A Brain Network Analysis-Based Double Way Deep Neural Network for Emotion Recognition
Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 917 - 925 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2023.3236434 |
Cover
Abstract | Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks. |
---|---|
AbstractList | Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks. Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks.Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a double way deep residual neural network combined with brain network analysis, which enables the classification of multiple emotional states. To begin with, we transform the emotional EEG signals into five frequency bands by wavelet transform and construct brain networks by inter-channel correlation coefficients. These brain networks are then fed into a subsequent deep neural network block which contains several modules with residual connection and enhanced by channel attention mechanism and spatial attention mechanism. In the second way of the model, we feed the emotional EEG signals directly into another deep neural network block to extract temporal features. At the end of the two ways, the features are concatenated for classification. To verify the effectiveness of our proposed model, we carried out a series of experiments to collect emotional EEG from eight subjects. The average accuracy of the proposed model on our emotional dataset is 94.57%. In addition, the evaluation results on public databases SEED and SEED-IV are 94.55% and 78.91%, respectively, demonstrating the superiority of our model in emotion recognition tasks. |
Author | Sun, Xinlin Ma, Chao Li, Mengyu Niu, Weixin Gao, Zhongke |
Author_xml | – sequence: 1 givenname: Weixin orcidid: 0000-0003-0630-178X surname: Niu fullname: Niu, Weixin organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Chao orcidid: 0000-0001-6981-0165 surname: Ma fullname: Ma, Chao organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Xinlin orcidid: 0000-0002-5257-6285 surname: Sun fullname: Sun, Xinlin organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Mengyu orcidid: 0000-0002-3591-5898 surname: Li fullname: Li, Mengyu organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 5 givenname: Zhongke orcidid: 0000-0002-9551-202X surname: Gao fullname: Gao, Zhongke email: zhongkegao@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37018673$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1r2zAYhcXoWD-2PzDGMOxmN85efVuXaZt2hdJB17JLIctScaZYmWRT8u9nN1kYGexKL-I5R4fz6hQddbFzCL3HMMMY1JeHu-_3ixkBQmeUUMEoe4VOMOdVCQTD0TRTVjJK4Bid5rwEwFJw-QYdUwm4EpKeoMd5cZ5M2xV3rn-O6Wcx70zY5DaX5ya7priMQx1c8cNsikvn1iM2JBP2tI-pWKxi38auuHc2PnXtNL9Fr70J2b3bnWfo8WrxcPG1vP12fXMxvy0twxRKYgRgNkbCqhKVl7XHpJFMOGYx5Y1SQJzyNW2UBUuUVVABw16B4AZT6ukZutn6NtEs9Tq1K5M2OppWv1zE9KRN6lsbnOakosC99eAJY1QogWslqqbhvG4IcaMX3XoN3dpsnk0Ie0MMeipc911OTk-F613ho-rzVrVO8dfgcq9XbbYuBNO5OGRNpJKYSSBiRD8doMs4pLHuiZKUcUZ4NVIfd9RQr1yzz_BnZSNAtoBNMY95_D8xX_7FYczqQGTb3kyr6sfth_9LP2ylrXPur7cAC6IU_Q35Mb_x |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3390_electronics12102232 crossref_primary_10_1016_j_apacoust_2023_109620 crossref_primary_10_3934_mmc_2024010 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_1007_s10489_023_04971_0 crossref_primary_10_1109_LSP_2024_3353679 crossref_primary_10_1016_j_metrad_2023_100046 crossref_primary_10_3233_JIFS_237884 crossref_primary_10_1109_TNSRE_2023_3266810 crossref_primary_10_1016_j_knosys_2024_112599 crossref_primary_10_1109_JTEHM_2025_3542408 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_3389_fnins_2024_1519970 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_34133_cbsystems_0088 crossref_primary_10_1093_cercor_bhae477 |
Cites_doi | 10.3389/fnhum.2018.00521 10.1109/72.557673 10.1142/S0129065717500058 10.1016/j.jmva.2021.104783 10.1109/DSPA53304.2022.9790754 10.1109/TNNLS.2018.2886414 10.1109/JSEN.2020.3027181 10.1016/j.neuroimage.2019.05.048 10.1109/TIM.2021.3090164 10.1016/j.neuroimage.2019.116443 10.1109/TAFFC.2018.2885474 10.1016/j.eswa.2018.07.054 10.1109/TNSRE.2021.3059429 10.1360/SSPMA2019-0149 10.1007/978-3-319-46493-0_27 10.1109/CVPR.2016.90 10.1109/TIM.2018.2851422 10.1109/TCBB.2020.3018137 10.1007/11492429_41 10.1016/j.euroneuro.2012.10.010 10.5555/3045118.3045167 10.1109/JSEN.2021.3119411 10.3390/e24101322 10.1016/j.bspc.2021.102525 10.1007/978-3-030-66151-9_17 10.1109/TCDS.2017.2685338 10.4018/978-1-6684-3947-0.ch011 10.3390/e19100516 10.1016/S0893-6080(00)00026-5 10.1177/1529100619832930 10.1088/1741-2552/aace8c 10.1109/TNSRE.2022.3211881 10.3390/s22134939 10.1109/TCYB.2018.2797176 10.48550/ARXIV.1807.06521 10.1109/TAFFC.2018.2817622 10.1109/TCDS.2016.2587290 10.1007/s12559-017-9533-x 10.1109/TCDS.2020.2999337 10.1016/j.bspc.2020.101867 10.1109/TAFFC.2017.2714671 10.1109/TNSRE.2021.3111689 10.1016/j.ins.2022.07.121 10.1007/978-3-319-46454-1_34 10.1007/978-3-642-15825-4_10 10.1016/j.bbe.2020.01.010 10.1109/TAMD.2015.2431497 10.1109/NER.2013.6695876 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA |
DOI | 10.1109/TNSRE.2023.3236434 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 925 |
ExternalDocumentID | oai_doaj_org_article_528305fcf0f24436961b968dd55bd22e 10.1109/tnsre.2023.3236434 37018673 10_1109_TNSRE_2023_3236434 10016299 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61922062; 61903270; 61873181 funderid: 10.13039/501100001809 – fundername: Innovation of Science and Technology Forward 2030 program-“Brain Science and Brain-Inspired Intelligence Technology” – fundername: National Natural Science Foundation of Tianjin, China grantid: 21JCJQJC00130 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c4130-2a601465719868f7bf12d746e4c135d9902e9fb3d9c0c29c908041f9065a133f3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:26:08 EDT 2025 Tue Aug 19 20:07:45 EDT 2025 Fri Jul 11 13:15:43 EDT 2025 Fri Jul 25 05:11:22 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Wed Oct 01 01:12:33 EDT 2025 Wed Aug 27 02:48:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4130-2a601465719868f7bf12d746e4c135d9902e9fb3d9c0c29c908041f9065a133f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9551-202X 0000-0003-0630-178X 0000-0002-5257-6285 0000-0001-6981-0165 0000-0002-3591-5898 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10016299 |
PMID | 37018673 |
PQID | 2773454258 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | unpaywall_primary_10_1109_tnsre_2023_3236434 pubmed_primary_37018673 ieee_primary_10016299 doaj_primary_oai_doaj_org_article_528305fcf0f24436961b968dd55bd22e crossref_citationtrail_10_1109_TNSRE_2023_3236434 crossref_primary_10_1109_TNSRE_2023_3236434 proquest_miscellaneous_2797147026 proquest_journals_2773454258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 Weng (ref34) ref9 ref4 ref3 ref6 ref5 Simonyan (ref40) 2014 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Lu (ref49) |
References_xml | – ident: ref29 doi: 10.3389/fnhum.2018.00521 – ident: ref38 doi: 10.1109/72.557673 – ident: ref9 doi: 10.1142/S0129065717500058 – ident: ref31 doi: 10.1016/j.jmva.2021.104783 – ident: ref13 doi: 10.1109/DSPA53304.2022.9790754 – ident: ref3 doi: 10.1109/TNNLS.2018.2886414 – ident: ref11 doi: 10.1109/JSEN.2020.3027181 – ident: ref26 doi: 10.1016/j.neuroimage.2019.05.048 – ident: ref30 doi: 10.1109/TIM.2021.3090164 – ident: ref32 doi: 10.1016/j.neuroimage.2019.116443 – ident: ref46 doi: 10.1109/TAFFC.2018.2885474 – ident: ref41 doi: 10.1016/j.eswa.2018.07.054 – ident: ref7 doi: 10.1109/TNSRE.2021.3059429 – ident: ref17 doi: 10.1360/SSPMA2019-0149 – ident: ref20 doi: 10.1007/978-3-319-46493-0_27 – ident: ref37 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1109/TIM.2018.2851422 – start-page: 1 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref49 article-title: Combining eye movements and EEG to enhance emotion recognition – ident: ref6 doi: 10.1109/TCBB.2020.3018137 – ident: ref27 doi: 10.1007/11492429_41 – ident: ref18 doi: 10.1016/j.euroneuro.2012.10.010 – ident: ref35 doi: 10.5555/3045118.3045167 – ident: ref19 doi: 10.1109/JSEN.2021.3119411 – ident: ref12 doi: 10.3390/e24101322 – ident: ref16 doi: 10.1016/j.bspc.2021.102525 – ident: ref33 doi: 10.1007/978-3-030-66151-9_17 – ident: ref50 doi: 10.1109/TCDS.2017.2685338 – ident: ref15 doi: 10.4018/978-1-6684-3947-0.ch011 – ident: ref8 doi: 10.3390/e19100516 – ident: ref23 doi: 10.1016/S0893-6080(00)00026-5 – ident: ref2 doi: 10.1177/1529100619832930 – ident: ref39 doi: 10.1088/1741-2552/aace8c – ident: ref4 doi: 10.1109/TNSRE.2022.3211881 – ident: ref24 doi: 10.3390/s22134939 – ident: ref47 doi: 10.1109/TCYB.2018.2797176 – ident: ref22 doi: 10.48550/ARXIV.1807.06521 – ident: ref45 doi: 10.1109/TAFFC.2018.2817622 – ident: ref51 doi: 10.1109/TCDS.2016.2587290 – ident: ref43 doi: 10.1007/s12559-017-9533-x – ident: ref48 doi: 10.1109/TCDS.2020.2999337 – ident: ref14 doi: 10.1016/j.bspc.2020.101867 – ident: ref1 doi: 10.1109/TAFFC.2017.2714671 – ident: ref5 doi: 10.1109/TNSRE.2021.3111689 – year: 2014 ident: ref40 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – start-page: 5276 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref34 article-title: Towards fast computation of certified robustness for ReLU networks – ident: ref10 doi: 10.1016/j.ins.2022.07.121 – ident: ref21 doi: 10.1007/978-3-319-46454-1_34 – ident: ref36 doi: 10.1007/978-3-642-15825-4_10 – ident: ref25 doi: 10.1016/j.bbe.2020.01.010 – ident: ref42 doi: 10.1109/TAMD.2015.2431497 – ident: ref44 doi: 10.1109/NER.2013.6695876 |
SSID | ssj0017657 |
Score | 2.50517 |
Snippet | Constructing reliable and effective models to recognize human emotional states has become an important issue in recent years. In this article, we propose a... |
SourceID | doaj unpaywall proquest pubmed crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 917 |
SubjectTerms | Artificial neural networks Brain Brain modeling Brain network Classification Correlation coefficient Correlation coefficients deep residual neural network EEG Electrodes electroencephalogram (EEG) Electroencephalography Emotion recognition Emotional factors Emotions Feature extraction Frequencies Motion pictures Network analysis Neural networks spearman correlation coefficient Task analysis Temporal variations Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hvQAHxGOBsAsyEnCB7Dq2E8fHLXS1QqKH0oq9RY4fpyqtllZo__3O5KVWILhwTRwn45nxNxPb3wC8c0pG4zRHRyoxQUEIS62gw-5cRV76KLij887fZsXVUn29zq_3Sn3RnrCOHrgbuHMiH-F5dJFHRCKqPpfVpii9z_PaCxFo9kUYG5Kpfv1AFy3HJ7qzSpUUfDguw835YvZ9Pj2jquFnktjTpTqApJa5vy-18qeo8yHc3zUbe_vLrlZ7SHT5GB71ISS76D79CdwLzVN4v08XzBYdVwD7wOYHTNzPYHnBJlQVgs26_d9sYCVJJ4hnnmFAXa8C-2Fv2ZcQNozIO7DDoTWGuGzaVf5h82Hv0bo5huXldPH5Ku1LK6SOUCsVtiDWmFxnpizKqOuYCa9VEZTLZO4RokQwsZbeOO6EcYYTT1E0GLBYzGqjfA5HzboJL4F5aVReSxk8ZoqZsTaGEI1XFCq6mOkEsmF0K9dLS-UvVlWbf3BTtRqpSCNVr5EEPo7PbDrWjb-2npDSxpbEmN1eQDuqejuq_mVHCRyTyvdeh8EwWm0Cp4MNVL17_6yE1lLlON2VCbwdb6Nj0mqLbcJ6R22MzpTGHDeBF53tjJ1LzYlIUCbwaTSm3wTdNij_gaCv_oegJ_CA-ux-I53C0fZmF15jYLWt37Q-dAc4BhZw priority: 102 providerName: Directory of Open Access Journals |
Title | A Brain Network Analysis-Based Double Way Deep Neural Network for Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10016299 https://www.ncbi.nlm.nih.gov/pubmed/37018673 https://www.proquest.com/docview/2773454258 https://www.proquest.com/docview/2797147026 https://ieeexplore.ieee.org/ielx7/7333/10031624/10016299.pdf https://doaj.org/article/528305fcf0f24436961b968dd55bd22e |
UnpaywallVersion | publishedVersion |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RXoADzwKBUhkJuEBSx3bi-NiFrSok9rDsit6ixI8Lq-yq3QiVX4_HeWiXl7hFieN4NDOZGXvmG4DXWnCntKRekQofoHgTFlcMi92pcLQwjlGN9c6fZ_nFUny6zC77YvVQC2OtDclnNsHLcJZv1rrFrbJTxAvK_UwHcCCl6oq1xiMDmQdYT6_BIhac0aFChqrTxezLfJpgo_CEI2A6F3tWKID1991V_uRo3oXbbbOpbr5Xq9WO8Tm_D7Nh2V3Oybek3daJ_vELouN_0_UA7vVuKDnr5OYh3LLNI3izCzlMFh3eAHlL5nto3o9heUYm2FmCzLoccjIgm8QTbxMN8U55vbLka3VDPlq7IQgA4iccRns3mUy77kFkPuQvrZsjWJ5PFx8u4r49Q6zR8sWsyhF5JpOpKvLCydqlzEiRW6FTnhlv5phVruZGaaqZ0ooi1pFT3umpfGTs-BM4bNaNfQbEcCWymnNrfLSZqqpy1jplBLqb2qUygnRgV6l7arGFxqoMMQxVZWBxiSwuexZH8G58Z9Mhd_xz9ASlYByJqNvhhmdU2StxiUA4NHPaUee9IuyEmNYqL4zJstowZiM4QubufK7jawTHg1CV_S_iumRScpH5X2YRwavxsVduPLGpGrtucYySqZA-To7gaSeM4-RcUgQj5BG8H6XzN0K3jad_j9Dnf1njC7hDGWYi4-7SMRxur1r70vtb2_ok7FOcBG37CZddIgs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7Bclg48FzYwAJGAi6QrhM7cXzcQlcFdnsordhblPhx2SqtoBVafj0zeanlJW5RYjsezYxnxvZ8A_DSSOG1URwVKcMABU1YWMSU7M6l55n1MTeU73w-Scdz-fEiuWiT1etcGOdcffnMDeixPsu3S7OhrbJjwgtKcaTrcCPBsEI16Vr9oYFKa2BP1GEZShHzLkeG6-PZ5PN0NKBS4QNBkOlC7tihGq6_ra_yJ1fzFuxvqlVx9b1YLLbMz-kdmHQTb26dXA4263JgfvyC6fjflN2F260jyk4aybkH11x1H15tgw6zWYM4wF6z6Q6e9wOYn7Ah1ZZgk-YWOeuwTcIhWkXL0C0vF459Ka7Ye-dWjCBAcMCuNTrKbNTUD2LT7gbTsjqA-elo9m4ctgUaQkO2L4yLlLBnEhXpLM28Kn0UWyVTJ00kEouGLnbal8Jqw02sjeaEduQ1uj0FxsZePIS9alm5Q2BWaJmUQjiL8Waki8I757WV5HAaH6kAoo5duWmppSIai7yOYrjOaxbnxOK8ZXEAb_o-qwa745-thyQFfUvC3a5fIKPyVo1zgsLhiTeee_SLqBZiVOo0szZJShvHLoADYu7W7xq-BnDUCVXeLhLf8lgpIRNcNLMAXvSfUb3pzKao3HJDbbSKpMJIOYBHjTD2gwvFCY5QBPC2l87fCF1XSP8OoY__MsfnsD-enZ_lZx8mn57ATerS7DUdwd7668Y9Re9rXT6rde4nGzAkYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brain+Network+Analysis-Based+Double+Way+Deep+Neural+Network+for+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Niu%2C+Weixin&rft.au=Ma%2C+Chao&rft.au=Sun%2C+Xinlin&rft.au=Li%2C+Mengyu&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=917&rft.epage=925&rft_id=info:doi/10.1109%2FTNSRE.2023.3236434&rft.externalDocID=10016299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |