E-values for effect heterogeneity and approximations for causal interaction

Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second ex...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of epidemiology Vol. 51; no. 4; pp. 1268 - 1275
Main Authors Mathur, Maya B, Smith, Louisa H, Yoshida, Kazuki, Ding, Peng, VanderWeele, Tyler J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 10.08.2022
Subjects
Online AccessGet full text
ISSN0300-5771
1464-3685
1464-3685
DOI10.1093/ije/dyac073

Cover

Abstract Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure. Methods We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to ‘explain away’ an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue. Results We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality. Conclusion Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.
AbstractList Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure.BACKGROUNDEstimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure.We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue.METHODSWe propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue.We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.RESULTSWe illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.CONCLUSIONReporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.
Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure-outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure. We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to 'explain away' an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue. We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality. Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.
Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure. Methods We propose methods, analogous to the E-value for total effects, that help to assess the sensitivity of effect heterogeneity estimates to possible uncontrolled confounding. These E-value analogues characterize the severity of uncontrolled confounding strengths that would be required, hypothetically, to ‘explain away’ an estimate of multiplicative or additive effect heterogeneity in the sense that appropriately controlling for those confounder(s) would have shifted the effect heterogeneity estimate to the null, or alternatively would have shifted its confidence interval to include the null. One can also consider shifting the estimate or confidence interval to an arbitrary non-null value. All of these E-values can be obtained using the R package EValue. Results We illustrate applying the proposed E-value analogues to studies on: (i) effect heterogeneity by sex of the effect of educational attainment on dementia incidence and (ii) effect heterogeneity by age on the effect of obesity on all-cause mortality. Conclusion Reporting these proposed E-values could help characterize the robustness of effect heterogeneity estimates to potential uncontrolled confounding.
Author Smith, Louisa H
Mathur, Maya B
Ding, Peng
Yoshida, Kazuki
VanderWeele, Tyler J
Author_xml – sequence: 1
  givenname: Maya B
  orcidid: 0000-0001-6698-2607
  surname: Mathur
  fullname: Mathur, Maya B
  email: mmathur@stanford.edu
– sequence: 2
  givenname: Louisa H
  orcidid: 0000-0001-9029-4644
  surname: Smith
  fullname: Smith, Louisa H
– sequence: 3
  givenname: Kazuki
  surname: Yoshida
  fullname: Yoshida, Kazuki
– sequence: 4
  givenname: Peng
  surname: Ding
  fullname: Ding, Peng
– sequence: 5
  givenname: Tyler J
  orcidid: 0000-0002-6112-0239
  surname: VanderWeele
  fullname: VanderWeele, Tyler J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35460421$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LAzEQxYNUbK2evMueRJDVZPOx2YsgpX6g4EXPIZvNtinbZE12i_3vjbaKCnoayPzem8m8fTCwzmoAjhA8R7DAF2ahL6q1VDDHO2CECCMpZpwOwAhiCFOa52gI9kNYQIgIIcUeGGJKGCQZGoH7abqSTa9DUjuf6LrWqkvmutPezbTVplsn0laJbFvvXs1SdsbZDatkH2STGBtZqd7fD8BuLZugD7d1DJ6vp0-T2_Th8eZucvWQKoKyLpUFzHJYZWWGSlSXpMS4UJzkOeSESqYR57XElOKCS4ZLTDCnnFZllOQYIo7H4HLj2_blUldK287LRrQ-7ufXwkkjfnasmYuZW4kCM8owjAanWwPvXuLfO7E0QemmkVa7PoiMUZIVOYEsosffZ30N-bxgBM42gPIuBK_rLwRB8Z6PiPmIbT6RRr9oZbqPo8ZFTfOH5mSjcX37r_kbKemiew
CitedBy_id crossref_primary_10_1136_bmjopen_2024_091865
crossref_primary_10_2147_NDT_S450236
crossref_primary_10_1111_fcp_12958
crossref_primary_10_1007_s40615_024_02176_w
crossref_primary_10_1093_aje_kwae051
crossref_primary_10_1002_jrsm_1667
crossref_primary_10_1016_j_ssmmh_2023_100192
crossref_primary_10_1177_13872877241300296
crossref_primary_10_1210_clinem_dgad654
crossref_primary_10_1093_aje_kwac207
crossref_primary_10_1007_s40472_023_00420_6
Cites_doi 10.1016/S0140-6736(18)31310-2
10.1515/jci-2018-0007
10.1080/01621459.2018.1529598
10.1097/EDE.0b013e3181ba333c
10.1007/s12603-016-0837-4
10.1093/ije/dyaa095
10.1002/pds.5117
10.1002/sim.4354
10.1214/19-STS728
10.7326/M18-2159
10.7326/M18-3112
10.1093/oxfordjournals.aje.a010149
10.1177/1536867X20909696
10.1097/EDE.0000000000000457
10.1097/EDE.0000000000001380
10.1093/ije/dyaa094
10.1136/bmj.325.7357.191
10.1016/j.envint.2021.107032
10.1093/ije/dyaa097
10.1146/annurev-publhealth-051920-114020
10.1097/EDE.0000000000000864
10.7326/M16-2607
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/ije/dyac073
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1464-3685
EndPage 1275
ExternalDocumentID PMC9365630
35460421
10_1093_ije_dyac073
10.1093/ije/dyac073
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Shared Resource of Stanford University's Clinical and Translational Education and Research
  grantid: UL1TR003142
– fundername: NCATS NIH HHS
  grantid: UL1 TR003142
– fundername: NCI NIH HHS
  grantid: R01 CA222147
– fundername: NIDDK NIH HHS
  grantid: P30 DK116074
– fundername: NCI NIH HHS
  grantid: P30 CA124435
– fundername: NLM NIH HHS
  grantid: R01 LM013866
– fundername: NIAMS NIH HHS
  grantid: K23 AR076453
– fundername: NIH HHS
  grantid: R01 CA222147
– fundername: Epidemiology and Research Design (BERD) Shared Resource of Stanford University's Clinical and Translational Education and Research
  grantid: UL1TR003142
– fundername: ;
– fundername: ;
  grantid: UL1TR003142
– fundername: ;
  grantid: K23AR076453
– fundername: ;
  grantid: P30CA124435
– fundername: ;
  grantid: R01 CA222147; R01 LM013866
– fundername: ;
  grantid: P30DK116074
GroupedDBID ---
-E4
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29J
2WC
354
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
A8Z
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAYJJ
ABDFA
ABEHJ
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNGD
ABNHQ
ABNKS
ABOCM
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABWST
ABXVV
ABYLZ
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACVHY
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFCKW
AFFNX
AFFQV
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGQZG
AGSYK
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMHCJ
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BWUDY
BZKNY
C1A
C45
CAG
CDBKE
CNZYI
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
EMOBN
F5P
F9B
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
FTKQU
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
N9A
NGC
NOMLY
NOYVH
NPJNY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBFPC
OBS
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJX
TMA
TOX
TR2
VH1
W2D
W8F
WH7
WOQ
X7H
YAYTL
YHZ
YKOAZ
YSK
YXANX
ZGI
ZKX
ZXP
~91
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c412t-a90270d2b21b1fb4b339c84770845a6e188fa355398a63b3438585db0d2730183
IEDL.DBID TOX
ISSN 0300-5771
1464-3685
IngestDate Thu Aug 21 18:16:43 EDT 2025
Sat Sep 27 18:27:30 EDT 2025
Sun Jul 20 01:30:40 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 01:59:10 EDT 2025
Wed Apr 02 07:00:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords effect heterogeneity
interaction
confounding
Sensitivity analysis
bias analysis
effect modification
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a90270d2b21b1fb4b339c84770845a6e188fa355398a63b3438585db0d2730183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6112-0239
0000-0001-6698-2607
0000-0001-9029-4644
OpenAccessLink https://dx.doi.org/10.1093/ije/dyac073
PMID 35460421
PQID 2654297406
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365630
proquest_miscellaneous_2654297406
pubmed_primary_35460421
crossref_primary_10_1093_ije_dyac073
crossref_citationtrail_10_1093_ije_dyac073
oup_primary_10_1093_ije_dyac073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-10
PublicationDateYYYYMMDD 2022-08-10
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of epidemiology
PublicationTitleAlternate Int J Epidemiol
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cornfield (2022081611471652500_dyac073-B15) 1959; 22
VanderWeele (2022081611471652500_dyac073-B1) 2015
Linden (2022081611471652500_dyac073-B18) 2020; 20
White (2022081611471652500_dyac073-B27) 2002; 325
Mathur (2022081611471652500_dyac073-B13) 2020; 115
VanderWeele (2022081611471652500_dyac073-B6) 2019; 7
VanderWeele (2022081611471652500_dyac073-B2) 2009; 20
Griswold (2022081611471652500_dyac073-B26) 2018; 392
VanderWeele (2022081611471652500_dyac073-B12) 2020; 35
VanderWeele (2022081611471652500_dyac073-B19) 2021
Greenland (2022081611471652500_dyac073-B9) 2020; 49
Ding (2022081611471652500_dyac073-B5) 2016; 27
Mathur (2022081611471652500_dyac073-B17) 2018; 29
Smith (2022081611471652500_dyac073-B14) 2021; 32
Zhang (2022081611471652500_dyac073-B25) 2020; 29
Mathur (2022081611471652500_dyac073-B22) 2021; 43
VanderWeele (2022081611471652500_dyac073-B23) 2019; 170
Schlesselman (2022081611471652500_dyac073-B16) 1978; 108
VanderWeele (2022081611471652500_dyac073-B7) 2020; 49
VanderWeele (2022081611471652500_dyac073-B4) 2017; 167
VanderWeele (2022081611471652500_dyac073-B11); 51
Mathur (2022081611471652500_dyac073-B24) 2022; 160
Poole (2022081611471652500_dyac073-B8) 2020; 49
Letenneur (2022081611471652500_dyac073-B20) 2000; 151
Winter (2022081611471652500_dyac073-B21) 2017; 21
VanderWeele (2022081611471652500_dyac073-B3) 2012; 31
Ioannidis (2022081611471652500_dyac073-B10) 2019; 170
References_xml – volume: 392
  start-page: 1015
  year: 2018
  ident: 2022081611471652500_dyac073-B26
  article-title: Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31310-2
– volume: 7
  year: 2019
  ident: 2022081611471652500_dyac073-B6
  article-title: Technical considerations in the use of the E-value
  publication-title: J Causal Inference
  doi: 10.1515/jci-2018-0007
– volume: 115
  start-page: 163
  year: 2020
  ident: 2022081611471652500_dyac073-B13
  article-title: Sensitivity analysis for unmeasured confounding in meta-analyses
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2018.1529598
– volume: 20
  start-page: 863
  year: 2009
  ident: 2022081611471652500_dyac073-B2
  article-title: On the distinction between interaction and effect modification
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ba333c
– volume-title: Explanation in Causal Inference: Methods for Mediation and Interaction
  year: 2015
  ident: 2022081611471652500_dyac073-B1
– volume: 21
  start-page: 1254
  year: 2017
  ident: 2022081611471652500_dyac073-B21
  article-title: The influence of age on the BMI and all-cause mortality association: a meta-analysis
  publication-title: J Nutr Health Aging
  doi: 10.1007/s12603-016-0837-4
– volume: 49
  start-page: 1501
  year: 2020
  ident: 2022081611471652500_dyac073-B9
  article-title: Commentary: An argument against E-values for assessing the plausibility that an association could be explained away by residual confounding
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyaa095
– volume: 51
  issue: 2022
  ident: 2022081611471652500_dyac073-B11
  article-title: Are Greenland, Ioannidis, and Poole opposed to the Cornfield conditions? A defense of the E-value
  publication-title: Int J  Epidemiol
– volume: 29
  start-page: 1219
  year: 2020
  ident: 2022081611471652500_dyac073-B25
  article-title: Assessing the impact of unmeasured confounders for credible and reliable real-world evidence
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.5117
– volume: 31
  start-page: 2552
  year: 2012
  ident: 2022081611471652500_dyac073-B3
  article-title: Sensitivity analysis for interactions under unmeasured confounding
  publication-title: Stat Med
  doi: 10.1002/sim.4354
– volume: 35
  start-page: 437
  year: 2020
  ident: 2022081611471652500_dyac073-B12
  article-title: Outcome-wide longitudinal designs for causal inference: a new template for empirical studies
  publication-title: Stat Sci
  doi: 10.1214/19-STS728
– volume: 170
  start-page: 108
  year: 2019
  ident: 2022081611471652500_dyac073-B10
  article-title: Limitations and misinterpretations of E-values for sensitivity analyses of observational studies
  publication-title: Ann Intern Med
  doi: 10.7326/M18-2159
– volume: 170
  start-page: 131
  year: 2019
  ident: 2022081611471652500_dyac073-B23
  article-title: Correcting Misinterpretations of the E-Value
  publication-title: Ann Intern Med
  doi: 10.7326/M18-3112
– volume: 151
  start-page: 1064
  year: 2000
  ident: 2022081611471652500_dyac073-B20
  article-title: Education and risk for Alzheimer’s disease: sex makes a difference. EURODEM pooled analyses
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a010149
– volume: 20
  start-page: 162
  year: 2020
  ident: 2022081611471652500_dyac073-B18
  article-title: Conducting sensitivity analysis for unmeasured confounding in observational studies using E-values: the EValue package
  publication-title: Stata J
  doi: 10.1177/1536867X20909696
– start-page: 619
  volume-title: Modern Epidemiology
  year: 2021
  ident: 2022081611471652500_dyac073-B19
– volume: 27
  start-page: 368
  year: 2016
  ident: 2022081611471652500_dyac073-B5
  article-title: Sensitivity analysis without assumptions
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000457
– volume: 108
  start-page: 3
  year: 1978
  ident: 2022081611471652500_dyac073-B16
  article-title: Assessing effects of confounding variables
  publication-title: Am J Epidemiol
– volume: 32
  start-page: 625
  year: 2021
  ident: 2022081611471652500_dyac073-B14
  article-title: Multiple-bias sensitivity analysis using bounds
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000001380
– volume: 49
  start-page: 1495
  year: 2020
  ident: 2022081611471652500_dyac073-B7
  article-title: Commentary: developing best-practice guidelines for the reporting of E-values
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyaa094
– volume: 22
  start-page: 173
  year: 1959
  ident: 2022081611471652500_dyac073-B15
  article-title: Smoking and lung cancer: recent evidence and a discussion of some questions
  publication-title: J Natl Cancer Inst
– volume: 325
  start-page: 191
  year: 2002
  ident: 2022081611471652500_dyac073-B27
  article-title: Alcohol consumption and mortality: modelling risks for men and women at different ages
  publication-title: BMJ
  doi: 10.1136/bmj.325.7357.191
– volume: 160
  start-page: 107032
  year: 2022
  ident: 2022081611471652500_dyac073-B24
  article-title: How to report E-values for meta-analyses: recommended improvements and additions to the new GRADE approach
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.107032
– volume: 49
  start-page: 1497
  year: 2020
  ident: 2022081611471652500_dyac073-B8
  article-title: Commentary: Continuing the E-value’s post-publication peer review
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyaa097
– volume: 43
  start-page: 19
  year: 2021
  ident: 2022081611471652500_dyac073-B22
  article-title: Methods to address confounding and other biases in meta-analyses: review and recommendations
  publication-title: Annu  Rev Public Health
  doi: 10.1146/annurev-publhealth-051920-114020
– volume: 29
  start-page: e45
  year: 2018
  ident: 2022081611471652500_dyac073-B17
  article-title: Website and R package for computing E-values
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000864
– volume: 167
  start-page: 268
  year: 2017
  ident: 2022081611471652500_dyac073-B4
  article-title: Sensitivity analysis in observational research: introducing the E-value
  publication-title: Ann Intern Med
  doi: 10.7326/M16-2607
SSID ssj0014449
Score 2.4564774
Snippet Abstract Background Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure)...
Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1268
SubjectTerms Bias
Causality
Confounding Factors, Epidemiologic
Humans
Incidence
Methods
Title E-values for effect heterogeneity and approximations for causal interaction
URI https://www.ncbi.nlm.nih.gov/pubmed/35460421
https://www.proquest.com/docview/2654297406
https://pubmed.ncbi.nlm.nih.gov/PMC9365630
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA6yBxFEdP6qP2YFn4SwtkmT9lFkYzqmLxvsrSRpyibSybqB_vdemm6sY-hzL23Jfc196d19QehBKYBJFobYqEdhynSABUADx6GSXEeK-tr0Ow_eWG9EX8fhuCqQLXak8GPSnn7odvojFIARlloIvwbOw_fxOllAqWW5xPNwyLlfteFtja0Fnloz2wan3C6N3Ig13WN0VJFE98l69QTt6byJ9gdVGryJDu3PNtf2EJ2ifgcb0W5duEBBXVui4U5MocsM8KGBaLsiT91SP_x7apsVra0SywKeZEQj5rbF4QyNup3hcw9XpyRgmMhggUUMO0svDWTgSz-TVBISK4g53ItoKJj2oygTwCpIHAlGJKFlKjCVMMR83RE5R418lutL5MKOkkWaatgFcSoCJVic8kBymkrCPJ056HE1hYmqJMTNSRafiU1lkwTmO6nm2wEgrIy_rHLGbrM78MXfFvcrPyWAfZPQELmeLYskKE_b4sBJHHRh_ba-EQkpgwXJdxCveXRtYHS161fy6aTU144JM6ppV_--2TU6CEw3RKmQe4Mai_lS3wJHWcgWsPOXfqvE6S_GpOYo
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-values+for+effect+heterogeneity+and+approximations+for+causal+interaction&rft.jtitle=International+journal+of+epidemiology&rft.au=Mathur%2C+Maya+B&rft.au=Smith%2C+Louisa+H&rft.au=Yoshida%2C+Kazuki&rft.au=Ding%2C+Peng&rft.date=2022-08-10&rft.issn=0300-5771&rft.eissn=1464-3685&rft.volume=51&rft.issue=4&rft.spage=1268&rft.epage=1275&rft_id=info:doi/10.1093%2Fije%2Fdyac073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ije_dyac073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon