Environmental data stream mining through a case-based stochastic learning approach
Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal n...
Saved in:
Published in | Environmental modelling & software : with environment data news Vol. 106; pp. 22 - 34 |
---|---|
Main Authors | , |
Format | Journal Article Publication |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2018
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1364-8152 1873-6726 |
DOI | 10.1016/j.envsoft.2018.01.017 |
Cover
Abstract | Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach.
•Our stochastic learning approach proposes a new incremental data-driven methodology for environmental data stream mining.•Our dynamical approach is able to identify and adapt upcoming patterns in the environmental data stream (concept drift).•Each new environmental data piece is modelled as a new case in a Dynamic Case-Based Reasoning system.•A Dynamic Adaptive Case Library (DACL) is incrementally created to manage the data stream mining process.•The stochastic learning approach is applied to an air quality assessment problem and additional datasets with good results. |
---|---|
AbstractList | Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach.
•Our stochastic learning approach proposes a new incremental data-driven methodology for environmental data stream mining.•Our dynamical approach is able to identify and adapt upcoming patterns in the environmental data stream (concept drift).•Each new environmental data piece is modelled as a new case in a Dynamic Case-Based Reasoning system.•A Dynamic Adaptive Case Library (DACL) is incrementally created to manage the data stream mining process.•The stochastic learning approach is applied to an air quality assessment problem and additional datasets with good results. © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach. Peer Reviewed Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide static data-driven models. Environmental systems are dynamic and generate a continuous data stream. Dynamic methods coping with the temporal nature of data must be provided in Data Science. Our proposal is to model each environmental information unit, timely generated, as a new case/experience in a Case-Based Reasoning (CBR) system. This contribution aims to incrementally build and manage a Dynamic Adaptive Case Library (DACL). In this paper, a stochastic method for the learning of new cases and management of prototypes to create and manage the DACL in an incremental way is introduced. This stochastic method works with two main moments. An evaluation of the method has been carried using a data stream of air quality of the city of Obregon, Sonora. México, with good results. In addition, other datasets have been mined to ensure the generality of the approach. |
Author | Sànchez-Marrè, Miquel Orduña Cabrera, Fernando |
Author_xml | – sequence: 1 givenname: Fernando surname: Cabrera middlename: Orduña fullname: Cabrera, Fernando Orduña – sequence: 2 givenname: Miquel surname: Sànchez-Marrè fullname: Sànchez-Marrè, Miquel |
BookMark | eNqFkU1r3DAQhk1JoEnan1Aw9NKLN5Isy1p6KCWkTSFQKOlZjMejrBZb2kryQv59tN2FQC6BkTSC93mZj8vqzAdPVfWJsxVnXF1vV-T3Kdi8EozrFeMl-nfVBdd926heqLOSt0o2mnfifXWZ0pYxVnJ5Uf259XsXg5_JZ5jqETLUKUeCuZ6dd_6xzpsYlsdNDTVComYo11gkATeQssN6Ioj_hbDbxQC4-VCdW5gSfTy9V9XfH7cPN3fN_e-fv26-3zcouciNlbBmyo6IfYfAtGLjyAdOWtgBe7TMku16ZTtSkslRCqkGObBBi0EDDrq9qvjRF9OCJhJSRMgmgHv5HI5gvTCt7JTihflyZEqp_xZK2cwuIU0TeApLMqIMtO3WHVsX6edX0m1Yoi8dFUet-7UUvC-q7lREDClFsmYX3QzxyXBmDtsxW3PajjlsxzBe4sB9fcWhy5Bd8DmCm96kvx1pKvPdO4omoSOPNLrSejZjcG84PANQ7rIt |
CitedBy_id | crossref_primary_10_1016_j_envsoft_2018_11_007 crossref_primary_10_1016_j_artint_2020_103258 crossref_primary_10_1016_j_eswa_2020_113420 crossref_primary_10_1016_j_eswa_2019_112906 crossref_primary_10_3390_su142416778 crossref_primary_10_1016_j_envsoft_2018_09_021 |
Cites_doi | 10.1007/BF00116900 10.3233/IDA-2004-8305 10.1023/A:1007661119649 10.1016/j.envsoft.2011.09.008 10.1016/j.envpol.2015.09.004 10.1023/A:1020979520454 10.1016/j.envsoft.2014.07.012 10.1016/S1364-8152(98)00097-8 10.1109/3477.584946 10.1016/j.envsoft.2007.02.003 10.1017/S0269888906000646 10.1016/S0004-3702(96)00037-9 10.1016/j.envsoft.2014.03.002 10.1016/j.envsoft.2007.03.001 10.1016/j.envsoft.2009.08.010 10.1016/j.envsoft.2015.06.003 10.1007/s10514-006-7231-8 10.1016/j.envsoft.2010.09.007 10.1016/j.envsoft.2015.07.006 10.1016/j.envsoft.2014.11.020 10.1016/j.envsoft.2012.02.009 |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació – sequence: 2 fullname: Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Aug 2018 Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Aug 2018 – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
DBID | AAYXX CITATION 7QH 7SC 7ST 7UA 8FD C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 XX2 |
DOI | 10.1016/j.envsoft.2018.01.017 |
DatabaseName | CrossRef Aqualine Computer and Information Systems Abstracts Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts AGRICOLA AGRICOLA - Academic Recercat |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Aqualine Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Computer Science Environmental Sciences |
EISSN | 1873-6726 |
EndPage | 34 |
ExternalDocumentID | oai_recercat_cat_2072_345661 10_1016_j_envsoft_2018_01_017 S1364815217302657 |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7QH 7SC 7ST 7UA 8FD AGCQF C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 XX2 |
ID | FETCH-LOGICAL-c412t-f4a906fdcc75ca0860dd1b1e82fbc7cf0fef576f5e6404d4246b4b0b82b8acb83 |
IEDL.DBID | .~1 |
ISSN | 1364-8152 |
IngestDate | Fri Sep 26 12:36:25 EDT 2025 Sun Sep 28 12:15:14 EDT 2025 Wed Aug 13 06:31:26 EDT 2025 Wed Oct 01 02:02:26 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Thu Nov 14 02:16:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stochastic learning Data stream mining Environmental modelling Dynamic case learning Case-based reasoning Data science Air quality detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-f4a906fdcc75ca0860dd1b1e82fbc7cf0fef576f5e6404d4246b4b0b82b8acb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8558-0053 |
OpenAccessLink | https://recercat.cat/handle/2072/345661 |
PQID | 2088794217 |
PQPubID | 2047471 |
PageCount | 13 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_345661 proquest_miscellaneous_2101359509 proquest_journals_2088794217 crossref_primary_10_1016_j_envsoft_2018_01_017 crossref_citationtrail_10_1016_j_envsoft_2018_01_017 elsevier_sciencedirect_doi_10_1016_j_envsoft_2018_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Environmental modelling & software : with environment data news |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd – name: Elsevier |
References | Haris, Slobodan (bib11) 2005 Fallah-Shorshani, André, Bonhomme, Seigneur (bib38) 2015; 64 Meléndez, Colomer, de la Rosa (bib25) 2001; 1 Sevilla-Villanueva, Gibert, Sànchez-Marrè (bib37) 2016; vol. 9868 De Coensel, Can, Degraeuwe, De Vlierger, Botteldooren (bib4) 2012; 35 Tan, Ting, Teng (bib39) 2010; 6464 Klinkenberg, Joachims (bib17) 2000 Maloof, Michalski (bib24) 2000; 41 Orduña Cabrera, Sànchez-Marrè (bib29) 2009; vol. 202 López de Mántaras, McSherry, Bridge, Leake, Smyth, Craw, Faltings, Maher, Cox, Forbus, Keane, Aamodt, Watson (bib23) 2005; 20 Lichman (bib21) 2013 Richter, Weber (bib33) 2013 Sànchez-Marrè, Cortés, R.-Roda, Poch (bib35) 2000; 4 Urdiales, Pérez, Vázquez-Salceda, Sànchez-Marrè, Sandoval (bib42) 2006; 21 Costabile, Allegrini (bib5) 2007; 23 Keane, Smyth (bib15) 1995 Thaker, Gokhale (bib41) 2016; 208 (bib1) 2007 Halonen, Blangiardo, Toledano, Fetch, Gulliver, Reggente Matteo, Peters, Theunis, Van Poppel, Rademaker, Kumar, De Beats (bib10) 2014; 61 Finestrali, Muñoz-Avila (bib6) 2013; 7969 Hill, Minsker (bib12) 2010; 25 Gama (bib7) 2010 Reis, Seto, Northcross, Quin Nigel, Convertino, Jones Rod, Maier Holger, Schlink, Steinle, Vieno, Wimberly Michael (bib32) 2015; 74 Vedrenne, Borge, Lumbreras, Encarnación-Rodríguez (bib43) 2014; 57 Ram, Arkin, Moorman, Clark (bib31) 1997; 3 Liu, Hu, Snell-Feikema, VanBemmel Michael, Lamsal, Wimberly Michael (bib22) 2015; 74 Miyashita, Sycara (bib26) 1995 (bib8) 2007 Klinkenberg (bib16) 2004; 8 Kruusmaa (bib19) 2003; 14 Wyat Appel, Gilliam Robert, davis, Zubrow, Howard Steven (bib45) 2011; 26 Orduña Cabrera, Sànchez-Marrè (bib28) 2013; vol. 8266 Sànchez-Marrè, Cortés, Rodríguez-Roda, Poch (bib36) 1999; 14 Ram, Santamaría (bib30) 1997; 90 Tang, Wang (bib40) 2007; 22 Widmer, Kubat (bib44) 1996; 23 INEGI (bib1a) 2010 Orduña Cabrera (bib27) 2016 Hulten, Domingos (bib13) 2001 Kubat, Widmer (bib20) 1995 Hulten, Spencer, Domingos (bib14) 2001 Klinkenberg, Renz (bib18) 1998 Carslaw, Ropkins (bib3) 2012; 27–28 Gulliver, Morley, Vienneau, Fabbri, Bell, Goodman, Beevers, Dajnak, J-Kelly, Fecht (bib9) 2015; 74 Reis (10.1016/j.envsoft.2018.01.017_bib32) 2015; 74 Richter (10.1016/j.envsoft.2018.01.017_bib33) 2013 Miyashita (10.1016/j.envsoft.2018.01.017_bib26) 1995 Ram (10.1016/j.envsoft.2018.01.017_bib31) 1997; 3 Costabile (10.1016/j.envsoft.2018.01.017_bib5) 2007; 23 Wyat Appel (10.1016/j.envsoft.2018.01.017_bib45) 2011; 26 Widmer (10.1016/j.envsoft.2018.01.017_bib44) 1996; 23 Sevilla-Villanueva (10.1016/j.envsoft.2018.01.017_bib37) 2016; vol. 9868 Keane (10.1016/j.envsoft.2018.01.017_bib15) 1995 Carslaw (10.1016/j.envsoft.2018.01.017_bib3) 2012; 27–28 Hulten (10.1016/j.envsoft.2018.01.017_bib14) 2001 Klinkenberg (10.1016/j.envsoft.2018.01.017_bib17) 2000 Ram (10.1016/j.envsoft.2018.01.017_bib30) 1997; 90 De Coensel (10.1016/j.envsoft.2018.01.017_bib4) 2012; 35 Haris (10.1016/j.envsoft.2018.01.017_bib11) 2005 Kubat (10.1016/j.envsoft.2018.01.017_bib20) 1995 Kruusmaa (10.1016/j.envsoft.2018.01.017_bib19) 2003; 14 Fallah-Shorshani (10.1016/j.envsoft.2018.01.017_bib38) 2015; 64 Liu (10.1016/j.envsoft.2018.01.017_bib22) 2015; 74 Gama (10.1016/j.envsoft.2018.01.017_bib7) 2010 Klinkenberg (10.1016/j.envsoft.2018.01.017_bib18) 1998 Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib27) 2016 Halonen (10.1016/j.envsoft.2018.01.017_bib10) 2014; 61 INEGI (10.1016/j.envsoft.2018.01.017_bib1a) 2010 Meléndez (10.1016/j.envsoft.2018.01.017_bib25) 2001; 1 Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib28) 2013; vol. 8266 (10.1016/j.envsoft.2018.01.017_bib1) 2007 (10.1016/j.envsoft.2018.01.017_bib8) 2007 Hill (10.1016/j.envsoft.2018.01.017_bib12) 2010; 25 Hulten (10.1016/j.envsoft.2018.01.017_bib13) 2001 Finestrali (10.1016/j.envsoft.2018.01.017_bib6) 2013; 7969 Klinkenberg (10.1016/j.envsoft.2018.01.017_bib16) 2004; 8 Lichman (10.1016/j.envsoft.2018.01.017_bib21) 2013 Maloof (10.1016/j.envsoft.2018.01.017_bib24) 2000; 41 Orduña Cabrera (10.1016/j.envsoft.2018.01.017_bib29) 2009; vol. 202 Thaker (10.1016/j.envsoft.2018.01.017_bib41) 2016; 208 Urdiales (10.1016/j.envsoft.2018.01.017_bib42) 2006; 21 López de Mántaras (10.1016/j.envsoft.2018.01.017_bib23) 2005; 20 Sànchez-Marrè (10.1016/j.envsoft.2018.01.017_bib36) 1999; 14 Gulliver (10.1016/j.envsoft.2018.01.017_bib9) 2015; 74 Vedrenne (10.1016/j.envsoft.2018.01.017_bib43) 2014; 57 Sànchez-Marrè (10.1016/j.envsoft.2018.01.017_bib35) 2000; 4 Tang (10.1016/j.envsoft.2018.01.017_bib40) 2007; 22 Tan (10.1016/j.envsoft.2018.01.017_bib39) 2010; 6464 |
References_xml | – volume: 14 start-page: 349 year: 1999 end-page: 357 ident: bib36 article-title: “Sustainable case learning for continuous domains” publication-title: Environ. Model. Software – volume: 35 start-page: 74 year: 2012 end-page: 83 ident: bib4 article-title: Effects of traffic signal coordination on noise and air pollutant emissions publication-title: Environ. Model. Software – year: 2013 ident: bib33 article-title: Case-Based Reasoning: A Text-Book – volume: 14 start-page: 71 year: 2003 end-page: 91 ident: bib19 article-title: Global navigation in dynamic environments using case-based reasoning publication-title: Aut. Robots – volume: 41 start-page: 27 year: 2000 end-page: 52 ident: bib24 article-title: Selecting examples for partial memory learning publication-title: Mach. Learn. – start-page: 371 year: 1995 end-page: 376 ident: bib26 article-title: Improving system performance in case-based iterative optimization through knowledge filtering publication-title: Procc. of IJCAI 1995 – volume: 61 start-page: 135 year: 2014 end-page: 150 ident: bib10 article-title: Prediction of ultrafine particle number concentration in urban environments by means of Gaussian process regression based on measurements of oxides of nitrogen publication-title: Environ. Model. Software – volume: 27–28 start-page: 52 year: 2012 end-page: 61 ident: bib3 article-title: Openair- an R package for air quality data analysis publication-title: Environ. Model. Software – volume: 64 start-page: 102 year: 2015 end-page: 123 ident: bib38 article-title: Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects publication-title: Environ. Model. Software – volume: vol. 8266 start-page: 314 year: 2013 end-page: 325 ident: bib28 article-title: Using NIAR-trees to improve the case-based reasoning retrieval step publication-title: 12th Mexican International Conference on Artificial Intelligence (MICAI 2013). Proceedings Part II – volume: 90 start-page: 86 year: 1997 end-page: 93 ident: bib30 article-title: Continuous case-based reasoning publication-title: Artif. Intell. – volume: 74 start-page: 183 year: 2015 end-page: 193 ident: bib9 article-title: Development of an open-source road traffic noise model for exposure assessment publication-title: Environmental Modelling and Software – start-page: 537 year: 2005 end-page: 551 ident: bib11 article-title: Autonomous Creation of New Situation Cases in Structured Continuous Domains – volume: 25 start-page: 1014 year: 2010 end-page: 1022 ident: bib12 article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach publication-title: Environ. Model. Software – volume: vol. 202 start-page: 157 year: 2009 end-page: 166 ident: bib29 article-title: Dynamic adaptive case library for continuous domains publication-title: In Proc. Of 12th International Conference of the Catalan Association of Artificial Intelligence (CCIA'2009) – start-page: 33 year: 1998 end-page: 40 ident: bib18 article-title: Adaptive information filtering: learning in the presence of concept drifts publication-title: In Learning for Text Categorization – volume: 74 start-page: 247 year: 2015 end-page: 257 ident: bib22 article-title: Software to facilitate remote sensing data access for disease early warning systems publication-title: Environ. Model. Software – start-page: 487 year: 2000 end-page: 494 ident: bib17 article-title: Detecting concept drift with support vector machines publication-title: Proceedings of ICML-00 – volume: 20 start-page: 215 year: 2005 end-page: 244 ident: bib23 article-title: Retrieval, reuse, revision and retention in case-based reasoning publication-title: Knowl. Eng. Rev. – volume: vol. 9868 start-page: 135 year: 2016 end-page: 149 ident: bib37 article-title: Using CVI for understanding class topology in unsupervised scenarios publication-title: 17th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2016) LNAI – volume: 7969 start-page: 89 year: 2013 end-page: 103 ident: bib6 article-title: Case-Based Learning Of Applicability Conditions For Stochastic Explanations publication-title: Case-Based Reasoning Research and Development – volume: 6464 start-page: 112 year: 2010 end-page: 121 ident: bib39 article-title: A comparative study of a practical stochastic clustering method with traditional methods publication-title: AI 2010: Adv. Artif. Intell. – year: 2001 ident: bib13 article-title: Catching up with the data: research issues in mining data streams publication-title: In Proc. Of Workshop on Research Issues in Data Mining and Knowledge Discovery – start-page: 377 year: 1995 end-page: 382 ident: bib15 article-title: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems publication-title: Procc. Of IJCAI 1995 – volume: 1 start-page: 431 year: 2001 end-page: 440 ident: bib25 article-title: Expert Supervision Based on Cases publication-title: Proc. of 8th IEEE International Conference on Emerging Technologies and Factory Automation – year: 2013 ident: bib21 article-title: UCI Machine Learning Repository – volume: 23 start-page: 258 year: 2007 end-page: 267 ident: bib5 article-title: A new approach to link transport emissions and air quality: an intelligent transport system based on the control of traffic air pollution publication-title: Environ. Model. Software – volume: 26 start-page: 434 year: 2011 end-page: 443 ident: bib45 article-title: Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models publication-title: Environ. Model. Software – year: 2001 ident: bib14 article-title: Mining time-changing data streams publication-title: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining – volume: 22 start-page: 1750 year: 2007 end-page: 1764 ident: bib40 article-title: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system publication-title: Environ. Model. Software – year: 2010 ident: bib7 article-title: Knowledge Discovery from Data Streams – volume: 4 start-page: 53 year: 2000 end-page: 63 ident: bib35 article-title: Using meta-cases to improve accuracy in hierarchical case retrieval publication-title: Comput. Sist. – year: 2010 ident: bib1a article-title: Census of Population and Housing (in Spanish: Censo de Población y Vivienda) – volume: 3 start-page: 376 year: 1997 end-page: 394 ident: bib31 article-title: Case-based reactive navigation: a method for on-line selection and adaptation of reactive robotic control parameters publication-title: IEEE Syst., Man, and Cybern. Part B – year: 2007 ident: bib8 publication-title: Learning from Data Streams: Processing Techniques in Sensor Networks – volume: 21 start-page: 65 year: 2006 end-page: 78 ident: bib42 article-title: A purely reactive navigation scheme for dynamic environments using case-based reasoning publication-title: Aut. Robots – year: 2007 ident: bib1 publication-title: Data Streams: Models and Algorithms – start-page: 307 year: 1995 end-page: 310 ident: bib20 article-title: Adapting to drift in continuous domain publication-title: In Proceedings of the 8th European Conference on Machine Learning – volume: 74 start-page: 238 year: 2015 end-page: 246 ident: bib32 article-title: Integrating modelling and smart sensor for environmental and human health publication-title: Environ. Model. Software – volume: 57 start-page: 177 year: 2014 end-page: 191 ident: bib43 article-title: Advancements in the design and validation of an air pollution integrated assessment model for Spain publication-title: Environ. Model. Software – volume: 23 start-page: 69 year: 1996 end-page: 101 ident: bib44 article-title: Learning in the presence of concept drift and hidden contexts publication-title: Mach. Learn. – volume: 8 start-page: 281 year: 2004 end-page: 300 ident: bib16 article-title: Learning drifting concepts: example selection vs. example weighting publication-title: Intell. Data Anal. – year: 2016 ident: bib27 article-title: A Dynamic Adaptive Framework for Improving Case-based Reasoning System Performance – volume: 208 start-page: 161 year: 2016 end-page: 169 ident: bib41 article-title: The impact of traffic-flow patterns on air quality in urban street canyons publication-title: Environ. Pollut. – year: 2016 ident: 10.1016/j.envsoft.2018.01.017_bib27 – volume: 23 start-page: 69 year: 1996 ident: 10.1016/j.envsoft.2018.01.017_bib44 article-title: Learning in the presence of concept drift and hidden contexts publication-title: Mach. Learn. doi: 10.1007/BF00116900 – year: 2010 ident: 10.1016/j.envsoft.2018.01.017_bib1a – volume: 8 start-page: 281 issue: 3 year: 2004 ident: 10.1016/j.envsoft.2018.01.017_bib16 article-title: Learning drifting concepts: example selection vs. example weighting publication-title: Intell. Data Anal. doi: 10.3233/IDA-2004-8305 – volume: vol. 202 start-page: 157 year: 2009 ident: 10.1016/j.envsoft.2018.01.017_bib29 article-title: Dynamic adaptive case library for continuous domains – volume: 41 start-page: 27 year: 2000 ident: 10.1016/j.envsoft.2018.01.017_bib24 article-title: Selecting examples for partial memory learning publication-title: Mach. Learn. doi: 10.1023/A:1007661119649 – volume: 27–28 start-page: 52 year: 2012 ident: 10.1016/j.envsoft.2018.01.017_bib3 article-title: Openair- an R package for air quality data analysis publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2011.09.008 – volume: 74 start-page: 183 year: 2015 ident: 10.1016/j.envsoft.2018.01.017_bib9 article-title: Development of an open-source road traffic noise model for exposure assessment – volume: 208 start-page: 161 year: 2016 ident: 10.1016/j.envsoft.2018.01.017_bib41 article-title: The impact of traffic-flow patterns on air quality in urban street canyons publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.09.004 – volume: 14 start-page: 71 year: 2003 ident: 10.1016/j.envsoft.2018.01.017_bib19 article-title: Global navigation in dynamic environments using case-based reasoning publication-title: Aut. Robots doi: 10.1023/A:1020979520454 – volume: 61 start-page: 135 year: 2014 ident: 10.1016/j.envsoft.2018.01.017_bib10 article-title: Prediction of ultrafine particle number concentration in urban environments by means of Gaussian process regression based on measurements of oxides of nitrogen publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2014.07.012 – year: 2001 ident: 10.1016/j.envsoft.2018.01.017_bib14 article-title: Mining time-changing data streams – year: 2013 ident: 10.1016/j.envsoft.2018.01.017_bib21 – volume: 14 start-page: 349 issue: 5 year: 1999 ident: 10.1016/j.envsoft.2018.01.017_bib36 article-title: “Sustainable case learning for continuous domains” publication-title: Environ. Model. Software doi: 10.1016/S1364-8152(98)00097-8 – volume: 3 start-page: 376 year: 1997 ident: 10.1016/j.envsoft.2018.01.017_bib31 article-title: Case-based reactive navigation: a method for on-line selection and adaptation of reactive robotic control parameters publication-title: IEEE Syst., Man, and Cybern. Part B doi: 10.1109/3477.584946 – volume: 22 start-page: 1750 year: 2007 ident: 10.1016/j.envsoft.2018.01.017_bib40 article-title: Influences of urban forms on traffic-induced noise and air pollution: results from a modelling system publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2007.02.003 – year: 2007 ident: 10.1016/j.envsoft.2018.01.017_bib1 – volume: 20 start-page: 215 issue: 3 year: 2005 ident: 10.1016/j.envsoft.2018.01.017_bib23 article-title: Retrieval, reuse, revision and retention in case-based reasoning publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888906000646 – start-page: 371 year: 1995 ident: 10.1016/j.envsoft.2018.01.017_bib26 article-title: Improving system performance in case-based iterative optimization through knowledge filtering – volume: 90 start-page: 86 year: 1997 ident: 10.1016/j.envsoft.2018.01.017_bib30 article-title: Continuous case-based reasoning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(96)00037-9 – volume: 57 start-page: 177 year: 2014 ident: 10.1016/j.envsoft.2018.01.017_bib43 article-title: Advancements in the design and validation of an air pollution integrated assessment model for Spain publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2014.03.002 – start-page: 377 year: 1995 ident: 10.1016/j.envsoft.2018.01.017_bib15 article-title: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems – volume: vol. 9868 start-page: 135 year: 2016 ident: 10.1016/j.envsoft.2018.01.017_bib37 article-title: Using CVI for understanding class topology in unsupervised scenarios – year: 2007 ident: 10.1016/j.envsoft.2018.01.017_bib8 – start-page: 537 year: 2005 ident: 10.1016/j.envsoft.2018.01.017_bib11 – start-page: 307 year: 1995 ident: 10.1016/j.envsoft.2018.01.017_bib20 article-title: Adapting to drift in continuous domain – volume: vol. 8266 start-page: 314 year: 2013 ident: 10.1016/j.envsoft.2018.01.017_bib28 article-title: Using NIAR-trees to improve the case-based reasoning retrieval step – volume: 7969 start-page: 89 year: 2013 ident: 10.1016/j.envsoft.2018.01.017_bib6 article-title: Case-Based Learning Of Applicability Conditions For Stochastic Explanations – start-page: 33 year: 1998 ident: 10.1016/j.envsoft.2018.01.017_bib18 article-title: Adaptive information filtering: learning in the presence of concept drifts – year: 2010 ident: 10.1016/j.envsoft.2018.01.017_bib7 – volume: 23 start-page: 258 year: 2007 ident: 10.1016/j.envsoft.2018.01.017_bib5 article-title: A new approach to link transport emissions and air quality: an intelligent transport system based on the control of traffic air pollution publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2007.03.001 – volume: 25 start-page: 1014 issue: 9 year: 2010 ident: 10.1016/j.envsoft.2018.01.017_bib12 article-title: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2009.08.010 – volume: 74 start-page: 238 year: 2015 ident: 10.1016/j.envsoft.2018.01.017_bib32 article-title: Integrating modelling and smart sensor for environmental and human health publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2015.06.003 – volume: 4 start-page: 53 issue: 1 year: 2000 ident: 10.1016/j.envsoft.2018.01.017_bib35 article-title: Using meta-cases to improve accuracy in hierarchical case retrieval publication-title: Comput. Sist. – start-page: 487 year: 2000 ident: 10.1016/j.envsoft.2018.01.017_bib17 article-title: Detecting concept drift with support vector machines – year: 2001 ident: 10.1016/j.envsoft.2018.01.017_bib13 article-title: Catching up with the data: research issues in mining data streams – volume: 1 start-page: 431 year: 2001 ident: 10.1016/j.envsoft.2018.01.017_bib25 article-title: Expert Supervision Based on Cases – year: 2013 ident: 10.1016/j.envsoft.2018.01.017_bib33 – volume: 21 start-page: 65 year: 2006 ident: 10.1016/j.envsoft.2018.01.017_bib42 article-title: A purely reactive navigation scheme for dynamic environments using case-based reasoning publication-title: Aut. Robots doi: 10.1007/s10514-006-7231-8 – volume: 26 start-page: 434 year: 2011 ident: 10.1016/j.envsoft.2018.01.017_bib45 article-title: Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2010.09.007 – volume: 74 start-page: 247 year: 2015 ident: 10.1016/j.envsoft.2018.01.017_bib22 article-title: Software to facilitate remote sensing data access for disease early warning systems publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2015.07.006 – volume: 64 start-page: 102 year: 2015 ident: 10.1016/j.envsoft.2018.01.017_bib38 article-title: Modelling chain for the effect of road traffic on air and water quality: techniques, current status and future prospects publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2014.11.020 – volume: 6464 start-page: 112 year: 2010 ident: 10.1016/j.envsoft.2018.01.017_bib39 article-title: A comparative study of a practical stochastic clustering method with traditional methods publication-title: AI 2010: Adv. Artif. Intell. – volume: 35 start-page: 74 year: 2012 ident: 10.1016/j.envsoft.2018.01.017_bib4 article-title: Effects of traffic signal coordination on noise and air pollutant emissions publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2012.02.009 |
SSID | ssj0001524 |
Score | 2.2699082 |
Snippet | Environmental data stream mining is an open challenge for Data Science. Common methods used are static because they analyze a static set of data, and provide... © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Environmental data stream... |
SourceID | csuc proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22 |
SubjectTerms | Adaptive systems Air quality Air quality detection Case-based reasoning computer software data collection Data mining Data processing Data science Data stream mining Dynamic case learning Environment Environment models Environmental information Environmental modelling environmental models Informàtica Intel·ligència artificial learning Mexico prototypes Stochastic learning Stochastic models stochastic processes Àrees temàtiques de la UPC |
Title | Environmental data stream mining through a case-based stochastic learning approach |
URI | https://dx.doi.org/10.1016/j.envsoft.2018.01.017 https://www.proquest.com/docview/2088794217 https://www.proquest.com/docview/2101359509 https://recercat.cat/handle/2072/345661 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NnZDgAUZhomObjMQTUloncb4ep6lTAbEHYNLeLPtiwyaWTmuLtBf-du4Sp115mUSUPDg-25E_7s7x3e8A3quiwKykBWiwxEjl3kUm5f9WlVLSeWWd4xPdL-f57EJ9uswud-C094Vhs8rA-zue3nLr8GYSenNye3U1-RanOSONkE6d0kYiY49yRv-iOT3-szHzIIIusG2uIqbeePFMrseu-b0gbscWXmWL3tnGLdvIpwEuVrglpv5h2K0UOtuD50F9FCfdF76EHdcM4UUfmkGElTqEJ9MWjfp-CM8eIA4OYX-6cWyjegL94hV83c5gw1HBfiTmRty0MSREiOgjjECSfBGLv5pI5vjTMNazCPEnfogepvw1XJxNv5_OohBvIUIVJ8vIK1PJ3NeIRYaG9jqyrmMbuzLxFgv00jtP2xOfuVxJVatE5VZZacvElgZtme7DoJk37g0I62WGcWZTh4quysrUxOhps2NlldblCFTfyxoDGDnHxPile6uzax0GR_PgaBnTXYxgvC5226FxPFbgAw-hppnk7tAsNaNprxP8JLJIdEpqZB6PoOwHWm_NQU3i5bF2DvuJoQMTWFA-cfBKJZz9bp1Ny5fPZEzj5iuioTrZN1pWB__f-lt4yqnOLvEQBsu7lTsiXWlpj9vFcAy7Jx8_z87_AjTzFfE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgj2wEdhojDASDwhZXUS5-txmjp1bOsDbNLeLPtiwybWTms7if-eu8RpKS-TiJKH5PwRxfbv7PjudwCfVVFgVtIANFhipHLvIpPyf6tKKem8ss7xju7ZJB9fqK-X2eUWHHa-MGxWGbC_xfQGrcOTYfiaw9urq-H3OM2ZaYTm1CktJLLiEWyrjDC5B9sHxyfjyQqQKU0b2zZXEWdYO_IMr_fd9H5OgMdGXmVD4NmELlurqB7Ol7ihqf7B7EYRHb2AZ2EGKQ7al3wJW27ah-dddAYRBmsfHo8aQurffdj5i3SwD7ujtW8blRPSz1_Bt00B244KdiUxN-KmCSMhQlAfYQSS8otYA9aUZIY_DdM9ixCC4ofomMpfw8XR6PxwHIWQCxGqOFlEXplK5r5GLDI0tNyRdR3b2JWJt1igl955WqH4zOVKqlolKrfKSlsmtjRoy3QXetPZ1L0BYb3MMM5s6lDRUVmZmhg9rXesrNK6HIDqvrLGwEfOYTF-6c7w7FqHxtHcOFrGdBYD2F9lu20JOR7K8IWbUFNncndoFpoJtVc3fCWySHRKM8k8HkDZNbTe6IaaNMxD9ex1HUMHHJiTnEC8UgmLP63ENIJ5W8ZM3WxJaahMdo-W1dv_r_0jPBmfn53q0-PJyTt4ypLWTHEPeou7pXtPU6eF_RCGxh-TERic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+data+stream+mining+through+a+case-based+stochastic+learning+approach&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Ordu%C3%B1a+Cabrera%2C+Fernando&rft.au=S%C3%A0nchez-Marr%C3%A8%2C+Miquel&rft.date=2018-08-01&rft.issn=1364-8152&rft.volume=106&rft.spage=22&rft.epage=34&rft_id=info:doi/10.1016%2Fj.envsoft.2018.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envsoft_2018_01_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |