An AI system for continuous knee osteoarthritis severity grading: An anomaly detection inspired approach with few labels
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-super...
Saved in:
| Published in | Artificial intelligence in medicine Vol. 167; p. 103138 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0933-3657 1873-2860 1873-2860 |
| DOI | 10.1016/j.artmed.2025.103138 |
Cover
| Abstract | The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the ‘normal’ representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as ‘normal’ or ‘anomalous’, followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
•This work proposes a continuous Knee Osteoarthritis grading system.•We advance the original Anomaly Detection technique FewSOME.•This method uses less than 3% of the labels that existing methods require. |
|---|---|
| AbstractList | The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the ‘normal’ representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as ‘normal’ or ‘anomalous’, followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
•This work proposes a continuous Knee Osteoarthritis grading system.•We advance the original Anomaly Detection technique FewSOME.•This method uses less than 3% of the labels that existing methods require. The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis. The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis. |
| ArticleNumber | 103138 |
| Author | Belton, Niamh Lawlor, Aonghus Curran, Kathleen M. |
| Author_xml | – sequence: 1 givenname: Niamh orcidid: 0000-0003-4949-4745 surname: Belton fullname: Belton, Niamh email: niamh.belton@ucdconnect.ie organization: Science Foundation Ireland Centre for Research Training in Machine Learning, Ireland – sequence: 2 givenname: Aonghus orcidid: 0000-0002-6160-4639 surname: Lawlor fullname: Lawlor, Aonghus organization: School of Computer Science, University College Dublin, Ireland – sequence: 3 givenname: Kathleen M. orcidid: 0000-0003-0095-9337 surname: Curran fullname: Curran, Kathleen M. organization: Science Foundation Ireland Centre for Research Training in Machine Learning, Ireland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40449142$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMFu3CAURVGVqpmk_YOqYtmNp2Cwsauq0ihqk0iRumnXCOPnDBMMLuBM_fdl5GTTTboCwb3nPZ0LdOa8A4TeU7KlhNafDlsV0gj9tiRllZ8YZc0rtKGNYEXZ1OQMbUjLWMHqSpyjixgPhBDBaf0GnXPCeUt5uUF_dg7vbnFcYoIRDz5g7V0ybvZzxA8OAPv84_OofTDJRBzhEfJtwfdB9cbdf8aZoJwflV1wDwl0Mt5h4-JkAvRYTVPwSu_x0aQ9HuCIrerAxrfo9aBshHdP5yX69f3bz6ub4u7H9e3V7q7QnJapgG5gWrOhhVYPjYJe94SAUh0FGBThtapE23HRsqFmtShLQQWpqVBNxTqoe3aJqpU7u0ktR2WtnIIZVVgkJfJkUh7kalKeTMrVZO59XHt5_d8zxCRHEzVYqxxkN5KVlLOyaqs2Rz88RefuhHnmP1vOAb4GdPAxBhj-d4Wvay3rgkcDQUZtwGnos1mdZO_NS4Av_wC0Nc5oZR9gebn-F-xTvqw |
| Cites_doi | 10.1109/CVPR52688.2022.01392 10.1007/s00167-014-3205-0 10.1016/j.compmedimag.2024.102391 10.1016/j.diii.2016.02.015 10.1016/S0140-6736(12)61729-2 10.1186/s12891-021-04722-7 10.1007/s11263-015-0816-y 10.1002/ima.22845 10.1038/s41598-021-93851-z 10.1109/ICCV.2017.74 10.1136/ard.16.4.494 10.1016/j.media.2023.102794 10.1016/j.joca.2006.11.009 10.1016/j.compbiomed.2023.107570 10.1038/s41598-018-20132-7 10.1109/CVPRW59228.2023.00299 10.2106/JBJS.M.00929 10.1109/TPAMI.2020.2983686 10.1016/j.compmedimag.2019.06.002 10.1109/TMI.2021.3118223 10.1109/CVPR46437.2021.00954 10.1109/CVPR.2018.00907 10.1109/CVPR52729.2023.01878 10.1186/s12891-023-06951-4 10.1016/j.patcog.2020.107706 10.1038/s41746-020-0255-1 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.artmed.2025.103138 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1873-2860 |
| ExternalDocumentID | 10.1016/j.artmed.2025.103138 40449142 10_1016_j_artmed_2025_103138 S0933365725000739 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD 6I. AAFTH AGCQF AAYXX CITATION AFCTW AGRNS CGR CUY CVF ECM EIF NPM RIG 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c412t-ebf3cc3f9e9cf8aedcd00eaab1eefa046a579b4793f6367227170617a853be6d3 |
| IEDL.DBID | .~1 |
| ISSN | 0933-3657 1873-2860 |
| IngestDate | Tue Aug 19 23:44:37 EDT 2025 Thu Oct 02 22:41:53 EDT 2025 Wed Aug 06 16:36:25 EDT 2025 Wed Oct 01 05:44:53 EDT 2025 Sat Aug 23 17:11:35 EDT 2025 Tue Oct 14 19:30:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Knee osteoarthritis Few shot anomaly detection Self-supervised learning Contrastive learning Machine learning X-ray Self-supervision Artificial intelligence Few labels CLIP |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-ebf3cc3f9e9cf8aedcd00eaab1eefa046a579b4793f6367227170617a853be6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6160-4639 0000-0003-4949-4745 0000-0003-0095-9337 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0933365725000739 |
| PMID | 40449142 |
| PQID | 3214325959 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_artmed_2025_103138 proquest_miscellaneous_3214325959 pubmed_primary_40449142 crossref_primary_10_1016_j_artmed_2025_103138 elsevier_sciencedirect_doi_10_1016_j_artmed_2025_103138 elsevier_clinicalkey_doi_10_1016_j_artmed_2025_103138 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Artificial intelligence in medicine |
| PublicationTitleAlternate | Artif Intell Med |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Antony, McGuinness, Moran, O’Connor (b19) 2017 Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark (b43) 2021 University of California San Francisco (b47) 2003 Altman, Gold (b3) 2007; 15 Tiulpin, Thevenot, Rahtu, Lehenkari, Saarakkala (b16) 2018; 8 Cai, Chen, Yang, Zhou, Cheng (b31) 2023; 86 Jain, Sharma, Gaj, Sur, Ghosh (b14) 2021 Simonyan, Zisserman (b46) 2014 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 618–26. Vos, Flaxman, Naghavi, Lozano, Michaud, Ezzati, Shibuya, Salomon, Abdalla, Aboyans (b1) 2012; 380 Li, Chang, Bearce, Chang, Huang, Campbell, Brown, Singh, Hoebel, Erdoğmuş (b27) 2020; 3 Jeong J, Zou Y, Kim T, Zhang D, Ravichandran A, Dabeer O. Winclip: Zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 19606–16. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8697–710. Bany Muhammad, Yeasin (b15) 2021; 11 Belton N, Hagos MT, Lawlor A, Curran KM. FewSOME: One-Class Few Shot Anomaly Detection With Siamese Networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2023, p. 2977–86. Belton, Lawlor, Curran (b37) 2021 Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28. Baur, Graf, Wiestler, Albarqouni, Navab (b32) 2020 Kaur, Kohli, Bedi, Wasly (b21) 2024 Kellgren, Lawrence (b2) 1957; 16 Zhou, Li, Luo, Li, Yang, Fu, Cheng, Liu, Gao (b33) 2021; 41 Wright, Ross, Haas, Huston, Garofoli, Harris, Patel, Pearson, Schutzman, Tarabichi (b8) 2014; 96 Saini, Khosla, Chand, Chouhan, Prakash (b11) 2023 Farooq, Ullah, Khan, Gwak (b13) 2023 Wahyuningrum, Anifah, Purnama, Purnomo (b12) 2019 Chen, Gao, Shi, Allen, Yang (b9) 2019; 75 Bose, Srinivasan, Joy (b23) 2024; 97 Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas (b49) 2018 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b41) 2015; 115 Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang (b25) 2020; 43 Yoon, Yon, Lee, Lee, Kang, Kang, Lee, Chang (b17) 2023; 24 Olsson, Akbarian, Lind, Razavian, Gordon (b20) 2021; 22 Belton, Hagos, Lawlor, Curran (b38) 2024; 115 Ross T-Y, Dollár G. Focal loss for dense object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 2980–8. Altman, Hochberg, Murphy, Wolfe, Lequesne (b4) 1995; 3 Abedin, Antony, McGuinness, Moran, O’Connor, Rebholz-Schuhmann, Newell (b7) 2019 Zavrtanik, Kristan, Skočaj (b30) 2021; 112 Chen (b39) 2018; 1 Kumar, Goswami (b10) 2023; 13 Cyteval (b42) 2016; 97 Shah, Keshari, Sankar, Sugumar, Venkatachalam, Venkatachalam (b22) 2024 Culvenor, Engen, Øiestad, Engebretsen, Risberg (b5) 2015; 23 Bozorgtabar, Mahapatra, Vray, Thiran (b35) 2020 Nevitt, Felson, Lester (b40) 2006; 1 Krizhevsky, Sutskever, Hinton (b45) 2012; 25 Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Müller, Kloft (b28) 2018 Kingma, Ba (b44) 2014 Li C-L, Sohn K, Yoon J, Pfister T. Cutpaste: Self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 9664–74. Culvenor, Lai, Gabbe, Makdissi, Collins, Vicenzino, Morris, Crossley (b6) 2013 Saini (10.1016/j.artmed.2025.103138_b11) 2023 10.1016/j.artmed.2025.103138_b18 Ruff (10.1016/j.artmed.2025.103138_b28) 2018 Chen (10.1016/j.artmed.2025.103138_b39) 2018; 1 Kim (10.1016/j.artmed.2025.103138_b49) 2018 Altman (10.1016/j.artmed.2025.103138_b4) 1995; 3 Abedin (10.1016/j.artmed.2025.103138_b7) 2019 Kumar (10.1016/j.artmed.2025.103138_b10) 2023; 13 Antony (10.1016/j.artmed.2025.103138_b19) 2017 University of California San Francisco (10.1016/j.artmed.2025.103138_b47) 2003 Belton (10.1016/j.artmed.2025.103138_b37) 2021 Yoon (10.1016/j.artmed.2025.103138_b17) 2023; 24 Culvenor (10.1016/j.artmed.2025.103138_b6) 2013 Wright (10.1016/j.artmed.2025.103138_b8) 2014; 96 Zhou (10.1016/j.artmed.2025.103138_b33) 2021; 41 10.1016/j.artmed.2025.103138_b48 Zavrtanik (10.1016/j.artmed.2025.103138_b30) 2021; 112 Olsson (10.1016/j.artmed.2025.103138_b20) 2021; 22 Radford (10.1016/j.artmed.2025.103138_b43) 2021 Russakovsky (10.1016/j.artmed.2025.103138_b41) 2015; 115 Kellgren (10.1016/j.artmed.2025.103138_b2) 1957; 16 Jain (10.1016/j.artmed.2025.103138_b14) 2021 Bany Muhammad (10.1016/j.artmed.2025.103138_b15) 2021; 11 Culvenor (10.1016/j.artmed.2025.103138_b5) 2015; 23 Li (10.1016/j.artmed.2025.103138_b27) 2020; 3 Cai (10.1016/j.artmed.2025.103138_b31) 2023; 86 Baur (10.1016/j.artmed.2025.103138_b32) 2020 10.1016/j.artmed.2025.103138_b36 Wahyuningrum (10.1016/j.artmed.2025.103138_b12) 2019 Kingma (10.1016/j.artmed.2025.103138_b44) 2014 10.1016/j.artmed.2025.103138_b34 Simonyan (10.1016/j.artmed.2025.103138_b46) 2014 Vos (10.1016/j.artmed.2025.103138_b1) 2012; 380 10.1016/j.artmed.2025.103138_b29 10.1016/j.artmed.2025.103138_b26 Farooq (10.1016/j.artmed.2025.103138_b13) 2023 Altman (10.1016/j.artmed.2025.103138_b3) 2007; 15 Kaur (10.1016/j.artmed.2025.103138_b21) 2024 Shah (10.1016/j.artmed.2025.103138_b22) 2024 Bose (10.1016/j.artmed.2025.103138_b23) 2024; 97 Krizhevsky (10.1016/j.artmed.2025.103138_b45) 2012; 25 Nevitt (10.1016/j.artmed.2025.103138_b40) 2006; 1 Belton (10.1016/j.artmed.2025.103138_b38) 2024; 115 Tiulpin (10.1016/j.artmed.2025.103138_b16) 2018; 8 Cyteval (10.1016/j.artmed.2025.103138_b42) 2016; 97 Chen (10.1016/j.artmed.2025.103138_b9) 2019; 75 10.1016/j.artmed.2025.103138_b24 Wang (10.1016/j.artmed.2025.103138_b25) 2020; 43 Bozorgtabar (10.1016/j.artmed.2025.103138_b35) 2020 |
| References_xml | – start-page: 376 year: 2017 end-page: 390 ident: b19 article-title: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks publication-title: Machine learning and data mining in pattern recognition: 13th international conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, proceedings 13 – volume: 22 start-page: 1 year: 2021 end-page: 8 ident: b20 article-title: Automating classification of osteoarthritis according to Kellgren–Lawrence in the knee using deep learning in an unfiltered adult population publication-title: BMC Musculoskelet Disord – reference: Belton N, Hagos MT, Lawlor A, Curran KM. FewSOME: One-Class Few Shot Anomaly Detection With Siamese Networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2023, p. 2977–86. – reference: Li C-L, Sohn K, Yoon J, Pfister T. Cutpaste: Self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 9664–74. – start-page: 468 year: 2020 end-page: 478 ident: b35 article-title: Salad: Self-supervised aggregation learning for anomaly detection on x-rays publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, October 4–8, 2020, proceedings, part i 23 – volume: 25 year: 2012 ident: b45 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 24 start-page: 869 year: 2023 ident: b17 article-title: Assessment of a novel deep learning-based software developed for automatic feature extraction and grading of radiographic knee osteoarthritis publication-title: BMC Musculoskelet Disord – volume: 86 year: 2023 ident: b31 article-title: Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images publication-title: Med Image Anal – start-page: 1 year: 2019 end-page: 6 ident: b12 article-title: A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method publication-title: 2019 IEEE 10th international conference on awareness science and technology – year: 2003 ident: b47 article-title: Multicenter osteoarthritis study (MOST) – volume: 75 start-page: 84 year: 2019 end-page: 92 ident: b9 article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss publication-title: Comput Med Imaging Graph – volume: 97 year: 2024 ident: b23 article-title: Optimized feature selection for enhanced accuracy in knee osteoarthritis detection and severity classification with machine learning publication-title: Biomed Signal Process Control – volume: 96 start-page: 1145 year: 2014 ident: b8 article-title: Osteoarthritis classification scales: interobserver reliability and arthroscopic correlation publication-title: J Bone Jt Surg Am Vol – volume: 43 start-page: 3349 year: 2020 end-page: 3364 ident: b25 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 3 start-page: 48 year: 2020 ident: b27 article-title: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging publication-title: NPJ Digit Med – volume: 23 start-page: 3532 year: 2015 end-page: 3539 ident: b5 article-title: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria publication-title: Knee Surg Sport Traumatol Arthrosc – start-page: 4393 year: 2018 end-page: 4402 ident: b28 article-title: Deep one-class classification publication-title: ICML – volume: 16 start-page: 494 year: 1957 ident: b2 article-title: Radiological assessment of osteo-arthrosis publication-title: Ann Rheum Dis – start-page: 392 year: 2019 end-page: 408 ident: b7 article-title: Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images – volume: 1 year: 2006 ident: b40 article-title: The osteoarthritis initiative publication-title: Protoc Cohort Study – start-page: 1 year: 2024 end-page: 20 ident: b21 article-title: A novel deep learning approach for automated grading of knee osteoarthritis severity publication-title: Multimedia Tools Appl – year: 2014 ident: b46 article-title: Very deep convolutional networks for large-scale image recognition – volume: 41 start-page: 582 year: 2021 end-page: 594 ident: b33 article-title: Proxy-bridged image reconstruction network for anomaly detection in medical images publication-title: IEEE Trans Med Imaging – year: 2014 ident: b44 article-title: Adam: A method for stochastic optimization – reference: Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 8697–710. – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 618–26. – year: 2021 ident: b37 article-title: Semi-supervised siamese network for identifying bad data in medical imaging datasets [short paper presentation] publication-title: Med Imaging Deep Learn ( MIDL) – year: 2013 ident: b6 article-title: Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction publication-title: Br J Sports Med – start-page: 718 year: 2020 end-page: 727 ident: b32 article-title: SteGANomaly: Inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI publication-title: International conference on medical image computing and computer-assisted intervention – reference: Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28. – year: 2023 ident: b11 article-title: Automated knee osteoarthritis severity classification using three-stage preprocessing method and VGG16 architecture publication-title: Int J Imaging Syst Technol – volume: 8 start-page: 1727 year: 2018 ident: b16 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Sci Rep – volume: 11 start-page: 14348 year: 2021 ident: b15 article-title: Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs publication-title: Sci Rep – volume: 112 year: 2021 ident: b30 article-title: Reconstruction by inpainting for visual anomaly detection publication-title: Pattern Recognit – year: 2021 ident: b14 article-title: Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b41 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – volume: 3 start-page: 3 year: 1995 end-page: 70 ident: b4 article-title: Atlas of individual radiographic features in osteoarthritis publication-title: Osteoarthr Cartil – start-page: 2668 year: 2018 end-page: 2677 ident: b49 article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav) publication-title: International conference on machine learning – reference: Ross T-Y, Dollár G. Focal loss for dense object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 2980–8. – volume: 1 year: 2018 ident: b39 article-title: Knee osteoarthritis severity grading dataset publication-title: Mendeley Data – volume: 97 start-page: 809 year: 2016 end-page: 821 ident: b42 article-title: Imaging of knee implants and related complications publication-title: Diagn Interv Imaging – year: 2023 ident: b13 article-title: DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs publication-title: Comput Biol Med – volume: 13 year: 2023 ident: b10 article-title: Automatic classification of the severity of knee osteoarthritis using enhanced image sharpening and CNN publication-title: Appl Sci – reference: Jeong J, Zou Y, Kim T, Zhang D, Ravichandran A, Dabeer O. Winclip: Zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 19606–16. – volume: 380 start-page: 2163 year: 2012 end-page: 2196 ident: b1 article-title: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010 publication-title: Lancet – start-page: 1463 year: 2024 end-page: 1468 ident: b22 article-title: Advancements in automated classification of knee osteoarthritis severity using EfficientNetV2-S publication-title: 2024 5th international conference on smart electronics and communication – volume: 15 start-page: A1 year: 2007 end-page: A56 ident: b3 article-title: Atlas of individual radiographic features in osteoarthritis, revised publication-title: Osteoarthr Cartil – volume: 115 year: 2024 ident: b38 article-title: Towards a unified approach for unsupervised brain MRI motion artefact detection with few shot anomaly detection publication-title: Comput Med Imaging Graph – start-page: 8748 year: 2021 end-page: 8763 ident: b43 article-title: Learning transferable visual models from natural language supervision publication-title: International conference on machine learning – ident: 10.1016/j.artmed.2025.103138_b29 doi: 10.1109/CVPR52688.2022.01392 – start-page: 718 year: 2020 ident: 10.1016/j.artmed.2025.103138_b32 article-title: SteGANomaly: Inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI – volume: 23 start-page: 3532 year: 2015 ident: 10.1016/j.artmed.2025.103138_b5 article-title: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria publication-title: Knee Surg Sport Traumatol Arthrosc doi: 10.1007/s00167-014-3205-0 – volume: 115 year: 2024 ident: 10.1016/j.artmed.2025.103138_b38 article-title: Towards a unified approach for unsupervised brain MRI motion artefact detection with few shot anomaly detection publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2024.102391 – start-page: 8748 year: 2021 ident: 10.1016/j.artmed.2025.103138_b43 article-title: Learning transferable visual models from natural language supervision – volume: 97 year: 2024 ident: 10.1016/j.artmed.2025.103138_b23 article-title: Optimized feature selection for enhanced accuracy in knee osteoarthritis detection and severity classification with machine learning publication-title: Biomed Signal Process Control – volume: 97 start-page: 809 issue: 7–8 year: 2016 ident: 10.1016/j.artmed.2025.103138_b42 article-title: Imaging of knee implants and related complications publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2016.02.015 – volume: 1 year: 2006 ident: 10.1016/j.artmed.2025.103138_b40 article-title: The osteoarthritis initiative publication-title: Protoc Cohort Study – ident: 10.1016/j.artmed.2025.103138_b24 – volume: 380 start-page: 2163 issue: 9859 year: 2012 ident: 10.1016/j.artmed.2025.103138_b1 article-title: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010 publication-title: Lancet doi: 10.1016/S0140-6736(12)61729-2 – start-page: 392 year: 2019 ident: 10.1016/j.artmed.2025.103138_b7 – volume: 22 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.artmed.2025.103138_b20 article-title: Automating classification of osteoarthritis according to Kellgren–Lawrence in the knee using deep learning in an unfiltered adult population publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-04722-7 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.artmed.2025.103138_b41 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – start-page: 2668 year: 2018 ident: 10.1016/j.artmed.2025.103138_b49 article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav) – year: 2023 ident: 10.1016/j.artmed.2025.103138_b11 article-title: Automated knee osteoarthritis severity classification using three-stage preprocessing method and VGG16 architecture publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22845 – start-page: 4393 year: 2018 ident: 10.1016/j.artmed.2025.103138_b28 article-title: Deep one-class classification – volume: 11 start-page: 14348 issue: 1 year: 2021 ident: 10.1016/j.artmed.2025.103138_b15 article-title: Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs publication-title: Sci Rep doi: 10.1038/s41598-021-93851-z – ident: 10.1016/j.artmed.2025.103138_b48 doi: 10.1109/ICCV.2017.74 – year: 2014 ident: 10.1016/j.artmed.2025.103138_b44 – volume: 16 start-page: 494 issue: 4 year: 1957 ident: 10.1016/j.artmed.2025.103138_b2 article-title: Radiological assessment of osteo-arthrosis publication-title: Ann Rheum Dis doi: 10.1136/ard.16.4.494 – volume: 86 year: 2023 ident: 10.1016/j.artmed.2025.103138_b31 article-title: Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images publication-title: Med Image Anal doi: 10.1016/j.media.2023.102794 – volume: 15 start-page: A1 year: 2007 ident: 10.1016/j.artmed.2025.103138_b3 article-title: Atlas of individual radiographic features in osteoarthritis, revised publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2006.11.009 – year: 2023 ident: 10.1016/j.artmed.2025.103138_b13 article-title: DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107570 – year: 2021 ident: 10.1016/j.artmed.2025.103138_b14 – volume: 8 start-page: 1727 issue: 1 year: 2018 ident: 10.1016/j.artmed.2025.103138_b16 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Sci Rep doi: 10.1038/s41598-018-20132-7 – ident: 10.1016/j.artmed.2025.103138_b18 doi: 10.1109/CVPRW59228.2023.00299 – volume: 13 issue: 3 year: 2023 ident: 10.1016/j.artmed.2025.103138_b10 article-title: Automatic classification of the severity of knee osteoarthritis using enhanced image sharpening and CNN publication-title: Appl Sci – year: 2021 ident: 10.1016/j.artmed.2025.103138_b37 article-title: Semi-supervised siamese network for identifying bad data in medical imaging datasets [short paper presentation] publication-title: Med Imaging Deep Learn ( MIDL) – volume: 96 start-page: 1145 issue: 14 year: 2014 ident: 10.1016/j.artmed.2025.103138_b8 article-title: Osteoarthritis classification scales: interobserver reliability and arthroscopic correlation publication-title: J Bone Jt Surg Am Vol doi: 10.2106/JBJS.M.00929 – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2025.103138_b12 article-title: A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method – volume: 25 year: 2012 ident: 10.1016/j.artmed.2025.103138_b45 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – year: 2014 ident: 10.1016/j.artmed.2025.103138_b46 – volume: 43 start-page: 3349 issue: 10 year: 2020 ident: 10.1016/j.artmed.2025.103138_b25 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2983686 – start-page: 1463 year: 2024 ident: 10.1016/j.artmed.2025.103138_b22 article-title: Advancements in automated classification of knee osteoarthritis severity using EfficientNetV2-S – volume: 75 start-page: 84 year: 2019 ident: 10.1016/j.artmed.2025.103138_b9 article-title: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.06.002 – volume: 41 start-page: 582 issue: 3 year: 2021 ident: 10.1016/j.artmed.2025.103138_b33 article-title: Proxy-bridged image reconstruction network for anomaly detection in medical images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3118223 – ident: 10.1016/j.artmed.2025.103138_b34 doi: 10.1109/CVPR46437.2021.00954 – volume: 3 start-page: 3 year: 1995 ident: 10.1016/j.artmed.2025.103138_b4 article-title: Atlas of individual radiographic features in osteoarthritis publication-title: Osteoarthr Cartil – year: 2003 ident: 10.1016/j.artmed.2025.103138_b47 – ident: 10.1016/j.artmed.2025.103138_b26 doi: 10.1109/CVPR.2018.00907 – volume: 1 year: 2018 ident: 10.1016/j.artmed.2025.103138_b39 article-title: Knee osteoarthritis severity grading dataset publication-title: Mendeley Data – ident: 10.1016/j.artmed.2025.103138_b36 doi: 10.1109/CVPR52729.2023.01878 – year: 2013 ident: 10.1016/j.artmed.2025.103138_b6 article-title: Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction publication-title: Br J Sports Med – volume: 24 start-page: 869 issue: 1 year: 2023 ident: 10.1016/j.artmed.2025.103138_b17 article-title: Assessment of a novel deep learning-based software developed for automatic feature extraction and grading of radiographic knee osteoarthritis publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-023-06951-4 – volume: 112 year: 2021 ident: 10.1016/j.artmed.2025.103138_b30 article-title: Reconstruction by inpainting for visual anomaly detection publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107706 – start-page: 376 year: 2017 ident: 10.1016/j.artmed.2025.103138_b19 article-title: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks – start-page: 1 year: 2024 ident: 10.1016/j.artmed.2025.103138_b21 article-title: A novel deep learning approach for automated grading of knee osteoarthritis severity publication-title: Multimedia Tools Appl – start-page: 468 year: 2020 ident: 10.1016/j.artmed.2025.103138_b35 article-title: Salad: Self-supervised aggregation learning for anomaly detection on x-rays – volume: 3 start-page: 48 issue: 1 year: 2020 ident: 10.1016/j.artmed.2025.103138_b27 article-title: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging publication-title: NPJ Digit Med doi: 10.1038/s41746-020-0255-1 |
| SSID | ssj0007416 |
| Score | 2.4280357 |
| Snippet | The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern.... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 103138 |
| SubjectTerms | Algorithms Artificial Intelligence CLIP Contrastive learning Deep learning Few labels Few shot anomaly detection Humans Knee Joint - diagnostic imaging Knee osteoarthritis Machine learning Osteoarthritis, Knee - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted - methods Self-supervised learning Self-supervision Severity of Illness Index X-ray |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTlQKFQWF4yEkeySuJHkt5WVauCtBUHViqnyM9SunirkqiUX99xEq94qGI55jBO5uF4xjPzDcBbJ4UyqsOpdDphTOdJJR1PnCgylZqUy64XZnYsjubswwk_2YB3sRfmt_x9V4eFEsRzASO5nIcO8YyWd2BTcPS8R7A5P_44_dzB6VGaUNEBe2ZlQZO8FGnslLtlmdtOor89zftwr_UX8vpKLha_nD6H2zCL390XnZxP2kZN9M8_IB3XZewhPBjcUDLt7eYRbFi_A9txxAMZdvwO3J0NuffH8GPqyfQ96aGfCfq6JJS5n_l22X4n595aEvpFlvi-Lx1QEkFObRiNR04vu0L9PYIrSL_8JhfXxNimKwLz5MyHZL81JMKbk3A3TJy9ImihKLAnMD88-LR_lAxzGxLNsrxJrHJUa-oqW2lXSmu0SVMrpcqsdRIDcsmLSoUrPSeoKPK8CBg-WSHRdVBWGLoLI7_09hkQivGnZkXJuVYsM7ZKqTTcGUNzo4QxY0iiDuuLHp6jjnVrX-tewnWQcN1LeAw8KrqOraf4s6xRO_-gK1Z0g2vSuxxrUL6J9lTjzg3pGOktaqYOI6IoRp-8GsPT3tBWPLCUsSpj-RgmK8tbi8Hn_0vwArbCU1829xJGzWVrX6Gf1ajXw_a6AdIMI4Q priority: 102 providerName: Unpaywall |
| Title | An AI system for continuous knee osteoarthritis severity grading: An anomaly detection inspired approach with few labels |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365725000739 https://dx.doi.org/10.1016/j.artmed.2025.103138 https://www.ncbi.nlm.nih.gov/pubmed/40449142 https://www.proquest.com/docview/3214325959 https://doi.org/10.1016/j.artmed.2025.103138 |
| UnpaywallVersion | publishedVersion |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcCgV1D74UW09rSWCr9vb3SSbrm9LsVyVHoIe1KeQbBK9euaOekfti7_dmf24KgoWn5ZdNmGSmcxH5gvgZTCFdbapUxnqRIg6T0oTZBIKldnUpdI0uTCn42I0EW_O5NkGHPW5MBRW2fH-lqc33Lr7Mux2c7iYTofvyRbnhVS5bP1NlMEuFHUxOPhxHeZBGkdTb4_zhP7u0-eaGC-cD2UOWom5pOzzjLJU_i6e_lQ_t-DOKi7M1aWZzX4RSccP4F6nS7KqBfchbPi4Dff7Pg2sO7bbcPu0c6A_gu9VZNUJa-s3M1RYGcWqT-NqvvrGvkTvGSV9zBHiz021I4aQeepvxz5dNNH2rxjOYOL8q5ldMeeXTSRXZNNIHnvvWF-jnNEFLwv-kiGZ4QIfw-T49YejUdI1X0hqkeXLxNvA65qH0pd1ODTe1S5NvTE28z4YtKqNVKWle7lQ8ELluaJCPJkyKP-tLxzfgc04j_4JMI5GZC3UoZS1FZnzZcqNk8E5njtbODeApN9zvWhrbOg--OxctzjShCPd4mgAskeM7vNHkeNpFAL_GKfW436jsRuMfNHjX-PxI5-KiR4xo6nPE0cTUpYD2G0JY70GkQpRZiIfwMGaUm60wKf_DegzuEtvbRDcHmwuL1b-OWpNS7vfHIt9uFWdvB2N8TkZv6s-_gSxAhor |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VIlF44ChXOI3E6za7PtZd3qKKKoWmL7RS3yyfJRCcqCQqfeG342MdQCBR8bq7Xo094zk834wBXjvZKqNSn0qnK0o1rjrpWOVa3qja1EymWpjJUTs-oe9O2ekG7JVamAir7HV_1ulJW_dPhv1qDhfT6fBDjMVJyzhmOd90Da5ThnmMwHa-_8R5RJcjNdwjpIqfl_q5BPIKPwxGJ4SJmMXy8yaWqfzdPv3pf96CrZVfyMsLOZv9YpP278Lt3plEo0zvPdiwfhvulIsaUL9vt-HGpM-g34dvI49GByg3cEbBY0URrD71q_nqK_rsrUWx6mMeKP6Y2h2hQJmNF9yhs_MEt3-Dwh-kn3-Rs0tk7DJBuTya-piytwaVJuUonvAiZy9QkLMwwQdwsv_2eG9c9bcvVJo2eFlZ5YjWxHW2025XWqNNXVspVWOtkyGslox3Kh7MuZa0HGMeO_E0XAYHQNnWkIew6efePgZEQhSpKd9lTCvaGNvVRBrmjCHYqNaYAVRlzcUiN9kQBX32SWQeicgjkXk0AFYYI0oBaVB5IliBf4zj63G_CdkVRr4q_Bdh_8WkivQ2cEbEi55IiCFZN4BHWTDWc6A1pV1D8QB21pJypQk--W9CX8LW-HhyKA4Pjt4_hZvxTUbEPYPN5fnKPg8u1FK9SFvkBzdhGhA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTlQKFQWF4yEkeySuJHkt5WVauCtBUHViqnyM9SunirkqiUX99xEq94qGI55jBO5uF4xjPzDcBbJ4UyqsOpdDphTOdJJR1PnCgylZqUy64XZnYsjubswwk_2YB3sRfmt_x9V4eFEsRzASO5nIcO8YyWd2BTcPS8R7A5P_44_dzB6VGaUNEBe2ZlQZO8FGnslLtlmdtOor89zftwr_UX8vpKLha_nD6H2zCL390XnZxP2kZN9M8_IB3XZewhPBjcUDLt7eYRbFi_A9txxAMZdvwO3J0NuffH8GPqyfQ96aGfCfq6JJS5n_l22X4n595aEvpFlvi-Lx1QEkFObRiNR04vu0L9PYIrSL_8JhfXxNimKwLz5MyHZL81JMKbk3A3TJy9ImihKLAnMD88-LR_lAxzGxLNsrxJrHJUa-oqW2lXSmu0SVMrpcqsdRIDcsmLSoUrPSeoKPK8CBg-WSHRdVBWGLoLI7_09hkQivGnZkXJuVYsM7ZKqTTcGUNzo4QxY0iiDuuLHp6jjnVrX-tewnWQcN1LeAw8KrqOraf4s6xRO_-gK1Z0g2vSuxxrUL6J9lTjzg3pGOktaqYOI6IoRp-8GsPT3tBWPLCUsSpj-RgmK8tbi8Hn_0vwArbCU1829xJGzWVrX6Gf1ajXw_a6AdIMI4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+AI+system+for+continuous+knee+osteoarthritis+severity+grading%3A+An+anomaly+detection+inspired+approach+with+few+labels&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Belton%2C+Niamh&rft.au=Lawlor%2C+Aonghus&rft.au=Curran%2C+Kathleen+M.&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.volume=167&rft_id=info:doi/10.1016%2Fj.artmed.2025.103138&rft.externalDocID=S0933365725000739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |