Pressurized oxy-combustion with low flue gas recycle: Computational fluid dynamic simulations of radiant boilers

•A unique boiler is presented for pressurized oxy-combustion of coal with low flue gas recycle.•Design method is described for combustion in a pressure vessel with high aspect ratio.•3-D CFD simulations are performed to simulate a full-scale power plant boiler.•A long flame is achieved to distribute...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 181; no. C; pp. 1170 - 1178
Main Authors Xia, Fei, Yang, Zhiwei, Adeosun, Adewale, Gopan, Akshay, Kumfer, Benjamin M., Axelbaum, Richard L.
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 01.10.2016
Elsevier
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
1873-7153
DOI10.1016/j.fuel.2016.04.023

Cover

Abstract •A unique boiler is presented for pressurized oxy-combustion of coal with low flue gas recycle.•Design method is described for combustion in a pressure vessel with high aspect ratio.•3-D CFD simulations are performed to simulate a full-scale power plant boiler.•A long flame is achieved to distribute heat release while minimizing ash deposition.•Proper wall heat flux is achieved even when local gas temperature is extremely high. Oxy-fuel combustion is considered a promising technology for carbon capture, utilization, and storage (CCUS). One of the primary limitations on full-scale implementation of this technology is the significant increase in the cost of electricity due to a large reduction in plant efficiency and high capital costs. Recently a new concept, namely staged, pressurized oxy-combustion, has been developed in which the flue gas recycle is reduced significantly by means of fuel-staged combustion. At higher pressure the latent heat of condensation of the moisture in the flue gas can be utilized in the Rankine cycle, further increasing the plant efficiency. As determined through ASPEN Plus modeling, this approach increases the net plant efficiency by more than 6 percentage points, compared to first-generation oxy-combustion plants. The early stages of the system involve burning coal in high oxygen concentration, which means the flame temperature is extremely high. New boilers designs are required to handle these extreme conditions. In the present paper, a unique burner and boiler have been designed via computational fluid dynamics (CFD) to effectively and safely burn coal under conditions of elevated pressure and low flue gas recycle. The enclosed jet theory was used to design a combustion system with slow mixing and no external recirculation, which helped minimize flame impingement and ash deposition. A cone-shaped geometry was utilized to minimize the effects of buoyancy in the down-fired, axial-flow system. A 1540MWth SPOC system was simulated based on this design and the results showed that a relatively uniform distribution of wall heat flux can be achieved and the peak wall heat flux was under a manageable level even though local gas temperature are extremely high.
AbstractList •A unique boiler is presented for pressurized oxy-combustion of coal with low flue gas recycle.•Design method is described for combustion in a pressure vessel with high aspect ratio.•3-D CFD simulations are performed to simulate a full-scale power plant boiler.•A long flame is achieved to distribute heat release while minimizing ash deposition.•Proper wall heat flux is achieved even when local gas temperature is extremely high. Oxy-fuel combustion is considered a promising technology for carbon capture, utilization, and storage (CCUS). One of the primary limitations on full-scale implementation of this technology is the significant increase in the cost of electricity due to a large reduction in plant efficiency and high capital costs. Recently a new concept, namely staged, pressurized oxy-combustion, has been developed in which the flue gas recycle is reduced significantly by means of fuel-staged combustion. At higher pressure the latent heat of condensation of the moisture in the flue gas can be utilized in the Rankine cycle, further increasing the plant efficiency. As determined through ASPEN Plus modeling, this approach increases the net plant efficiency by more than 6 percentage points, compared to first-generation oxy-combustion plants. The early stages of the system involve burning coal in high oxygen concentration, which means the flame temperature is extremely high. New boilers designs are required to handle these extreme conditions. In the present paper, a unique burner and boiler have been designed via computational fluid dynamics (CFD) to effectively and safely burn coal under conditions of elevated pressure and low flue gas recycle. The enclosed jet theory was used to design a combustion system with slow mixing and no external recirculation, which helped minimize flame impingement and ash deposition. A cone-shaped geometry was utilized to minimize the effects of buoyancy in the down-fired, axial-flow system. A 1540MWth SPOC system was simulated based on this design and the results showed that a relatively uniform distribution of wall heat flux can be achieved and the peak wall heat flux was under a manageable level even though local gas temperature are extremely high.
Author Xia, Fei
Adeosun, Adewale
Yang, Zhiwei
Gopan, Akshay
Kumfer, Benjamin M.
Axelbaum, Richard L.
Author_xml – sequence: 1
  givenname: Fei
  surname: Xia
  fullname: Xia, Fei
– sequence: 2
  givenname: Zhiwei
  orcidid: 0000-0002-2572-836X
  surname: Yang
  fullname: Yang, Zhiwei
– sequence: 3
  givenname: Adewale
  surname: Adeosun
  fullname: Adeosun, Adewale
– sequence: 4
  givenname: Akshay
  surname: Gopan
  fullname: Gopan, Akshay
– sequence: 5
  givenname: Benjamin M.
  surname: Kumfer
  fullname: Kumfer, Benjamin M.
– sequence: 6
  givenname: Richard L.
  surname: Axelbaum
  fullname: Axelbaum, Richard L.
  email: axelbaum@wustl.edu
BackLink https://www.osti.gov/biblio/1341460$$D View this record in Osti.gov
BookMark eNqNkE1v1DAURS1UJKaFP8DKYp_gFzuOB7FBI76kSrCAteXYL9Qjxx7ZCUP49SQdVl1UXdnSvefq6VyTq5giEvIaWA0M5NtjPcwY6mb910zUrOHPyA5Ux6sOWn5FdmxNqoZLeEGuSzkyxjrVih05fc9Yypz9X3Q0_Vkqm8Z-LpNPkZ79dEdDOtMhzEh_mUIz2sUGfEcPaTzNk9lqJmy5d9Qt0Yze0uLHOdxHhaaBZuO8iRPtkw-Yy0vyfDCh4Kv_7w35-enjj8OX6vbb56-HD7eVFdBMlWkVKpCdMWBEw_tWgETZyhbdHnu2F4Cql3IAUM4ohL2VqlHMdB3vHN8DvyH8sjvHk1nOJgR9yn40edHA9CZNH_UmTW_SNBN6lbZSby5UWhXoYv2E9s6mGNFOGrgAIdlaai4lm1MpGYenLasH0Dp-b2nKxofH0fcXFFdfvz3m7TCMFp3P210u-cfwfxXJqOM
CitedBy_id crossref_primary_10_1002_er_3838
crossref_primary_10_1016_j_eng_2024_03_005
crossref_primary_10_1016_j_rser_2021_112020
crossref_primary_10_1115_1_4048868
crossref_primary_10_1016_j_joei_2021_11_002
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_079
crossref_primary_10_1016_j_combustflame_2019_09_032
crossref_primary_10_1016_j_fuel_2021_120421
crossref_primary_10_1016_j_ijggc_2019_102936
crossref_primary_10_1016_j_applthermaleng_2019_03_033
crossref_primary_10_1061__ASCE_EY_1943_7897_0000645
crossref_primary_10_1016_j_combustflame_2022_112158
crossref_primary_10_1016_j_energy_2021_120487
crossref_primary_10_1021_acs_energyfuels_7b01092
crossref_primary_10_1016_j_jenvman_2021_112690
crossref_primary_10_1021_acs_energyfuels_8b02654
crossref_primary_10_1016_j_fuel_2016_10_080
crossref_primary_10_1016_j_rineng_2025_103923
crossref_primary_10_1016_j_energy_2018_09_198
crossref_primary_10_1140_epjp_s13360_020_00350_7
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123616
crossref_primary_10_1016_j_energy_2020_119550
crossref_primary_10_1016_j_fuel_2019_116634
crossref_primary_10_1016_j_fuel_2019_116678
crossref_primary_10_2139_ssrn_4054242
crossref_primary_10_1016_j_fuel_2024_132672
crossref_primary_10_1016_j_apt_2020_05_005
crossref_primary_10_1021_acs_energyfuels_7b03127
crossref_primary_10_1016_j_apenergy_2019_04_096
crossref_primary_10_1016_j_joei_2020_09_010
crossref_primary_10_1021_acs_energyfuels_8b02443
crossref_primary_10_1016_j_fuel_2017_12_042
crossref_primary_10_1007_s11708_024_0931_y
crossref_primary_10_1016_j_jqsrt_2019_05_007
crossref_primary_10_1063_5_0054906
crossref_primary_10_1016_j_energy_2021_120021
crossref_primary_10_1016_j_energy_2019_116756
crossref_primary_10_1021_acsomega_0c01480
crossref_primary_10_1016_j_fuel_2017_02_083
crossref_primary_10_1016_j_energy_2022_123975
crossref_primary_10_1016_j_fuel_2019_116723
crossref_primary_10_1002_apj_2851
crossref_primary_10_1016_j_apenergy_2020_116367
crossref_primary_10_1080_00102202_2022_2157210
crossref_primary_10_1016_j_jngse_2019_103095
crossref_primary_10_1016_j_jqsrt_2019_106819
crossref_primary_10_1016_j_combustflame_2019_03_031
crossref_primary_10_1016_j_proci_2020_06_073
crossref_primary_10_1016_j_fuel_2019_115889
crossref_primary_10_1016_j_powtec_2025_120808
crossref_primary_10_1021_acs_energyfuels_9b02826
crossref_primary_10_1016_j_tsep_2021_100856
crossref_primary_10_1007_s11804_024_00451_0
crossref_primary_10_1016_j_energy_2020_118161
Cites_doi 10.1016/S0307-904X(98)10087-2
10.1016/j.fuproc.2006.01.004
10.1115/1.2910394
10.1080/00102209308935283
10.1016/j.egypro.2011.02.190
10.1115/1.3078204
10.1016/j.energy.2011.06.010
10.1016/j.pecs.2011.09.003
10.1080/00102200902925679
10.1016/j.cherd.2010.11.010
10.1115/1.2910614
10.2514/3.11115
10.1016/j.egypro.2014.11.046
10.1021/ef980074k
10.2514/3.12149
10.1016/j.pecs.2005.07.001
10.1016/j.fuel.2011.03.023
10.1016/S0082-0784(53)80103-7
10.1016/0360-1285(84)90108-4
10.1016/j.ces.2004.04.036
10.1260/1757-482X.2.2.73
10.1016/0360-1285(93)90002-V
10.1080/10407799308914901
10.1016/j.ijggc.2015.05.014
10.1016/j.fuel.2015.12.078
10.1021/ef8003619
10.1016/j.ijggc.2012.11.012
10.1016/j.enconman.2009.11.045
10.1016/j.apenergy.2014.03.032
10.1016/j.cherd.2009.02.005
10.1021/ef00019a010
10.1088/0957-0233/18/11/031
10.1016/j.cep.2005.03.001
10.1016/j.proci.2004.08.085
10.1016/j.energy.2009.05.015
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.fuel.2016.04.023
DatabaseName CrossRef
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 1178
ExternalDocumentID oai:osti.gov:1341460
1341460
10_1016_j_fuel_2016_04_023
S0016236116301806
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c412t-a58e8167aa1a423b5416e6565ed9eb0941e8b66f118da8e19c68280a7737d3913
IEDL.DBID .~1
ISSN 0016-2361
1873-7153
IngestDate Sun Oct 26 03:46:16 EDT 2025
Fri May 19 02:09:08 EDT 2023
Thu Apr 24 22:59:45 EDT 2025
Wed Oct 01 05:19:52 EDT 2025
Fri Feb 23 02:18:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Coal combustion
Computational fluid dynamics
Pressurized combustion
Fuel-staged combustion
Oxyfuel
Oxy-combustion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a58e8167aa1a423b5416e6565ed9eb0941e8b66f118da8e19c68280a7737d3913
Notes USDOE
ORCID 0000-0002-2572-836X
000000022572836X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1341460
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_fuel_2016_04_023
osti_scitechconnect_1341460
crossref_primary_10_1016_j_fuel_2016_04_023
crossref_citationtrail_10_1016_j_fuel_2016_04_023
elsevier_sciencedirect_doi_10_1016_j_fuel_2016_04_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Fuel (Guildford)
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Vuthaluru, Vuthaluru (b0150) 2006; 87
Chen, Yong, Ghoniem (b0020) 2012; 38
Katzer, Ansolabehere, Beer, Deutch, Ellerman, Friedmann (b0005) 2007
Chui, Raithby (b0245) 1993; 23
Vieser W, Esch T, Menter F. Heat transfer predictions using advanced two-equation turbulence models. CFX validation report, report no. CFX-VAL 2002;10:0602.
Pétrissans, Pétrissans, Zoulalian (b0075) 2005; 44
Ghenai, Janajreh (b0155) 2010; 51
Wall, Liu, Spero, Elliott, Khare, Rathnam (b0085) 2009; 87
Wall, Bhattacharya, Zhang, Gupta, He (b0125) 1993; 19
Buhre, Elliott, Sheng, Gupta, Wall (b0015) 2005; 31
NETL. Pulverized coal oxycombustion power plants: bituminous coal to electricity, vol. 1. DOE/NETL-2007/1291, Washington D.C.; 2008.
Progress report on A-USC technology development. Palo Alto (CA): EPRI; 2012.
Hong, Chaudhry, Brisson, Field, Gazzino, Ghoniem (b0025) 2009; 34
Normann, Jansson, Petersson, Andersson (b0070) 2013; 12
Menter (b0185) 1994; 32
Howell, Siegel, Menguc (b0265) 2010
Xia, Yang, Adeosun, Kumfer, Axelbaum (b0275) 2016; 172
Fluent A. ANSYS FLUENT theory guide: version 13.0. Canonsburg: ANSYS Inc.; 2010.
Modest (b0255) 1991; 113
Eastwick, Pickering, Aroussi (b0145) 1999; 23
Yin, Rosendahl, Kær (b0195) 2011; 90
Yang, Xia, Adeosun, Kumfer, Axelbaum (b0270) 2015
Mullinger, Jenkins (b0115) 2008
Toporov, Tschunko, Erfurth, Kneer (b0225) 2006
Edge, Gharebaghi, Irons, Porter, Porter, Pourkashanian (b0130) 2011; 89
Iloeje (b0080) 2011
Smoot (b0135) 1984; 10
Celik, Ghia, Roache (b0260) 2008; 130
Tian, Witt, Schwarz, Yang (b0165) 2009; 181
Thring, Newby (b0120) 1953; 4
Kitto, Stultz (b0090) 1992
Fletcher, Kerstein, Pugmire, Grant (b0210) 1990; 4
Rego-Barcena, Saari, Mani, El-Batroukh, Thomson (b0240) 2007; 18
Backreedy, Fletcher, Jones, Ma, Pourkashanian, Williams (b0160) 2005; 30
Gopan, Kumfer, Phillips, Thimsen, Smith, Axelbaum (b0040) 2014; 125
Yin, Rosendahl, Kær, Condra (b0140) 2004; 59
Smoot, Pratt (b0230) 1979
Gopan, Kumfer, Axelbaum (b0045) 2015; 39
Hong, Chaudhry, Brisson, Field, Gazzino, Ghoniem (b0035) 2009
Tian, Witt, Schwarz, Yang (b0170) 2010; 2
Menter (b0180) 1992; 30
Zheng (b0050) 2011
Andersen, Rasmussen, Giselsson, Glarborg (b0205) 2009; 23
Liémans, Alban, Tranier, Thomas (b0065) 2011; 4
Abbas, Costen, Hassan, Lockwood (b0100) 1993; 93
Deng, Hynes (b0030) 2009; 131
Hagi, Nemer, Le Moullec, Bouallou (b0055) 2014; 63
Gazzino, Benelli (b0105) 2008
Chen, Gazzino, Ghoniem (b0200) 2010
Genetti, Fletcher, Pugmire (b0215) 1999; 13
White, Allam, Miller (b0060) 2006
Raithby, Chui (b0250) 1990; 112
Kangwanpongpan, da Silva, Krautz (b0190) 2012; 41
ANSYS I. ANYSYS FLUENT 13.0 user’s guide. Canonsburg, PA; 2010.
Law (b0110) 2006
Hong (10.1016/j.fuel.2016.04.023_b0035) 2009
Eastwick (10.1016/j.fuel.2016.04.023_b0145) 1999; 23
Kitto (10.1016/j.fuel.2016.04.023_b0090) 1992
Celik (10.1016/j.fuel.2016.04.023_b0260) 2008; 130
Rego-Barcena (10.1016/j.fuel.2016.04.023_b0240) 2007; 18
Hong (10.1016/j.fuel.2016.04.023_b0025) 2009; 34
Liémans (10.1016/j.fuel.2016.04.023_b0065) 2011; 4
Pétrissans (10.1016/j.fuel.2016.04.023_b0075) 2005; 44
Chui (10.1016/j.fuel.2016.04.023_b0245) 1993; 23
Zheng (10.1016/j.fuel.2016.04.023_b0050) 2011
Iloeje (10.1016/j.fuel.2016.04.023_b0080) 2011
Deng (10.1016/j.fuel.2016.04.023_b0030) 2009; 131
Andersen (10.1016/j.fuel.2016.04.023_b0205) 2009; 23
Law (10.1016/j.fuel.2016.04.023_b0110) 2006
Genetti (10.1016/j.fuel.2016.04.023_b0215) 1999; 13
10.1016/j.fuel.2016.04.023_b0220
Ghenai (10.1016/j.fuel.2016.04.023_b0155) 2010; 51
Gopan (10.1016/j.fuel.2016.04.023_b0045) 2015; 39
Smoot (10.1016/j.fuel.2016.04.023_b0135) 1984; 10
Hagi (10.1016/j.fuel.2016.04.023_b0055) 2014; 63
Abbas (10.1016/j.fuel.2016.04.023_b0100) 1993; 93
Menter (10.1016/j.fuel.2016.04.023_b0180) 1992; 30
Thring (10.1016/j.fuel.2016.04.023_b0120) 1953; 4
10.1016/j.fuel.2016.04.023_b0010
10.1016/j.fuel.2016.04.023_b0175
Katzer (10.1016/j.fuel.2016.04.023_b0005) 2007
Chen (10.1016/j.fuel.2016.04.023_b0020) 2012; 38
10.1016/j.fuel.2016.04.023_b0095
Edge (10.1016/j.fuel.2016.04.023_b0130) 2011; 89
Normann (10.1016/j.fuel.2016.04.023_b0070) 2013; 12
10.1016/j.fuel.2016.04.023_b0235
Menter (10.1016/j.fuel.2016.04.023_b0185) 1994; 32
Vuthaluru (10.1016/j.fuel.2016.04.023_b0150) 2006; 87
Yin (10.1016/j.fuel.2016.04.023_b0195) 2011; 90
Tian (10.1016/j.fuel.2016.04.023_b0170) 2010; 2
Gopan (10.1016/j.fuel.2016.04.023_b0040) 2014; 125
Chen (10.1016/j.fuel.2016.04.023_b0200) 2010
Smoot (10.1016/j.fuel.2016.04.023_b0230) 1979
Mullinger (10.1016/j.fuel.2016.04.023_b0115) 2008
Yin (10.1016/j.fuel.2016.04.023_b0140) 2004; 59
Yang (10.1016/j.fuel.2016.04.023_b0270) 2015
Wall (10.1016/j.fuel.2016.04.023_b0125) 1993; 19
White (10.1016/j.fuel.2016.04.023_b0060) 2006
Gazzino (10.1016/j.fuel.2016.04.023_b0105) 2008
Fletcher (10.1016/j.fuel.2016.04.023_b0210) 1990; 4
Modest (10.1016/j.fuel.2016.04.023_b0255) 1991; 113
Buhre (10.1016/j.fuel.2016.04.023_b0015) 2005; 31
Wall (10.1016/j.fuel.2016.04.023_b0085) 2009; 87
Tian (10.1016/j.fuel.2016.04.023_b0165) 2009; 181
Kangwanpongpan (10.1016/j.fuel.2016.04.023_b0190) 2012; 41
Toporov (10.1016/j.fuel.2016.04.023_b0225) 2006
Backreedy (10.1016/j.fuel.2016.04.023_b0160) 2005; 30
Howell (10.1016/j.fuel.2016.04.023_b0265) 2010
Xia (10.1016/j.fuel.2016.04.023_b0275) 2016; 172
Raithby (10.1016/j.fuel.2016.04.023_b0250) 1990; 112
References_xml – year: 2006
  ident: b0225
  article-title: Modelling of oxycoal combustion in a small scale test facility
  publication-title: 7th European conference on industrial furnaces and boilers (INFUB)
– reference: Fluent A. ANSYS FLUENT theory guide: version 13.0. Canonsburg: ANSYS Inc.; 2010.
– start-page: 19
  year: 2006
  end-page: 22
  ident: b0060
  article-title: Purification of oxyfuel-derived CO
  publication-title: 8th International conference on greenhouse gas control technologies
– volume: 2
  start-page: 73
  year: 2010
  end-page: 88
  ident: b0170
  article-title: Modeling issues in CFD simulation of brown coal combustion in a utility furnace
  publication-title: J Comput Multiphase Flows
– volume: 19
  start-page: 487
  year: 1993
  end-page: 504
  ident: b0125
  article-title: The properties and thermal effects of ash deposits in coal-fired furnaces
  publication-title: Prog Energy Combust Sci
– volume: 23
  start-page: 1379
  year: 2009
  end-page: 1389
  ident: b0205
  article-title: Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions
  publication-title: Energy Fuels
– year: 2011
  ident: b0080
  article-title: Process modeling and analysis of CO
– volume: 34
  start-page: 1332
  year: 2009
  end-page: 1340
  ident: b0025
  article-title: Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor
  publication-title: Energy
– volume: 4
  start-page: 789
  year: 1953
  end-page: 796
  ident: b0120
  article-title: Combustion length of enclosed turbulent jet flames
  publication-title: Symp (Int) Combust
– start-page: 269
  year: 2008
  end-page: 278
  ident: b0105
  article-title: Pressurised oxy-coal combustion Rankine-cycle for future zero emission power plants: process design and energy analysis
  publication-title: ASME 2008 2nd international conference on energy sustainability collocated with the heat transfer, fluids engineering, and 3rd energy nanotechnology conferences
– volume: 23
  start-page: 269
  year: 1993
  end-page: 288
  ident: b0245
  article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method
  publication-title: Numerical Heat Transfer
– year: 2007
  ident: b0005
  article-title: The future of coal: options for a carbon-constrained world
– year: 1992
  ident: b0090
  article-title: Steam: its generation and use
– volume: 31
  start-page: 283
  year: 2005
  end-page: 307
  ident: b0015
  article-title: Oxy-fuel combustion technology for coal-fired power generation
  publication-title: Prog Energy Combust Sci
– reference: Vieser W, Esch T, Menter F. Heat transfer predictions using advanced two-equation turbulence models. CFX validation report, report no. CFX-VAL 2002;10:0602.
– volume: 23
  start-page: 437
  year: 1999
  end-page: 446
  ident: b0145
  article-title: Comparisons of two commercial computational fluid dynamics codes in modelling pulverised coal combustion for a 2.5
  publication-title: Appl Math Model
– volume: 39
  start-page: 390
  year: 2015
  end-page: 396
  ident: b0045
  article-title: Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant
  publication-title: Int J Greenhouse Gas Control
– volume: 44
  start-page: 1075
  year: 2005
  end-page: 1081
  ident: b0075
  article-title: Experimental study and modelling of mass transfer during simultaneous absorption of SO
  publication-title: Chem Eng Process
– volume: 130
  year: 2008
  ident: b0260
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J Fluids Eng
– volume: 112
  start-page: 415
  year: 1990
  end-page: 423
  ident: b0250
  article-title: A finite-volume method for predicting a radiant heat transfer in enclosures with participating media
  publication-title: J Heat Transfer
– volume: 90
  start-page: 2519
  year: 2011
  end-page: 2529
  ident: b0195
  article-title: Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamics modeling study
  publication-title: Fuel
– volume: 113
  start-page: 650
  year: 1991
  end-page: 656
  ident: b0255
  article-title: The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer
  publication-title: J Heat Transfer
– volume: 172
  start-page: 81
  year: 2016
  end-page: 88
  ident: b0275
  article-title: Control of radiative heat transfer in high-temperature environments via radiative trapping—Part I: theoretical analysis applied to pressurized oxy-combustion
  publication-title: Fuel
– volume: 18
  start-page: 3479
  year: 2007
  ident: b0240
  article-title: Real time, non-intrusive measurement of particle emissivity and gas temperature in coal-fired power plants
  publication-title: Meas Sci Technol
– volume: 4
  start-page: 2847
  year: 2011
  end-page: 2854
  ident: b0065
  article-title: SOx and NOx absorption based removal into acidic conditions for the flue gas treatment in oxy-fuel combustion
  publication-title: Energy Proc
– volume: 89
  start-page: 1470
  year: 2011
  end-page: 1493
  ident: b0130
  article-title: Combustion modelling opportunities and challenges for oxy-coal carbon capture technology
  publication-title: Chem Eng Res Des
– volume: 12
  start-page: 26
  year: 2013
  end-page: 34
  ident: b0070
  article-title: Nitrogen and sulphur chemistry in pressurised flue gas systems: a comparison of modelling and experiments
  publication-title: Int J Greenhouse Gas Control
– volume: 125
  start-page: 179
  year: 2014
  end-page: 188
  ident: b0040
  article-title: Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture
  publication-title: Appl Energy
– volume: 87
  start-page: 633
  year: 2006
  end-page: 639
  ident: b0150
  article-title: Modelling of a wall fired furnace for different operating conditions using FLUENT
  publication-title: Fuel Process Technol
– reference: ANSYS I. ANYSYS FLUENT 13.0 user’s guide. Canonsburg, PA; 2010.
– year: 2010
  ident: b0265
  article-title: Thermal radiation heat transfer
– reference: Progress report on A-USC technology development. Palo Alto (CA): EPRI; 2012.
– year: 1979
  ident: b0230
  publication-title: Pulverized-coal combustion and gasification: theory and applications for continuous flow processes
– year: 2010
  ident: b0200
  article-title: Characteristics of pressurized oxy-coal combustion under increasing swirl number
  publication-title: Proceedings of the 35th international technical conference on clean coal & fuel systems
– volume: 93
  start-page: 73
  year: 1993
  end-page: 90
  ident: b0100
  article-title: The effect of the near burner aerodynamics on pollution, stability and combustion in a PF-fired furnace
  publication-title: Combust Sci Technol
– volume: 10
  start-page: 229
  year: 1984
  end-page: 267
  ident: b0135
  article-title: Modeling of coal-combustion processes
  publication-title: Prog Energy Combust Sci
– volume: 59
  start-page: 3281
  year: 2004
  end-page: 3292
  ident: b0140
  article-title: Use of numerical modeling in design for co-firing biomass in wall-fired burners
  publication-title: Chem Eng Sci
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: b0185
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J
– year: 2008
  ident: b0115
  article-title: Industrial and process furnaces: principles, design and operation
– year: 2011
  ident: b0050
  article-title: Oxy-fuel combustion for power generation and carbon dioxide (CO
– volume: 51
  start-page: 1694
  year: 2010
  end-page: 1701
  ident: b0155
  article-title: CFD analysis of the effects of co-firing biomass with coal
  publication-title: Energy Convers Manage
– volume: 30
  start-page: 1657
  year: 1992
  end-page: 1659
  ident: b0180
  article-title: Influence of freestream values on
  publication-title: AIAA J
– volume: 181
  start-page: 954
  year: 2009
  end-page: 983
  ident: b0165
  article-title: Comparison of two-equation turbulence models in simulation of a non-swirl coal flame in a pilot-scale furnace
  publication-title: Combust Sci Technol
– year: 2009
  ident: b0035
  article-title: Performance of the pressurized oxy fuel combustion power cycle with increasing operating pressure
  publication-title: 34th International technical conference on clean coal and fuel systems
– volume: 41
  start-page: 244
  year: 2012
  end-page: 251
  ident: b0190
  article-title: Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model
  publication-title: Energy
– year: 2015
  ident: b0270
  article-title: Control of radiative heat transfer in pressurized, high temperature combustion applications
  publication-title: 9th US national combustion meeting
– reference: NETL. Pulverized coal oxycombustion power plants: bituminous coal to electricity, vol. 1. DOE/NETL-2007/1291, Washington D.C.; 2008.
– volume: 13
  start-page: 60
  year: 1999
  end-page: 68
  ident: b0215
  article-title: Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content
  publication-title: Energy Fuels
– volume: 4
  start-page: 54
  year: 1990
  end-page: 60
  ident: b0210
  article-title: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields
  publication-title: Energy Fuels
– volume: 63
  start-page: 431
  year: 2014
  end-page: 439
  ident: b0055
  article-title: Towards second generation oxy-pulverized coal power plants: energy penalty reduction potential of pressurized oxy-combustion systems
  publication-title: Energy Proc
– volume: 131
  start-page: 053001
  year: 2009
  ident: b0030
  article-title: Thermodynamic analysis and comparison on oxy-fuel power generation process
  publication-title: J Eng Gas Turbines Power
– year: 2006
  ident: b0110
  article-title: Combustion physics
– volume: 87
  start-page: 1003
  year: 2009
  end-page: 1016
  ident: b0085
  article-title: An overview on oxyfuel coal combustion—state of the art research and technology development
  publication-title: Chem Eng Res Des
– volume: 38
  start-page: 156
  year: 2012
  end-page: 214
  ident: b0020
  article-title: Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling
  publication-title: Prog Energy Combust Sci
– volume: 30
  start-page: 2955
  year: 2005
  end-page: 2964
  ident: b0160
  article-title: Co-firing pulverised coal and biomass: a modeling approach
  publication-title: Proc Combust Inst
– volume: 23
  start-page: 437
  issue: 6
  year: 1999
  ident: 10.1016/j.fuel.2016.04.023_b0145
  article-title: Comparisons of two commercial computational fluid dynamics codes in modelling pulverised coal combustion for a 2.5MW burner
  publication-title: Appl Math Model
  doi: 10.1016/S0307-904X(98)10087-2
– volume: 87
  start-page: 633
  issue: 7
  year: 2006
  ident: 10.1016/j.fuel.2016.04.023_b0150
  article-title: Modelling of a wall fired furnace for different operating conditions using FLUENT
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2006.01.004
– volume: 112
  start-page: 415
  issue: 2
  year: 1990
  ident: 10.1016/j.fuel.2016.04.023_b0250
  article-title: A finite-volume method for predicting a radiant heat transfer in enclosures with participating media
  publication-title: J Heat Transfer
  doi: 10.1115/1.2910394
– volume: 93
  start-page: 73
  issue: 1
  year: 1993
  ident: 10.1016/j.fuel.2016.04.023_b0100
  article-title: The effect of the near burner aerodynamics on pollution, stability and combustion in a PF-fired furnace
  publication-title: Combust Sci Technol
  doi: 10.1080/00102209308935283
– volume: 4
  start-page: 2847
  year: 2011
  ident: 10.1016/j.fuel.2016.04.023_b0065
  article-title: SOx and NOx absorption based removal into acidic conditions for the flue gas treatment in oxy-fuel combustion
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2011.02.190
– ident: 10.1016/j.fuel.2016.04.023_b0095
– volume: 131
  start-page: 053001
  issue: 5
  year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0030
  article-title: Thermodynamic analysis and comparison on oxy-fuel power generation process
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.3078204
– year: 2006
  ident: 10.1016/j.fuel.2016.04.023_b0110
– year: 1979
  ident: 10.1016/j.fuel.2016.04.023_b0230
– volume: 41
  start-page: 244
  issue: 1
  year: 2012
  ident: 10.1016/j.fuel.2016.04.023_b0190
  article-title: Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model
  publication-title: Energy
  doi: 10.1016/j.energy.2011.06.010
– ident: 10.1016/j.fuel.2016.04.023_b0010
– year: 2015
  ident: 10.1016/j.fuel.2016.04.023_b0270
  article-title: Control of radiative heat transfer in pressurized, high temperature combustion applications
– year: 2010
  ident: 10.1016/j.fuel.2016.04.023_b0265
– volume: 38
  start-page: 156
  issue: 2
  year: 2012
  ident: 10.1016/j.fuel.2016.04.023_b0020
  article-title: Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2011.09.003
– volume: 181
  start-page: 954
  issue: 7
  year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0165
  article-title: Comparison of two-equation turbulence models in simulation of a non-swirl coal flame in a pilot-scale furnace
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200902925679
– volume: 89
  start-page: 1470
  issue: 9
  year: 2011
  ident: 10.1016/j.fuel.2016.04.023_b0130
  article-title: Combustion modelling opportunities and challenges for oxy-coal carbon capture technology
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2010.11.010
– year: 2010
  ident: 10.1016/j.fuel.2016.04.023_b0200
  article-title: Characteristics of pressurized oxy-coal combustion under increasing swirl number
– ident: 10.1016/j.fuel.2016.04.023_b0175
– year: 2006
  ident: 10.1016/j.fuel.2016.04.023_b0225
  article-title: Modelling of oxycoal combustion in a small scale test facility
– volume: 113
  start-page: 650
  issue: 3
  year: 1991
  ident: 10.1016/j.fuel.2016.04.023_b0255
  article-title: The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer
  publication-title: J Heat Transfer
  doi: 10.1115/1.2910614
– volume: 30
  start-page: 1657
  issue: 6
  year: 1992
  ident: 10.1016/j.fuel.2016.04.023_b0180
  article-title: Influence of freestream values on k–omega turbulence model predictions
  publication-title: AIAA J
  doi: 10.2514/3.11115
– year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0035
  article-title: Performance of the pressurized oxy fuel combustion power cycle with increasing operating pressure
– year: 2011
  ident: 10.1016/j.fuel.2016.04.023_b0080
– ident: 10.1016/j.fuel.2016.04.023_b0235
– ident: 10.1016/j.fuel.2016.04.023_b0220
– volume: 63
  start-page: 431
  year: 2014
  ident: 10.1016/j.fuel.2016.04.023_b0055
  article-title: Towards second generation oxy-pulverized coal power plants: energy penalty reduction potential of pressurized oxy-combustion systems
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2014.11.046
– volume: 13
  start-page: 60
  issue: 1
  year: 1999
  ident: 10.1016/j.fuel.2016.04.023_b0215
  article-title: Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content
  publication-title: Energy Fuels
  doi: 10.1021/ef980074k
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  ident: 10.1016/j.fuel.2016.04.023_b0185
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J
  doi: 10.2514/3.12149
– volume: 31
  start-page: 283
  issue: 4
  year: 2005
  ident: 10.1016/j.fuel.2016.04.023_b0015
  article-title: Oxy-fuel combustion technology for coal-fired power generation
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2005.07.001
– year: 2007
  ident: 10.1016/j.fuel.2016.04.023_b0005
– volume: 90
  start-page: 2519
  issue: 7
  year: 2011
  ident: 10.1016/j.fuel.2016.04.023_b0195
  article-title: Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamics modeling study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.03.023
– volume: 4
  start-page: 789
  issue: 1
  year: 1953
  ident: 10.1016/j.fuel.2016.04.023_b0120
  article-title: Combustion length of enclosed turbulent jet flames
  publication-title: Symp (Int) Combust
  doi: 10.1016/S0082-0784(53)80103-7
– volume: 10
  start-page: 229
  issue: 2
  year: 1984
  ident: 10.1016/j.fuel.2016.04.023_b0135
  article-title: Modeling of coal-combustion processes
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(84)90108-4
– volume: 59
  start-page: 3281
  issue: 16
  year: 2004
  ident: 10.1016/j.fuel.2016.04.023_b0140
  article-title: Use of numerical modeling in design for co-firing biomass in wall-fired burners
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.04.036
– start-page: 269
  year: 2008
  ident: 10.1016/j.fuel.2016.04.023_b0105
  article-title: Pressurised oxy-coal combustion Rankine-cycle for future zero emission power plants: process design and energy analysis
– volume: 2
  start-page: 73
  issue: 2
  year: 2010
  ident: 10.1016/j.fuel.2016.04.023_b0170
  article-title: Modeling issues in CFD simulation of brown coal combustion in a utility furnace
  publication-title: J Comput Multiphase Flows
  doi: 10.1260/1757-482X.2.2.73
– volume: 19
  start-page: 487
  issue: 6
  year: 1993
  ident: 10.1016/j.fuel.2016.04.023_b0125
  article-title: The properties and thermal effects of ash deposits in coal-fired furnaces
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(93)90002-V
– volume: 23
  start-page: 269
  issue: 3
  year: 1993
  ident: 10.1016/j.fuel.2016.04.023_b0245
  article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method
  publication-title: Numerical Heat Transfer
  doi: 10.1080/10407799308914901
– year: 1992
  ident: 10.1016/j.fuel.2016.04.023_b0090
– volume: 39
  start-page: 390
  year: 2015
  ident: 10.1016/j.fuel.2016.04.023_b0045
  article-title: Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant
  publication-title: Int J Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2015.05.014
– volume: 172
  start-page: 81
  year: 2016
  ident: 10.1016/j.fuel.2016.04.023_b0275
  article-title: Control of radiative heat transfer in high-temperature environments via radiative trapping—Part I: theoretical analysis applied to pressurized oxy-combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.12.078
– volume: 23
  start-page: 1379
  issue: 3
  year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0205
  article-title: Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef8003619
– volume: 12
  start-page: 26
  year: 2013
  ident: 10.1016/j.fuel.2016.04.023_b0070
  article-title: Nitrogen and sulphur chemistry in pressurised flue gas systems: a comparison of modelling and experiments
  publication-title: Int J Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.11.012
– year: 2008
  ident: 10.1016/j.fuel.2016.04.023_b0115
– volume: 130
  issue: 7
  year: 2008
  ident: 10.1016/j.fuel.2016.04.023_b0260
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J Fluids Eng
– volume: 51
  start-page: 1694
  issue: 8
  year: 2010
  ident: 10.1016/j.fuel.2016.04.023_b0155
  article-title: CFD analysis of the effects of co-firing biomass with coal
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.11.045
– volume: 125
  start-page: 179
  year: 2014
  ident: 10.1016/j.fuel.2016.04.023_b0040
  article-title: Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.032
– year: 2011
  ident: 10.1016/j.fuel.2016.04.023_b0050
– volume: 87
  start-page: 1003
  issue: 8
  year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0085
  article-title: An overview on oxyfuel coal combustion—state of the art research and technology development
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2009.02.005
– volume: 4
  start-page: 54
  issue: 1
  year: 1990
  ident: 10.1016/j.fuel.2016.04.023_b0210
  article-title: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields
  publication-title: Energy Fuels
  doi: 10.1021/ef00019a010
– start-page: 19
  year: 2006
  ident: 10.1016/j.fuel.2016.04.023_b0060
  article-title: Purification of oxyfuel-derived CO2 for sequestration or EOR
– volume: 18
  start-page: 3479
  issue: 11
  year: 2007
  ident: 10.1016/j.fuel.2016.04.023_b0240
  article-title: Real time, non-intrusive measurement of particle emissivity and gas temperature in coal-fired power plants
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/18/11/031
– volume: 44
  start-page: 1075
  issue: 10
  year: 2005
  ident: 10.1016/j.fuel.2016.04.023_b0075
  article-title: Experimental study and modelling of mass transfer during simultaneous absorption of SO2 and NO2 with chemical reaction
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2005.03.001
– volume: 30
  start-page: 2955
  issue: 2
  year: 2005
  ident: 10.1016/j.fuel.2016.04.023_b0160
  article-title: Co-firing pulverised coal and biomass: a modeling approach
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2004.08.085
– volume: 34
  start-page: 1332
  issue: 9
  year: 2009
  ident: 10.1016/j.fuel.2016.04.023_b0025
  article-title: Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.015
SSID ssj0007854
Score 2.461528
Snippet •A unique boiler is presented for pressurized oxy-combustion of coal with low flue gas recycle.•Design method is described for combustion in a pressure vessel...
SourceID unpaywall
osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1170
SubjectTerms Coal combustion
Computational fluid dynamics
Fuel-staged combustion
Oxy-combustion
Oxyfuel
Pressurized combustion
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1V20PpAVo-1KUUWYIbuKw3tpNwq4CqqkTFgZXKKbJjB6UNyWo3q6r99cysnapCotBjFE_saMaeN_b4DcBb67T06Ml4JYXjstSC51Nt-CRx1lbWKLtmYvp6pk9m8vRcnW_Am-EuDKVVdmjc65xKW9um7j4Q55jUGJdvaoWAewSbs7NvRz_CGqs50YdQWJWlCU9xAserMSGLq1p5OmAQek1oOk3-5n5G1Ok2bK3aubm-Mk1zx8scP4HPw_hCcsnl4aq3h-XNH9SN__iBHXgcUSY7CmaxCxu-fQrbd7gHn8E8XAxc1DfeMeyNo-lZKu3VtYw2Z1nTXTEqYMJ-miXDdfEav_SRhSoQcQeR3teOuVDVni3rX7EY2JJ1FVusaQ96ZjtceRbL5zA7_vL90wmP5Rd4KcW050ZlPhM6NUYYBF1WIXbzCP-Ud7m3GBYKn1mtKwxRnMm8yEuN4dvEpGmSuiQXyQsYtV3r94ClmXFKJsaXOYpVMrepl8pPKumwpZmOQQxaKcrITU4lMppiSEK7KEiTBWmymMgCNTmGd7cy88DMcW9rNSi7iNgiYIYCXce9cvukTZIhUt2Sso9QKGp0DO9vDeY_BvHyYc334RE9hdTBVzDqFyt_gBCot6_jFPgNw8UFOA
  priority: 102
  providerName: Unpaywall
Title Pressurized oxy-combustion with low flue gas recycle: Computational fluid dynamic simulations of radiant boilers
URI https://dx.doi.org/10.1016/j.fuel.2016.04.023
https://www.osti.gov/biblio/1341460
UnpaywallVersion submittedVersion
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V2wP0gMpLLH3IB25gGm9sJ-G2qqgWECsOrFROkR07KNWSrPahshz47czE3lIOVIhTlMQT2Z5kZuzMfB_AC-u09OjJeC2F47LSghcjbXiSOmtra5TtkZg-TvVkJt9fqss9ON_VwlBaZbT9wab31jpeOYuzebZoGqrxFZqgQzCiIBQqgt2WMiMWg9c_f6d5ZLkKSMxCc2odC2dCjle98fT7Qege7nSU_s05DTr83g7g3qZdmO21mc9v-aCLQ3gQg0c2Dv17CHu-fQQHtyAFH8Mi1Pstmx_ese77luPALDF2dS2jPVc2764Z8ZKwr2bFcOhbfNIbFsgd4sYg3W8cc4Gsnq2ab5Hja8W6mi17NIM1sx0alOXqCcwu3n4-n_DIqsArKUZrblTuc6EzY4TBWMoqDMk8RnXKu8JbXO0Jn1uta1x5OJN7UVQaV2WJybI0c2kh0qcwaLvWPwOW5cYpmRpfFShWy8JmXiqf1NJhSzMagthNZ1lFyHFivpiXu9yyq5JUUJIKykSWqIIhvLyRWQTAjTtbq52Wyj9emxI9wp1yR6RSkiGs3IqSilCI0O2kTobw6kbT_9CJ5__ZiSO4T2chNfAYBuvlxp9giLO2p_07fAr743cfJlM8zqafxl9-ARXl_Xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V5VB6qHiKpTx84AamcWI7SW-oolqg7amVerPs2EFBS7Lah8py6G_vTOIt5UCFuMaeaOxx5uHMfAPw1nktA1oyXkvhuay04GWqLU8y71ztrHI9EtPJqZ6cyy8X6mILDje1MJRWGXX_oNN7bR2f7Mfd3J81DdX4Ck3QIehREAqVvgf3pUpzisA-XP3O88gLNUAxC81peqycGZK86lWg_w9C93inafY36zTq8IPbge1VO7PrSzud3jJCRw9hN3qP7OPA4CPYCu1j2LmFKfgEZkPB37z5FTzrfq45rsxRy66uZXTpyqbdJaPGJOybXTBc-xrfdMCG7g7xZpDGG8_80K2eLZofscnXgnU1m_dwBkvmOtQo88VTOD_6dHY44bGtAq-kSJfcqiIUQufWCovOlFPokwV061TwZXAY7olQOK1rDD28LYIoK41hWWLzPMt9VorsGYzarg3PgeWF9UpmNlQlktWydHmQKiS19DjTpmMQm-00VcQcp9YXU7NJLvtuSASGRGASaVAEY3h3QzMbEDfunK02UjJ_nBuDJuFOuj0SKdEQWG5FWUVIRPB2UidjeH8j6X9g4sV_MvEGtidnJ8fm-PPp1z14QCNDnuBLGC3nq_AK_Z2le92f52v8ef1h
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1V20PpAVo-1KUUWYIbuKw3tpNwq4CqqkTFgZXKKbJjB6UNyWo3q6r99cysnapCotBjFE_saMaeN_b4DcBb67T06Ml4JYXjstSC51Nt-CRx1lbWKLtmYvp6pk9m8vRcnW_Am-EuDKVVdmjc65xKW9um7j4Q55jUGJdvaoWAewSbs7NvRz_CGqs50YdQWJWlCU9xAserMSGLq1p5OmAQek1oOk3-5n5G1Ok2bK3aubm-Mk1zx8scP4HPw_hCcsnl4aq3h-XNH9SN__iBHXgcUSY7CmaxCxu-fQrbd7gHn8E8XAxc1DfeMeyNo-lZKu3VtYw2Z1nTXTEqYMJ-miXDdfEav_SRhSoQcQeR3teOuVDVni3rX7EY2JJ1FVusaQ96ZjtceRbL5zA7_vL90wmP5Rd4KcW050ZlPhM6NUYYBF1WIXbzCP-Ud7m3GBYKn1mtKwxRnMm8yEuN4dvEpGmSuiQXyQsYtV3r94ClmXFKJsaXOYpVMrepl8pPKumwpZmOQQxaKcrITU4lMppiSEK7KEiTBWmymMgCNTmGd7cy88DMcW9rNSi7iNgiYIYCXce9cvukTZIhUt2Sso9QKGp0DO9vDeY_BvHyYc334RE9hdTBVzDqFyt_gBCot6_jFPgNw8UFOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressurized+oxy-combustion+with+low+flue+gas+recycle%3A+Computational+fluid+dynamic+simulations+of+radiant+boilers&rft.jtitle=Fuel+%28Guildford%29&rft.au=Xia%2C+Fei&rft.au=Yang%2C+Zhiwei&rft.au=Adeosun%2C+Adewale&rft.au=Gopan%2C+Akshay&rft.date=2016-10-01&rft.pub=Elsevier&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=181&rft.issue=C&rft_id=info:doi/10.1016%2Fj.fuel.2016.04.023&rft.externalDocID=1341460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon