides
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc01713f
– volume: 60
  start-page: 121
  year: 2020
  ident: WOS:000510104100014
  article-title: Populating Chemical Space with Peptides Using a Genetic Algorithm
  publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING
  doi: 10.1021/acs.jcim.9b01014
– volume: 2
  start-page: 1608
  year: 2021
  ident: WOS:000700040900001
  article-title: A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography
  publication-title: RSC CHEMICAL BIOLOGY
  doi: 10.1039/d1cb00124h
– volume: 17
  start-page: 97
  year: 2018
  ident: WOS:000424402500014
  article-title: Automating drug discovery
  publication-title: NATURE REVIEWS DRUG DISCOVERY
  doi: 10.1038/nrd.2017.232
– volume: 54
  start-page: 2196
  year: 2021
  ident: WOS:000648508400014
  article-title: Advances in Molecular Understanding of α-Helical Membrane-Active Peptides
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.1c00047
– year: 2022
  ident: 000836248100001.56
  publication-title: bioRxiv
– volume: 27
  start-page: ARTN 71
  year: 2021
  ident: WOS:000617231200004
  article-title: Generative chemistry: drug discovery with deep learning generative models
  publication-title: JOURNAL OF MOLECULAR MODELING
  doi: 10.1007/s00894-021-04674-8
– start-page: 651
  year: 2005
  ident: 000836248100001.59
  publication-title: Proceedings of the 14th International Conference on World Wide Web
– volume: 23
  start-page: 1241
  year: 2018
  ident: WOS:000437071200009
  article-title: The rise of deep learning in drug discovery
  publication-title: DRUG DISCOVERY TODAY
  doi: 10.1016/j.drudis.2018.01.039
– volume: 16
  start-page: 644
  year: 2020
  ident: WOS:000530218800001
  article-title: Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape
  publication-title: NATURE CHEMICAL BIOLOGY
  doi: 10.1038/s41589-020-0529-6
– volume: 53
  start-page: 12827
  year: 2014
  ident: WOS:000344793400026
  article-title: Combining Topology and Sequence Design for the Discovery of Potent Antimicrobial Peptide Dendrimers against Multidrug-Resistant Pseudomonas aeruginosa
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201409270
– volume: 1
  start-page: 195
  year: 2022
  ident: WOS:001101874800001
  article-title: Deep generative models for peptide design
  publication-title: DIGITAL DISCOVERY
  doi: 10.1039/d1dd00024a
– volume: 34
  start-page: 4007
  year: 2018
  ident: WOS:000453453300007
  article-title: ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: BIOINFORMATICS
  doi: 10.1093/bioinformatics/bty451
– volume: 23
  start-page: 1538
  year: 2018
  ident: WOS:000443787600011
  article-title: Machine learning in chemoinformatics and drug discovery
  publication-title: DRUG DISCOVERY TODAY
  doi: 10.1016/j.drudis.2018.05.010
– volume: 7
  start-page: ARTN 20160153
  year: 2017
  ident: WOS:000413400700007
  article-title: What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
  publication-title: INTERFACE FOCUS
  doi: 10.1098/rsfs.2016.0153
– volume: 34
  start-page: 1433
  year: 2018
  ident: WOS:000430175000030
  article-title: FUn: a framework for interactive visualizations of large, high-dimensional datasets on the web
  publication-title: BIOINFORMATICS
  doi: 10.1093/bioinformatics/btx760
– volume: 79
  start-page: 62
  year: 2017
  ident: WOS:000409286500007
  article-title: iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space
  publication-title: ARTIFICIAL INTELLIGENCE IN MEDICINE
  doi: 10.1016/j.artmed.2017.06.008
– volume: 12
  start-page: ARTN 12
  year: 2020
  ident: WOS:000514340100001
  article-title: Visualization of very large high-dimensional data sets as minimum spanning trees
  publication-title: JOURNAL OF CHEMINFORMATICS
  doi: 10.1186/s13321-020-0416-x
– volume: 13
  start-page: 54
  year: 2015
  ident: 000836248100001.43
  publication-title: Collect. Czech. Chem. Commun
– volume: 13
  start-page: 1300
  year: 2018
  ident: WOS:000437734400003
  article-title: Designing Anticancer Peptides by Constructive Machine Learning
  publication-title: CHEMMEDCHEM
  doi: 10.1002/cmdc.201800204
– volume: 49
  start-page: D288
  year: 2021
  ident: WOS:000608437800038
  article-title: DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics
  publication-title: NUCLEIC ACIDS RESEARCH
  doi: 10.1093/nar/gkaa991
– volume: 163
  start-page: 845
  year: 1965
  ident: WOS:A19656731900016
  article-title: BINARY CODES FOR CORRECTING DELETION INSERTION AND SUBSTITUTION ERRORS
  publication-title: DOKLADY AKADEMII NAUK SSSR
SSID ssj0044818
Score 2.4473994
Snippet Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α‐helices, many of which are however also...
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic alpha-helices, many of which are however...
Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also...
Source Web of Science
SourceID unpaywall
proquest
pubmed
webofscience
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200291
SubjectTerms anticancer peptides
Antiinfectives and antibacterials
Antimicrobial peptides
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Cell Death
chemical space
Chemistry, Medicinal
genetic algorithm
Genetic algorithms
Helices
Helicity
Hemolysis
Humans
Learning algorithms
Life Sciences & Biomedicine
Machine Learning
Membranes
Neural networks
peptide design
Peptides
Pharmacology & Pharmacy
Recurrent neural networks
Science & Technology
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hcgAOiDeGghapKhxqdb1eb7zHKqVESKlyaKUekKx9GVVK7CiOhXzjJ_Ab-SXM2I7TgFARt1iZtVc7j52Znf2GkAPvrMBmNGHCHAQoSulQpyYKjYs958zEvM13TM_l5FJ8vkqubtzi7_AhhoQbakZrr1HBtamOt6ChduEQgpBjlQFeX78bgTODMs7FbGOLIfZoM3xRKlkIgYvawDYyfrw7fndb-sPXfEDu1cVSN9_0fP7bFrXr1bbb0tkj8rD3J-lJJwCPyR1fPCGHsw6QujmiF9v7VdURPaSzLVR185R8mba1lJ72MKtf6af62nlHT68ri8WdDS1zel4WP7__mPhFOW_gPXTqF7BwMAqoVvUSDSY9KTApDhNd0RkWyjhfPSOXZx8vxpOw77cQWtjKgFOxMdpYPPj0XsVeWAXBhxtxrqRmObepz2OVMyMiawTPhXQmdRCQMGltDI7dc7JXlIV_SajzQK7ylFkthEm9ZmA4vJdCaytGRgQk3Cx3ZnswcuyJMc86GGWeIXuygT0BeT_QLzsYjr9S7m-4l_XqWGV8hLcdUpmMAvJu-BsUCU9HYL3KGmikEkpChCYD8qLj-vCpOEmxQwkLyIdBDG6dx8FNKRmoW6dXchDM9mAlING_kI37NUKggnVAeCtxt8wgG09Px8PTq_8Z9Jrcx99tTV2yT_bWq9q_ASdsbd62evYLqPAnBA
  priority: 102
  providerName: Wiley-Blackwell
Title Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202200291
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000836248100001
https://www.ncbi.nlm.nih.gov/pubmed/35880810
https://www.proquest.com/docview/2711088657
https://www.proquest.com/docview/2694962176
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cmdc.202200291
UnpaywallVersion publishedVersion
Volume 17
WOS 000836248100001
WOSCitedRecordID wos000836248100001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1860-7187
  databaseCode: DR2
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  eissn: 1860-7187
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044818
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-69GHbw74_vHVFg9Ltoe4cWZbtx5CsC4MEMxroYGCsD4-yxA5JzPCe9ifsb9xfspO_sraMFvZiZHyWpfOd7k46_QRwoJVk5jAa23MUBihhmNhJIPq2UK6m1BEureY7JlM-nrGPZ97ZDozavTA1PkQ34WY0oxqvjYIvVVqP883qPn0nF8rAEFKTaWC2sO9yDz3yHuzOptHgs4m1Au7YGLGE23Lgt9iNVyq4aJuuOJx34XaRLZPyezKfX7JTF13byjad3Afd9qpOSfl2XGzEsfxxCfDxf7v9AO41zisZ1NL2EHZ09ggOoxr9ujwip9vNXOsjckiiLS52-Ri-TKrETU0aTNev5ENxrrQio_O1NJmkJclTMs2z3z9_jfUin5dYD5noBTYX30KqVbE0ozMZZGYGHhmyIpHJylF6_QRmJ-9Ph2O7OdzBlmg3USxcIRIhzSqr1qGrmQwx0lE-pSFPnJTKQKdumDqC9aVgNGVciUBh9ONwKV30Ip9CL8sz_RyI0kgepoEjE8ZEoBMHRymtOUsSyXzBLLDb3xrLBvncHMAxj2vMZhobhsYdQy1409Eva8yPf1LutVISN7q_jqlvtlYE3PMteN09Rq01SzHIr7xAGh6ykGM4yC14VktX9ynXC8xxKI4Fbztxu7YdB39LY0ddedicsqBexbGgfxOyYcMjg4qwsYBW4nhNC-LhZDTs7l7cvOkv4Y4pV2l73h70NqtCv0I_byP24RZlEV5Hn-h-o9J_AMK4TWI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQclg4IN4EFjDSauGw0SaO48bHVZelwKbqoStxQIriR9BKbVK1jVBv_AR-I7-EGedRCkKLODYdJ5bn4Znx-BtCDq3RHJvR-HFgIECRMvfzRIW-MpFlLFARc_mOdCxGl_zDp7irJsS7MA0-RJ9wQ81w9hoVHBPSJ1vUUD03iEHIsMwA76_f5CIUGH8xPumMMQQfLsUXJiLwIXKRHW5jwE52x-_uS384m7fJfl0u8s3XfDb7bY_adWvdvnR-l9xpHUp62kjAPXLDlvfJ0aRBpN4c0-n2gtXqmB7RyRarevOAfE5dMaWlLc7qF_quvjLW0LOrlcbqzg2tCjquyh_fvo_svJpt4D00tXNYORgFVMt6gRaTnpaYFYeJLukEK2WMXT0kl-dvp8OR3zZc8DXsZcCqSKlcaTz5tFZGlmsJ0YcZMCZFHhRMJ7aIZBEoHmrFWcGFUYmBiCQQWkfg2T0ie2VV2ieEGgvkskgCnXOuEpsHYDmsFTzPNR8o7hG_W-5Mt2jk2BRjljU4yixD9mQ9ezzyuqdfNDgcf6U86LiXtfq4ytgArzskIh545FX_N2gSHo_AelU10AjJpYAQTXjkccP1_lNRnGCLksAjb3oxuHYeh79KSU_tvF7BQDDdyYpHwn8hG7ZrhEgFa48wJ3HXzCAbpmfD_tfT_xn0kuyPpulFdvF-_PEZuYXPXYFdfED21svaPgePbK1eOJ37CZAsKnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIvE48IYaCixSVTjUrbNeb7zHKiGER6IItRKHSpb3YVQ1saMkFjInfgK_kV_CrF8hRagIjrZn7d3xzM7M7uw3ALtGK2aL0biBpzFAESJ241B2XKl9Q6knfVqud4zGfHjC3n0KmmxCexamwodoF9ysZpTztVVwM9fJ4Ro1VM20xSCkNs3Anl-_ygIR2qy-_scWQQqDj3KJrxNyz8XIRTS4jR493Gy_aZd-czZvwvU8ncfFl3g6vWCjNt3a0i4NboNsRlSlo5wf5Ct5oL5eAHv8ryHfgVu110qOKjG7C1dMeg_2JhXsdbFPjtenuJb7ZI9M1oDYxX04HZUZm4bUYK6fyZv8TBtN-mdLZVNIC5IlZJylP759H5pZNi3wPWRkZthXbIVUi3xup2VylNqld-TGgkxsOo42ywdwMnh93Bu6dVUHV6HBRHnwpYylsturxgjfMCUwxNFdSgWPvYSq0CS-SDzJOkoymjCuZagx7PG4Uj66jw9hK81Ssw1EGyQXSeipmDEZmtjD6ckYzuJYsa5kDrjNP41UDXluK29MowqsmUaWoVHLUAdetvTzCuzjj5Q7jYhEtdIvI9q1ZypCHnQdeNE-RnW1ezDIryxHGi6Y4BgHcgceVaLVfsoPQlsHxXPgVStrl_Zj91dRbKlL15pTlP5y-8aBzt-Q9WoeWTiElQO0lMVLehD1Rv1ee_X4Xxo9h2uT_iD68Hb8_gncsLfLJL5gB7ZWi9w8Ra9vJZ-Vev0T_JBLxg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED9K-rDtofu_eeuGBqXbQ905sixLjyFZFwYJeWigg4HRP5eyxA5JTPGe9hH2GfdJJtmOs7aMFvZm47Msne9Od9LdTwAHRiviDqPxo0DbAIVz4Qsmu77UocE4kCGu1jtGYzqcki9n0dkODDa1MDU-RLvg5jSjstdOwRc6re18s7uPP6q5djCE2GUauBL2XRpZj7wDu9PxpPfVxVqMBr6NWPj2msUb7MYbDVydm244nA_gXpEtRHkpZrNr89RV17aam04egtmMqk5J-X5crOWx-nEN8PF_h_0I9hrnFfVqaXsMOyZ7AoeTGv26PEKn22Ku1RE6RJMtLnb5FL6NqsRNgxpM13P0ubjQRqPBxUq5TNIS5Ska59nvn7-GZp7PStsOGpm57a59y1Iti4WzzqiXuRV4y5AlmrisHG1Wz2B68um0P_Sbwx18ZedNKxahlEIqt8tqDA8NUdxGOjrGmFMRpFgxk4Y8DSTpKklwSqiWTNvoJ6BKhdaLfA6dLM_MS0DaWHKeskAJQiQzIrBWyhhKhFAklsQDf_NbE9Ugn7sDOGZJjdmME8fQpGWoB-9b-kWN-fFPyv2NlCSN7q8SHLvSCkaj2IN37WOrtW4rxvIrLywN5YRTGw5SD17U0tV-KoyYOw4l8OBDK2639uPgb2lsqSsPm2LC6l0cD7p3Ies3PHKoCGsPcCWOt_Qg6Y8G_fbu1d27_hruu-sqbS_ah856WZg31s9by7eNGv8BM7lLog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Guided+Discovery+of+Non-Hemolytic+Membrane+Disruptive+Anticancer+Peptides&rft.jtitle=ChemMedChem&rft.au=Zakharova%2C+Elena&rft.au=Orsi%2C+Markus&rft.au=Capecchi%2C+Alice&rft.au=Reymond%2C+Jean-Louis&rft.date=2022-09-05&rft.issn=1860-7187&rft.eissn=1860-7187&rft.volume=17&rft.issue=17&rft.spage=e202200291&rft_id=info:doi/10.1002%2Fcmdc.202200291&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon