Environmental data stream mining through a case-based stochastic learning approach

Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal n...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 106; pp. 22 - 34
Main Authors Cabrera, Fernando Orduña, Sànchez-Marrè, Miquel
Format Journal Article Publication
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2018
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
DOI10.1016/j.envsoft.2018.01.017

Cover

Abstract Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach. •Our stochastic learning approach proposes a new incremental data-driven methodology for environmental data stream mining.•Our dynamical approach is able to identify and adapt upcoming patterns in the environmental data stream (concept drift).•Each new environmental data piece is modelled as a new case in a Dynamic Case-Based Reasoning system.•A Dynamic Adaptive Case Library (DACL) is incrementally created to manage the data stream mining process.•The stochastic learning approach is applied to an air quality assessment problem and additional datasets with good results.
AbstractList Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach. •Our stochastic learning approach proposes a new incremental data-driven methodology for environmental data stream mining.•Our dynamical approach is able to identify and adapt upcoming patterns in the environmental data stream (concept drift).•Each new environmental data piece is modelled as a new case in a Dynamic Case-Based Reasoning system.•A Dynamic Adaptive Case Library (DACL) is incrementally created to manage the data stream mining process.•The stochastic learning approach is applied to an air quality assessment problem and additional datasets with good results.
© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach. Peer Reviewed
Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach.
Author Sànchez-Marrè, Miquel
Orduña Cabrera, Fernando
Author_xml – sequence: 1
  givenname: Fernando
  surname: Cabrera
  middlename: Orduña
  fullname: Cabrera, Fernando Orduña
– sequence: 2
  givenname: Miquel
  surname: Sànchez-Marrè
  fullname: Sànchez-Marrè, Miquel
BookMark eNqFkU1r3DAQhk1JoEnan1Aw9NKLN5Isy1p6KCWkTSFQKOlZjMejrBZb2kryQv59tN2FQC6BkTSC93mZj8vqzAdPVfWJsxVnXF1vV-T3Kdi8EozrFeMl-nfVBdd926heqLOSt0o2mnfifXWZ0pYxVnJ5Uf259XsXg5_JZ5jqETLUKUeCuZ6dd_6xzpsYlsdNDTVComYo11gkATeQssN6Ioj_hbDbxQC4-VCdW5gSfTy9V9XfH7cPN3fN_e-fv26-3zcouciNlbBmyo6IfYfAtGLjyAdOWtgBe7TMku16ZTtSkslRCqkGObBBi0EDDrq9qvjRF9OCJhJSRMgmgHv5HI5gvTCt7JTihflyZEqp_xZK2cwuIU0TeApLMqIMtO3WHVsX6edX0m1Yoi8dFUet-7UUvC-q7lREDClFsmYX3QzxyXBmDtsxW3PajjlsxzBe4sB9fcWhy5Bd8DmCm96kvx1pKvPdO4omoSOPNLrSejZjcG84PANQ7rIt
CitedBy_id crossref_primary_10_1016_j_envsoft_2018_11_007
crossref_primary_10_1016_j_artint_2020_103258
crossref_primary_10_1016_j_eswa_2020_113420
crossref_primary_10_1016_j_eswa_2019_112906
crossref_primary_10_3390_su142416778
crossref_primary_10_1016_j_envsoft_2018_09_021
Cites_doi 10.1007/BF00116900
10.3233/IDA-2004-8305
10.1023/A:1007661119649
10.1016/j.envsoft.2011.09.008
10.1016/j.envpol.2015.09.004
10.1023/A:1020979520454
10.1016/j.envsoft.2014.07.012
10.1016/S1364-8152(98)00097-8
10.1109/3477.584946
10.1016/j.envsoft.2007.02.003
10.1017/S0269888906000646
10.1016/S0004-3702(96)00037-9
10.1016/j.envsoft.2014.03.002
10.1016/j.envsoft.2007.03.001
10.1016/j.envsoft.2009.08.010
10.1016/j.envsoft.2015.06.003
10.1007/s10514-006-7231-8
10.1016/j.envsoft.2010.09.007
10.1016/j.envsoft.2015.07.006
10.1016/j.envsoft.2014.11.020
10.1016/j.envsoft.2012.02.009
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Aug 2018
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Aug 2018
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
XX2
DOI 10.1016/j.envsoft.2018.01.017
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
EndPage 34
ExternalDocumentID oai_recercat_cat_2072_345661
10_1016_j_envsoft_2018_01_017
S1364815217302657
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
XX2
ID FETCH-LOGICAL-c412t-f4a906fdcc75ca0860dd1b1e82fbc7cf0fef576f5e6404d4246b4b0b82b8acb83
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Fri Sep 26 12:36:25 EDT 2025
Sun Sep 28 12:15:14 EDT 2025
Wed Aug 13 06:31:26 EDT 2025
Wed Oct 01 02:02:26 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Thu Nov 14 02:16:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic learning
Data stream mining
Environmental modelling
Dynamic case learning
Case-based reasoning
Data science
Air quality detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-f4a906fdcc75ca0860dd1b1e82fbc7cf0fef576f5e6404d4246b4b0b82b8acb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8558-0053
OpenAccessLink https://recercat.cat/handle/2072/345661
PQID 2088794217
PQPubID 2047471
PageCount 13
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_345661
proquest_miscellaneous_2101359509
proquest_journals_2088794217
crossref_primary_10_1016_j_envsoft_2018_01_017
crossref_citationtrail_10_1016_j_envsoft_2018_01_017
elsevier_sciencedirect_doi_10_1016_j_envsoft_2018_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
– name: Elsevier
References Haris, Slobodan (bib11) 2005
Fallah-Shorshani, André, Bonhomme, Seigneur (bib38) 2015; 64
Meléndez, Colomer, de la Rosa (bib25) 2001; 1
Sevilla-Villanueva, Gibert, Sànchez-Marrè (bib37) 2016; vol. 9868
De Coensel, Can, Degraeuwe, De Vlierger, Botteldooren (bib4) 2012; 35
Tan, Ting, Teng (bib39) 2010; 6464
Klinkenberg, Joachims (bib17) 2000
Maloof, Michalski (bib24) 2000; 41
Orduña Cabrera, Sànchez-Marrè (bib29) 2009; vol. 202
López de Mántaras, McSherry, Bridge, Leake, Smyth, Craw, Faltings, Maher, Cox, Forbus, Keane, Aamodt, Watson (bib23) 2005; 20
Lichman (bib21) 2013
Richter, Weber (bib33) 2013
Sànchez-Marrè, Cortés, R.-Roda, Poch (bib35) 2000; 4
Urdiales, Pérez, Vázquez-Salceda, Sànchez-Marrè, Sandoval (bib42) 2006; 21
Costabile, Allegrini (bib5) 2007; 23
Keane, Smyth (bib15) 1995
Thaker, Gokhale (bib41) 2016; 208
(bib1) 2007
Halonen, Blangiardo, Toledano, Fetch, Gulliver, Reggente Matteo, Peters, Theunis, Van Poppel, Rademaker, Kumar, De Beats (bib10) 2014; 61
Finestrali, Muñoz-Avila (bib6) 2013; 7969
Hill, Minsker (bib12) 2010; 25
Gama (bib7) 2010
Reis, Seto, Northcross, Quin Nigel, Convertino, Jones Rod, Maier Holger, Schlink, Steinle, Vieno, Wimberly Michael (bib32) 2015; 74
Vedrenne, Borge, Lumbreras, Encarnación-Rodríguez (bib43) 2014; 57
Ram, Arkin, Moorman, Clark (bib31) 1997; 3
Liu, Hu, Snell-Feikema, VanBemmel Michael, Lamsal, Wimberly Michael (bib22) 2015; 74
Miyashita, Sycara (bib26) 1995
(bib8) 2007
Klinkenberg (bib16) 2004; 8
Kruusmaa (bib19) 2003; 14
Wyat Appel, Gilliam Robert, davis, Zubrow, Howard Steven (bib45) 2011; 26
Orduña Cabrera, Sànchez-Marrè (bib28) 2013; vol. 8266
Sànchez-Marrè, Cortés, Rodríguez-Roda, Poch (bib36) 1999; 14
Ram, Santamaría (bib30) 1997; 90
Tang, Wang (bib40) 2007; 22
Widmer, Kubat (bib44) 1996; 23
INEGI (bib1a) 2010
Orduña Cabrera (bib27) 2016
Hulten, Domingos (bib13) 2001
Kubat, Widmer (bib20) 1995
Hulten, Spencer, Domingos (bib14) 2001
Klinkenberg, Renz (bib18) 1998
Carslaw, Ropkins (bib3) 2012; 27–28
Gulliver, Morley, Vienneau, Fabbri, Bell, Goodman, Beevers, Dajnak, J-Kelly, Fecht (bib9) 2015; 74
Reis (10.1016/j.envsoft.2018.01.017_bib32) 2015; 74
Richter (10.1016/j.envsoft.2018.01.017_bib33) 2013
Miyashita (10.1016/j.envsoft.2018.01.017_bib26) 1995
Ram (10.1016/j.envsoft.2018.01.017_bib31) 1997; 3
Costabile (10.1016/j.envsoft.2018.01.017_bib5) 2007; 23
Wyat Appel (10.1016/j.envsoft.2018.01.017_bib45) 2011; 26
Widmer (10.1016/j.envsoft.2018.01.017_bib44) 1996; 23
Sevilla-Villanueva (10.1016/j.envsoft.2018.01.017_bib37) 2016; vol. 9868
Keane (10.1016/j.envsoft.2018.01.017_bib15) 1995
Carslaw (10.1016/j.envsoft.2018.01.017_bib3) 2012; 27–28
Hulten (10.1016/j.envsoft.2018.01.017_bib14) 2001
Klinkenberg (10.1016/j.envsoft.2018.01.017_bib17) 2000
Ram (10.1016/j.envsoft.2018.01.017_bib30) 1997; 90
De Coensel (10.1016/j.envsoft.2018.01.017_bib4) 2012; 35
Haris (10.1016/j.envsoft.2018.01.017_bib11) 2005
Kubat (10.1016/j.envsoft.2018.01.017_bib20) 1995
Kruusmaa (10.1016/j.envsoft.2018.01.017_bib19) 2003; 14
Fallah-Shorshani (10.1016/j.envsoft.2018.01.017_bib38) 2015; 64
Liu (10.1016/j.envsoft.2018.01.017_bib22) 2015; 74
Gama (10.1016/j.envsoft.2018.01.017_bib7) 2010
Klinkenberg (10.1016/j.envsoft.2018.01.017_bib18) 1998
Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib27) 2016
Halonen (10.1016/j.envsoft.2018.01.017_bib10) 2014; 61
INEGI (10.1016/j.envsoft.2018.01.017_bib1a) 2010
Meléndez (10.1016/j.envsoft.2018.01.017_bib25) 2001; 1
Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib28) 2013; vol. 8266
(10.1016/j.envsoft.2018.01.017_bib1) 2007
(10.1016/j.envsoft.2018.01.017_bib8) 2007
Hill (10.1016/j.envsoft.2018.01.017_bib12) 2010; 25
Hulten (10.1016/j.envsoft.2018.01.017_bib13) 2001
Finestrali (10.1016/j.envsoft.2018.01.017_bib6) 2013; 7969
Klinkenberg (10.1016/j.envsoft.2018.01.017_bib16) 2004; 8
Lichman (10.1016/j.envsoft.2018.01.017_bib21) 2013
Maloof (10.1016/j.envsoft.2018.01.017_bib24) 2000; 41
Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib29) 2009; vol. 202
Thaker (10.1016/j.envsoft.2018.01.017_bib41) 2016; 208
Urdiales (10.1016/j.envsoft.2018.01.017_bib42) 2006; 21
López de Mántaras (10.1016/j.envsoft.2018.01.017_bib23) 2005; 20
Sànchez-Marrè (10.1016/j.envsoft.2018.01.017_bib36) 1999; 14
Gulliver (10.1016/j.envsoft.2018.01.017_bib9) 2015; 74
Vedrenne (10.1016/j.envsoft.2018.01.017_bib43) 2014; 57
Sànchez-Marrè (10.1016/j.envsoft.2018.01.017_bib35) 2000; 4
Tang (10.1016/j.envsoft.2018.01.017_bib40) 2007; 22
Tan (10.1016/j.envsoft.2018.01.017_bib39) 2010; 6464
References_xml – volume: 14
  start-page: 349
  year: 1999
  end-page: 357
  ident: bib36
  article-title: “Sustainable case learning for continuous domains”
  publication-title: Environ. Model. Software
– volume: 35
  start-page: 74
  year: 2012
  end-page: 83
  ident: bib4
  article-title: Effects of traffic signal coordination on noise and air pollutant emissions
  publication-title: Environ. Model. Software
– year: 2013
  ident: bib33
  article-title: Case-Based Reasoning: A Text-Book
– volume: 14
  start-page: 71
  year: 2003
  end-page: 91
  ident: bib19
  article-title: Global navigation in dynamic environments using case-based reasoning
  publication-title: Aut. Robots
– volume: 41
  start-page: 27
  year: 2000
  end-page: 52
  ident: bib24
  article-title: Selecting examples for partial memory learning
  publication-title: Mach. Learn.
– start-page: 371
  year: 1995
  end-page: 376
  ident: bib26
  article-title: Improving system performance in case-based iterative optimization through knowledge filtering
  publication-title: Procc. of IJCAI 1995
– volume: 61
  start-page: 135
  year: 2014
  end-page: 150
  ident: bib10
  article-title: Prediction of ultrafine particle number concentration in urban environments by means of Gaussian process regression based on measurements of oxides of nitrogen
  publication-title: Environ. Model. Software
– volume: 27–28
  start-page: 52
  year: 2012
  end-page: 61
  ident: bib3
  article-title: Openair- an R package for air quality data analysis
  publication-title: Environ. Model. Software
– volume: 64
  start-page: 102
  year: 2015
  end-page: 123
  ident: bib38
  article-title: Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects
  publication-title: Environ. Model. Software
– volume: vol. 8266
  start-page: 314
  year: 2013
  end-page: 325
  ident: bib28
  article-title: Using NIAR-trees to improve the case-based reasoning retrieval step
  publication-title: 12th Mexican International Conference on Artificial Intelligence (MICAI 2013). Proceedings Part II
– volume: 90
  start-page: 86
  year: 1997
  end-page: 93
  ident: bib30
  article-title: Continuous case-based reasoning
  publication-title: Artif. Intell.
– volume: 74
  start-page: 183
  year: 2015
  end-page: 193
  ident: bib9
  article-title: Development of an open-source road traffic noise model for exposure assessment
  publication-title: Environmental Modelling and Software
– start-page: 537
  year: 2005
  end-page: 551
  ident: bib11
  article-title: Autonomous Creation of New Situation Cases in Structured Continuous Domains
– volume: 25
  start-page: 1014
  year: 2010
  end-page: 1022
  ident: bib12
  article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach
  publication-title: Environ. Model. Software
– volume: vol. 202
  start-page: 157
  year: 2009
  end-page: 166
  ident: bib29
  article-title: Dynamic adaptive case library for continuous domains
  publication-title: In Proc. Of 12th International Conference of the Catalan Association of Artificial Intelligence (CCIA'2009)
– start-page: 33
  year: 1998
  end-page: 40
  ident: bib18
  article-title: Adaptive information filtering: learning in the presence of concept drifts
  publication-title: In Learning for Text Categorization
– volume: 74
  start-page: 247
  year: 2015
  end-page: 257
  ident: bib22
  article-title: Software to facilitate remote sensing data access for disease early warning systems
  publication-title: Environ. Model. Software
– start-page: 487
  year: 2000
  end-page: 494
  ident: bib17
  article-title: Detecting concept drift with support vector machines
  publication-title: Proceedings of ICML-00
– volume: 20
  start-page: 215
  year: 2005
  end-page: 244
  ident: bib23
  article-title: Retrieval, reuse, revision and retention in case-based reasoning
  publication-title: Knowl. Eng. Rev.
– volume: vol. 9868
  start-page: 135
  year: 2016
  end-page: 149
  ident: bib37
  article-title: Using CVI for understanding class topology in unsupervised scenarios
  publication-title: 17th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2016) LNAI
– volume: 7969
  start-page: 89
  year: 2013
  end-page: 103
  ident: bib6
  article-title: Case-Based Learning Of Applicability Conditions For Stochastic Explanations
  publication-title: Case-Based Reasoning Research and Development
– volume: 6464
  start-page: 112
  year: 2010
  end-page: 121
  ident: bib39
  article-title: A comparative study of a practical stochastic clustering method with traditional methods
  publication-title: AI 2010: Adv. Artif. Intell.
– year: 2001
  ident: bib13
  article-title: Catching up with the data: research issues in mining data streams
  publication-title: In Proc. Of Workshop on Research Issues in Data Mining and Knowledge Discovery
– start-page: 377
  year: 1995
  end-page: 382
  ident: bib15
  article-title: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems
  publication-title: Procc. Of IJCAI 1995
– volume: 1
  start-page: 431
  year: 2001
  end-page: 440
  ident: bib25
  article-title: Expert Supervision Based on Cases
  publication-title: Proc. of 8th IEEE International Conference on Emerging Technologies and Factory Automation
– year: 2013
  ident: bib21
  article-title: UCI Machine Learning Repository
– volume: 23
  start-page: 258
  year: 2007
  end-page: 267
  ident: bib5
  article-title: A new approach to link transport emissions and air quality: an intelligent transport system based on the control of traffic air pollution
  publication-title: Environ. Model. Software
– volume: 26
  start-page: 434
  year: 2011
  end-page: 443
  ident: bib45
  article-title: Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models
  publication-title: Environ. Model. Software
– year: 2001
  ident: bib14
  article-title: Mining time-changing data streams
  publication-title: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
– volume: 22
  start-page: 1750
  year: 2007
  end-page: 1764
  ident: bib40
  article-title: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system
  publication-title: Environ. Model. Software
– year: 2010
  ident: bib7
  article-title: Knowledge Discovery from Data Streams
– volume: 4
  start-page: 53
  year: 2000
  end-page: 63
  ident: bib35
  article-title: Using meta-cases to improve accuracy in hierarchical case retrieval
  publication-title: Comput. Sist.
– year: 2010
  ident: bib1a
  article-title: Census of Population and Housing (in Spanish: Censo de Población y Vivienda)
– volume: 3
  start-page: 376
  year: 1997
  end-page: 394
  ident: bib31
  article-title: Case-based reactive navigation: a method for on-line selection and adaptation of reactive robotic control parameters
  publication-title: IEEE Syst., Man, and Cybern. Part B
– year: 2007
  ident: bib8
  publication-title: Learning from Data Streams: Processing Techniques in Sensor Networks
– volume: 21
  start-page: 65
  year: 2006
  end-page: 78
  ident: bib42
  article-title: A purely reactive navigation scheme for dynamic environments using case-based reasoning
  publication-title: Aut. Robots
– year: 2007
  ident: bib1
  publication-title: Data Streams: Models and Algorithms
– start-page: 307
  year: 1995
  end-page: 310
  ident: bib20
  article-title: Adapting to drift in continuous domain
  publication-title: In Proceedings of the 8th European Conference on Machine Learning
– volume: 74
  start-page: 238
  year: 2015
  end-page: 246
  ident: bib32
  article-title: Integrating modelling and smart sensor for environmental and human health
  publication-title: Environ. Model. Software
– volume: 57
  start-page: 177
  year: 2014
  end-page: 191
  ident: bib43
  article-title: Advancements in the design and validation of an air pollution integrated assessment model for Spain
  publication-title: Environ. Model. Software
– volume: 23
  start-page: 69
  year: 1996
  end-page: 101
  ident: bib44
  article-title: Learning in the presence of concept drift and hidden contexts
  publication-title: Mach. Learn.
– volume: 8
  start-page: 281
  year: 2004
  end-page: 300
  ident: bib16
  article-title: Learning drifting concepts: example selection vs. example weighting
  publication-title: Intell. Data Anal.
– year: 2016
  ident: bib27
  article-title: A Dynamic Adaptive Framework for Improving Case-based Reasoning System Performance
– volume: 208
  start-page: 161
  year: 2016
  end-page: 169
  ident: bib41
  article-title: The impact of traffic-flow patterns on air quality in urban street canyons
  publication-title: Environ. Pollut.
– year: 2016
  ident: 10.1016/j.envsoft.2018.01.017_bib27
– volume: 23
  start-page: 69
  year: 1996
  ident: 10.1016/j.envsoft.2018.01.017_bib44
  article-title: Learning in the presence of concept drift and hidden contexts
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116900
– year: 2010
  ident: 10.1016/j.envsoft.2018.01.017_bib1a
– volume: 8
  start-page: 281
  issue: 3
  year: 2004
  ident: 10.1016/j.envsoft.2018.01.017_bib16
  article-title: Learning drifting concepts: example selection vs. example weighting
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2004-8305
– volume: vol. 202
  start-page: 157
  year: 2009
  ident: 10.1016/j.envsoft.2018.01.017_bib29
  article-title: Dynamic adaptive case library for continuous domains
– volume: 41
  start-page: 27
  year: 2000
  ident: 10.1016/j.envsoft.2018.01.017_bib24
  article-title: Selecting examples for partial memory learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007661119649
– volume: 27–28
  start-page: 52
  year: 2012
  ident: 10.1016/j.envsoft.2018.01.017_bib3
  article-title: Openair- an R package for air quality data analysis
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2011.09.008
– volume: 74
  start-page: 183
  year: 2015
  ident: 10.1016/j.envsoft.2018.01.017_bib9
  article-title: Development of an open-source road traffic noise model for exposure assessment
– volume: 208
  start-page: 161
  year: 2016
  ident: 10.1016/j.envsoft.2018.01.017_bib41
  article-title: The impact of traffic-flow patterns on air quality in urban street canyons
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.09.004
– volume: 14
  start-page: 71
  year: 2003
  ident: 10.1016/j.envsoft.2018.01.017_bib19
  article-title: Global navigation in dynamic environments using case-based reasoning
  publication-title: Aut. Robots
  doi: 10.1023/A:1020979520454
– volume: 61
  start-page: 135
  year: 2014
  ident: 10.1016/j.envsoft.2018.01.017_bib10
  article-title: Prediction of ultrafine particle number concentration in urban environments by means of Gaussian process regression based on measurements of oxides of nitrogen
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2014.07.012
– year: 2001
  ident: 10.1016/j.envsoft.2018.01.017_bib14
  article-title: Mining time-changing data streams
– year: 2013
  ident: 10.1016/j.envsoft.2018.01.017_bib21
– volume: 14
  start-page: 349
  issue: 5
  year: 1999
  ident: 10.1016/j.envsoft.2018.01.017_bib36
  article-title: “Sustainable case learning for continuous domains”
  publication-title: Environ. Model. Software
  doi: 10.1016/S1364-8152(98)00097-8
– volume: 3
  start-page: 376
  year: 1997
  ident: 10.1016/j.envsoft.2018.01.017_bib31
  article-title: Case-based reactive navigation: a method for on-line selection and adaptation of reactive robotic control parameters
  publication-title: IEEE Syst., Man, and Cybern. Part B
  doi: 10.1109/3477.584946
– volume: 22
  start-page: 1750
  year: 2007
  ident: 10.1016/j.envsoft.2018.01.017_bib40
  article-title: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2007.02.003
– year: 2007
  ident: 10.1016/j.envsoft.2018.01.017_bib1
– volume: 20
  start-page: 215
  issue: 3
  year: 2005
  ident: 10.1016/j.envsoft.2018.01.017_bib23
  article-title: Retrieval, reuse, revision and retention in case-based reasoning
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888906000646
– start-page: 371
  year: 1995
  ident: 10.1016/j.envsoft.2018.01.017_bib26
  article-title: Improving system performance in case-based iterative optimization through knowledge filtering
– volume: 90
  start-page: 86
  year: 1997
  ident: 10.1016/j.envsoft.2018.01.017_bib30
  article-title: Continuous case-based reasoning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(96)00037-9
– volume: 57
  start-page: 177
  year: 2014
  ident: 10.1016/j.envsoft.2018.01.017_bib43
  article-title: Advancements in the design and validation of an air pollution integrated assessment model for Spain
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2014.03.002
– start-page: 377
  year: 1995
  ident: 10.1016/j.envsoft.2018.01.017_bib15
  article-title: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems
– volume: vol. 9868
  start-page: 135
  year: 2016
  ident: 10.1016/j.envsoft.2018.01.017_bib37
  article-title: Using CVI for understanding class topology in unsupervised scenarios
– year: 2007
  ident: 10.1016/j.envsoft.2018.01.017_bib8
– start-page: 537
  year: 2005
  ident: 10.1016/j.envsoft.2018.01.017_bib11
– start-page: 307
  year: 1995
  ident: 10.1016/j.envsoft.2018.01.017_bib20
  article-title: Adapting to drift in continuous domain
– volume: vol. 8266
  start-page: 314
  year: 2013
  ident: 10.1016/j.envsoft.2018.01.017_bib28
  article-title: Using NIAR-trees to improve the case-based reasoning retrieval step
– volume: 7969
  start-page: 89
  year: 2013
  ident: 10.1016/j.envsoft.2018.01.017_bib6
  article-title: Case-Based Learning Of Applicability Conditions For Stochastic Explanations
– start-page: 33
  year: 1998
  ident: 10.1016/j.envsoft.2018.01.017_bib18
  article-title: Adaptive information filtering: learning in the presence of concept drifts
– year: 2010
  ident: 10.1016/j.envsoft.2018.01.017_bib7
– volume: 23
  start-page: 258
  year: 2007
  ident: 10.1016/j.envsoft.2018.01.017_bib5
  article-title: A new approach to link transport emissions and air quality: an intelligent transport system based on the control of traffic air pollution
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2007.03.001
– volume: 25
  start-page: 1014
  issue: 9
  year: 2010
  ident: 10.1016/j.envsoft.2018.01.017_bib12
  article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2009.08.010
– volume: 74
  start-page: 238
  year: 2015
  ident: 10.1016/j.envsoft.2018.01.017_bib32
  article-title: Integrating modelling and smart sensor for environmental and human health
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2015.06.003
– volume: 4
  start-page: 53
  issue: 1
  year: 2000
  ident: 10.1016/j.envsoft.2018.01.017_bib35
  article-title: Using meta-cases to improve accuracy in hierarchical case retrieval
  publication-title: Comput. Sist.
– start-page: 487
  year: 2000
  ident: 10.1016/j.envsoft.2018.01.017_bib17
  article-title: Detecting concept drift with support vector machines
– year: 2001
  ident: 10.1016/j.envsoft.2018.01.017_bib13
  article-title: Catching up with the data: research issues in mining data streams
– volume: 1
  start-page: 431
  year: 2001
  ident: 10.1016/j.envsoft.2018.01.017_bib25
  article-title: Expert Supervision Based on Cases
– year: 2013
  ident: 10.1016/j.envsoft.2018.01.017_bib33
– volume: 21
  start-page: 65
  year: 2006
  ident: 10.1016/j.envsoft.2018.01.017_bib42
  article-title: A purely reactive navigation scheme for dynamic environments using case-based reasoning
  publication-title: Aut. Robots
  doi: 10.1007/s10514-006-7231-8
– volume: 26
  start-page: 434
  year: 2011
  ident: 10.1016/j.envsoft.2018.01.017_bib45
  article-title: Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2010.09.007
– volume: 74
  start-page: 247
  year: 2015
  ident: 10.1016/j.envsoft.2018.01.017_bib22
  article-title: Software to facilitate remote sensing data access for disease early warning systems
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2015.07.006
– volume: 64
  start-page: 102
  year: 2015
  ident: 10.1016/j.envsoft.2018.01.017_bib38
  article-title: Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2014.11.020
– volume: 6464
  start-page: 112
  year: 2010
  ident: 10.1016/j.envsoft.2018.01.017_bib39
  article-title: A comparative study of a practical stochastic clustering method with traditional methods
  publication-title: AI 2010: Adv. Artif. Intell.
– volume: 35
  start-page: 74
  year: 2012
  ident: 10.1016/j.envsoft.2018.01.017_bib4
  article-title: Effects of traffic signal coordination on noise and air pollutant emissions
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2012.02.009
SSID ssj0001524
Score 2.2699082
Snippet Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide...
© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Environmental data stream...
SourceID csuc
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Adaptive systems
Air quality
Air quality detection
Case-based reasoning
computer software
data collection
Data mining
Data processing
Data science
Data stream mining
Dynamic case learning
Environment
Environment models
Environmental information
Environmental modelling
environmental models
Informàtica
Intel·ligència artificial
learning
Mexico
prototypes
Stochastic learning
Stochastic models
stochastic processes
Àrees temàtiques de la UPC
Title Environmental data stream mining through a case-based stochastic learning approach
URI https://dx.doi.org/10.1016/j.envsoft.2018.01.017
https://www.proquest.com/docview/2088794217
https://www.proquest.com/docview/2101359509
https://recercat.cat/handle/2072/345661
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NnZDgAUZhomObjMQTUloncb4ep6lTAbEHYNLeLPtiwyaWTmuLtBf-du4Sp115mUSUPDg-25E_7s7x3e8A3quiwKykBWiwxEjl3kUm5f9WlVLSeWWd4xPdL-f57EJ9uswud-C094Vhs8rA-zue3nLr8GYSenNye3U1-RanOSONkE6d0kYiY49yRv-iOT3-szHzIIIusG2uIqbeePFMrseu-b0gbscWXmWL3tnGLdvIpwEuVrglpv5h2K0UOtuD50F9FCfdF76EHdcM4UUfmkGElTqEJ9MWjfp-CM8eIA4OYX-6cWyjegL94hV83c5gw1HBfiTmRty0MSREiOgjjECSfBGLv5pI5vjTMNazCPEnfogepvw1XJxNv5_OohBvIUIVJ8vIK1PJ3NeIRYaG9jqyrmMbuzLxFgv00jtP2xOfuVxJVatE5VZZacvElgZtme7DoJk37g0I62WGcWZTh4quysrUxOhps2NlldblCFTfyxoDGDnHxPile6uzax0GR_PgaBnTXYxgvC5226FxPFbgAw-hppnk7tAsNaNprxP8JLJIdEpqZB6PoOwHWm_NQU3i5bF2DvuJoQMTWFA-cfBKJZz9bp1Ny5fPZEzj5iuioTrZN1pWB__f-lt4yqnOLvEQBsu7lTsiXWlpj9vFcAy7Jx8_z87_AjTzFfE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgj2wEdhojDASDwhZXUS5-txmjp1bOsDbNLeLPtiwybWTms7if-eu8RpKS-TiJKH5PwRxfbv7PjudwCfVVFgVtIANFhipHLvIpPyf6tKKem8ss7xju7ZJB9fqK-X2eUWHHa-MGxWGbC_xfQGrcOTYfiaw9urq-H3OM2ZaYTm1CktJLLiEWyrjDC5B9sHxyfjyQqQKU0b2zZXEWdYO_IMr_fd9H5OgMdGXmVD4NmELlurqB7Ol7ihqf7B7EYRHb2AZ2EGKQ7al3wJW27ah-dddAYRBmsfHo8aQurffdj5i3SwD7ujtW8blRPSz1_Bt00B244KdiUxN-KmCSMhQlAfYQSS8otYA9aUZIY_DdM9ixCC4ofomMpfw8XR6PxwHIWQCxGqOFlEXplK5r5GLDI0tNyRdR3b2JWJt1igl955WqH4zOVKqlolKrfKSlsmtjRoy3QXetPZ1L0BYb3MMM5s6lDRUVmZmhg9rXesrNK6HIDqvrLGwEfOYTF-6c7w7FqHxtHcOFrGdBYD2F9lu20JOR7K8IWbUFNncndoFpoJtVc3fCWySHRKM8k8HkDZNbTe6IaaNMxD9ex1HUMHHJiTnEC8UgmLP63ENIJ5W8ZM3WxJaahMdo-W1dv_r_0jPBmfn53q0-PJyTt4ypLWTHEPeou7pXtPU6eF_RCGxh-TERic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+data+stream+mining+through+a+case-based+stochastic+learning+approach&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Ordu%C3%B1a+Cabrera%2C+Fernando&rft.au=S%C3%A0nchez-Marr%C3%A8%2C+Miquel&rft.date=2018-08-01&rft.issn=1364-8152&rft.volume=106&rft.spage=22&rft.epage=34&rft_id=info:doi/10.1016%2Fj.envsoft.2018.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envsoft_2018_01_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon