An AI system for continuous knee osteoarthritis severity grading: An anomaly detection inspired approach with few labels

The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-super...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 167; p. 103138
Main Authors Belton, Niamh, Lawlor, Aonghus, Curran, Kathleen M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2025.103138

Cover

Abstract The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the ‘normal’ representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as ‘normal’ or ‘anomalous’, followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis. •This work proposes a continuous Knee Osteoarthritis grading system.•We advance the original Anomaly Detection technique FewSOME.•This method uses less than 3% of the labels that existing methods require.
AbstractList The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the ‘normal’ representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as ‘normal’ or ‘anomalous’, followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis. •This work proposes a continuous Knee Osteoarthritis grading system.•We advance the original Anomaly Detection technique FewSOME.•This method uses less than 3% of the labels that existing methods require.
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
ArticleNumber 103138
Author Belton, Niamh
Lawlor, Aonghus
Curran, Kathleen M.
Author_xml – sequence: 1
  givenname: Niamh
  orcidid: 0000-0003-4949-4745
  surname: Belton
  fullname: Belton, Niamh
  email: niamh.belton@ucdconnect.ie
  organization: Science Foundation Ireland Centre for Research Training in Machine Learning, Ireland
– sequence: 2
  givenname: Aonghus
  orcidid: 0000-0002-6160-4639
  surname: Lawlor
  fullname: Lawlor, Aonghus
  organization: School of Computer Science, University College Dublin, Ireland
– sequence: 3
  givenname: Kathleen M.
  orcidid: 0000-0003-0095-9337
  surname: Curran
  fullname: Curran, Kathleen M.
  organization: Science Foundation Ireland Centre for Research Training in Machine Learning, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40449142$$D View this record in MEDLINE/PubMed
BookMark eNqNkMFu3CAURVGVqpmk_YOqYtmNp2Cwsauq0ihqk0iRumnXCOPnDBMMLuBM_fdl5GTTTboCwb3nPZ0LdOa8A4TeU7KlhNafDlsV0gj9tiRllZ8YZc0rtKGNYEXZ1OQMbUjLWMHqSpyjixgPhBDBaf0GnXPCeUt5uUF_dg7vbnFcYoIRDz5g7V0ybvZzxA8OAPv84_OofTDJRBzhEfJtwfdB9cbdf8aZoJwflV1wDwl0Mt5h4-JkAvRYTVPwSu_x0aQ9HuCIrerAxrfo9aBshHdP5yX69f3bz6ub4u7H9e3V7q7QnJapgG5gWrOhhVYPjYJe94SAUh0FGBThtapE23HRsqFmtShLQQWpqVBNxTqoe3aJqpU7u0ktR2WtnIIZVVgkJfJkUh7kalKeTMrVZO59XHt5_d8zxCRHEzVYqxxkN5KVlLOyaqs2Rz88RefuhHnmP1vOAb4GdPAxBhj-d4Wvay3rgkcDQUZtwGnos1mdZO_NS4Av_wC0Nc5oZR9gebn-F-xTvqw
Cites_doi 10.1109/CVPR52688.2022.01392
10.1007/s00167-014-3205-0
10.1016/j.compmedimag.2024.102391
10.1016/j.diii.2016.02.015
10.1016/S0140-6736(12)61729-2
10.1186/s12891-021-04722-7
10.1007/s11263-015-0816-y
10.1002/ima.22845
10.1038/s41598-021-93851-z
10.1109/ICCV.2017.74
10.1136/ard.16.4.494
10.1016/j.media.2023.102794
10.1016/j.joca.2006.11.009
10.1016/j.compbiomed.2023.107570
10.1038/s41598-018-20132-7
10.1109/CVPRW59228.2023.00299
10.2106/JBJS.M.00929
10.1109/TPAMI.2020.2983686
10.1016/j.compmedimag.2019.06.002
10.1109/TMI.2021.3118223
10.1109/CVPR46437.2021.00954
10.1109/CVPR.2018.00907
10.1109/CVPR52729.2023.01878
10.1186/s12891-023-06951-4
10.1016/j.patcog.2020.107706
10.1038/s41746-020-0255-1
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.artmed.2025.103138
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID 10.1016/j.artmed.2025.103138
40449142
10_1016_j_artmed_2025_103138
S0933365725000739
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
6I.
AAFTH
AGCQF
AAYXX
CITATION
AFCTW
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c412t-ebf3cc3f9e9cf8aedcd00eaab1eefa046a579b4793f6367227170617a853be6d3
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Tue Aug 19 23:44:37 EDT 2025
Thu Oct 02 22:41:53 EDT 2025
Wed Aug 06 16:36:25 EDT 2025
Wed Oct 01 05:44:53 EDT 2025
Sat Aug 23 17:11:35 EDT 2025
Tue Oct 14 19:30:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Knee osteoarthritis
Few shot anomaly detection
Self-supervised learning
Contrastive learning
Machine learning
X-ray
Self-supervision
Artificial intelligence
Few labels
CLIP
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-ebf3cc3f9e9cf8aedcd00eaab1eefa046a579b4793f6367227170617a853be6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6160-4639
0000-0003-4949-4745
0000-0003-0095-9337
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0933365725000739
PMID 40449142
PQID 3214325959
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_artmed_2025_103138
proquest_miscellaneous_3214325959
pubmed_primary_40449142
crossref_primary_10_1016_j_artmed_2025_103138
elsevier_sciencedirect_doi_10_1016_j_artmed_2025_103138
elsevier_clinicalkey_doi_10_1016_j_artmed_2025_103138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Antony, McGuinness, Moran, O’Connor (b19) 2017
Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark (b43) 2021
University of California San Francisco (b47) 2003
Altman, Gold (b3) 2007; 15
Tiulpin, Thevenot, Rahtu, Lehenkari, Saarakkala (b16) 2018; 8
Cai, Chen, Yang, Zhou, Cheng (b31) 2023; 86
Jain, Sharma, Gaj, Sur, Ghosh (b14) 2021
Simonyan, Zisserman (b46) 2014
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 618–26.
Vos, Flaxman, Naghavi, Lozano, Michaud, Ezzati, Shibuya, Salomon, Abdalla, Aboyans (b1) 2012; 380
Li, Chang, Bearce, Chang, Huang, Campbell, Brown, Singh, Hoebel, Erdoğmuş (b27) 2020; 3
Jeong J, Zou Y, Kim T, Zhang D, Ravichandran A, Dabeer O. Winclip: Zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 19606–16.
Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8697–710.
Bany Muhammad, Yeasin (b15) 2021; 11
Belton N, Hagos MT, Lawlor A, Curran KM. FewSOME: One-Class Few Shot Anomaly Detection With Siamese Networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2023, p. 2977–86.
Belton, Lawlor, Curran (b37) 2021
Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28.
Baur, Graf, Wiestler, Albarqouni, Navab (b32) 2020
Kaur, Kohli, Bedi, Wasly (b21) 2024
Kellgren, Lawrence (b2) 1957; 16
Zhou, Li, Luo, Li, Yang, Fu, Cheng, Liu, Gao (b33) 2021; 41
Wright, Ross, Haas, Huston, Garofoli, Harris, Patel, Pearson, Schutzman, Tarabichi (b8) 2014; 96
Saini, Khosla, Chand, Chouhan, Prakash (b11) 2023
Farooq, Ullah, Khan, Gwak (b13) 2023
Wahyuningrum, Anifah, Purnama, Purnomo (b12) 2019
Chen, Gao, Shi, Allen, Yang (b9) 2019; 75
Bose, Srinivasan, Joy (b23) 2024; 97
Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas (b49) 2018
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b41) 2015; 115
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang (b25) 2020; 43
Yoon, Yon, Lee, Lee, Kang, Kang, Lee, Chang (b17) 2023; 24
Olsson, Akbarian, Lind, Razavian, Gordon (b20) 2021; 22
Belton, Hagos, Lawlor, Curran (b38) 2024; 115
Ross T-Y, Dollár G. Focal loss for dense object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 2980–8.
Altman, Hochberg, Murphy, Wolfe, Lequesne (b4) 1995; 3
Abedin, Antony, McGuinness, Moran, O’Connor, Rebholz-Schuhmann, Newell (b7) 2019
Zavrtanik, Kristan, Skočaj (b30) 2021; 112
Chen (b39) 2018; 1
Kumar, Goswami (b10) 2023; 13
Cyteval (b42) 2016; 97
Shah, Keshari, Sankar, Sugumar, Venkatachalam, Venkatachalam (b22) 2024
Culvenor, Engen, Øiestad, Engebretsen, Risberg (b5) 2015; 23
Bozorgtabar, Mahapatra, Vray, Thiran (b35) 2020
Nevitt, Felson, Lester (b40) 2006; 1
Krizhevsky, Sutskever, Hinton (b45) 2012; 25
Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Müller, Kloft (b28) 2018
Kingma, Ba (b44) 2014
Li C-L, Sohn K, Yoon J, Pfister T. Cutpaste: Self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 9664–74.
Culvenor, Lai, Gabbe, Makdissi, Collins, Vicenzino, Morris, Crossley (b6) 2013
Saini (10.1016/j.artmed.2025.103138_b11) 2023
10.1016/j.artmed.2025.103138_b18
Ruff (10.1016/j.artmed.2025.103138_b28) 2018
Chen (10.1016/j.artmed.2025.103138_b39) 2018; 1
Kim (10.1016/j.artmed.2025.103138_b49) 2018
Altman (10.1016/j.artmed.2025.103138_b4) 1995; 3
Abedin (10.1016/j.artmed.2025.103138_b7) 2019
Kumar (10.1016/j.artmed.2025.103138_b10) 2023; 13
Antony (10.1016/j.artmed.2025.103138_b19) 2017
University of California San Francisco (10.1016/j.artmed.2025.103138_b47) 2003
Belton (10.1016/j.artmed.2025.103138_b37) 2021
Yoon (10.1016/j.artmed.2025.103138_b17) 2023; 24
Culvenor (10.1016/j.artmed.2025.103138_b6) 2013
Wright (10.1016/j.artmed.2025.103138_b8) 2014; 96
Zhou (10.1016/j.artmed.2025.103138_b33) 2021; 41
10.1016/j.artmed.2025.103138_b48
Zavrtanik (10.1016/j.artmed.2025.103138_b30) 2021; 112
Olsson (10.1016/j.artmed.2025.103138_b20) 2021; 22
Radford (10.1016/j.artmed.2025.103138_b43) 2021
Russakovsky (10.1016/j.artmed.2025.103138_b41) 2015; 115
Kellgren (10.1016/j.artmed.2025.103138_b2) 1957; 16
Jain (10.1016/j.artmed.2025.103138_b14) 2021
Bany Muhammad (10.1016/j.artmed.2025.103138_b15) 2021; 11
Culvenor (10.1016/j.artmed.2025.103138_b5) 2015; 23
Li (10.1016/j.artmed.2025.103138_b27) 2020; 3
Cai (10.1016/j.artmed.2025.103138_b31) 2023; 86
Baur (10.1016/j.artmed.2025.103138_b32) 2020
10.1016/j.artmed.2025.103138_b36
Wahyuningrum (10.1016/j.artmed.2025.103138_b12) 2019
Kingma (10.1016/j.artmed.2025.103138_b44) 2014
10.1016/j.artmed.2025.103138_b34
Simonyan (10.1016/j.artmed.2025.103138_b46) 2014
Vos (10.1016/j.artmed.2025.103138_b1) 2012; 380
10.1016/j.artmed.2025.103138_b29
10.1016/j.artmed.2025.103138_b26
Farooq (10.1016/j.artmed.2025.103138_b13) 2023
Altman (10.1016/j.artmed.2025.103138_b3) 2007; 15
Kaur (10.1016/j.artmed.2025.103138_b21) 2024
Shah (10.1016/j.artmed.2025.103138_b22) 2024
Bose (10.1016/j.artmed.2025.103138_b23) 2024; 97
Krizhevsky (10.1016/j.artmed.2025.103138_b45) 2012; 25
Nevitt (10.1016/j.artmed.2025.103138_b40) 2006; 1
Belton (10.1016/j.artmed.2025.103138_b38) 2024; 115
Tiulpin (10.1016/j.artmed.2025.103138_b16) 2018; 8
Cyteval (10.1016/j.artmed.2025.103138_b42) 2016; 97
Chen (10.1016/j.artmed.2025.103138_b9) 2019; 75
10.1016/j.artmed.2025.103138_b24
Wang (10.1016/j.artmed.2025.103138_b25) 2020; 43
Bozorgtabar (10.1016/j.artmed.2025.103138_b35) 2020
References_xml – start-page: 376
  year: 2017
  end-page: 390
  ident: b19
  article-title: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks
  publication-title: Machine learning and data mining in pattern recognition: 13th international conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, proceedings 13
– volume: 22
  start-page: 1
  year: 2021
  end-page: 8
  ident: b20
  article-title: Automating classification of osteoarthritis according to Kellgren–Lawrence in the knee using deep learning in an unfiltered adult population
  publication-title: BMC Musculoskelet Disord
– reference: Belton N, Hagos MT, Lawlor A, Curran KM. FewSOME: One-Class Few Shot Anomaly Detection With Siamese Networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2023, p. 2977–86.
– reference: Li C-L, Sohn K, Yoon J, Pfister T. Cutpaste: Self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 9664–74.
– start-page: 468
  year: 2020
  end-page: 478
  ident: b35
  article-title: Salad: Self-supervised aggregation learning for anomaly detection on x-rays
  publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, October 4–8, 2020, proceedings, part i 23
– volume: 25
  year: 2012
  ident: b45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 24
  start-page: 869
  year: 2023
  ident: b17
  article-title: Assessment of a novel deep learning-based software developed for automatic feature extraction and grading of radiographic knee osteoarthritis
  publication-title: BMC Musculoskelet Disord
– volume: 86
  year: 2023
  ident: b31
  article-title: Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images
  publication-title: Med Image Anal
– start-page: 1
  year: 2019
  end-page: 6
  ident: b12
  article-title: A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method
  publication-title: 2019 IEEE 10th international conference on awareness science and technology
– year: 2003
  ident: b47
  article-title: Multicenter osteoarthritis study (MOST)
– volume: 75
  start-page: 84
  year: 2019
  end-page: 92
  ident: b9
  article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
  publication-title: Comput Med Imaging Graph
– volume: 97
  year: 2024
  ident: b23
  article-title: Optimized feature selection for enhanced accuracy in knee osteoarthritis detection and severity classification with machine learning
  publication-title: Biomed Signal Process Control
– volume: 96
  start-page: 1145
  year: 2014
  ident: b8
  article-title: Osteoarthritis classification scales: interobserver reliability and arthroscopic correlation
  publication-title: J Bone Jt Surg Am Vol
– volume: 43
  start-page: 3349
  year: 2020
  end-page: 3364
  ident: b25
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 3
  start-page: 48
  year: 2020
  ident: b27
  article-title: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging
  publication-title: NPJ Digit Med
– volume: 23
  start-page: 3532
  year: 2015
  end-page: 3539
  ident: b5
  article-title: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria
  publication-title: Knee Surg Sport Traumatol Arthrosc
– start-page: 4393
  year: 2018
  end-page: 4402
  ident: b28
  article-title: Deep one-class classification
  publication-title: ICML
– volume: 16
  start-page: 494
  year: 1957
  ident: b2
  article-title: Radiological assessment of osteo-arthrosis
  publication-title: Ann Rheum Dis
– start-page: 392
  year: 2019
  end-page: 408
  ident: b7
  article-title: Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images
– volume: 1
  year: 2006
  ident: b40
  article-title: The osteoarthritis initiative
  publication-title: Protoc Cohort Study
– start-page: 1
  year: 2024
  end-page: 20
  ident: b21
  article-title: A novel deep learning approach for automated grading of knee osteoarthritis severity
  publication-title: Multimedia Tools Appl
– year: 2014
  ident: b46
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 41
  start-page: 582
  year: 2021
  end-page: 594
  ident: b33
  article-title: Proxy-bridged image reconstruction network for anomaly detection in medical images
  publication-title: IEEE Trans Med Imaging
– year: 2014
  ident: b44
  article-title: Adam: A method for stochastic optimization
– reference: Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8697–710.
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 618–26.
– year: 2021
  ident: b37
  article-title: Semi-supervised siamese network for identifying bad data in medical imaging datasets [short paper presentation]
  publication-title: Med Imaging Deep Learn ( MIDL)
– year: 2013
  ident: b6
  article-title: Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction
  publication-title: Br J Sports Med
– start-page: 718
  year: 2020
  end-page: 727
  ident: b32
  article-title: SteGANomaly: Inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI
  publication-title: International conference on medical image computing and computer-assisted intervention
– reference: Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28.
– year: 2023
  ident: b11
  article-title: Automated knee osteoarthritis severity classification using three-stage preprocessing method and VGG16 architecture
  publication-title: Int J Imaging Syst Technol
– volume: 8
  start-page: 1727
  year: 2018
  ident: b16
  article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach
  publication-title: Sci Rep
– volume: 11
  start-page: 14348
  year: 2021
  ident: b15
  article-title: Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs
  publication-title: Sci Rep
– volume: 112
  year: 2021
  ident: b30
  article-title: Reconstruction by inpainting for visual anomaly detection
  publication-title: Pattern Recognit
– year: 2021
  ident: b14
  article-title: Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b41
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– volume: 3
  start-page: 3
  year: 1995
  end-page: 70
  ident: b4
  article-title: Atlas of individual radiographic features in osteoarthritis
  publication-title: Osteoarthr Cartil
– start-page: 2668
  year: 2018
  end-page: 2677
  ident: b49
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)
  publication-title: International conference on machine learning
– reference: Ross T-Y, Dollár G. Focal loss for dense object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 2980–8.
– volume: 1
  year: 2018
  ident: b39
  article-title: Knee osteoarthritis severity grading dataset
  publication-title: Mendeley Data
– volume: 97
  start-page: 809
  year: 2016
  end-page: 821
  ident: b42
  article-title: Imaging of knee implants and related complications
  publication-title: Diagn Interv Imaging
– year: 2023
  ident: b13
  article-title: DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs
  publication-title: Comput Biol Med
– volume: 13
  year: 2023
  ident: b10
  article-title: Automatic classification of the severity of knee osteoarthritis using enhanced image sharpening and CNN
  publication-title: Appl Sci
– reference: Jeong J, Zou Y, Kim T, Zhang D, Ravichandran A, Dabeer O. Winclip: Zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 19606–16.
– volume: 380
  start-page: 2163
  year: 2012
  end-page: 2196
  ident: b1
  article-title: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010
  publication-title: Lancet
– start-page: 1463
  year: 2024
  end-page: 1468
  ident: b22
  article-title: Advancements in automated classification of knee osteoarthritis severity using EfficientNetV2-S
  publication-title: 2024 5th international conference on smart electronics and communication
– volume: 15
  start-page: A1
  year: 2007
  end-page: A56
  ident: b3
  article-title: Atlas of individual radiographic features in osteoarthritis, revised
  publication-title: Osteoarthr Cartil
– volume: 115
  year: 2024
  ident: b38
  article-title: Towards a unified approach for unsupervised brain MRI motion artefact detection with few shot anomaly detection
  publication-title: Comput Med Imaging Graph
– start-page: 8748
  year: 2021
  end-page: 8763
  ident: b43
  article-title: Learning transferable visual models from natural language supervision
  publication-title: International conference on machine learning
– ident: 10.1016/j.artmed.2025.103138_b29
  doi: 10.1109/CVPR52688.2022.01392
– start-page: 718
  year: 2020
  ident: 10.1016/j.artmed.2025.103138_b32
  article-title: SteGANomaly: Inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI
– volume: 23
  start-page: 3532
  year: 2015
  ident: 10.1016/j.artmed.2025.103138_b5
  article-title: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria
  publication-title: Knee Surg Sport Traumatol Arthrosc
  doi: 10.1007/s00167-014-3205-0
– volume: 115
  year: 2024
  ident: 10.1016/j.artmed.2025.103138_b38
  article-title: Towards a unified approach for unsupervised brain MRI motion artefact detection with few shot anomaly detection
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2024.102391
– start-page: 8748
  year: 2021
  ident: 10.1016/j.artmed.2025.103138_b43
  article-title: Learning transferable visual models from natural language supervision
– volume: 97
  year: 2024
  ident: 10.1016/j.artmed.2025.103138_b23
  article-title: Optimized feature selection for enhanced accuracy in knee osteoarthritis detection and severity classification with machine learning
  publication-title: Biomed Signal Process Control
– volume: 97
  start-page: 809
  issue: 7–8
  year: 2016
  ident: 10.1016/j.artmed.2025.103138_b42
  article-title: Imaging of knee implants and related complications
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2016.02.015
– volume: 1
  year: 2006
  ident: 10.1016/j.artmed.2025.103138_b40
  article-title: The osteoarthritis initiative
  publication-title: Protoc Cohort Study
– ident: 10.1016/j.artmed.2025.103138_b24
– volume: 380
  start-page: 2163
  issue: 9859
  year: 2012
  ident: 10.1016/j.artmed.2025.103138_b1
  article-title: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61729-2
– start-page: 392
  year: 2019
  ident: 10.1016/j.artmed.2025.103138_b7
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.artmed.2025.103138_b20
  article-title: Automating classification of osteoarthritis according to Kellgren–Lawrence in the knee using deep learning in an unfiltered adult population
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-04722-7
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.artmed.2025.103138_b41
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– start-page: 2668
  year: 2018
  ident: 10.1016/j.artmed.2025.103138_b49
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)
– year: 2023
  ident: 10.1016/j.artmed.2025.103138_b11
  article-title: Automated knee osteoarthritis severity classification using three-stage preprocessing method and VGG16 architecture
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22845
– start-page: 4393
  year: 2018
  ident: 10.1016/j.artmed.2025.103138_b28
  article-title: Deep one-class classification
– volume: 11
  start-page: 14348
  issue: 1
  year: 2021
  ident: 10.1016/j.artmed.2025.103138_b15
  article-title: Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93851-z
– ident: 10.1016/j.artmed.2025.103138_b48
  doi: 10.1109/ICCV.2017.74
– year: 2014
  ident: 10.1016/j.artmed.2025.103138_b44
– volume: 16
  start-page: 494
  issue: 4
  year: 1957
  ident: 10.1016/j.artmed.2025.103138_b2
  article-title: Radiological assessment of osteo-arthrosis
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.16.4.494
– volume: 86
  year: 2023
  ident: 10.1016/j.artmed.2025.103138_b31
  article-title: Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102794
– volume: 15
  start-page: A1
  year: 2007
  ident: 10.1016/j.artmed.2025.103138_b3
  article-title: Atlas of individual radiographic features in osteoarthritis, revised
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2006.11.009
– year: 2023
  ident: 10.1016/j.artmed.2025.103138_b13
  article-title: DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107570
– year: 2021
  ident: 10.1016/j.artmed.2025.103138_b14
– volume: 8
  start-page: 1727
  issue: 1
  year: 2018
  ident: 10.1016/j.artmed.2025.103138_b16
  article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20132-7
– ident: 10.1016/j.artmed.2025.103138_b18
  doi: 10.1109/CVPRW59228.2023.00299
– volume: 13
  issue: 3
  year: 2023
  ident: 10.1016/j.artmed.2025.103138_b10
  article-title: Automatic classification of the severity of knee osteoarthritis using enhanced image sharpening and CNN
  publication-title: Appl Sci
– year: 2021
  ident: 10.1016/j.artmed.2025.103138_b37
  article-title: Semi-supervised siamese network for identifying bad data in medical imaging datasets [short paper presentation]
  publication-title: Med Imaging Deep Learn ( MIDL)
– volume: 96
  start-page: 1145
  issue: 14
  year: 2014
  ident: 10.1016/j.artmed.2025.103138_b8
  article-title: Osteoarthritis classification scales: interobserver reliability and arthroscopic correlation
  publication-title: J Bone Jt Surg Am Vol
  doi: 10.2106/JBJS.M.00929
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2025.103138_b12
  article-title: A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method
– volume: 25
  year: 2012
  ident: 10.1016/j.artmed.2025.103138_b45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– year: 2014
  ident: 10.1016/j.artmed.2025.103138_b46
– volume: 43
  start-page: 3349
  issue: 10
  year: 2020
  ident: 10.1016/j.artmed.2025.103138_b25
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2983686
– start-page: 1463
  year: 2024
  ident: 10.1016/j.artmed.2025.103138_b22
  article-title: Advancements in automated classification of knee osteoarthritis severity using EfficientNetV2-S
– volume: 75
  start-page: 84
  year: 2019
  ident: 10.1016/j.artmed.2025.103138_b9
  article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.06.002
– volume: 41
  start-page: 582
  issue: 3
  year: 2021
  ident: 10.1016/j.artmed.2025.103138_b33
  article-title: Proxy-bridged image reconstruction network for anomaly detection in medical images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3118223
– ident: 10.1016/j.artmed.2025.103138_b34
  doi: 10.1109/CVPR46437.2021.00954
– volume: 3
  start-page: 3
  year: 1995
  ident: 10.1016/j.artmed.2025.103138_b4
  article-title: Atlas of individual radiographic features in osteoarthritis
  publication-title: Osteoarthr Cartil
– year: 2003
  ident: 10.1016/j.artmed.2025.103138_b47
– ident: 10.1016/j.artmed.2025.103138_b26
  doi: 10.1109/CVPR.2018.00907
– volume: 1
  year: 2018
  ident: 10.1016/j.artmed.2025.103138_b39
  article-title: Knee osteoarthritis severity grading dataset
  publication-title: Mendeley Data
– ident: 10.1016/j.artmed.2025.103138_b36
  doi: 10.1109/CVPR52729.2023.01878
– year: 2013
  ident: 10.1016/j.artmed.2025.103138_b6
  article-title: Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction
  publication-title: Br J Sports Med
– volume: 24
  start-page: 869
  issue: 1
  year: 2023
  ident: 10.1016/j.artmed.2025.103138_b17
  article-title: Assessment of a novel deep learning-based software developed for automatic feature extraction and grading of radiographic knee osteoarthritis
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-023-06951-4
– volume: 112
  year: 2021
  ident: 10.1016/j.artmed.2025.103138_b30
  article-title: Reconstruction by inpainting for visual anomaly detection
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107706
– start-page: 376
  year: 2017
  ident: 10.1016/j.artmed.2025.103138_b19
  article-title: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks
– start-page: 1
  year: 2024
  ident: 10.1016/j.artmed.2025.103138_b21
  article-title: A novel deep learning approach for automated grading of knee osteoarthritis severity
  publication-title: Multimedia Tools Appl
– start-page: 468
  year: 2020
  ident: 10.1016/j.artmed.2025.103138_b35
  article-title: Salad: Self-supervised aggregation learning for anomaly detection on x-rays
– volume: 3
  start-page: 48
  issue: 1
  year: 2020
  ident: 10.1016/j.artmed.2025.103138_b27
  article-title: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-0255-1
SSID ssj0007416
Score 2.4280357
Snippet The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern....
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103138
SubjectTerms Algorithms
Artificial Intelligence
CLIP
Contrastive learning
Deep learning
Few labels
Few shot anomaly detection
Humans
Knee Joint - diagnostic imaging
Knee osteoarthritis
Machine learning
Osteoarthritis, Knee - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted - methods
Self-supervised learning
Self-supervision
Severity of Illness Index
X-ray
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTlQKFQWF4yEkeySuJHkt5WVauCtBUHViqnyM9SunirkqiUX99xEq94qGI55jBO5uF4xjPzDcBbJ4UyqsOpdDphTOdJJR1PnCgylZqUy64XZnYsjubswwk_2YB3sRfmt_x9V4eFEsRzASO5nIcO8YyWd2BTcPS8R7A5P_44_dzB6VGaUNEBe2ZlQZO8FGnslLtlmdtOor89zftwr_UX8vpKLha_nD6H2zCL390XnZxP2kZN9M8_IB3XZewhPBjcUDLt7eYRbFi_A9txxAMZdvwO3J0NuffH8GPqyfQ96aGfCfq6JJS5n_l22X4n595aEvpFlvi-Lx1QEkFObRiNR04vu0L9PYIrSL_8JhfXxNimKwLz5MyHZL81JMKbk3A3TJy9ImihKLAnMD88-LR_lAxzGxLNsrxJrHJUa-oqW2lXSmu0SVMrpcqsdRIDcsmLSoUrPSeoKPK8CBg-WSHRdVBWGLoLI7_09hkQivGnZkXJuVYsM7ZKqTTcGUNzo4QxY0iiDuuLHp6jjnVrX-tewnWQcN1LeAw8KrqOraf4s6xRO_-gK1Z0g2vSuxxrUL6J9lTjzg3pGOktaqYOI6IoRp-8GsPT3tBWPLCUsSpj-RgmK8tbi8Hn_0vwArbCU1829xJGzWVrX6Gf1ajXw_a6AdIMI4Q
  priority: 102
  providerName: Unpaywall
Title An AI system for continuous knee osteoarthritis severity grading: An anomaly detection inspired approach with few labels
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365725000739
https://dx.doi.org/10.1016/j.artmed.2025.103138
https://www.ncbi.nlm.nih.gov/pubmed/40449142
https://www.proquest.com/docview/3214325959
https://doi.org/10.1016/j.artmed.2025.103138
UnpaywallVersion publishedVersion
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcCgV1D74UW09rSWCr9vb3SSbrm9LsVyVHoIe1KeQbBK9euaOekfti7_dmf24KgoWn5ZdNmGSmcxH5gvgZTCFdbapUxnqRIg6T0oTZBIKldnUpdI0uTCn42I0EW_O5NkGHPW5MBRW2fH-lqc33Lr7Mux2c7iYTofvyRbnhVS5bP1NlMEuFHUxOPhxHeZBGkdTb4_zhP7u0-eaGC-cD2UOWom5pOzzjLJU_i6e_lQ_t-DOKi7M1aWZzX4RSccP4F6nS7KqBfchbPi4Dff7Pg2sO7bbcPu0c6A_gu9VZNUJa-s3M1RYGcWqT-NqvvrGvkTvGSV9zBHiz021I4aQeepvxz5dNNH2rxjOYOL8q5ldMeeXTSRXZNNIHnvvWF-jnNEFLwv-kiGZ4QIfw-T49YejUdI1X0hqkeXLxNvA65qH0pd1ODTe1S5NvTE28z4YtKqNVKWle7lQ8ELluaJCPJkyKP-tLxzfgc04j_4JMI5GZC3UoZS1FZnzZcqNk8E5njtbODeApN9zvWhrbOg--OxctzjShCPd4mgAskeM7vNHkeNpFAL_GKfW436jsRuMfNHjX-PxI5-KiR4xo6nPE0cTUpYD2G0JY70GkQpRZiIfwMGaUm60wKf_DegzuEtvbRDcHmwuL1b-OWpNS7vfHIt9uFWdvB2N8TkZv6s-_gSxAhor
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VIlF44ChXOI3E6za7PtZd3qKKKoWmL7RS3yyfJRCcqCQqfeG342MdQCBR8bq7Xo094zk834wBXjvZKqNSn0qnK0o1rjrpWOVa3qja1EymWpjJUTs-oe9O2ekG7JVamAir7HV_1ulJW_dPhv1qDhfT6fBDjMVJyzhmOd90Da5ThnmMwHa-_8R5RJcjNdwjpIqfl_q5BPIKPwxGJ4SJmMXy8yaWqfzdPv3pf96CrZVfyMsLOZv9YpP278Lt3plEo0zvPdiwfhvulIsaUL9vt-HGpM-g34dvI49GByg3cEbBY0URrD71q_nqK_rsrUWx6mMeKP6Y2h2hQJmNF9yhs_MEt3-Dwh-kn3-Rs0tk7DJBuTya-piytwaVJuUonvAiZy9QkLMwwQdwsv_2eG9c9bcvVJo2eFlZ5YjWxHW2025XWqNNXVspVWOtkyGslox3Kh7MuZa0HGMeO_E0XAYHQNnWkIew6efePgZEQhSpKd9lTCvaGNvVRBrmjCHYqNaYAVRlzcUiN9kQBX32SWQeicgjkXk0AFYYI0oBaVB5IliBf4zj63G_CdkVRr4q_Bdh_8WkivQ2cEbEi55IiCFZN4BHWTDWc6A1pV1D8QB21pJypQk--W9CX8LW-HhyKA4Pjt4_hZvxTUbEPYPN5fnKPg8u1FK9SFvkBzdhGhA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTlQKFQWF4yEkeySuJHkt5WVauCtBUHViqnyM9SunirkqiUX99xEq94qGI55jBO5uF4xjPzDcBbJ4UyqsOpdDphTOdJJR1PnCgylZqUy64XZnYsjubswwk_2YB3sRfmt_x9V4eFEsRzASO5nIcO8YyWd2BTcPS8R7A5P_44_dzB6VGaUNEBe2ZlQZO8FGnslLtlmdtOor89zftwr_UX8vpKLha_nD6H2zCL390XnZxP2kZN9M8_IB3XZewhPBjcUDLt7eYRbFi_A9txxAMZdvwO3J0NuffH8GPqyfQ96aGfCfq6JJS5n_l22X4n595aEvpFlvi-Lx1QEkFObRiNR04vu0L9PYIrSL_8JhfXxNimKwLz5MyHZL81JMKbk3A3TJy9ImihKLAnMD88-LR_lAxzGxLNsrxJrHJUa-oqW2lXSmu0SVMrpcqsdRIDcsmLSoUrPSeoKPK8CBg-WSHRdVBWGLoLI7_09hkQivGnZkXJuVYsM7ZKqTTcGUNzo4QxY0iiDuuLHp6jjnVrX-tewnWQcN1LeAw8KrqOraf4s6xRO_-gK1Z0g2vSuxxrUL6J9lTjzg3pGOktaqYOI6IoRp-8GsPT3tBWPLCUsSpj-RgmK8tbi8Hn_0vwArbCU1829xJGzWVrX6Gf1ajXw_a6AdIMI4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+AI+system+for+continuous+knee+osteoarthritis+severity+grading%3A+An+anomaly+detection+inspired+approach+with+few+labels&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Belton%2C+Niamh&rft.au=Lawlor%2C+Aonghus&rft.au=Curran%2C+Kathleen+M.&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.volume=167&rft_id=info:doi/10.1016%2Fj.artmed.2025.103138&rft.externalDocID=S0933365725000739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon