The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes
Abstract The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be ‘handed’ from one BER enzyme to the next in a coordinated fashion. He...
Saved in:
Published in | Nucleic acids research Vol. 47; no. 6; pp. 2922 - 2931 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
08.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gky1315 |
Cover
Abstract | Abstract
The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be ‘handed’ from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3′ diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin. |
---|---|
AbstractList | The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be 'handed' from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3' diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin. The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be 'handed' from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3' diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin.The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be 'handed' from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3' diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin. Abstract The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be ‘handed’ from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3′ diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin. |
Author | Pederson, David S Maher, Robyn L Wallace, Susan S |
AuthorAffiliation | Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA |
AuthorAffiliation_xml | – name: Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA |
Author_xml | – sequence: 1 givenname: Robyn L surname: Maher fullname: Maher, Robyn L organization: Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA – sequence: 2 givenname: Susan S surname: Wallace fullname: Wallace, Susan S organization: Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA – sequence: 3 givenname: David S surname: Pederson fullname: Pederson, David S email: david.pederson@uvm.edu organization: Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30649547$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBFXvkFUJCTVxt92uDNArhIUXAIqwt2109MXjswe6OaFZ8BR_CJ_EleDJDBJFgZVk-91TJ94gc-OCRkIfAngHr-IlX8WT1aQYO1R2yAF6Xhejq8oAsGGdVAUy0h-QopY-MgYBK3COHnNWiq0SzIN8vLpG6WSWkyoz2yo4zDQPVdph8vgevHH3xdklXbjYhzS6DiSrf0zHn-M9vP4reYhox3jYs358BNcGP0eppRDqG60jEjbJxC4Qvtrdfsaf62mk99ZNxGFJYY7pP7g7KJXywP4_Jh5dnF6evi_N3r96cLs8LI6AciwF0i1pzXVZMDFXVtND0ZQ3YNnXHdN8KU_OmVaBqrfuuxwFqIRTqsim1QuTH5PnOu5n0GnuDeV_l5CbatYqzDMrKv1-8vZSrcCVrUQGwKgue7AUxfJ7yT8i1TQadUx7DlGQJTcdb3oot-ujPWTdDfpeRgac7wMSQUsThBgEmt1XLXLXcV51puEUbO6ptZXlR6_6RebzLhGnzX_kvjni_mA |
CitedBy_id | crossref_primary_10_1038_s41467_024_53811_3 crossref_primary_10_1080_09553002_2021_1948141 crossref_primary_10_1134_S0026893321020096 crossref_primary_10_3390_ijms22168763 crossref_primary_10_1016_j_dnarep_2022_103345 crossref_primary_10_1093_nar_gkaa1153 crossref_primary_10_1021_acs_analchem_4c06820 crossref_primary_10_1016_j_compbiolchem_2021_107485 crossref_primary_10_1021_jacs_1c06926 crossref_primary_10_1021_jacs_2c02703 crossref_primary_10_1016_j_dnarep_2023_103482 crossref_primary_10_1007_s00018_021_03990_9 crossref_primary_10_1021_acs_chemrestox_1c00408 crossref_primary_10_1093_nar_gkab1162 crossref_primary_10_1021_acs_chemrestox_1c00409 crossref_primary_10_1038_s41598_023_43737_z crossref_primary_10_1016_j_jbc_2023_105118 crossref_primary_10_1021_acs_chemrestox_2c00087 |
Cites_doi | 10.1016/S0076-6879(03)75002-2 10.1073/pnas.1306752110 10.1016/S0027-5107(01)00186-5 10.1074/jbc.M112.441444 10.1038/ng.3287 10.1089/ars.2013.5492 10.1021/bi3006412 10.1128/MCB.00026-13 10.1074/jbc.M110.155267 10.1182/blood-2004-04-1476 10.1016/j.mrfmmm.2014.05.008 10.1074/jbc.M116.736728 10.1128/MCB.05715-11 10.1038/srep41783 10.1038/82818 10.1021/bi0007066 10.1007/978-1-61779-261-8_16 10.1074/jbc.M212168200 10.1016/j.dnarep.2015.08.003 10.1073/pnas.0505166102 10.1101/gr.225771.117 10.1038/415183a 10.1074/jbc.M114.571588 10.1038/35000249 10.1074/jbc.274.1.67 10.1093/nar/29.6.1285 10.1038/38444 10.1038/362709a0 10.1002/jcp.24134 10.1016/j.dnarep.2017.06.029 10.1128/MCB.00791-07 10.1093/nar/29.2.430 10.1038/nature05978 10.1093/mutage/geh025 10.1146/annurev.biochem.72.121801.161447 10.1016/j.dnarep.2018.02.001 10.1016/j.dnarep.2014.03.030 10.1016/j.dnarep.2013.02.001 10.1016/j.dnarep.2014.01.002 10.1016/j.dnarep.2018.08.013 10.1016/j.dnarep.2013.08.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gky1315 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 2931 |
ExternalDocumentID | PMC6451105 30649547 10_1093_nar_gky1315 10.1093/nar/gky1315 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National institutes of Health grantid: P01-CA098993 funderid: 10.13039/100000002 – fundername: NCI NIH HHS grantid: P01 CA098993 – fundername: ; ; grantid: P01-CA098993 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX ABEJV ABGNP ACUTJ AFYAG AMNDL CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c412t-f1b8ebb3b2504f557817d261e87690bd84c6378a1a6bbd9def1644aeb272baee3 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:20:57 EDT 2025 Mon Sep 08 02:11:43 EDT 2025 Mon Jul 21 05:36:02 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Wed Aug 28 03:19:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-f1b8ebb3b2504f557817d261e87690bd84c6378a1a6bbd9def1644aeb272baee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gky1315 |
PMID | 30649547 |
PQID | 2179383845 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451105 proquest_miscellaneous_2179383845 pubmed_primary_30649547 crossref_primary_10_1093_nar_gky1315 crossref_citationtrail_10_1093_nar_gky1315 oup_primary_10_1093_nar_gky1315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-08 |
PublicationDateYYYYMMDD | 2019-04-08 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Prasad ( key 2019040602500869400_B10) 2010; 285 Marenstein ( key 2019040602500869400_B22) 2003; 278 Li ( key 2019040602500869400_B38) 2014; 20 Vidal ( key 2019040602500869400_B31) 2001; 29 Odell ( key 2019040602500869400_B13) 2013; 228 Eccles ( key 2019040602500869400_B44) 2015; 35 Maher ( key 2019040602500869400_B18) 2013; 12 David ( key 2019040602500869400_B3) 2007; 447 Hill ( key 2019040602500869400_B30) 2001; 29 Parsons ( key 2019040602500869400_B9) 2013; 12 Mao ( key 2019040602500869400_B19) 2017; 27 Ischenko ( key 2019040602500869400_B28) 2002; 415 Luger ( key 2019040602500869400_B12) 1997; 389 Verdine ( key 2019040602500869400_B26) 2003; 72 Rodriguez ( key 2019040602500869400_B40) 2013; 288 Luger ( key 2019040602500869400_B25) 1999; 119 Galick ( key 2019040602500869400_B6) 2013; 110 Kennedy ( key 2019040602500869400_B21) 2018; S1568-7864 Masani ( key 2019040602500869400_B43) 2013; 33 Wilson ( key 2019040602500869400_B8) 2000; 7 Wallace ( key 2019040602500869400_B4) 2014; 19 Weren ( key 2019040602500869400_B7) 2015; 47 Ide ( key 2019040602500869400_B42) 2004; 104 De Bont ( key 2019040602500869400_B2) 2004; 19 Hinz ( key 2019040602500869400_B36) 2014; 766–767 Howard ( key 2019040602500869400_B20) 2017; 45 Mol ( key 2019040602500869400_B34) 2000; 403 Ye ( key 2019040602500869400_B41) 2012; 51 Kladova ( key 2019040602500869400_B35) 2018; 64 Czaja ( key 2019040602500869400_B15) 2014; 16 Privezentzev ( key 2019040602500869400_B29) 2001; 480–481 Prasad ( key 2019040602500869400_B16) 2007; 27 Cannan ( key 2019040602500869400_B39) 2014; 289 Lindahl ( key 2019040602500869400_B1) 1993; 362 Howard ( key 2019040602500869400_B11) 2018; 71 Cannan ( key 2019040602500869400_B17) 2017; 292 Maher ( key 2019040602500869400_B14) 2017; 57 Osakabe ( key 2019040602500869400_B37) 2017; 7 Dyer ( key 2019040602500869400_B27) 2004; 375 Lee ( key 2019040602500869400_B24) 2011; 778 Waters ( key 2019040602500869400_B33) 1999; 274 Sung ( key 2019040602500869400_B32) 2000; 39 Sweasy ( key 2019040602500869400_B5) 2005; 102 Odell ( key 2019040602500869400_B23) 2011; 31 |
References_xml | – volume: 375 start-page: 23 year: 2004 ident: key 2019040602500869400_B27 article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)75002-2 – volume: 110 start-page: 14314 year: 2013 ident: key 2019040602500869400_B6 article-title: Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1306752110 – volume: 480–481 start-page: 277 year: 2001 ident: key 2019040602500869400_B29 article-title: The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N(4)-ethenocytosine residues publication-title: Mut. Res. doi: 10.1016/S0027-5107(01)00186-5 – volume: 288 start-page: 13863 year: 2013 ident: key 2019040602500869400_B40 article-title: The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.441444 – volume: 47 start-page: 668 year: 2015 ident: key 2019040602500869400_B7 article-title: A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer publication-title: Nat. Genet. doi: 10.1038/ng.3287 – volume: 20 start-page: 678 year: 2014 ident: key 2019040602500869400_B38 article-title: Human apurinic/apyrimidinic endonuclease 1 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5492 – volume: 51 start-page: 6028 year: 2012 ident: key 2019040602500869400_B41 article-title: Enzymatic excision of uracil residues in nucleosomes depends on the local DNA structure and dynamics publication-title: Biochemistry doi: 10.1021/bi3006412 – volume: 33 start-page: 1468 year: 2013 ident: key 2019040602500869400_B43 article-title: Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00026-13 – volume: 285 start-page: 40479 year: 2010 ident: key 2019040602500869400_B10 article-title: Substrate channeling in mammalian base excision repair pathways: passing the baton publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.155267 – volume: 104 start-page: 4097 year: 2004 ident: key 2019040602500869400_B42 article-title: Growth retardation and dyslymphopoiesis accompanied by G2/M arrest in APEX2-null mice publication-title: Blood doi: 10.1182/blood-2004-04-1476 – volume: 119 start-page: 1 year: 1999 ident: key 2019040602500869400_B25 article-title: Expression and purification of recombinant histones and nucleosome reconstitution publication-title: Methods Mol. Biol. – volume: 766–767 start-page: 19 year: 2014 ident: key 2019040602500869400_B36 article-title: Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity publication-title: Mut. Res. doi: 10.1016/j.mrfmmm.2014.05.008 – volume: 292 start-page: 5227 year: 2017 ident: key 2019040602500869400_B17 article-title: The human ligase IIIalpha-XRCC1 protein complex performs DNA nick repair after transient unwrapping of nucleosomal DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.736728 – volume: 31 start-page: 4623 year: 2011 ident: key 2019040602500869400_B23 article-title: Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05715-11 – volume: 7 start-page: 41783 year: 2017 ident: key 2019040602500869400_B37 article-title: Polymorphism of apyrimidinic DNA structures in the nucleosome publication-title: Scientific Rep. doi: 10.1038/srep41783 – volume: 7 start-page: 176 year: 2000 ident: key 2019040602500869400_B8 article-title: Passing the baton in base excision repair publication-title: Nat. Struct. Biol. doi: 10.1038/82818 – volume: 39 start-page: 10224 year: 2000 ident: key 2019040602500869400_B32 article-title: Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV publication-title: Biochemistry doi: 10.1021/bi0007066 – volume: 778 start-page: 243 year: 2011 ident: key 2019040602500869400_B24 article-title: Assembly of recombinant nucleosomes on nanofabricated DNA curtains for single-molecule imaging publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-261-8_16 – volume: 278 start-page: 9005 year: 2003 ident: key 2019040602500869400_B22 article-title: Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212168200 – volume: 35 start-page: 27 year: 2015 ident: key 2019040602500869400_B44 article-title: Efficient cleavage of single and clustered AP site lesions within mono-nucleosome templates by CHO-K1 nuclear extract contrasts with retardation of incision by purified APE1 publication-title: DNA Repair doi: 10.1016/j.dnarep.2015.08.003 – volume: 102 start-page: 14350 year: 2005 ident: key 2019040602500869400_B5 article-title: Expression of DNA polymerase {beta} cancer-associated variants in mouse cells results in cellular transformation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0505166102 – volume: S1568-7864 start-page: 30176 year: 2018 ident: key 2019040602500869400_B21 article-title: Initiating base excision repair in chromatin publication-title: DNA Repair – volume: 27 start-page: 1674 year: 2017 ident: key 2019040602500869400_B19 article-title: Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity publication-title: Genome Res. doi: 10.1101/gr.225771.117 – volume: 415 start-page: 183 year: 2002 ident: key 2019040602500869400_B28 article-title: Alternative nucleotide incision repair pathway for oxidative DNA damage publication-title: Nature doi: 10.1038/415183a – volume: 289 start-page: 19881 year: 2014 ident: key 2019040602500869400_B39 article-title: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.571588 – volume: 403 start-page: 451 year: 2000 ident: key 2019040602500869400_B34 article-title: DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected] publication-title: Nature doi: 10.1038/35000249 – volume: 274 start-page: 67 year: 1999 ident: key 2019040602500869400_B33 article-title: Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.1.67 – volume: 29 start-page: 1285 year: 2001 ident: key 2019040602500869400_B31 article-title: Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.6.1285 – volume: 389 start-page: 251 year: 1997 ident: key 2019040602500869400_B12 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 362 start-page: 709 year: 1993 ident: key 2019040602500869400_B1 article-title: Instability and decay of the primary structure of DNA publication-title: Nature doi: 10.1038/362709a0 – volume: 228 start-page: 258 year: 2013 ident: key 2019040602500869400_B13 article-title: Rules of engagement for base excision repair in chromatin publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24134 – volume: 57 start-page: 91 year: 2017 ident: key 2019040602500869400_B14 article-title: Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes publication-title: DNA Repair doi: 10.1016/j.dnarep.2017.06.029 – volume: 27 start-page: 8442 year: 2007 ident: key 2019040602500869400_B16 article-title: Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00791-07 – volume: 29 start-page: 430 year: 2001 ident: key 2019040602500869400_B30 article-title: Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.2.430 – volume: 447 start-page: 941 year: 2007 ident: key 2019040602500869400_B3 article-title: Base-excision repair of oxidative DNA damage publication-title: Nature doi: 10.1038/nature05978 – volume: 19 start-page: 169 year: 2004 ident: key 2019040602500869400_B2 article-title: Endogenous DNA damage in humans: a review of quantitative data publication-title: Mutagenesis doi: 10.1093/mutage/geh025 – volume: 45 start-page: 3822 year: 2017 ident: key 2019040602500869400_B20 article-title: DNA polymerase beta uses its lyase domain in a processive search for DNA damage publication-title: Nucleic Acids Res. – volume: 72 start-page: 337 year: 2003 ident: key 2019040602500869400_B26 article-title: Covalent trapping of protein-DNA complexes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161447 – volume: 64 start-page: 10 year: 2018 ident: key 2019040602500869400_B35 article-title: The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation publication-title: DNA Repair doi: 10.1016/j.dnarep.2018.02.001 – volume: 19 start-page: 14 year: 2014 ident: key 2019040602500869400_B4 article-title: Base excision repair: a critical player in many games publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.03.030 – volume: 12 start-page: 326 year: 2013 ident: key 2019040602500869400_B9 article-title: Co-ordination of base excision repair and genome stability publication-title: DNA repair doi: 10.1016/j.dnarep.2013.02.001 – volume: 16 start-page: 35 year: 2014 ident: key 2019040602500869400_B15 article-title: Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.01.002 – volume: 71 start-page: 101 year: 2018 ident: key 2019040602500869400_B11 article-title: DNA scanning by base excision repair enzymes and implications for pathway coordination publication-title: DNA Repair doi: 10.1016/j.dnarep.2018.08.013 – volume: 12 start-page: 964 year: 2013 ident: key 2019040602500869400_B18 article-title: Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes publication-title: DNA Repair doi: 10.1016/j.dnarep.2013.08.010 |
SSID | ssj0014154 |
Score | 2.4064872 |
Snippet | Abstract
The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive... The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2922 |
SubjectTerms | Chromatin - enzymology Chromatin - genetics Deoxyribonuclease (Pyrimidine Dimer) - chemistry Deoxyribonuclease (Pyrimidine Dimer) - genetics DNA - chemistry DNA - genetics DNA Damage - genetics DNA Glycosylases - chemistry DNA Glycosylases - genetics DNA Repair DNA-(Apurinic or Apyrimidinic Site) Lyase - chemistry DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics Esterases - genetics Genome Integrity, Repair and Humans Lyases - chemistry Lyases - genetics Nucleosomes - enzymology Nucleosomes - genetics Oxidation-Reduction |
Title | The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30649547 https://www.proquest.com/docview/2179383845 https://pubmed.ncbi.nlm.nih.gov/PMC6451105 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Chemistry: Open Access Full-Text Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: HH5 dateStart: 19960101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: KQ8 dateStart: 19740101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 20301231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: RPM dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVASL databaseName: Oxford Journals Free Titles 2012-2013 - NESLI2 customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: 70E dateStart: 0 isFulltext: true titleUrlDefault: https://academic.oup.com/journals providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZQL3BB0PJTfsogIQ5IUeO1kzjHVWlVIVE4tNLeIv-lRGwdtNlKhBNPwYPwSDwJM0521V1VcM7EsvJNPDOemW8Ye2NdKq3Ly0TXLkukyl2iZSYSjMT4xBXempqakz-e5acX8sMsm40Fst0tKfxSHAa9OLz82nMRe8k5-reotuefZutkAdqggSUqkmpKNbbhbb27YXg2mtlu-JTbpZE3bM3JA3Z_dBJhOqD6kN3xYZftTQMGyFc9vIVYthnvw3fZ3aPVyLY99gtBh3mPhgmoX4HGQkBbg2nIeg2XfvD-bAqX8962XY-Os-9ABwfoBYL48_N3QjWF1JO8tcL08zGHWNVO47E8LNv4ygJtWbMggfZ745of3oGJazYBAhElt1175btH7OLk-PzoNBkHLyRW8skyqblR3hhhiN-szvCn5oXDUMvj0Vmmxilpc1EozXVujCudrzHokhqD9GJitPfiMdsJbfBPGZSZr53mVhfcS2MwmNT4bSnbrWyammKfvVuhUtmRlZyGY8yrITsuKoSwGiHcR91aCX8byDhuF3uF8P5b4vUK-gohohyJDr697qoJHVhKKIkyTwZVWC9EwVqZSdxzsaEkawGi6t58EpovkbI7Jxq4NHv23509Z_fQJYv5qlS9YDvLxbV_iW7P0hzE64KDqPp_AbpTB64 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+lyase+activity+of+bifunctional+DNA+glycosylases+and+the+3%27-diesterase+activity+of+APE1+contribute+to+the+repair+of+oxidized+bases+in+nucleosomes&rft.jtitle=Nucleic+acids+research&rft.au=Maher%2C+Robyn+L&rft.au=Wallace%2C+Susan+S&rft.au=Pederson%2C+David+S&rft.date=2019-04-08&rft.eissn=1362-4962&rft.volume=47&rft.issue=6&rft.spage=2922&rft_id=info:doi/10.1093%2Fnar%2Fgky1315&rft_id=info%3Apmid%2F30649547&rft.externalDocID=30649547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |