A Brain Network Analysis-Based Double Way Deep Neural Network for Emotion Recognition

Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 917 - 925
Main Authors Niu, Weixin, Ma, Chao, Sun, Xinlin, Li, Mengyu, Gao, Zhongke
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3236434

Cover

Abstract Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks.
AbstractList Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks.
Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks.Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks.
Author Sun, Xinlin
Ma, Chao
Li, Mengyu
Niu, Weixin
Gao, Zhongke
Author_xml – sequence: 1
  givenname: Weixin
  orcidid: 0000-0003-0630-178X
  surname: Niu
  fullname: Niu, Weixin
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0001-6981-0165
  surname: Ma
  fullname: Ma, Chao
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Xinlin
  orcidid: 0000-0002-5257-6285
  surname: Sun
  fullname: Sun, Xinlin
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Mengyu
  orcidid: 0000-0002-3591-5898
  surname: Li
  fullname: Li, Mengyu
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Zhongke
  orcidid: 0000-0002-9551-202X
  surname: Gao
  fullname: Gao, Zhongke
  email: zhongkegao@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37018673$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1r2zAYhcXoWD-2PzDGMOxmN85efVuXaZt2hdJB17JLIctScaZYmWRT8u9nN1kYGexKL-I5R4fz6hQddbFzCL3HMMMY1JeHu-_3ixkBQmeUUMEoe4VOMOdVCQTD0TRTVjJK4Bid5rwEwFJw-QYdUwm4EpKeoMd5cZ5M2xV3rn-O6Wcx70zY5DaX5ya7priMQx1c8cNsikvn1iM2JBP2tI-pWKxi38auuHc2PnXtNL9Fr70J2b3bnWfo8WrxcPG1vP12fXMxvy0twxRKYgRgNkbCqhKVl7XHpJFMOGYx5Y1SQJzyNW2UBUuUVVABw16B4AZT6ukZutn6NtEs9Tq1K5M2OppWv1zE9KRN6lsbnOakosC99eAJY1QogWslqqbhvG4IcaMX3XoN3dpsnk0Ie0MMeipc911OTk-F613ho-rzVrVO8dfgcq9XbbYuBNO5OGRNpJKYSSBiRD8doMs4pLHuiZKUcUZ4NVIfd9RQr1yzz_BnZSNAtoBNMY95_D8xX_7FYczqQGTb3kyr6sfth_9LP2ylrXPur7cAC6IU_Q35Mb_x
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_electronics12102232
crossref_primary_10_1016_j_apacoust_2023_109620
crossref_primary_10_3934_mmc_2024010
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_1007_s10489_023_04971_0
crossref_primary_10_1109_LSP_2024_3353679
crossref_primary_10_1016_j_metrad_2023_100046
crossref_primary_10_3233_JIFS_237884
crossref_primary_10_1109_TNSRE_2023_3266810
crossref_primary_10_1016_j_knosys_2024_112599
crossref_primary_10_1109_JTEHM_2025_3542408
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_3389_fnins_2024_1519970
crossref_primary_10_1109_TAFFC_2024_3433470
crossref_primary_10_34133_cbsystems_0088
crossref_primary_10_1093_cercor_bhae477
Cites_doi 10.3389/fnhum.2018.00521
10.1109/72.557673
10.1142/S0129065717500058
10.1016/j.jmva.2021.104783
10.1109/DSPA53304.2022.9790754
10.1109/TNNLS.2018.2886414
10.1109/JSEN.2020.3027181
10.1016/j.neuroimage.2019.05.048
10.1109/TIM.2021.3090164
10.1016/j.neuroimage.2019.116443
10.1109/TAFFC.2018.2885474
10.1016/j.eswa.2018.07.054
10.1109/TNSRE.2021.3059429
10.1360/SSPMA2019-0149
10.1007/978-3-319-46493-0_27
10.1109/CVPR.2016.90
10.1109/TIM.2018.2851422
10.1109/TCBB.2020.3018137
10.1007/11492429_41
10.1016/j.euroneuro.2012.10.010
10.5555/3045118.3045167
10.1109/JSEN.2021.3119411
10.3390/e24101322
10.1016/j.bspc.2021.102525
10.1007/978-3-030-66151-9_17
10.1109/TCDS.2017.2685338
10.4018/978-1-6684-3947-0.ch011
10.3390/e19100516
10.1016/S0893-6080(00)00026-5
10.1177/1529100619832930
10.1088/1741-2552/aace8c
10.1109/TNSRE.2022.3211881
10.3390/s22134939
10.1109/TCYB.2018.2797176
10.48550/ARXIV.1807.06521
10.1109/TAFFC.2018.2817622
10.1109/TCDS.2016.2587290
10.1007/s12559-017-9533-x
10.1109/TCDS.2020.2999337
10.1016/j.bspc.2020.101867
10.1109/TAFFC.2017.2714671
10.1109/TNSRE.2021.3111689
10.1016/j.ins.2022.07.121
10.1007/978-3-319-46454-1_34
10.1007/978-3-642-15825-4_10
10.1016/j.bbe.2020.01.010
10.1109/TAMD.2015.2431497
10.1109/NER.2013.6695876
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2023.3236434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 925
ExternalDocumentID oai_doaj_org_article_528305fcf0f24436961b968dd55bd22e
10.1109/tnsre.2023.3236434
37018673
10_1109_TNSRE_2023_3236434
10016299
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922062; 61903270; 61873181
  funderid: 10.13039/501100001809
– fundername: Innovation of Science and Technology Forward 2030 program-“Brain Science and Brain-Inspired Intelligence Technology”
– fundername: National Natural Science Foundation of Tianjin, China
  grantid: 21JCJQJC00130
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4130-2a601465719868f7bf12d746e4c135d9902e9fb3d9c0c29c908041f9065a133f3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:26:08 EDT 2025
Tue Aug 19 20:07:45 EDT 2025
Fri Jul 11 13:15:43 EDT 2025
Fri Jul 25 05:11:22 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Wed Oct 01 01:12:33 EDT 2025
Wed Aug 27 02:48:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-2a601465719868f7bf12d746e4c135d9902e9fb3d9c0c29c908041f9065a133f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9551-202X
0000-0003-0630-178X
0000-0002-5257-6285
0000-0001-6981-0165
0000-0002-3591-5898
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10016299
PMID 37018673
PQID 2773454258
PQPubID 85423
PageCount 9
ParticipantIDs unpaywall_primary_10_1109_tnsre_2023_3236434
pubmed_primary_37018673
ieee_primary_10016299
doaj_primary_oai_doaj_org_article_528305fcf0f24436961b968dd55bd22e
crossref_citationtrail_10_1109_TNSRE_2023_3236434
crossref_primary_10_1109_TNSRE_2023_3236434
proquest_miscellaneous_2797147026
proquest_journals_2773454258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
Weng (ref34)
ref9
ref4
ref3
ref6
ref5
Simonyan (ref40) 2014
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Lu (ref49)
References_xml – ident: ref29
  doi: 10.3389/fnhum.2018.00521
– ident: ref38
  doi: 10.1109/72.557673
– ident: ref9
  doi: 10.1142/S0129065717500058
– ident: ref31
  doi: 10.1016/j.jmva.2021.104783
– ident: ref13
  doi: 10.1109/DSPA53304.2022.9790754
– ident: ref3
  doi: 10.1109/TNNLS.2018.2886414
– ident: ref11
  doi: 10.1109/JSEN.2020.3027181
– ident: ref26
  doi: 10.1016/j.neuroimage.2019.05.048
– ident: ref30
  doi: 10.1109/TIM.2021.3090164
– ident: ref32
  doi: 10.1016/j.neuroimage.2019.116443
– ident: ref46
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref41
  doi: 10.1016/j.eswa.2018.07.054
– ident: ref7
  doi: 10.1109/TNSRE.2021.3059429
– ident: ref17
  doi: 10.1360/SSPMA2019-0149
– ident: ref20
  doi: 10.1007/978-3-319-46493-0_27
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1109/TIM.2018.2851422
– start-page: 1
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref49
  article-title: Combining eye movements and EEG to enhance emotion recognition
– ident: ref6
  doi: 10.1109/TCBB.2020.3018137
– ident: ref27
  doi: 10.1007/11492429_41
– ident: ref18
  doi: 10.1016/j.euroneuro.2012.10.010
– ident: ref35
  doi: 10.5555/3045118.3045167
– ident: ref19
  doi: 10.1109/JSEN.2021.3119411
– ident: ref12
  doi: 10.3390/e24101322
– ident: ref16
  doi: 10.1016/j.bspc.2021.102525
– ident: ref33
  doi: 10.1007/978-3-030-66151-9_17
– ident: ref50
  doi: 10.1109/TCDS.2017.2685338
– ident: ref15
  doi: 10.4018/978-1-6684-3947-0.ch011
– ident: ref8
  doi: 10.3390/e19100516
– ident: ref23
  doi: 10.1016/S0893-6080(00)00026-5
– ident: ref2
  doi: 10.1177/1529100619832930
– ident: ref39
  doi: 10.1088/1741-2552/aace8c
– ident: ref4
  doi: 10.1109/TNSRE.2022.3211881
– ident: ref24
  doi: 10.3390/s22134939
– ident: ref47
  doi: 10.1109/TCYB.2018.2797176
– ident: ref22
  doi: 10.48550/ARXIV.1807.06521
– ident: ref45
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref51
  doi: 10.1109/TCDS.2016.2587290
– ident: ref43
  doi: 10.1007/s12559-017-9533-x
– ident: ref48
  doi: 10.1109/TCDS.2020.2999337
– ident: ref14
  doi: 10.1016/j.bspc.2020.101867
– ident: ref1
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref5
  doi: 10.1109/TNSRE.2021.3111689
– year: 2014
  ident: ref40
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– start-page: 5276
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref34
  article-title: Towards fast computation of certified robustness for ReLU networks
– ident: ref10
  doi: 10.1016/j.ins.2022.07.121
– ident: ref21
  doi: 10.1007/978-3-319-46454-1_34
– ident: ref36
  doi: 10.1007/978-3-642-15825-4_10
– ident: ref25
  doi: 10.1016/j.bbe.2020.01.010
– ident: ref42
  doi: 10.1109/TAMD.2015.2431497
– ident: ref44
  doi: 10.1109/NER.2013.6695876
SSID ssj0017657
Score 2.50517
Snippet Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 917
SubjectTerms Artificial neural networks
Brain
Brain modeling
Brain network
Classification
Correlation coefficient
Correlation coefficients
deep residual neural network
EEG
Electrodes
electroencephalogram (EEG)
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Feature extraction
Frequencies
Motion pictures
Network analysis
Neural networks
spearman correlation coefficient
Task analysis
Temporal variations
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hvQAHxGOBsAsyEnCB7Dq2E8fHLXS1QqKH0oq9RY4fpyqtllZo__3O5KVWILhwTRwn45nxNxPb3wC8c0pG4zRHRyoxQUEIS62gw-5cRV76KLij887fZsXVUn29zq_3Sn3RnrCOHrgbuHMiH-F5dJFHRCKqPpfVpii9z_PaCxFo9kUYG5Kpfv1AFy3HJ7qzSpUUfDguw835YvZ9Pj2jquFnktjTpTqApJa5vy-18qeo8yHc3zUbe_vLrlZ7SHT5GB71ISS76D79CdwLzVN4v08XzBYdVwD7wOYHTNzPYHnBJlQVgs26_d9sYCVJJ4hnnmFAXa8C-2Fv2ZcQNozIO7DDoTWGuGzaVf5h82Hv0bo5huXldPH5Ku1LK6SOUCsVtiDWmFxnpizKqOuYCa9VEZTLZO4RokQwsZbeOO6EcYYTT1E0GLBYzGqjfA5HzboJL4F5aVReSxk8ZoqZsTaGEI1XFCq6mOkEsmF0K9dLS-UvVlWbf3BTtRqpSCNVr5EEPo7PbDrWjb-2npDSxpbEmN1eQDuqejuq_mVHCRyTyvdeh8EwWm0Cp4MNVL17_6yE1lLlON2VCbwdb6Nj0mqLbcJ6R22MzpTGHDeBF53tjJ1LzYlIUCbwaTSm3wTdNij_gaCv_oegJ_CA-ux-I53C0fZmF15jYLWt37Q-dAc4BhZw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Brain Network Analysis-Based Double Way Deep Neural Network for Emotion Recognition
URI https://ieeexplore.ieee.org/document/10016299
https://www.ncbi.nlm.nih.gov/pubmed/37018673
https://www.proquest.com/docview/2773454258
https://www.proquest.com/docview/2797147026
https://ieeexplore.ieee.org/ielx7/7333/10031624/10016299.pdf
https://doaj.org/article/528305fcf0f24436961b968dd55bd22e
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RXoADzwKBUhkJuEBSx3bi-NiFrSok9rDsit6ixI8Lq-yq3QiVX4_HeWiXl7hFieN4NDOZGXvmG4DXWnCntKRekQofoHgTFlcMi92pcLQwjlGN9c6fZ_nFUny6zC77YvVQC2OtDclnNsHLcJZv1rrFrbJTxAvK_UwHcCCl6oq1xiMDmQdYT6_BIhac0aFChqrTxezLfJpgo_CEI2A6F3tWKID1991V_uRo3oXbbbOpbr5Xq9WO8Tm_D7Nh2V3Oybek3daJ_vELouN_0_UA7vVuKDnr5OYh3LLNI3izCzlMFh3eAHlL5nto3o9heUYm2FmCzLoccjIgm8QTbxMN8U55vbLka3VDPlq7IQgA4iccRns3mUy77kFkPuQvrZsjWJ5PFx8u4r49Q6zR8sWsyhF5JpOpKvLCydqlzEiRW6FTnhlv5phVruZGaaqZ0ooi1pFT3umpfGTs-BM4bNaNfQbEcCWymnNrfLSZqqpy1jplBLqb2qUygnRgV6l7arGFxqoMMQxVZWBxiSwuexZH8G58Z9Mhd_xz9ASlYByJqNvhhmdU2StxiUA4NHPaUee9IuyEmNYqL4zJstowZiM4QubufK7jawTHg1CV_S_iumRScpH5X2YRwavxsVduPLGpGrtucYySqZA-To7gaSeM4-RcUgQj5BG8H6XzN0K3jad_j9Dnf1njC7hDGWYi4-7SMRxur1r70vtb2_ok7FOcBG37CZddIgs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7Bclg48FzYwAJGAi6QrhM7cXzcQlcFdnsordhblPhx2SqtoBVafj0zeanlJW5RYjsezYxnxvZ8A_DSSOG1URwVKcMABU1YWMSU7M6l55n1MTeU73w-Scdz-fEiuWiT1etcGOdcffnMDeixPsu3S7OhrbJjwgtKcaTrcCPBsEI16Vr9oYFKa2BP1GEZShHzLkeG6-PZ5PN0NKBS4QNBkOlC7tihGq6_ra_yJ1fzFuxvqlVx9b1YLLbMz-kdmHQTb26dXA4263JgfvyC6fjflN2F260jyk4aybkH11x1H15tgw6zWYM4wF6z6Q6e9wOYn7Ah1ZZgk-YWOeuwTcIhWkXL0C0vF459Ka7Ye-dWjCBAcMCuNTrKbNTUD2LT7gbTsjqA-elo9m4ctgUaQkO2L4yLlLBnEhXpLM28Kn0UWyVTJ00kEouGLnbal8Jqw02sjeaEduQ1uj0FxsZePIS9alm5Q2BWaJmUQjiL8Waki8I757WV5HAaH6kAoo5duWmppSIai7yOYrjOaxbnxOK8ZXEAb_o-qwa745-thyQFfUvC3a5fIKPyVo1zgsLhiTeee_SLqBZiVOo0szZJShvHLoADYu7W7xq-BnDUCVXeLhLf8lgpIRNcNLMAXvSfUb3pzKao3HJDbbSKpMJIOYBHjTD2gwvFCY5QBPC2l87fCF1XSP8OoY__MsfnsD-enZ_lZx8mn57ATerS7DUdwd7668Y9Re9rXT6rde4nGzAkYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brain+Network+Analysis-Based+Double+Way+Deep+Neural+Network+for+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Niu%2C+Weixin&rft.au=Ma%2C+Chao&rft.au=Sun%2C+Xinlin&rft.au=Li%2C+Mengyu&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=917&rft.epage=925&rft_id=info:doi/10.1109%2FTNSRE.2023.3236434&rft.externalDocID=10016299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon