Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment

Background: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue en...

Full description

Saved in:
Bibliographic Details
Published inBiomedical materials (Bristol) Vol. 18; no. 6; pp. 65005 - 65017
Main Authors Alheib, Omar, da Silva, Lucilia P, Mesquita, Katia A, da Silva Morais, Alain, Pirraco, Rogério P, Reis, Rui L, Correlo, Vitor M
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2023
Subjects
Online AccessGet full text
ISSN1748-6041
1748-605X
1748-605X
DOI10.1088/1748-605X/acf25b

Cover

Abstract Background: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. Methods: in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). Results: in vitro , hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31 + vessels) and neoinnervation ( β -III tubulin + bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density of α -SA + and MYH7 + cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels of α -SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. Conclusions: taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
AbstractList Background: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. Methods: in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). Results: in vitro , hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31 + vessels) and neoinnervation ( β -III tubulin + bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density of α -SA + and MYH7 + cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels of α -SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. Conclusions: taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery.BACKGROUNDvolumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery.in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs).METHODSin this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs).in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM.RESULTSin vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM.taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.CONCLUSIONStaken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Author da Silva Morais, Alain
Alheib, Omar
da Silva, Lucilia P
Pirraco, Rogério P
Mesquita, Katia A
Reis, Rui L
Correlo, Vitor M
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0003-4547-9636
  surname: Alheib
  fullname: Alheib, Omar
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 2
  givenname: Lucilia P
  orcidid: 0000-0002-4889-7799
  surname: da Silva
  fullname: da Silva, Lucilia P
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 3
  givenname: Katia A
  surname: Mesquita
  fullname: Mesquita, Katia A
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 4
  givenname: Alain
  surname: da Silva Morais
  fullname: da Silva Morais, Alain
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 5
  givenname: Rogério P
  surname: Pirraco
  fullname: Pirraco, Rogério P
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 6
  givenname: Rui L
  surname: Reis
  fullname: Reis, Rui L
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
– sequence: 7
  givenname: Vitor M
  orcidid: 0000-0002-5516-7583
  surname: Correlo
  fullname: Correlo, Vitor M
  organization: ICVS/3B’s–PT Government Associate Laboratory , Braga/Guimarães, Portugal
BookMark eNp9kU1vFSEUhompiW1175KdLhwL3AszLE1jbZMmbjRxRxg43FL5GIFpctM_L9drujCmKz7O85xwXs7QScoJEHpLyUdKpumCjttpEIT_uNDGMT6_QKdPVydP-y19hc5qvSeES76Rp-jxeo06YW39kisMFop_AIsjVEjmbh91wLVBxAZCqDhoCwn7hHf92LXdGnFdctrth-B_Ar7b25J7rWKXC37IYY3Qijc4rtUEwCHXilsB3SKk9hq9dDpUePN3PUffrz5_u7webr9-ubn8dDuYLWVtMHZmbhztJMnImBASpNVyBOvMRlo2Gc6smObZ0nHUkphJz4IRZx3lo3EgNufo_bHvUvKvFWpT0VfzZwLIa1Vs4lspJGe0o-SImtKfWsCppfioy15Rog45q0OQ6hCqOubcFfGPYnzTzefUivbhOfHDUfR5Ufd5LamH8Bz-7j_4HKOiHVRE8P6parFu8xukRKRn
CODEN BMBUCS
CitedBy_id crossref_primary_10_1016_j_actbio_2024_04_038
crossref_primary_10_3390_ijms25042356
Cites_doi 10.2165/00007256-199315020-00002
10.1016/j.cytogfr.2009.10.002
10.1016/j.bbamcr.2015.11.018
10.1159/000443925
10.1007/s10238-015-0364-3
10.1097/TP.0b013e3181ac15e1
10.3109/08977194.2015.1058260
10.1113/jphysiol.1964.sp007444
10.1074/mcp.M110.002113
10.1177/2041731419887100
10.18869/acadpub.ibj.21.1.24
10.1159/000487559
10.1038/s41536-019-0070-y
10.1089/ten.tea.2009.0826
10.1021/am504520j
10.1161/01.CIR.0000121425.42966.F1
10.1016/B978-0-12-410499-0.00005-8
10.2174/157488810791268564
10.2106/JBJS.K.00351
10.1002/bjs.5817
10.1038/288266a0
10.1073/pnas.0903875106
10.1161/CIRCRESAHA.108.176826
10.1038/mt.2009.67
10.2147/IJN.S101955
10.1089/ten.tea.2013.0460
10.1016/j.cyto.2005.11.003
10.1089/scd.2011.0674
10.1002/adhm.201700686
10.1159/000444671
10.1186/scrt109
10.1038/nmat1421
10.1111/cpr.12390
10.1091/mbc.E02-02-0105
10.5435/00124635-201102001-00007
10.1002/jor.22730
10.1155/2013/713959
10.1016/j.biomaterials.2018.02.006
10.1089/ten.tea.2018.0172
10.1016/j.jid.2017.02.976
10.1016/j.lfs.2006.10.020
10.1016/j.biomaterials.2013.04.049
10.1634/stemcells.2008-0043
10.1016/j.actbio.2014.07.009
10.1177/0963689718805370
10.1073/pnas.182296499
10.1007/s12015-011-9304-0
10.1021/acsami.6b11684
10.1097/SAP.0b013e318264fd6a
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
2023 IOP Publishing Ltd.
Copyright_xml – notice: 2023 IOP Publishing Ltd
– notice: 2023 IOP Publishing Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1088/1748-605X/acf25b
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-605X
ExternalDocumentID 10_1088_1748_605X_acf25b
bmmacf25b
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: Scientific Employment Stimulus – Individual Call (CEEC Individual) – 2020.01541.CEECIND/CP1600/CT0024
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: 2020.01541.CEECIND/CP1600/CT0024; PD/BD/128090/2016
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID ---
1JI
23N
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
S3P
SY9
UCJ
W28
AAYXX
ADEQX
CITATION
7X8
AEINN
ID FETCH-LOGICAL-c412t-cdb2f77d890722669e9da97edfc39d28c52d68bbd177a90c8ab620fdf157cfe63
IEDL.DBID IOP
ISSN 1748-6041
1748-605X
IngestDate Tue Aug 05 11:34:01 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Tue Jul 01 03:54:23 EDT 2025
Wed Aug 21 03:33:05 EDT 2024
Wed Sep 13 02:54:11 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-cdb2f77d890722669e9da97edfc39d28c52d68bbd177a90c8ab620fdf157cfe63
Notes BMM-105539.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4889-7799
0000-0002-5516-7583
0000-0003-4547-9636
OpenAccessLink http://hdl.handle.net/1822/91903
PQID 2854969521
PQPubID 23479
PageCount 13
ParticipantIDs crossref_primary_10_1088_1748_605X_acf25b
crossref_citationtrail_10_1088_1748_605X_acf25b
proquest_miscellaneous_2854969521
iop_journals_10_1088_1748_605X_acf25b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Biomedical materials (Bristol)
PublicationTitleAbbrev BMM
PublicationTitleAlternate Biomed. Mater
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References da Silva (bmmacf25bbib26) 2018; 7
Faroni (bmmacf25bbib49) 2013; 108
Järvinen (bmmacf25bbib3) 1993; 15
Vieira (bmmacf25bbib7) 2008; 26
Kesireddy (bmmacf25bbib12) 2016; 11
Corona (bmmacf25bbib1) 2016; 202
Gilbert-Honick (bmmacf25bbib46) 2018; 27
Mertsching (bmmacf25bbib4) 2009; 88
Peçanha (bmmacf25bbib17) 2012; 94
Hwang (bmmacf25bbib13) 2013; 34
Henningsen (bmmacf25bbib32) 2010; 9
Kehl (bmmacf25bbib30) 2019; 4
Zuk (bmmacf25bbib8) 2013; 2013
Gilbert-Honick (bmmacf25bbib19) 2018; 164
Liu (bmmacf25bbib39) 2005; 32
Suga (bmmacf25bbib47) 2014; 72
Polesskaya (bmmacf25bbib41) 2016; 1863
Merritt (bmmacf25bbib18) 2010; 16
Hollister (bmmacf25bbib24) 2005; 4
Grogan (bmmacf25bbib27) 2011; 19
da Pinheiro (bmmacf25bbib16) 2012; 8
Hsiao (bmmacf25bbib10) 2012; 21
Cerqueira (bmmacf25bbib22) 2014; 6
Gnecchi (bmmacf25bbib15) 2008; 103
Masgutov (bmmacf25bbib48) 2016; 16
Rehman (bmmacf25bbib42) 2004; 109
Li (bmmacf25bbib40) 2017; 10
Zhang (bmmacf25bbib28) 2019; 10
Ding (bmmacf25bbib34) 2018; 45
Kelly (bmmacf25bbib44) 1980; 288
da Silva (bmmacf25bbib25) 2014; 10
Lotfinia (bmmacf25bbib43) 2017; 21
Silva (bmmacf25bbib21) 2016; 8
Salgado (bmmacf25bbib33) 2010; 5
Garg (bmmacf25bbib2) 2015; 33
da Silva (bmmacf25bbib50) 2017; 137
Walker (bmmacf25bbib35) 2015; 33
Zuk (bmmacf25bbib9) 2002; 13
Lin (bmmacf25bbib36) 2017; 50
Goudenege (bmmacf25bbib6) 2009; 17
Lau (bmmacf25bbib29) 2019; 25
Cerqueira (bmmacf25bbib23) 2014; 20
da Silva (bmmacf25bbib20) 2017; 137
da Silva Meirelles (bmmacf25bbib14) 2009; 20
Close (bmmacf25bbib45) 1964; 173
Sumi (bmmacf25bbib37) 2007; 80
Borselli (bmmacf25bbib38) 2010; 107
Jin (bmmacf25bbib51) 2002; 99
Syverud (bmmacf25bbib11) 2016; 202
de Vries Reilingh (bmmacf25bbib5) 2007; 94
Ribeiro (bmmacf25bbib31) 2012; 3
References_xml – volume: 15
  start-page: 78
  year: 1993
  ident: bmmacf25bbib3
  article-title: The effects of early mobilisation and immobilisation on the healing process following muscle injuries
  publication-title: Sports Med.
  doi: 10.2165/00007256-199315020-00002
– volume: 20
  start-page: 419
  year: 2009
  ident: bmmacf25bbib14
  article-title: Mechanisms involved in the therapeutic properties of mesenchymal stem cells
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2009.10.002
– volume: 1863
  start-page: 263
  year: 2016
  ident: bmmacf25bbib41
  article-title: Post-transcriptional modulation of interleukin 8 by CNOT6L regulates skeletal muscle differentiation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2015.11.018
– volume: 202
  start-page: 180
  year: 2016
  ident: bmmacf25bbib1
  article-title: Pathophysiology of volumetric muscle loss injury
  publication-title: Cells Tissues Organs
  doi: 10.1159/000443925
– volume: 10
  start-page: 4023
  year: 2017
  ident: bmmacf25bbib40
  article-title: IL-6 improves myogenesis in long-term skeletal muscle atrophy via the JAK/STAT3 signalling pathway
  publication-title: Int. J. Exp. Pathol.
– volume: 16
  start-page: 451
  year: 2016
  ident: bmmacf25bbib48
  article-title: Human adipose-derived stem cells stimulate neuroregeneration
  publication-title: Clin. Exp. Med.
  doi: 10.1007/s10238-015-0364-3
– volume: 88
  start-page: 203
  year: 2009
  ident: bmmacf25bbib4
  article-title: Generation and transplantation of an autologous vascularized bioartificial human tissue
  publication-title: Transplantation
  doi: 10.1097/TP.0b013e3181ac15e1
– volume: 33
  start-page: 229
  year: 2015
  ident: bmmacf25bbib35
  article-title: Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and downstream signalling pathways
  publication-title: Growth Factors
  doi: 10.3109/08977194.2015.1058260
– volume: 173
  start-page: 74
  year: 1964
  ident: bmmacf25bbib45
  article-title: Dynamic properties of fast and slow skeletal muscles of the rat during development
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1964.sp007444
– volume: 9
  start-page: 2482
  year: 2010
  ident: bmmacf25bbib32
  article-title: Dynamics of the skeletal muscle secretome during myoblast differentiation
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M110.002113
– volume: 10
  year: 2019
  ident: bmmacf25bbib28
  article-title: Myogenic differentiation of human amniotic mesenchymal cells and its tissue repair capacity on volumetric muscle loss
  publication-title: J. Tissue Eng.
  doi: 10.1177/2041731419887100
– volume: 21
  start-page: 24
  year: 2017
  ident: bmmacf25bbib43
  article-title: Hypoxia pre-conditioned embryonic mesenchymal stem cell secretome reduces IL-10 production by peripheral blood mononuclear cells
  publication-title: Iran. Biomed. J.
  doi: 10.18869/acadpub.ibj.21.1.24
– volume: 45
  start-page: 1316
  year: 2018
  ident: bmmacf25bbib34
  article-title: HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000487559
– volume: 4
  start-page: 8
  year: 2019
  ident: bmmacf25bbib30
  article-title: Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential
  publication-title: npj Regen. Med.
  doi: 10.1038/s41536-019-0070-y
– volume: 16
  start-page: 2871
  year: 2010
  ident: bmmacf25bbib18
  article-title: Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2009.0826
– volume: 6
  start-page: 19668
  year: 2014
  ident: bmmacf25bbib22
  article-title: Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504520j
– volume: 109
  start-page: 1292
  year: 2004
  ident: bmmacf25bbib42
  article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000121425.42966.F1
– volume: 108
  start-page: 121
  year: 2013
  ident: bmmacf25bbib49
  article-title: Adipose-derived stem cells and nerve regeneration: promises and pitfalls
  publication-title: Int. Rev. Neurobiol.
  doi: 10.1016/B978-0-12-410499-0.00005-8
– volume: 5
  start-page: 103
  year: 2010
  ident: bmmacf25bbib33
  article-title: Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/157488810791268564
– volume: 94
  start-page: 609
  year: 2012
  ident: bmmacf25bbib17
  article-title: Adipose-derived stem-cell treatment of skeletal muscle injury
  publication-title: J. Bone Jt. Surg. A
  doi: 10.2106/JBJS.K.00351
– volume: 94
  start-page: 791
  year: 2007
  ident: bmmacf25bbib5
  article-title: Autologous tissue repair of large abdominal wall defects
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.5817
– volume: 288
  start-page: 266
  year: 1980
  ident: bmmacf25bbib44
  article-title: Why are fetal muscles slow?
  publication-title: Nature
  doi: 10.1038/288266a0
– volume: 107
  start-page: 3287
  year: 2010
  ident: bmmacf25bbib38
  article-title: Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0903875106
– volume: 103
  start-page: 1204
  year: 2008
  ident: bmmacf25bbib15
  article-title: Paracrine mechanisms in adult stem cell signaling and therapy
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.176826
– volume: 17
  start-page: 1064
  year: 2009
  ident: bmmacf25bbib6
  article-title: Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.67
– volume: 11
  start-page: 1461
  year: 2016
  ident: bmmacf25bbib12
  article-title: Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S101955
– volume: 20
  start-page: 1369
  year: 2014
  ident: bmmacf25bbib23
  article-title: Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2013.0460
– volume: 32
  start-page: 270
  year: 2005
  ident: bmmacf25bbib39
  article-title: Cytokine interactions in mesenchymal stem cells from cord blood
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2005.11.003
– volume: 21
  start-page: 2189
  year: 2012
  ident: bmmacf25bbib10
  article-title: Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2011.0674
– volume: 7
  year: 2018
  ident: bmmacf25bbib26
  article-title: Gellan gum hydrogels with enzyme-sensitive biodegradation and endothelial cell biorecognition sites
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201700686
– volume: 202
  start-page: 169
  year: 2016
  ident: bmmacf25bbib11
  article-title: Growth factors for skeletal muscle
  publication-title: Cells Tissues Organs.
  doi: 10.1159/000444671
– volume: 3
  start-page: 1
  year: 2012
  ident: bmmacf25bbib31
  article-title: The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt109
– volume: 4
  start-page: 518
  year: 2005
  ident: bmmacf25bbib24
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1421
– volume: 50
  year: 2017
  ident: bmmacf25bbib36
  article-title: IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.12390
– volume: 13
  start-page: 4279
  year: 2002
  ident: bmmacf25bbib9
  article-title: Human adipose tissue is a source of multipotent stem cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E02-02-0105
– volume: 19
  start-page: S35
  year: 2011
  ident: bmmacf25bbib27
  article-title: Volumetrie muscle loss
  publication-title: J. Am. Acad. Orthop. Surg.
  doi: 10.5435/00124635-201102001-00007
– volume: 33
  start-page: 40
  year: 2015
  ident: bmmacf25bbib2
  article-title: Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22730
– volume: 2013
  start-page: 1
  year: 2013
  ident: bmmacf25bbib8
  article-title: Adipose-derived stem cells in tissue regeneration: a review
  publication-title: ISRN Stem Cells
  doi: 10.1155/2013/713959
– volume: 164
  start-page: 70
  year: 2018
  ident: bmmacf25bbib19
  article-title: Engineering functional and histological regeneration of vascularized skeletal muscle
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.006
– volume: 25
  start-page: 936
  year: 2019
  ident: bmmacf25bbib29
  article-title: Biochemical myogenic differentiation of adipogenic stem cells is donor dependent and requires sound characterization
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2018.0172
– volume: 137
  start-page: 1541
  year: 2017
  ident: bmmacf25bbib50
  article-title: Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2017.02.976
– volume: 80
  start-page: 559
  year: 2007
  ident: bmmacf25bbib37
  article-title: Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2006.10.020
– volume: 34
  start-page: 6037
  year: 2013
  ident: bmmacf25bbib13
  article-title: Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.04.049
– volume: 26
  start-page: 2391
  year: 2008
  ident: bmmacf25bbib7
  article-title: SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0043
– volume: 10
  start-page: 4787
  year: 2014
  ident: bmmacf25bbib25
  article-title: Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.07.009
– volume: 27
  start-page: 1644
  year: 2018
  ident: bmmacf25bbib46
  article-title: Adipose-derived stem/stromal cells on electrospun fibrin microfiber bundles enable moderate muscle reconstruction in a volumetric muscle loss model
  publication-title: Cell Transplant.
  doi: 10.1177/0963689718805370
– volume: 99
  start-page: 11946
  year: 2002
  ident: bmmacf25bbib51
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro in vivo
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182296499
– volume: 137
  start-page: 1541
  year: 2017
  ident: bmmacf25bbib20
  article-title: Stem cell-laden hyaluronic acid-based spongy-like hydrogels for an integrated healing of diabetic wounds pathophysiologies
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2017.02.976
– volume: 8
  start-page: 363
  year: 2012
  ident: bmmacf25bbib16
  article-title: Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-011-9304-0
– volume: 8
  start-page: 33464
  year: 2016
  ident: bmmacf25bbib21
  article-title: Neovascularization induced by the hyaluronic acid-based spongy-like hydrogels degradation products
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11684
– volume: 72
  start-page: 234
  year: 2014
  ident: bmmacf25bbib47
  article-title: Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation
  publication-title: Ann. Plast. Surg.
  doi: 10.1097/SAP.0b013e318264fd6a
SSID ssj0059539
Score 2.3581574
Snippet Background: volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime...
volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65005
SubjectTerms gellan gum
regenerative medicine
spongy-like hydrogel
VML
Title Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment
URI https://iopscience.iop.org/article/10.1088/1748-605X/acf25b
https://www.proquest.com/docview/2854969521
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uFz24izsR9OChM9MlaYInEUUEl4PCHISQrc7gdDrYqTD6531pO4MbIp5a2pcmfUne-5K8BaEDUBsyCRX0QBhZWKAQ7kkShR6F1ZZPGLVKua2Bq2t6cR9dtkl7Ch1PfGGyQS36G3BbBQquWFgbxLEmYGjmAQpvN6VOAqKm0WzoMik5772b27EYJpyUacRq6sivzyh_-sInnTQN9X4TzKW2OV9ED-N2VkYmT41iqBr69UsIx3_-yBJaqFEoPqlIl9GU7a-g-Q-xCVfRW7m9j6XpDrLcegYev1iDU-etpDujFIq7GNDY7fznuCdBfuFuHz86ayq4FCl2xrePI6_XfbK4MzLPGbzLMYBkXIlElxsAp0UOLcA94AueGL2vofvzs7vTC6_O1ODpyA-GnjYqSOLYMFhqA56j3HIjeWxNokNuAqZJYChTyvhxLHlLM6lo0EpM4pNYJ5aG62imn_XtBsK-0tQHYk1l5NADM6QVKskpKFETyGQTNcd9JXQdxtxl0-iJ8jidMeHYKhxbRcXWTXQ0KTGoQnj8QnsIvSXqeZz_Qoc_0ak0FT5QCId4W0QMDDR0fzyGBExZXbLfZkUunNMqpxyA09Yfq9tGcy7NfeUDuYNmhs-F3QUwNFR75aB_ByhOBXs
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiE4lGfFlpeR4MAhu5uHHfuIgFXLo_RApb0ZP9tVN5tVs0Fa-POME29FAVVInBIl4ziZiWc-2_MAeIFmQ_lcowTywuEEhYpE0SJPGM62UsqZ0zosDXw6ZPvHxfspncY6p10sTL2Mqn-Ip32i4J6F0SGOjxBD8wRR-HSkjM-oHi2t34LrNKdlGJkHn482qpgK2pUSiy2KNO5T_u0pl-zSFvb9h3LuLM7kNnzdvGvvaHI2bFd6aL7_lsbxPz7mDuxENEpe9-R34Zpb3INbv-QovA8_umV-ouxsWTcusXj5m7OkClFL5nRdYfOQC5qEHYCGzBXqMTJbkJPgVYWHtiLBCfdkncxnZ46cru15jfcagmCZ9Kox1AggVdvgG5A58oZcOL8_gOPJuy9v9pNYsSExRZqtEmN15svScpxyI65jwgmrROmsN7mwGTc0s4xrbdOyVGJsuNIsG3vrU1oa71i-C9uLeuEeAkm1YSkSG6aKgCK4peNcK8HQmNpM-QGMNvKSJqYzD1U15rLbVudcBtbKwFrZs3YAry5aLPtUHlfQvkSJyTiemyvoyCU6XVUyRQoZkO-YSpTmAJ5v_iOJQ9d07Hd128gQvCqYQAC194_dPYMbR28n8uPB4YdHcDNDvNWHRT6G7dV5654gPlrpp90Y-AnzOArl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+adipose-derived+mesenchymal+stem+cells+laden+in+gellan+gum+spongy-like+hydrogels+for+volumetric+muscle+loss+treatment&rft.jtitle=Biomedical+materials+%28Bristol%29&rft.au=Alheib%2C+Omar&rft.au=da+Silva%2C+Lucilia+P&rft.au=Mesquita%2C+Katia+A&rft.au=da+Silva+Morais%2C+Alain&rft.date=2023-11-01&rft.pub=IOP+Publishing&rft.issn=1748-6041&rft.eissn=1748-605X&rft.volume=18&rft.issue=6&rft_id=info:doi/10.1088%2F1748-605X%2Facf25b&rft.externalDocID=bmmacf25b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-6041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-6041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-6041&client=summon