E-values for effect heterogeneity and approximations for causal interaction
Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second ex...
Saved in:
Published in | International journal of epidemiology Vol. 51; no. 4; pp. 1268 - 1275 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
10.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0300-5771 1464-3685 1464-3685 |
DOI | 10.1093/ije/dyac073 |
Cover
Abstract | Abstract
Background
Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure.
Methods
We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to ‘explain away’ an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue.
Results
We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.
Conclusion
Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding. |
---|---|
AbstractList | Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure.BACKGROUNDEstimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure.We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue.METHODSWe propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue.We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.RESULTSWe illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.CONCLUSIONReporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding. Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure. We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue. We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality. Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding. Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure. Methods We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to ‘explain away’ an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue. Results We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality. Conclusion Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding. |
Author | Smith, Louisa H Mathur, Maya B Ding, Peng Yoshida, Kazuki VanderWeele, Tyler J |
Author_xml | – sequence: 1 givenname: Maya B orcidid: 0000-0001-6698-2607 surname: Mathur fullname: Mathur, Maya B email: mmathur@stanford.edu – sequence: 2 givenname: Louisa H orcidid: 0000-0001-9029-4644 surname: Smith fullname: Smith, Louisa H – sequence: 3 givenname: Kazuki surname: Yoshida fullname: Yoshida, Kazuki – sequence: 4 givenname: Peng surname: Ding fullname: Ding, Peng – sequence: 5 givenname: Tyler J orcidid: 0000-0002-6112-0239 surname: VanderWeele fullname: VanderWeele, Tyler J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35460421$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LAzEQxYNUbK2evMueRJDVZPOx2YsgpX6g4EXPIZvNtinbZE12i_3vjbaKCnoayPzem8m8fTCwzmoAjhA8R7DAF2ahL6q1VDDHO2CECCMpZpwOwAhiCFOa52gI9kNYQIgIIcUeGGJKGCQZGoH7abqSTa9DUjuf6LrWqkvmutPezbTVplsn0laJbFvvXs1SdsbZDatkH2STGBtZqd7fD8BuLZugD7d1DJ6vp0-T2_Th8eZucvWQKoKyLpUFzHJYZWWGSlSXpMS4UJzkOeSESqYR57XElOKCS4ZLTDCnnFZllOQYIo7H4HLj2_blUldK287LRrQ-7ufXwkkjfnasmYuZW4kCM8owjAanWwPvXuLfO7E0QemmkVa7PoiMUZIVOYEsosffZ30N-bxgBM42gPIuBK_rLwRB8Z6PiPmIbT6RRr9oZbqPo8ZFTfOH5mSjcX37r_kbKemiew |
CitedBy_id | crossref_primary_10_1136_bmjopen_2024_091865 crossref_primary_10_2147_NDT_S450236 crossref_primary_10_1111_fcp_12958 crossref_primary_10_1007_s40615_024_02176_w crossref_primary_10_1093_aje_kwae051 crossref_primary_10_1002_jrsm_1667 crossref_primary_10_1016_j_ssmmh_2023_100192 crossref_primary_10_1177_13872877241300296 crossref_primary_10_1210_clinem_dgad654 crossref_primary_10_1093_aje_kwac207 crossref_primary_10_1007_s40472_023_00420_6 |
Cites_doi | 10.1016/S0140-6736(18)31310-2 10.1515/jci-2018-0007 10.1080/01621459.2018.1529598 10.1097/EDE.0b013e3181ba333c 10.1007/s12603-016-0837-4 10.1093/ije/dyaa095 10.1002/pds.5117 10.1002/sim.4354 10.1214/19-STS728 10.7326/M18-2159 10.7326/M18-3112 10.1093/oxfordjournals.aje.a010149 10.1177/1536867X20909696 10.1097/EDE.0000000000000457 10.1097/EDE.0000000000001380 10.1093/ije/dyaa094 10.1136/bmj.325.7357.191 10.1016/j.envint.2021.107032 10.1093/ije/dyaa097 10.1146/annurev-publhealth-051920-114020 10.1097/EDE.0000000000000864 10.7326/M16-2607 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/ije/dyac073 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1464-3685 |
EndPage | 1275 |
ExternalDocumentID | PMC9365630 35460421 10_1093_ije_dyac073 10.1093/ije/dyac073 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Shared Resource of Stanford University's Clinical and Translational Education and Research grantid: UL1TR003142 – fundername: NCATS NIH HHS grantid: UL1 TR003142 – fundername: NCI NIH HHS grantid: R01 CA222147 – fundername: NIDDK NIH HHS grantid: P30 DK116074 – fundername: NCI NIH HHS grantid: P30 CA124435 – fundername: NLM NIH HHS grantid: R01 LM013866 – fundername: NIAMS NIH HHS grantid: K23 AR076453 – fundername: NIH HHS grantid: R01 CA222147 – fundername: Epidemiology and Research Design (BERD) Shared Resource of Stanford University's Clinical and Translational Education and Research grantid: UL1TR003142 – fundername: ; – fundername: ; grantid: UL1TR003142 – fundername: ; grantid: K23AR076453 – fundername: ; grantid: P30CA124435 – fundername: ; grantid: R01 CA222147; R01 LM013866 – fundername: ; grantid: P30DK116074 |
GroupedDBID | --- -E4 .2P .GJ .I3 .ZR 0R~ 18M 1TH 29J 2WC 354 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D A8Z AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAYJJ ABDFA ABEHJ ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABNGD ABNHQ ABNKS ABOCM ABPQP ABPTD ABQLI ABQTQ ABSMQ ABVGC ABWST ABXVV ABYLZ ABZBJ ACFRR ACGFO ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACVHY ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEHUL AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFCKW AFFNX AFFQV AFFZL AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGQZG AGSYK AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMHCJ APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BWUDY BZKNY C1A C45 CAG CDBKE CNZYI COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EIHJH EJD EMOBN F5P F9B FEDTE FLUFQ FOEOM FOTVD FQBLK FTKQU GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MBLQV N9A NGC NOMLY NOYVH NPJNY NTWIH NU- NVLIB O0~ O9- OAWHX OBFPC OBS OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SV3 TEORI TJX TMA TOX TR2 VH1 W2D W8F WH7 WOQ X7H YAYTL YHZ YKOAZ YSK YXANX ZGI ZKX ZXP ~91 AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c412t-a90270d2b21b1fb4b339c84770845a6e188fa355398a63b3438585db0d2730183 |
IEDL.DBID | TOX |
ISSN | 0300-5771 1464-3685 |
IngestDate | Thu Aug 21 18:16:43 EDT 2025 Sat Sep 27 18:27:30 EDT 2025 Sun Jul 20 01:30:40 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 01:59:10 EDT 2025 Wed Apr 02 07:00:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | effect heterogeneity interaction confounding Sensitivity analysis bias analysis effect modification |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-a90270d2b21b1fb4b339c84770845a6e188fa355398a63b3438585db0d2730183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6112-0239 0000-0001-6698-2607 0000-0001-9029-4644 |
OpenAccessLink | https://dx.doi.org/10.1093/ije/dyac073 |
PMID | 35460421 |
PQID | 2654297406 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365630 proquest_miscellaneous_2654297406 pubmed_primary_35460421 crossref_primary_10_1093_ije_dyac073 crossref_citationtrail_10_1093_ije_dyac073 oup_primary_10_1093_ije_dyac073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-10 |
PublicationDateYYYYMMDD | 2022-08-10 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International journal of epidemiology |
PublicationTitleAlternate | Int J Epidemiol |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cornfield (2022081611471652500_dyac073-B15) 1959; 22 VanderWeele (2022081611471652500_dyac073-B1) 2015 Linden (2022081611471652500_dyac073-B18) 2020; 20 White (2022081611471652500_dyac073-B27) 2002; 325 Mathur (2022081611471652500_dyac073-B13) 2020; 115 VanderWeele (2022081611471652500_dyac073-B6) 2019; 7 VanderWeele (2022081611471652500_dyac073-B2) 2009; 20 Griswold (2022081611471652500_dyac073-B26) 2018; 392 VanderWeele (2022081611471652500_dyac073-B12) 2020; 35 VanderWeele (2022081611471652500_dyac073-B19) 2021 Greenland (2022081611471652500_dyac073-B9) 2020; 49 Ding (2022081611471652500_dyac073-B5) 2016; 27 Mathur (2022081611471652500_dyac073-B17) 2018; 29 Smith (2022081611471652500_dyac073-B14) 2021; 32 Zhang (2022081611471652500_dyac073-B25) 2020; 29 Mathur (2022081611471652500_dyac073-B22) 2021; 43 VanderWeele (2022081611471652500_dyac073-B23) 2019; 170 Schlesselman (2022081611471652500_dyac073-B16) 1978; 108 VanderWeele (2022081611471652500_dyac073-B7) 2020; 49 VanderWeele (2022081611471652500_dyac073-B4) 2017; 167 VanderWeele (2022081611471652500_dyac073-B11); 51 Mathur (2022081611471652500_dyac073-B24) 2022; 160 Poole (2022081611471652500_dyac073-B8) 2020; 49 Letenneur (2022081611471652500_dyac073-B20) 2000; 151 Winter (2022081611471652500_dyac073-B21) 2017; 21 VanderWeele (2022081611471652500_dyac073-B3) 2012; 31 Ioannidis (2022081611471652500_dyac073-B10) 2019; 170 |
References_xml | – volume: 392 start-page: 1015 year: 2018 ident: 2022081611471652500_dyac073-B26 article-title: Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet doi: 10.1016/S0140-6736(18)31310-2 – volume: 7 year: 2019 ident: 2022081611471652500_dyac073-B6 article-title: Technical considerations in the use of the E-value publication-title: J Causal Inference doi: 10.1515/jci-2018-0007 – volume: 115 start-page: 163 year: 2020 ident: 2022081611471652500_dyac073-B13 article-title: Sensitivity analysis for unmeasured confounding in meta-analyses publication-title: J Am Stat Assoc doi: 10.1080/01621459.2018.1529598 – volume: 20 start-page: 863 year: 2009 ident: 2022081611471652500_dyac073-B2 article-title: On the distinction between interaction and effect modification publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181ba333c – volume-title: Explanation in Causal Inference: Methods for Mediation and Interaction year: 2015 ident: 2022081611471652500_dyac073-B1 – volume: 21 start-page: 1254 year: 2017 ident: 2022081611471652500_dyac073-B21 article-title: The influence of age on the BMI and all-cause mortality association: a meta-analysis publication-title: J Nutr Health Aging doi: 10.1007/s12603-016-0837-4 – volume: 49 start-page: 1501 year: 2020 ident: 2022081611471652500_dyac073-B9 article-title: Commentary: An argument against E-values for assessing the plausibility that an association could be explained away by residual confounding publication-title: Int J Epidemiol doi: 10.1093/ije/dyaa095 – volume: 51 issue: 2022 ident: 2022081611471652500_dyac073-B11 article-title: Are Greenland, Ioannidis, and Poole opposed to the Cornfield conditions? A defense of the E-value publication-title: Int J Epidemiol – volume: 29 start-page: 1219 year: 2020 ident: 2022081611471652500_dyac073-B25 article-title: Assessing the impact of unmeasured confounders for credible and reliable real-world evidence publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.5117 – volume: 31 start-page: 2552 year: 2012 ident: 2022081611471652500_dyac073-B3 article-title: Sensitivity analysis for interactions under unmeasured confounding publication-title: Stat Med doi: 10.1002/sim.4354 – volume: 35 start-page: 437 year: 2020 ident: 2022081611471652500_dyac073-B12 article-title: Outcome-wide longitudinal designs for causal inference: a new template for empirical studies publication-title: Stat Sci doi: 10.1214/19-STS728 – volume: 170 start-page: 108 year: 2019 ident: 2022081611471652500_dyac073-B10 article-title: Limitations and misinterpretations of E-values for sensitivity analyses of observational studies publication-title: Ann Intern Med doi: 10.7326/M18-2159 – volume: 170 start-page: 131 year: 2019 ident: 2022081611471652500_dyac073-B23 article-title: Correcting Misinterpretations of the E-Value publication-title: Ann Intern Med doi: 10.7326/M18-3112 – volume: 151 start-page: 1064 year: 2000 ident: 2022081611471652500_dyac073-B20 article-title: Education and risk for Alzheimer’s disease: sex makes a difference. EURODEM pooled analyses publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a010149 – volume: 20 start-page: 162 year: 2020 ident: 2022081611471652500_dyac073-B18 article-title: Conducting sensitivity analysis for unmeasured confounding in observational studies using E-values: the EValue package publication-title: Stata J doi: 10.1177/1536867X20909696 – start-page: 619 volume-title: Modern Epidemiology year: 2021 ident: 2022081611471652500_dyac073-B19 – volume: 27 start-page: 368 year: 2016 ident: 2022081611471652500_dyac073-B5 article-title: Sensitivity analysis without assumptions publication-title: Epidemiology doi: 10.1097/EDE.0000000000000457 – volume: 108 start-page: 3 year: 1978 ident: 2022081611471652500_dyac073-B16 article-title: Assessing effects of confounding variables publication-title: Am J Epidemiol – volume: 32 start-page: 625 year: 2021 ident: 2022081611471652500_dyac073-B14 article-title: Multiple-bias sensitivity analysis using bounds publication-title: Epidemiology doi: 10.1097/EDE.0000000000001380 – volume: 49 start-page: 1495 year: 2020 ident: 2022081611471652500_dyac073-B7 article-title: Commentary: developing best-practice guidelines for the reporting of E-values publication-title: Int J Epidemiol doi: 10.1093/ije/dyaa094 – volume: 22 start-page: 173 year: 1959 ident: 2022081611471652500_dyac073-B15 article-title: Smoking and lung cancer: recent evidence and a discussion of some questions publication-title: J Natl Cancer Inst – volume: 325 start-page: 191 year: 2002 ident: 2022081611471652500_dyac073-B27 article-title: Alcohol consumption and mortality: modelling risks for men and women at different ages publication-title: BMJ doi: 10.1136/bmj.325.7357.191 – volume: 160 start-page: 107032 year: 2022 ident: 2022081611471652500_dyac073-B24 article-title: How to report E-values for meta-analyses: recommended improvements and additions to the new GRADE approach publication-title: Environ Int doi: 10.1016/j.envint.2021.107032 – volume: 49 start-page: 1497 year: 2020 ident: 2022081611471652500_dyac073-B8 article-title: Commentary: Continuing the E-value’s post-publication peer review publication-title: Int J Epidemiol doi: 10.1093/ije/dyaa097 – volume: 43 start-page: 19 year: 2021 ident: 2022081611471652500_dyac073-B22 article-title: Methods to address confounding and other biases in meta-analyses: review and recommendations publication-title: Annu Rev Public Health doi: 10.1146/annurev-publhealth-051920-114020 – volume: 29 start-page: e45 year: 2018 ident: 2022081611471652500_dyac073-B17 article-title: Website and R package for computing E-values publication-title: Epidemiology doi: 10.1097/EDE.0000000000000864 – volume: 167 start-page: 268 year: 2017 ident: 2022081611471652500_dyac073-B4 article-title: Sensitivity analysis in observational research: introducing the E-value publication-title: Ann Intern Med doi: 10.7326/M16-2607 |
SSID | ssj0014449 |
Score | 2.4564774 |
Snippet | Abstract
Background
Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure)... Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1268 |
SubjectTerms | Bias Causality Confounding Factors, Epidemiologic Humans Incidence Methods |
Title | E-values for effect heterogeneity and approximations for causal interaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35460421 https://www.proquest.com/docview/2654297406 https://pubmed.ncbi.nlm.nih.gov/PMC9365630 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA6yBxFEdP6qP2YFn4SwtkmT9lFkYzqmLxvsrSRpyibSybqB_vdemm6sY-hzL23Jfc196d19QehBKYBJFobYqEdhynSABUADx6GSXEeK-tr0Ow_eWG9EX8fhuCqQLXak8GPSnn7odvojFIARlloIvwbOw_fxOllAqWW5xPNwyLlfteFtja0Fnloz2wan3C6N3Ig13WN0VJFE98l69QTt6byJ9gdVGryJDu3PNtf2EJ2ifgcb0W5duEBBXVui4U5MocsM8KGBaLsiT91SP_x7apsVra0SywKeZEQj5rbF4QyNup3hcw9XpyRgmMhggUUMO0svDWTgSz-TVBISK4g53ItoKJj2oygTwCpIHAlGJKFlKjCVMMR83RE5R418lutL5MKOkkWaatgFcSoCJVic8kBymkrCPJ056HE1hYmqJMTNSRafiU1lkwTmO6nm2wEgrIy_rHLGbrM78MXfFvcrPyWAfZPQELmeLYskKE_b4sBJHHRh_ba-EQkpgwXJdxCveXRtYHS161fy6aTU144JM6ppV_--2TU6CEw3RKmQe4Mai_lS3wJHWcgWsPOXfqvE6S_GpOYo |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-values+for+effect+heterogeneity+and+approximations+for+causal+interaction&rft.jtitle=International+journal+of+epidemiology&rft.au=Mathur%2C+Maya+B&rft.au=Smith%2C+Louisa+H&rft.au=Yoshida%2C+Kazuki&rft.au=Ding%2C+Peng&rft.date=2022-08-10&rft.issn=0300-5771&rft.eissn=1464-3685&rft.volume=51&rft.issue=4&rft.spage=1268&rft.epage=1275&rft_id=info:doi/10.1093%2Fije%2Fdyac073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ije_dyac073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon |